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We calculate the CP-averaged branching ratios and CP-violating asymmetries for the two-body
charmless hadronic decays A, — pr, pK in the perturbative QCD (pQCD) approach to lowest order
in «,. The baryon distribution amplitudes involved in the factorization formulas are considered to the
leading twist accuracy, and the distribution amplitudes of the proton are expanded to the next-to-leading
conformal spin (i.e., “P”’ waves), the moments of which are determined from QCD sum rules. Our work
shows that the contributions from the factorizable diagrams in A, — pm, pK decays are much smaller
compared to the nonfactorizable diagrams in the conventional pQCD approach. We argue that this reflects
the estimates of the A, — p transition form factors in the k; factorization approach, which are found to be
typically an order of magnitude smaller than those estimated in the light-cone sum rules and in the
nonrelativistic quark model. As an alternative, we adopt a hybrid pQCD approach, in which we compute
the factorizable contributions with the A, — p form factors taken from the light-cone QCD sum rules.
The nonfactorizable diagrams are evaluated utilizing the conventional pQCD formalism, which is free
from the endpoint singularities. The predictions worked out here are confronted with the recently available
data from the CDF Collaboration on the branching ratios and the direct CP asymmetries for the decays
A, — pmand A, — pK. The asymmetry parameter « relevant for the anisotropic angular distribution of

the emitted proton in the polarized A, baryon decays is also calculated for the two decay modes.
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I. INTRODUCTION

The motivation to investigate b-quark decays is attrib-
uted to their sensitivity to the quark flavor structure, which
leads to an extremely rich phenomenology, studied mostly
in the context of B-meson decays. However, heavy baryons
containing a b quark have been observed at the Tevatron
and they will be even more copiously produced at the LHC.
Their weak decays may provide important clues on the
flavor-changing currents beyond the standard model (SM)
in a complementary fashion to the B-meson decays. A
particular advantage of the bottom baryons over B mesons
is their spin, which provides a unique way to analyze the
helicity structure of the effective Hamiltonian for the weak
transition in the SM and beyond. Also, such baryon decays
are flavor self-tagging processes, which should make their
experimental reconstructions easier.

Theoretical analysis of nonleptonic decays are based on
factorization theorems, which are the fundamental tools of
the QCD perturbation theory enabling the separation of
physics at different energy scales. The theoretical basis of
the factorization theorem is a generalization of the
Euclidean operator product expansion to the timelike do-
main. The proof of the factorization theorem has been
worked out using the perturbative QCD approach based
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on the analysis of Feynman diagrams in the so-called
Collins-Soper-Sterman (CSS) formalism [1-3]. Equally
importantly, the large mass of the heavy quark makes the
formidable strong interaction effects controllable, and they
can be studied systematically using methods based on
heavy quark expansion.

The basic formula for the calculation of the branching
ratios for the decays of the A, baryon into two light
hadrons is based on an operator realization of the diagram-
matic analysis which can be described most easily for the
calculation of the hadronic matrix element of B meson
decays into two light hadrons, /| and h,. With the insertion
of a set of the weak interaction operator O; between the
initial B meson and the final decay products 4, and h,, the
decay matrix element is obtained from the following for-
mula [4]:

(hihy]|O;|B) = @), (u) ® (T (u) FE"(0) + C''(7, u)
® 28 (7,0)) (1)

involving the QCD form factor F2"1(0) and an unknown,
nonlocal form factor Z2/1(7, 0) at the leading power in the
A/m,, expansion. Different treatments of the various parts
in the factorization formula (1) have led to three popular
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theoretical approaches to study the dynamics of nonlep-
tonic two-body B-meson decays, which are known as the
perturbative QCD (pQCD) [5], QCD factorization (QCDF)
[6], and SCET approaches [7-9]. The function =Bh(7,0)is
supposed to be dominated by perturbative hard-collinear
interactions, and can be further factorized into light-cone
distribution amplitudes ®z(w), ®;, (v) and a jet function
J(m; 0, v),

=Bh (1,0 =J(r; 0, V) ® (I)B(a)) ® q)h] (v), (2

when the hard-collinear scale 1,mbAQCD is integrated out

[10].

In contrast to these two latter approaches based on the
collinear factorization theorem, the pQCD approach,
which is developed in the framework of k; factorization,
is free of the singularities from the endpoint region of the
parton momentum fractions. The pQCD approach has been
widely applied for the calculation of the nonleptonic two-
body B decays, and it has proved itself to be successful in
the description of exclusive processes with typical momen-
tum transfer of a few GeV. A hallmark of this approach is
that the form factor F2"1(0) is assumed to be dominated by
short-distance contributions and it is therefore calculable in
the perturbative theory. Soft contributions, though playing
a role, are less important because of the suppression from
the Sudakov mechanism embedded in the k7 and threshold
resummations [11]. Current applications of the k; factori-
zation theorem to exclusive processes are restricted to LO
in the strong coupling constant « . In this, the infrared
divergences involved in the radiative corrections to the
weak transition vertex are absorbed in the hadronic distri-
bution amplitudes in a gauge invariant manner. The factor-
izable, nonfactorizable, and power-suppressed annihilation
contributions are calculable in this framework free of the
endpoint singularities.

In the case of nonleptonic two-body B decays, the decay
matrix elements, in most cases, are dominated by the
factorizable term, i.e. the first term on the right-hand side
of Eq. (1), whereas the second term, the nonfactorizable
one, produces a perturbative correction. Since the first term
proportional to the form factor F271(0) is in pQCD very
similar to the other approaches, where the form factors are
input, the pQCD approach gives in most cases similar
results for the nonleptonic B decays as the other two
approaches mentioned above, though there are differences
in detail.

In the application of pQCD to two-body nonleptonic
heavy baryon decays, we do not expect a similar pattern
as in the nonleptonic B-meson decays on general grounds.
In particular, in the analysis of the hadronic decays of
baryons, a large number of Feynman diagrams contribute
to the hard amplitudes even at the lowest order. Taking the
A, — pmr decay as an example, some 200 Feynman dia-
grams need to be calculated, as can be seen in Sec. III.
These diagrams involve the exchange of two gluons, in-

PHYSICAL REVIEW D 80, 034011 (2009)

volving topologies where both gluons are attached to one
of the light quarks emerging from the weak interaction
vertex. As some of these diagrams build up the transition
form factor, they receive contributions in a2, yielding
small values for them. Another challenge for the baryonic
transition is that the light-cone distribution amplitudes
(LCDAs) of the baryons are less known in the literature.
LCDAs are fundamental nonperturbative input to regular-
ize the infrared divergence appearing in the radiative cor-
rections in the factorization formalism of the pQCD
approach. In view of this, applications of the pQCD ap-
proach to nonleptonic two-body b-baryon decays are not
worked out to a satisfactory level, and hence this area is
essentially an uncharted territory.

A first attempt to apply the pQCD approach to the
baryonic transitions was made in [12], where the proton
Dirac form factor is calculated taking into account the
Sudakov suppression resulting from the resummation of
the large double logarithms involved in the radiative cor-
rections. Subsequently, the proton form factor was recalcu-
lated in [13] by refining the choice of the evolution scale of
the proton wave functions and the infrared cutoffs for the
Sudakov resummation, which lead to predictions for the
Dirac form factors which are consistent with the experi-
mental data. Following Refs. [12,13], the semileptonic
charmless decays A, — plv [14], the semileptonic charm-
ing decay A, — Al [15,16], the radiative decay A, —
Ay [17], and the nonleptonic charming decay A, —
AJ/ ¢ [18] have been investigated in the framework of
the k; factorization scheme. However, a study of the
charmless hadronic decays A, — hh,, which has been
undertaken in the generalized factorization approach
[19,20], to the best of our knowledge, is still lacking in
pQCD. Our aim is to fill in this gap and provide further
tests of the k; factorization formalism to gain insight on
the QCD dynamics of these decays. In doing this, we have
included the current information on the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, updated
some input hadronic parameters, such as the distribution
amplitudes of the proton, which are systematically studied
in [21] making use of the conformal symmetry of the QCD
Lagrangian, and used data to fix some other input quanti-
ties. We find that the nonfactorizable contributions to the
hard amplitudes overwhelm the ones from the factorizable
diagrams in the baryonic decays A, — pm, pK. This
feature of the b-baryonic decays is at variance with what
is found in the naive factorization approximation and in the
corresponding two-body B-meson decays. Large nonfac-
torizable effects existing in the charmed baryon decays
have been pointed out in the literature [22], where it is
observed that the nonfactorizable diagrams escaping from
the helicity and color suppression can be comparable to
and sometimes even dominate over the factorizable
contributions.

The layout of the paper is as follows: In Sec. II, we
briefly review the pQCD approach and give the essential

034011-2



ANATOMY OF THE PERTURBATIVE QCD APPROACH TO ...

input quantities that enter this approach, including the
operator basis used subsequently and the LCDAs for the
pseudoscalar mesons, the proton as well as the A, baryon.
Input values of the various mesonic decay constants and
the baryonic wave function at the origin in configuration
space are also collected there. Section III contains the
calculation of the A, — pm, pK decays, making explicit
the contributions from the external W emission diagrams
T, the internal W emission diagrams C, the W exchange
diagram E, the bow-tie contraction diagrams B, and the
penguin diagrams P, as shown in Fig. 3. Details of the
calculations are relegated to the two appendixes
(Appendix A, where the Fourier integration to derive the
hard amplitudes in the impact parameter (or ») space are
displayed, and Appendix B, where the factorization for-
mulas for the Feynman diagrams corresponding to various
topologies are given). The decay amplitudes called f| and
f>, defined in Eq. (44), resulting from the diagrams with
different topologies evaluated in the conventional pQCD
approach are given numerically in Table III. We find that
the T diagrams dominate the A, — p7, pK decays, as
expected. Numerical values of the factorizable and non-
factorizable contributions from the 7" diagram amplitudes
fi(A, — par, pK), i =1, 2, in the conventional pQCD
approach are given in Table IV. From the entries in this
table we observe that the factorizable amplitudes in these
decays are essentially 2 orders of magnitude smaller than
the corresponding nonfactorizable amplitudes. The form
factor g, responsible for the A, — p transition evaluated
in various theoretical approaches is given in Table V, and
we find that g; calculated in the pQCD approach is typi-
cally an order of magnitude smaller than in other ap-
proaches, where the form factors are dominated by soft
dynamics. Subsequently, we employ a hybrid prescription
to deal with the hadronic A, — pw, pK decays. In this
approach, the factorizable contributions are parametrized
in the naive factorization approximation, and the variation
of the renormalization scale is assumed to reflect the effect
of the vertex corrections. The nonfactorizable diagrams are
evaluated, as in the conventional pQCD approach, in the
framework of the k; factorization. Following this proce-
dure and utilizing the form factors calculated in the light-
cone sum rules (LCSR), we reanalyze these two channels
and give the numerical results for the amplitudes f;(A, —
pm, pK), i = 1, 2, for the factorizable and nonfactorizable
contributions from the hybrid scheme in Table VII. We
note that the factorizable contributions are much larger in
the hybrid scheme and they constitute a good fraction of
the corresponding nonfactorizable amplitudes. Numerical
results for the charge-conjugated averages of the decay
branching ratios, direct CP asymmetries, and polarization
asymmetry parameter « are tabulated in Table VIII. A
comparison of our predictions with the available experi-
mental data is also included in this table. Section IV con-
tains our conclusion and an outlook.
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II. CONVENTIONS, INPUTS, AND SOME
FORMULAS IN PQCD

A. Effective Hamiltonian

We specify the weak effective Hamiltonian [25]:

H o — %{vuhv:q[a(mgw) Oy (w)04(w)]

- V,bV:‘q[il_ZOB Ci(mQ,»(m]} + He, 3)

where ¢ = d, s. The functions Q; (i = 1, ..., 10) are the
local four-quark operators:
(i) current-current (tree) operators

Qf = (#obg)v-a(Gpua)v-a

“)
Q5 = (ligby)v-alGgug)y-a
(i1)) QCD penguin operators
Qs = (qaba)V*AZ(qlﬁq/ﬂ)V*A’
q/
®)
Q4= (flﬁba)vaZ(flﬁqlg)va,
ql
Qs = (Qaba)V*AZ(q/Bq/ﬂ)V+A’
q!
(6)
Q¢ = (éﬂba)vaZ(C_lﬁyqlg)wA’
ql
(iii) electroweak penguin operators
3 _
0, = E(qaba)V—Azeq’(q/ﬁq/ﬁ)V-FAy
ql
3 (7
Qs = E(éﬁba)v—Azeq/(%%)wA,
q/
3. =1
Qy = E(Qaba)V*Azeq/((’Iﬁqﬁ)V*A’
ql
®)

R _
Qi = E(QBba)V—Azeq’(q/aqlﬁ)V—A’
C]I

where « and B are the color indices and ¢’ are the active
quarks at the scale m,, i.e. ¢’ = (u, d, s, ¢, b). The left-
handed current is defined as (7oqp)v-a = Gav,(1 —

¥s)qjg and the right-handed current as (7oqjplv+a =
Ga?¥,(1 + v5)q. For later applications it will be conve-

nient to use the following combinations of the Wilson
coefficients Q; [26]:
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TABLE I. Numerical values of the effective Wilson coeffi-
cients defined in the text at three different scales w, where m,,
is taken as 4.8 GeV.

u (GeV) 0.5m, m, 1.5m,
a 1.06 1.03 1.02
a, (X 1072) 0.40 10.3 14.8
as (X 1073) 6.41 3.60 2.63
as (X 1073) —32.6 —22.8 —18.3
as (X 107%) —35.87 —2.29 —1.20
ag (X 1073) —48.2 —29.8 —22.5
a; (X 107%) 12.6 12.2 12.0
ag (X 1074 9.79 1.57 6.69
ay (X 107%) —84.5 —82.2 —81.4
a (X 107%) —0.32 —8.20 ~11.9
a1=C2+C1/3, a3=C3+C4/3,
Cl5:C5+C6/3, a7=C7+C8/3,
ag = Cg + C10/3, a, = C] + C2/3, (9)
a4=C4+C3/3, a6=C6+C5/3,
a8:C8+C7/3’ a10=C10+C9/3,

where the scale dependence for the Wilson coefficients has
been suppressed here. For convenience, we have given the
combinations «; of the Wilson coefficients at three differ-
ent values of the energy scale in Table 1.

B. Kinematics

The kinematic variables of the initial and final hadrons
can be defined as follows. The A, baryon is assumed to be
at rest, and the proton recoils in the minus z direction. p,
p', and g = p — p' denote the momentum of the A,
baryon, the proton, and the light meson, respectively. The
momenta of their valence quarks are parametrized as

PHYSICAL REVIEW D 80, 034011 (2009)

My
= +’ 77 0 = b 1} 1) 0 b
p=(p"p.0 7 ( )

ky = (x,p™, 0, kyp),
p'=0p",00=(0p",0),
Ky = (0, x5p"", kby),
q=1(g",00) =(p",00),
¢ =((1=yq".0,—q7), (10

ki = (ip*, p~ kip),
ks = (x3p™, 0, Kkap),
ki = (0,x1p"", Kip),
Ky = (0, x5p"", Kbp),
a1 = (q",0.qr),

where k; (k) is the b () quark momentum, x; (x}) are their
longitudinal momentum fractions, and kf? are the corre-
sponding transverse momenta, satisfying Z,kg? =0.yis
the longitudinal momentum fraction carried by the quark in
the emitted light meson and q7 is its transverse momen-

tum. The kinematics of the nonleptonic two-body decays
of A, is described in Fig. 1.

C. Distribution amplitudes of pseudoscalar mesons

The light-cone distribution amplitudes for the pseudo-
scalar mesons are given by [27,28]

—Jig [ axert [ yspor

+ moysdp?(x) — mgo**ysP,z,

],

(P(P)|325(2)914(0)10)

X

— _i ! xeixP'z A X
7 fo dxe™ Tys P (x)

+ ysmop®(x) + myys(hy — 1)

X ¢T(x)]a,8) (11)
where
A 3fx 3/2
dir(x) = %x(l —x)[1 +0.44C5'“(1)], (12)
q="7%(1.0,0)
q>
u ki
P = 23(0.1,0)
u ks
d ks

q
ki b
p="3011,0
k2 u
k3 d
FIG. 1.

Kinematics of the nonleptonic two-body decays of A, in the pQCD approach.
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dE(x) = \/_[1 +0.43¢Y%(0)], (13)

r0) = —= f[cl% +0.55C* (], (14)
Ax) = 3fTKx(1 — 01 + 0.17C*(1) + 0.115C3 (1)),

(15)

P (x) = 2]:;(6[1 +0.24CY%(1)], (16)

L) = — 2K [C1() + 035¢* (0], (17)

2\/'

and the Gegenbauer polynomials are defined as

1
=1 =3 o= 562 = 1),
3 1
GPo=362 -1, =52 -3)
1
€70 = 5 (35t =302 +3),
a5
) =3 @1 — 1422 + 1), (18)

and ¢ = 2x — 1. The decay constants of these mesons are
fixed as f, = 130 MeV and fx = 160 MeV in our nu-
merical calculations.

D. Distribution amplitudes of baryons
1. Distribution amplitudes of the A\, baryon

The Lorentz structure of the A, baryon wave function
Yy, can be simplified using the Bargmann-Wigner equa-
tion [29] in the heavy quark limit, where the spin and
orbital degrees of freedom of the light quark system are
decoupled. In the transverse momentum space, the wave
function of the A, baryon is defined as [30,31]

dWl dWl lk,

(YAh)aBy(kl’ Iu’) 2\/_N [n (277_)3
X OITLDL, (0)ufy (wa)d’ (w3)1IA, ()

%gh]\]c[(ﬁ + MAI7)’)/5C:|57[Ah(p)]a

X l;b(ki’ /'L)r (19)

where b, u, and d are the quark fields; 7, j, and k are the
color indices; a, 3, and 7y are the spinor indices; C is the
charge conjugation matrix; and A,(p) is the A, baryon
spinor. The normalization constant corresponds to the
value of the wave function at the origin in the configuration
space. The numerical value f,, = 4.287073 X 1073 GeV?

wi ik

PHYSICAL REVIEW D 80, 034011 (2009)

used by us is determined from the experimental data on the
semileptonic decay A, — A.l[7; [32]. The quoted value
(within the =10 range) is also in agreement with the ones
estimated in the QCD sum rule approach [33,34].

The phenomenological model for the distribution am-
plitude of the A, baryon employed in this work is bor-
rowed from [35],

o )=N. e [ 5 my my ]

X1, X0, X3) = NX{Xrx3eXp| — - -

b3 B T o g T 28, 287
(20)

with the shape parameter 8 = 1.0 = 0.2 GeV and the mass
of the light degrees of freedom in the A, baryon being
m; = 0.3 GeV. The normalization,

[[dx]¢(x1,x2, x) =1, @1)

leads to the constant N = 6.67 X 10'2. We point out that
the complete set of three-quark distribution amplitudes of
the A, baryon has been investigated in Ref. [36] in the
heavy quark limit, and the renormalization-group (RG)
equation governing the scale dependence of the leading
twist distribution amplitude is also derived there. It is
shown that the evolution equation for the leading twist
distribution amplitude includes a piece associated with
the Lange-Neubert kernel [37], which generates a radiative
tail extending to high energies, and a piece relevant to the
Brodsky-Lepage kernel [38], which redistributes the mo-
mentum within the spectator diquark system. It is sufficient
to limit the accuracy of the current pQCD analysis to the
leading twist approximation due to the still large errors of
the experimental data.

The model for the twist-2 distribution amplitude for the
A, baryon proposed in [36] is

1
PP (w, u) = w?u(l — u)[? e~ (w/e) 4 ang/z(Zu -1)

0

I
X% e—(w/en] (22)
1

with €, = 2007 13° MeV, €, = 6507$) MeV, and a, =
0.33379239. In the above representation, w is the total
energy carried by the light quarks in the rest frame of the
A, baryon, and the dimensionless parameter u describes
the momentum fraction carried by the u quark in the
diquark system. The normalization of %P (w, u) is

[m wdo [1 duy P (w, u) = 1. (23)
0 0

For comparison, we translate Eq. (20) in terms of the
variables w and u of Ref. [36]:
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1 1 -
YCM(w, ) = —— Neo?u(l — u)[] _ue ﬂ]
My, My, My,
M3
X exp[— ¢
2 _ uw _ (1o
261 May T M, )
2 2
S i | @
By 28 S

The shapes of the LCDAs %P (w, u) and “M(w, u),
given in Egs. (22) and (24), respectively, are shown in
Fig. 2, and the various curves show the dependence on
the input parameters of the models. The variations of a, in
P (w, u) do not play a significant role in the behavior of
P (w, u), since the second moment is suppressed by
€o/ €, and so we have fixed a, = 0.333. At this stage, it is
difficult to select one or the other of these LCDAs. The
harder spectrum of #“M(w, ) in @ (the sum of the
energy of the two light quarks in the rest frame of the A,
baryon) also reflects in the inverse moments, which are
more important for the dynamics. Following Ref. [36], we
define the two inverse moments involving negative powers
of the variables w and u, the fractional quark momentum

7

u=0.5

‘//QCD/CQM(w’u) (GeV—Z)

YU (w, u) and

functions
M (g, u) plotted against w for the fixed value u = 0.5. The
solid, dashed-dotted, dashed-double-dotted, dashed-triple-
dotted, and dashed-quartic-dotted curves, peaking typically
around @ = 0.8 GeV, describe the distribution amplitude

FIG. 2 (color online). The

YyCM(w, u) with the values of the parameters (B8 =
1.0 GeV, m; = 0.3 GeV), (B = 0.8 GeV, m; = 0.30 GeV),
(B =12 GeV, m; = 0.30 GeV), (B=10GeV,m =
0.24 GeV), (B = 1.0 GeV, m; = 0.36 GeV), respectively. The
curves peaking around @ = 0.4 GeV (red curves) correspond
to the distribution amplitudes P (w, 1), where the solid,
dashed-dotted, dashed-double-dotted, dashed-triple-dotted, and
dashed-quartic-dotted curves correspond to the values of the
model parameters (€, = 0.20 GeV, €; = 0.65 GeV), (ey =
0.14 GeV, €; = 0.65 GeV), (€y = 0.33 GeV, €; = 0.65 GeV),
(o = 0.20 GeV, €, = 0.35 GeV), (6o = 0.20 GeV, €, =
1.30 GeV), respectively.
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o (Ao = [ do [ e/,

m”mw»zfmdwfdwﬂwwwuw,aﬁ
0 0

where an additional energy cut w < Ayy is introduced to
guarantee that the moments are finite in the presence of a
radiative tail. The values of {(wu) ') and {(w ') for Ayy =
2.5 GeV and p = 1 GeV are summarized in Table II. We
note from this table that the moments of the two distribu-
tion amplitudes P (w, u) and y*M(w, u) are compat-
ible with each other within the errors on the model
parameters (which are large), with the central values of
these moments shifted to lower values for the ¢ M (w, u)
LCDA. For the numerical calculations presented here we
use y“M(w, u) with the quoted errors on the model
parameters.

2. Distribution amplitudes of the proton

Similarly, the wave functions of the final state proton
have, in leading twist, the following form [39]:

(P (K ) = < jch (") ys],

X(C P)apdp” (ki ) + [N(P"],
X(CVysp)apd™ (Kl 1)

=[NP ysy+],

X(C o, p"™)apd” (K, )} (26)

Keeping next-to-leading conformal spin, one obtains the
following twist-3 distribution amplitudes [21,40]:

¢V (x; ) = 120x,x023[ 3 () + 3 () (1 — 3x3)],
& (x;, ) = 1200303 (x5 — x1) 5 (),
&7 (x;, ) = 120512023 (1) — 25 — 3)(w)(1 —3x3)].

Here the moments of the distribution amplitudes for the
proton are determined by

21
¢g =fN’ ¢'§_ =7fNAu’
27
7
b5 =31 =3V,

with all the parameters fixed at the scale u = 1 GeV as

TABLE II. Typical inverse moments defined in Eq. (25) at a
fixed energy cutoff Ayy = 2.5 GeV and u = 1 GeV for the two
LCDAs P (w, u) and ¢y*M(w, u) discussed in the text.

(@™ (GeVTh) {wu)™") (GeV™)
PP (w, u) 1.66972 5.38+222
M (w, u) 1.074)31 2.53+042
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Ifxl = (5.0 £0.5) X 1073 GeV2, A% =0.38 + 0.15,
Vd =023 = 0.03. (28)

It is easy to see that the above proton distribution ampli-
tudes satisty the following relations:

¢V(x,,x2, x3) = ¢V(x2, xl,x3),
dA(xy, x3,x3) = — P (x, x1, x3), (29)

<75T(x1,x2: xa) = ¢T(x2: X1, X3).

E. A brief review of the conventional pQCD approach

Factorization of amplitudes is a fundamental tool of
QCD perturbative theory to deal with processes involving
different energy scales. Based on the k; factorization, the
pQCD approach provides a framework which has been
applied to hard exclusive processes. In this approach,
hard gluon(s) exchange is essential to ensure the applica-
bility of the twist expansion, and soft contributions are
expected to be less important owing to the suppression
by the Sudakov factor. This is the case for the transition
form factors involving mesons. We would like to take the
A, — p transition form factors as an example, first to
illustrate the pQCD factorization theorem, and then offer
quantitative estimates for this form factor to check if the
soft contributions remain subdominant or not in the bar-
yonic transitions.

The factorization theorem states that the transition form
factor can be expressed as the convolution of hadronic
wave functions ¢ ,, i, and the hard-scattering amplitude
Ty,

1
F= [ 1@a1ae] [k [k, kg 0
X TH(-xr xl’ MA,,? kTr le’ ,LL)',Z/A'?(X, kT’ P, M)«' (30)

which is usually transformed to the impact parameter b
space to perform the Sudakov resummation of the double
logarithms involved in the radiative corrections to the
hadronic wave functions,

F= [ 1axax] [lan) [[@12, 6 b, p', )
0
X Ty(x, x', My,, b, b, )Py, (x, b, p, u). 31)

Here P, (x, b, p, u) and P,(x', b’, p’, u) are the Fourier
transforms of the ¢ 5, (x, k7, p, u) and ¢ ,(x, K}, p', w),
respectively. Radiative corrections to the hadronic wave
function can generate a soft logarithm «a; In(Qb), whose
overlap with the original collinear logarithm leads to a
double logarithm a,In?(Qb). This type of large logarithm
must be organized in order to ensure the validity of the
perturbative expansion. Resummation techniques have
been developed to deal with such double logarithms. The

PHYSICAL REVIEW D 80, 034011 (2009)

result is a Sudakov exponential exp[ —s(Q, b)], which de-
creases fast with increasing b and vanishes at b = 1/Aqcp.

The expressions for the Sudakov evolution of the had-
ronic wave functions Py (x, b, p, u) and P ,(x/, b, p', )
can be expressed as products of the Sudakov exponents
s(b, Q) and reduced hadronic wave functions, denoted by
j’Ab(x, b, p, ) and ?p(x’, b/, p', w):

3
?Ab(-x’ b» p» M) = eXp[_ Z S(W’ k;r):lg)Ab(x: b) p; /J“),
=2

3
P, b, pu) = exp[— Z s(w', k;‘)il’Pp(x’, b’, p', w),
i=1

(32)

where s(b, Q) is defined as

A g A . A® 14
b0)=—gu(L) -G -b+5(L-1
s(b. Q) 231"“(19) 2,470 4ﬁ%(b )

[A(Z) A | (6275—1)] (q)
N5 55 In In( =<
467 4B, 2 b

ADB, A[ln(Z@) +1  In(2b) + 1]

BT i
A(l),Bz Ay 12l
+ 8,3% [ln (2q) In (2b)], (33)

with
g=ww[Q/(V2N)]  b=m[1/bN)] (34

and the coefficients A®”) and S, are

_33-om, _ 153~ 19n, w4
! 2 : 24 3’
67 @ 10 8 1
A(Q) :E_?_ﬁnf+§’glln<§€YE)’ (35)

ng is the number of quark flavors and 7yp is the Euler
constant. We will use the one-loop running coupling con-
stant; i.e. we pick up the first four terms in the expression
for the function s(Q, b).

Apart from the double logarithms due to the inclusion of
the transverse momentum, large single logarithms from
ultraviolet divergences can also emerge in the radiative
corrections to both the hadronic wave functions and the
hard kernels, which are summed by the RG method,

[u % T B(g)%]f’Ab(x, b, p, 1)

8 .
= —qui”A,,(x, b, p, w), (36)
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d 0 7=~
I:Mm + B(g) @:I'Pp(x', b', p', )
= =3y, P, b, p, ), 37)
d | , ,
Fan ™t B(g)@ Ty(x, x', My, b, b/, 1)
17 , ,
= ?YqTH(x, x,My,, b, b, ). (38)

Here the quark anomalous dimension in the axial gauge is
Vg = T /. In terms of the above equations, we can get
the RG evolution of the hadronic wave functions and hard-
scattering amplitude as

?AA&bJ%M)ZCXP_:i[MJFYAaAﬂD:
X fPA (x, b, p,w),

3 [ )]

><’Pp(x b, p, W), Ty(x,x',My,, b, b, )

[ [ Lrifaan

jbp (xl’ b/’ p/’ Iu‘) =exXp

sz

=exp

XTH(x,x,MAb,b,b’, 1). (39)
The factorization scales w and w’ represent the inverse of a
typical transverse distance among the three valence quarks
of the initial and final states. The choices of w and w' are

1 1 1 1 11
w= mln(bl by b;) w' = mlII(b, BB ), (40)
with the variables b, and b/ defined as
by = by = bs], b} = |by — b, (41

with the other b; and b} defined by permutation. The
introduction of the parameter « is done from the viewpoint
of the resummation, since the scale kw!), with x of order
unity, is equivalent to w() within the accuracy of the next-
to-leading logarithms [41]. The variation of k represents
different partitions of the radiative corrections to the per-
turbative Sudakov factor and the nonperturbative wave
function. The best fit to the experimental data of the proton
form factor determines the parameter as k = 1.14 [13].

Furthermore, loop corrections for the weak vertex can
also give rise to another type of double logarithm, a,In’x;,
which is usually factorized from the hard amplitude and
resummed into the jet function S,(x;) to smear the endpoint
singularity. It should be pointed out that the Sudakov factor
from threshold resummation is process independent, and
hence universal [42]. The following approximate parame-
trization is proposed in Ref. [43] for phenomenological
applications:

PHYSICAL REVIEW D 80, 034011 (2009)

2172¢1°(3/2 + ¢)
J7l(1 + ¢)

with the parameter ¢ = 0.3 determined from the best fit to
the next-to-leading-logarithm threshold resummation in
moment space. The threshold factor modifies the endpoint
behavior of the hadronic distribution amplitudes and forces
them to vanish faster as x — 0. Collecting everything
together, we arrive at the typical expression for the facto-
rization formula of the form factor in the pQCD approach:

_ [0 1] f [dx'] f [4*b] f [26]2, (', b, pl, w)

X Ty(x, x', My,, b, b, t)fj’Ab(x, b, p, w)S,(x")

3
X exp[ — Z s(w, ki
i=2

Si(x) = [x(1 = x)], (42)

f_nMW)

3 r di
—ZMMﬂ—ﬁ'#nmw@ 43)
i=1 xw'
Apart from the hard perturbative kernel Ty (x, x/, ...), the

same expression holds for the mesonic and baryonic tran-
sition form factors. As we shall see quantitatively below,
the hard perturbative kernels entering the latter are para-
metrically suppressed compared to the former. Physical
interpretation of the Sudakov factor is well known [44];
namely, it is a probability distribution function for emitting
no soft gluons. When a quark is accelerated in QCD,
infinitely many gluons are emitted. Hence, we may observe
many hadrons (or jets) at the end if gluonic bremsstrahlung
occurs. Therefore, the amplitude for an exclusive decay A,
to a light baryon and a light meson is proportional to the
probability that no bremsstrahlung gluon is emitted. This is
just the role of the Sudakov factor in the k7 factorization. It
is known that the Sudakov factor is large only for small
transverse intervals between the quarks in the hadron. A
large transverse interval implies that the quarks in the
hadron are separated and hence less color shielded. Thus
the Sudakov factor suppresses the long-distance contribu-
tions for the decay amplitude.

III. CALCULATIONS OF BARYONIC DECAYS
A, — par, pK IN THE PQCD APPROACH

Topological diagrams responsible for the decay of A, to
a light baryon and a light meson are presented in Fig. 3. In
terms of the hard-scattering mechanism, the exchange of
two hard gluons is needed to ensure that the light spectator
quarks in the initial states turn out to be collinear objects in
the final state. With this, the various diagrams for the A, —
pr decays in the pQCD approach in the lowest order are
displayed below. Figure 4 shows the external W emission
diagrams, Fig. 5 the internal W emission diagrams, Fig. 6
the W exchange diagrams, Fig. 7 the bow-tie diagrams, and
Fig. 8 the penguin diagrams. We also include diagrams
containing the three-gluon vertex displayed in Fig. 9. Their
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FIG. 3. Topological diagrams responsible for the decay A, —
pm, where T denotes the external W emission diagram; C
represents the internal W emission diagram; E labels the W
exchange diagram; B denotes the diagram that can be obtained
from the E-type diagram by exchanging the two identical down
quarks in the final states; and P represents the diagram that can
only be induced by the penguin operators.

contribution is, however, about an order of magnitude
smaller than that from the external W emission (7)) dia-
grams, but it can be comparable to that of the internal W
emission (C) diagrams. As for A, — pK decay, only
Figs. 4 and 7-9 contribute to the decay amplitude.

Zd\\.z.ia,f I U i U

1

PHYSICAL REVIEW D 80, 034011 (2009)

A. General factorization formulas for A, — pm, pK
decays

The A, — pr, pK decay amplitude M is decomposed
into two different structures with the corresponding coef-
ficients f| and f5:

M = p(pOf1 + f2v5]M(p), (44)

using the equation of motion for a free Dirac particle.
Similar to the factorization formula for the form factors
of the A, — p transition, the coefficients f; (i = 1,2) can
be expressed as

n=A,P,T

j_ T
fi=Gr= ﬁfA,,fp >

m=V,A,T

[10x1 [(DbY a0

Xal (), ()P () bl (VH™ (x, %', y) QI (b, B, b))
X exp[—S7]. (45)

Here, f{ (i = 1, 2) denotes the contribution to the coeffi-
cient f; by the ““jth” diagram displayed in Figs. 4-9, and
a’ are the corresponding Wilson coefficients. The hard
function O/ (b, b/, b,) arises from the Fourier transforma-
tion of the denominators of the internal particle propaga-
tors in the jth diagram. The hard amplitudes H;"" (x, X', y)
depend on the spin structures of the three valence quarks in
the proton and the form factors f,,. The integration mea-
sure involving the momentum fractions can be written as

[Dx] = [dx]dx']dy, [dx] = dxldxzdx35<1 — ixi),

i=1

3

[dx'] = dx! dx’zdxgﬁ(l - Z xﬁ), (46)
i=1

and the expressions for the measure of the transverse extent

[Db] will be shown in the factorization formulas given in

Appendix B.

d d

I U e N i U

A._/Q_AA/ I g

N U . S & S S § R S U

o] Pl P o e P

g

FIG. 4. External W emission (7)) diagrams for the A, — pr decay to the lowest order in the pQCD approach, where the dots denote
the weak interaction vertices. The two hard gluons are needed to transfer the large momentum to the light quarks in the initial state so

that these two light quarks are collinear in the final state. These diagrams are called T4, T, ..

.y T36 in the text.
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FIG. 5. Internal W emission (C) diagrams for the A, — pr decay to lowest order in the pQCD approach, where the dots denote the
weak interaction vertices. As in the preceding figure, the two hard gluons are essential to transfer the large momentum to the light

quarks in the initial state. These diagrams are called Cy, C», ..., Csq.
The exponents S/ in the Sudakov factor are determined _ 3 8 (1 di
for the factorizable diagrams by Si(x,x,y,b, b, b)) =D s(w, k) + g/ 774(%(/1))
i=2 Kw
3 _
. < 8 [ di _ 3 i dp
1000, 5, 6) = 3050 1) + 5 N Ly (ap) +S a3 [ 8 )
i= i=1 kw'
3 t di 2 7
_ J M _ i d
+ ZIS(W/, k; ) + 3ﬁw1 ﬁ 'Yq(a\(,u*)): _"_Zs(wq’ql_'_)_'_zlf #yq(as(ﬂ)),
= i=1 Wq
and for the nonfactorizable diagrams by
D U
U d H H § EN 1]

§ H § H

FIG. 6. W exchange (E) diagrams for the A, — pr decay to lowest order in the pQCD approach, where the dots denote the weak
interaction vertices. As in the preceding figure, the two hard gluons are needed to transfer the large momentum to the light quarks in the
initial state. These diagrams are called E|, E,, ..., Ex.
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FIG. 7. Bow-tie (B) diagrams for the A, — pm decay to lowest order in the pQCD approach, where the dots denote the weak
interaction vertices. As in the preceding figures, the two hard gluons are needed to transfer the large momentum to the light quarks in

the initial state.

where #/ is the typical energy scale of the jth diagram and
is chosen as

¢/ = max(t], 5, £, th, w, W', w,), (49)

where the hard scales #], ¢} are relevant to the two virtual
quarks, and #}, #; are associated with the two hard gluons.
w and w’ have been given in Eq. (40), and w, = 1/b,. The
maximum in the above choice simply indicates that the
hard scales should be larger than the factorization scales.

The factorization formulas for some typical diagrams
corresponding to different topologies in the A, — pw
decay are given in Appendix B. The corresponding facto-
rization formulas for A, — pK decay can be obtained
directly following the same rules.

B. Numerical results for A, — pw, pK decays

For the CKM matrix elements, we use as input the
updated results from [45] and drop the (small) errors on
Viuds Vus, and Vi

Vil = 0974, |V, | =0.225,

[Vl = (3.507913) X 1073,

Vgl = (8.59702) X 1073,

|V,,| = (40.417938) x 1073,

[Vl = 0.999, B = (21.58*§31)°,
y = (67.8%43)°

(50)

d P

. U S S o Sl .. Sl

e \/\3/2/ g.'/ S T

e \é\éMMM
M ° 3

N

B O . G U . U

I T . N . U l.é.‘/_%é
* "B, ﬁ%—lﬂé MG 2N

FIG. 8. Penguin annihilation (P) diagrams for the A, — p7r decay to lowest order in the pQCD approach, where the dots denote the
weak interaction vertices. As before, the two hard gluons are essential to transfer the large momentum to the light quarks in the initial

state. These diagrams are called Py, P,, ..., P3.
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FIG. 9. Feynman diagrams responsible for the A, — pa decay with the three-gluon vertex to the lowest order in the pQCD

approach, where the dots denote the weak interaction vertices.

It will be shown that the CKM factors mostly yield an
overall factor for the branching ratios and do not introduce
large uncertainties to the numerical results.

We start by discussing the numerical results in the
conventional pQCD approach. To that end, we list the
coefficients f; and f, defined in Eq. (44) contributed by
the Feynman diagrams with different topologies in the
A, — pm decay in Table III. From this table, we observe
that the amplitudes satisfy the relations 7 > C > E.

As mentioned earlier, the 7-type diagrams dominate the
A, — pr decays. For this case we present the factorizable
and nonfactorizable contributions in the A, — p decays
in Table IV. We observe that the factorizable contribution is
approximately 2 orders of magnitude smaller than the
nonfactorizable contribution. This is also the reason that
the conventional pQCD predictions for the semileptonic
decay A, — plv [39] and the radiative decay A, — Ay
[17] are much smaller than those evaluated in other theo-

TABLE III.

retical frameworks (such as the constituent quark model or
the QCD sum rules).

The suppression of the factorizable contributions in the
conventional pQCD approach has been observed also in the
analysis of the A, — AJ/ decays [31], where the non-
factorizable contributions are also found almost 2 orders of
magnitude larger than those from the factorizable dia-
grams. In order to understand the large contribution of
the nonfactorizable diagrams in A, decays, it is necessary
to recall the role of the Sudakov factor in the k; factoriza-
tion approach. As stated in Sec. II, the Sudakov factor can
only suppress the region with large b’s corresponding to
small k7’s, and has almost no effect in the region where the
transverse momentum ky is large. Taking the nonfactoriz-
able diagram 7,5 as an example, the two virtual quarks can
be on the mass shell even in the region with large k7.
Therefore, this diagram is not subjected to the suppression
from the Sudakov factor. It is then expected that the

The coefficients f; and f, contributed by the Feynman diagrams with definite

topologies in the A, — p decay based on the conventional pQCD approach.

fi

I

—2.42X107% —i2.07 X 107°

—1.74X107° —i1.22 X 107°

QummAaN

2.05 X 10710 — j4.60 X 10710
2.89 X 1071 — j8.95 x 10712
—7.00 X 107" +43.33 x 10710
—6.84 X 10712 + j4.85 x 10711
1.37 X 10719 + j1.71 x 1071

—2.35X 10710 + 4,77 x 10710
.11 X 1071 — j4.36 X 10712
2.21 X 10710 — j4.04 x 107!
7.00 X 10712 — j4.75 x 107!

—1.60 X 10710 + 2.01 x 10710
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TABLE IV. The coefficients f, and f, in the A, — p, pK decays from the factorizable and nonfactorizable external W emission

(T) diagrams in the conventional pQCD approach.

Nonfactorizable

Factorizable
f1(A, — pm) 1.47 X 1071 = {1.97 x 10~
fa(A, — pm) 1.26 X 10711 —i1.94 X 10~
f1(A, — pK) —1.52 X 107" —i0.62 x 107!
f2(A, — pK) 0.17 X 107" — j0.60 x 10~

—2.43 X 1072 — i2.05 X 107°
—1.75 X 107% — i1.20 X 107?
—0.88 X 1079 + j0.54 X 1010
—1.06 X 1072 + i1.67 X 107°

amplitudes for the nonfactorizable diagrams should be
much larger than those from the factorizable diagrams,
where the two virtual quarks can be on the mass shell
only in the small k; region. Actually, a similar case also
occurs in the hadronic B-meson decays. There, the annihi-
lation diagrams contributing to the B — MM, decays in
the pQCD approach are very important, and are responsible
for the large CP violation and the enhancement of the
transverse polarization fractions predicted in the k; facto-
rization. The large contribution from the annihilation dia-
grams in the pQCD approach is due to the fact that the
inner quark can be on the mass shell in the region of large
k7. The numerical analysis also shows that the six non-
factorizable diagrams T9, 15y, 151, T»s, T31, T3, play the
most significant role in the decay amplitude for the A, —
par transition.

We consider the smallness of the factorizable contribu-
tions in the conventional pQCD approach as unrealistic.
Consequently, we argue that the A, — p transition form
factors cannot be reliably calculated in the perturbative ky
scheme; i.e. these form factors are dominated by nonper-
turbative soft contributions, which cannot be estimated in
the pQCD approach. Of course, this could easily be
checked by measuring the semileptonic A, decays A, —
p{v,, which depend only on the factorizable diagrams.
Pending this determination, we consider it as a more
reasonable approach to calculate the A, — p transition
form factor by means of some nonperturbative method.

The form factors of A, — p transition are defined as

(p(Pliy ,bIA,(p)) = P(P) g1V, + &200,4,q"
+ 239,)M(p), (51)

where all the form factors g; are functions of the square of
momentum transfer g>. We show in Table V numerical
values for the vector transition form factor g; for the A, —
p transition. These results are obtained in the nonrelativ-

istic quark model (NRQM) [19], LCSR [23], an earlier
pQCD calculation [14], and this work (also a pQCD cal-
culation) for comparison. From this table we see that the
predictions for the transition form factor g, are scattered,
with the NRQM [19] and the LCSR [23] values differing
by a factor 2, but the two conventional pQCD results
shown, while consistent with each other, are smaller from
those obtained using the nonperturbative methods, typi-
cally by an order of magnitude.

To understand the marked difference of the form factor
g1 predicted in the pQCD approach and in the other frame-
works, we recall that the hard dynamics is assumed to be
dominant in the heavy-to-light transition form factors in
the former, and the soft contribution, which is not calcu-
lable, is assumed to be less important due to the Sudakov
resummation. Table V suggests that the soft dynamics in
the heavy-to-light transition form factors is the dominant
effect, in all likelihood overwhelming the mechanism of
the hard gluon exchange for the baryonic transitions.
Similar large soft contributions have also been observed
in the nonleptonic charmed meson decays [46] as well as in
the semileptonic A, — Ay, AlT1~ decays [17,33]. It is
found in [33] that the hard contributions to the A, — A
form factors are almost an order of magnitude smaller than
those from the soft contributions.

In the modified version of the pQCD approach, which
we call hybrid pQCD, the form factors are taken as external
inputs. The perturbative correction to the factorizable am-
plitude will then enter through the Wilson coefficients,
which are known in next-to-next-to-leading order
(NNLO), and the vertex corrections, which have been
recently calculated for the tree diagrams in the charmless
hadronic B decays in NNLO [47,48]. As the complete
NNLO corrections, including the QCD penguin ampli-
tudes, are not yet at hand, we follow the approximate
(and less precise) approach proposed in Ref. [49] to neglect
the vertex corrections and vary the renormalization scale

TABLE V. The form factor g, responsible for the A, — p transition at zero momentum
transfer, calculated by us (this work) and in the NRQM, LCSR, and in another pQCD approach.
The uncertainties from the variations of the hard scale, Aqcp, and the shape parameter 3 in the
A, wave functions have been combined together in our work.

NRQM [19]
g 0.043

LCSR (full QCD)[23]
0.018

pQCD [14]
23X 1073

pQCD (this work)
22108 x 1073
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of the Wilson coefficients between 0.5m;, and 1.5m,.
Surely, this step of the calculation can be systematically
improved once the complete NNLO virtual corrections are
available. The nonfactorizable contributions will be eval-
uated as already discussed in the conventional pQCD
approach.

Following the above procedure, we write the complete
decay amplitude for A, — pm, pK as

M Ay — pm) = Mp(Ay — pm) + M, (A, — pm),
M(A, — pK) = My(A, — pK) + M, (A, — pK),
(52)

where M, (A, — pm) and M, (A, — pK) denote the
contributions from the nonfactorizable diagrams and have
been computed in the conventional pQCD approach. To
calculate the factorizable amplitudes M (A, — pr) and
M(A, — pK), we first need to deal with the hadronic
matrix elements with the insertion of (V — A) ® (V + A)
operators, i.e., the Os—0Og penguin operators. Making use
of the Fierz identity, the factorization assumption, and the
Dirac equation, the matrix element of the operator O can
be written as

(pM|Og|A,) = [RY<plg'y . bIA)
+ RY¥(plg"y,vsbIA,)]
X M|gy, (1 = ys5)q'l0) (53)

with

! (mb - mu)(mu + mq)’
. (54)
RY 2my,

N (mb + mu)(mu + mq)’

where the quark masses are the current quark masses. In
addition to the form factors defined in Eq. (51), we need the
matrix element describing the A, — p transition induced
by the axial-vector current

+ G3q,)YsAy(P + q).
(55)

It is then straightforward to write the factorizable ampli-
tudes M (A, — pm) and M (A, — pK) as

PHYSICAL REVIEW D 80, 034011 (2009)

G = * *
jvlf(Ab —pm)= —;fwP(P/){[Vuh Via@1 — Vi th(a4 +aj

7

+ R7(ag + ag)[g1(m%)(My, — M)

+g3(mP)mE]+ [V, Vigar — Vi Vi

X (ag + ayo— R3(ag + ag))|[G, (m%)

X (M, +M,)— Gs(mz)mz]ys}A,(p),
(56)

G _ " "
My(A,— pK)= \/—ngP(P/){[Vub Visay — Vi, Vislag + ayg

+ R (ag + ag)) g1 (mz) (M, — M)

+ g3(mip)mi ]+ [V Visar — Vi Vi

X (ay +ayg— R5(ag + ag))]
X[Gy(mg)(My, +M,)

= G3(midmgJystAy(p). (57)

The masses of the pseudoscalar mesons of 77 and K can
safely be neglected; therefore only the form factors at the
zero-momentum transfer will be involved in the numerical
computations.

To evaluate the A, — pm, pK decays numerically, we
need to specify the form factors responsible for the A, —
p transition. As can be seen from Eqgs. (56) and (57), the
form factors g3 and Gj, whose contributions are propor-
tional to the mass of the corresponding meson, are ines-
sential for the calculation of the decay amplitudes. In view
of the minor effects of these two form factors, it is quite
adequate to determine them in terms of the relations de-
rived in the heavy quark limit. As is well known, the form
factors g; and G; satisfy

m
g1 =G =&+, (58)
mAb
'3
g6 =G,=g3 =Gy ==, (59)
mAb

in the heavy quark effective theory (HQET), where the two
independent form factors &; and &, are defined as

(AP)IBTs|A,(P + @)y = A(P)[£1(¢7) + Péx(gP)]
X TA,(P + q), (60)

with I" being an arbitrary Lorentz structure and v,, being
the four-velocity of the A, baryon. An analysis of the form
factors g; and G; has been performed in the LCSR [23],
which we shall use here. The numerical results for g; and
my, &, needed for our numerical calculations are grouped
in Table VI, which correspond to &; = 0.050 and &, =
—0.16.

Utilizing the Wilson coefficients, the input form factors
just discussed, and the CKM factors given earlier, we can
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TABLE VI. Numerical values of the form factors g; and
my, g, at zero momentum transfer, responsible for the A, — p
transition, estimated in the LCSR approach [23].

Form factors g1

0.018

my, 82

—0.159

Ay—p

now compute the factorizable contributions to f; and f, in
the hybrid pQCD approach and compare them to the
corresponding nonfactorizable contributions, which have
been given already earlier. The results are given in
Table VII. From this table we see that the factorizable
contributions are now much larger than in the conventional
pQCD approach, though they are still smaller than the
corresponding nonfactorizable contributions.

We are now in a position to present our final results
concerning the branching ratios, direct CP asymmetries,
and the polarization asymmetry parameter « for the two
decay channels in the conventional pQCD and in the hybrid
pQCD approaches. The CP asymmetry Acp(A) — p7™)
is defined as follows:

B(A) — pm*) — B(A) — pm™)
B(/_\g — pmt) + B(Ag — pr)’
(61)

Acp(A) — pm™) =

with Acp(AY — pK~) defined similarly. The asymmetry
parameter « associated with the anisotropic angular distri-
bution of the proton emitted in the polarized A, baryon
decays is defined as follows:

I'=Ty(1 + ap -sa,) (62)

with p, s, being the three-momentum and spin vector of
the proton in the rest frame of the A, baryon. The explicit
expression of a can be written as [50]

a = _%Re—(fifz) (63)

(f112 + &1 %)

with @ = |pl/(E, + m,) = \/(EP +m,)/(E, —m,).

We present our results in the two pQCD approaches and
compare them with the current experimental data from the
Tevatron [24] in Table VIII. The first error in the pQCD-
based entries arises from the input hadronic parameters,
which is dominated by the errors on the normalization

PHYSICAL REVIEW D 80, 034011 (2009)

constant of the A, baryon (taken as f,, = 4287012 %
1073 GeV?) and the A, baryon wave function shape pa-
rameter (taken as 8 = 1.0 = 0.2 GeV). The second error
is the combined error from the hard scale ¢, defined in
Eq. (49), which is varied from 0.75¢ to 1.25¢, and the
renormalization scale of the Wilson coefficients, given in
Table I. The third error is the combined uncertainty due to
the CKM matrix elements.

We observe from Table VIII that the results for the
conventional pQCD and the hybrid pQCD approaches do
not differ very much, although in the hybrid approach the
factorizable contributions have increased by almost an
order of magnitude as compared to the conventional
pQCD approach. The reason for this is that in the hybrid
approach the factorizable amplitudes f; are still only a
fraction of the nonfactorizable amplitudes, as is apparent
by comparing the results in Table VII. Of course, it remains
to be checked if the nonfactorizable amplitude is correctly
estimated in the pQCD approach for the b-baryonic decays
due to the exchange of two gluons. This involves, among
other diagrams, those where both the gluons are attached to
the same outgoing quark line (see, for example, the dia-
grams in the fourth row in Fig. 4). These contributions are
more sharply peaked, compared to the others encountered
here or in the decays of B mesons, which involve single
gluon attachments on a quark line.

The ratio of the decay rates for the A, — p7and A, —
pK decays, called R ,x(A},) below, can be calculated from
Table VIII, and is estimated by us as

BR(A, — pm)

Ryx(Ap) = —BR(Ab = pK)

= 2632 (64)

in the hybrid pQCD approach. This can be understood from
Egs. (56) and (57), which show that the QCD penguin
operators contribute to the coefficients f| and f, [defined
in Eq. (44)] in the combination a, + R¥ag and a;, — R¥ a,,
respectively. This is quite different from the two-body
hadronic decays of the B mesons, B— PP or B— PV,
where P(V) is a light pseudoscalar (vector) meson. The key
point is that both the hadronic matrix elements
(A(P)|5y,bIAL(P + q)) and (A(P)|5y,ysb|AL(P + q))
contribute to the baryonic decays. Theoretical predictions
presented here deviate from the experimental data
R, x(Ap) = 0.66 = 0.14 = 0.08 [24]. Whether this dis-
crepancy reflects the inadequacy of the current theoretical

The coefficients f| and f, in the decays A, — pr, pK contributed by the factorizable and nonfactorizable external W

Nonfactorizable

TABLE VII.
emission (7)) diagrams in the hybrid pQCD scheme.

Factorizable
fi(Ay, — pm) 2,43 X 10719 — 4,39 x 10710
fo(Ay — pm) 2.64 X 10710 — j6.54 X 10710
f1(A, — pK) —3.17 X 10719 —j1.22 x 10710
f2(A, — pK) 1.74 X 10719 — i1.96 x 10710

—2.43 X 1072 — i2.05 X 107°
—1.75 X 107% — i1.20 X 107°
—0.88 X 1072 + i0.54 X 10710
—1.06 X 107° + i1.67 X 107°
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TABLE VIII. The CP-averaged branching ratios, direct CP asymmetries, and the polarization asymmetry parameter « for the A, —
pm, pK decays obtained in the conventional and the hybrid pQCD approaches. The errors for these entries correspond to the
uncertainties in the input hadronic quantities, the scale dependence, and the CKM matrix elements, respectively. Current experimental

measurements at the Tevatron [24] are also listed.

pQCD (conventional)

pQCD (hybrid scheme) Experiment

B(A, — p) 4661795070703 X 107°
B(A, — pK) 182071080 0,05 X 107
Acp(Ay — pm) —0.3250 301000 001
Acp(Ap — pK) _0-03t81(2)(1)t82(1)431t8288
a(A, — pm) —0.8350 0 00 001
a(A, — pK) 0.03 50907000003

+2.42+0.30+0.42 -6
> or AR
2.02%556-0:90-00s % 10

—0.31 +0.28+0.32+0.01
pem B
IR B
Toos it
0.087035"042-004

3.5+£0.6+09 X107

56*+08*1.5%x107°
—0.03 = 0.17 £ 0.05
—0.37 £ 0.17 = 0.03

formalism embedded in the standard model, or the standard
model itself, or requires improved data remains to be seen.
We note en passant that the estimates of the branching
ratios for the decays A, — pm and A, — pK, and hence
of the quantity R . x(A,), reported in [19] in the generalized
factorization approximation, are in error due to the incor-
rect relative sign of the two terms in Eq. (18) in that paper.
We are convinced that the correct relative sign in question
is given in our Eq. (53).

As for the direct CP asymmetries, theoretical predic-
tions suffer from large uncertainties due to the hadronic
distributions, the hard scattering, and the renormalization
scales in the factorizable amplitudes. For the CP asymme-
tries, one needs the complete NNLO vertex corrections, as
only with this input will it be possible to make quantitative
predictions. As can be seen from Table VIII, theoretical
estimates for the parameter « for the decay A, — p have
negative values in both the pQCD approaches, reflecting
the (V — A) structure of the weak current [51]. It is pointed
out in [52] that the parameter a in B;(}*) — B;(3*)P(V)
decays approaches —1 in the soft pseudoscalar meson or
vector meson limit, i.e., for mp — 0 or my — 0. This
argument, however, is only valid for the tree-dominated
processes. As for the A, — pK decay, the contributions
from the QCD penguin operators are comparable to that of
the tree amplitude. The operator Og contributes to the
A, — p transition via the (V + A) current [see Eq. (53)],
and the Wilson coefficient aq is very sensitive to the energy
scale as can be seen from Table I. Hence, the asymmetry
parameter « can flip its sign for the A, — pK decay due to
the large penguin contributions. As a final remark, we find
that the predictions for the parameter « in the A, — p7
decay are relatively stable with respect to the variations of
hadronic parameters, the CKM matrix elements, and the
hard scale, and therefore it serves as a good quantity to test
the standard model [31].

IV. DISCUSSIONS AND CONCLUSIONS

Thanks to the current and impending experimental pro-
grams at the Tevatron and the LHC, dedicated studies of
the decays of the A, baryon (and other heavy baryons) will
be carried out, following the first measurements of the

decays A, — pm, pK performed at the Tevatron.
Baryonic decays are flavor self-tagging processes.
Therefore, they should be easier to reconstruct experimen-
tally. In particular, the CP-asymmetry measurements
amount to counting these self-tagged decay modes and
their CP conjugates. From the theoretical viewpoint, how-
ever, b-baryon decays are less tractable, as the underlying
QCD dynamics is more involved. Hence, it is far from
being obvious if the theoretical approaches developed for
the quantitative studies of the two-body nonleptonic de-
cays of the B mesons will work also for the corresponding
b-baryon decays. We have carried out an exploratory study
of the charmless hadronic decays A, — pm, pK in the
pQCD approach and found that the factorizable diagrams
in the conventional pQCD approach contribute very little to
the branching ratios, as the hard (perturbative) contribu-
tions to the baryonic transition form factors in this case
turn out to be quite small compared to the estimates
dominated by the soft dynamics. As an alternative, we
adopted a hybrid approach, similar in spirit to the one
advocated in Ref. [49] for the analysis of the color-
suppressed decays, such as B — J/¢/K°. An essential
characteristic of this hybrid scheme is that the transition
form factors are treated as nonperturbative objects; i.e.,
they are input in the theoretical analysis and are not com-
puted perturbatively, as in the conventional pQCD ap-
proach. Employing the form factors estimated in the
LCSR approach, we find that the factorizable contributions
are no longer negligible, though for the two decays worked
out here, the amplitudes are still dominated by the non-
factorizing contributions.

Our predictions for the branching fraction for the decay
A, — pr, which is dominated by the tree diagrams, are
essentially in agreement with the current data, whereas
estimates of the branching ratio for the A, — pK decay,
dominated by the penguin amplitude, are found to be
smaller, typically by a factor 2. This deserves an improved
theoretical analysis, as the data get consolidated. The
asymmetry parameter « associated with the anisotropic
angular distribution of the proton produced in the polarized
A, baryon decays is also derived and is found to be
relatively stable with respect to variations of hadronic

034011-16



ANATOMY OF THE PERTURBATIVE QCD APPROACH TO ...

inputs and higher-order corrections in A, — p# decay.
The asymmetry parameter « in the A, — pK decay, how-
ever, can flip its sign due to the large penguin contributions
and the sensitive scale dependence of the effective Wilson
coefficient ag(w). The Feynman diagrams (G) with the
three-gluon vertices present in the perturbative amplitudes
included in this work are found to be less important com-
pared with the T diagrams. However, these three-gluon-
vertex diagrams are comparable to the C diagrams, as can
be seen from Table III, and hence they may induce signifi-
cant corrections to the color-suppressed modes, such as the
A, — AJ/y decay. Finally, quantitative estimates of the
CP asymmetries presented here show large scale uncer-
tainties and require NNLO vertex corrections to be firmed
up, which are not yet available completely.
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tudes in the impact parameter (or b) space. The symbols J;,
N,, Ky, and K are the various Bessel functions; z; are the
Feynman parameters; and the relation

K, (—iz) = %ie“””)/ 2[J,(z) +iN, ()] (AD)

has been used in the derivation of the Fourier transforma-
tion. With this, we get

ik-b .
jﬁ%£+A=zﬂm¢ﬂmmm+%ﬁmﬁﬂm

+ iNo(JM_Ib>]0(—A)}, (A2)

) eik-b
[d k(k2 + A)(kK* + B)

=7 [ @ = WA + vz

Program (DAAD). The authors would like to thank Hai- .
Yang Cheng, Hsiang-nan Li, Run-Hui Li, and Yue-Long — i1y |leb)]0(—Z1)}, (A3)
Shen for valuable comments. Y.M. W. would like to ac-
knowledge Lei Dang, Cheng Li, Ping Ren, Qian Wang, .
Xiao-Xia Wang, and Yu-Min Wang for allowing us to share P Pk ekibitks by)
the computing resources. H.Z. is grateful to Marco ! 2(1(% +A)(k% + B)[(k, + ky)> + C]
Drewes, Christian Hambrock, Sebastian Mendizabal, \ ded 5
Satoshi Mishima, and Alexander Parkhomenko for helpful = 7?2 f _fadn —2{1( \WX>2,)60(Z,)
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APPENDIX A: FOURIER INTEGRATIONS AND + S INMXIZ,D) —iJy (VX2|Zz|)]9(‘Z2)}’
b-SPACE MEASURES where A >0, and B,C are arbitrary, (A4)
We list below the Fourier integration formulas which
have been employed in the derivation of the hard ampli-
J
. (kb +Ky by +K;bs)
d“kd“k,d“k
f TG+ A2 + B) (K2 + O(ky + ky + ks)? + D]
1 dzydzrdz; \/)_(; T .
- : {KWEBZ0z) + Tz - i iz 2|
021(1—21)22(1—Zz)m 1 343 3 5 V1 3143 1 3143 3
A, B>0, and C,D arbitrary, (A5)
with the variables
Z, = Az + B(1 — 2), (A6)
1 —
L= Al +—2 [Bl-2)+Cal o= (b — by + 2" (A7)
71 —2zy) 2
23 Ve)
Zi= A= 2) + 2 {B - ) + 200~ 2) + Dzl
(1 — z) 7 (1 —zy) (AS)
(1 — z,) 21 (1 — z)z(1 — 25)
X3 = [b) — byzy — b3z (1 — )P + "2 (by — b3z))* + - —= = b3,

<3

2223
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APPENDIX B: FACTORIZATION FORMULAS FOR THE FEYNMAN DIAGRAMS WITH VARIOUS
TOPOLOGIES

In this appendix, we would like to collect the factorizable formulas for typical diagrams corresponding to different
topologies in the A, — pr decays. In doing so, we give the expressions only for a certain representative set of diagrams in
each class, with the rest following from appropriate substitutions.

1. Factorization formulas for the color allowed emission diagrams

For the first diagram in Fig. 4 (labeled as figure 7';), which is a factorizable diagram and included only in the
conventional pQCD approach, we have

= GF%fAhfp Jtaad ey [asta P of 1603, [ (361 + Ca)vanvia + (365 + €t 560+ Cuo)

. 1 1 .
X thvtd](_2x2 + (1 - 2.X2)Xll - Xg)(f)?/](y) - 32m0M‘}\b<§ C5 + C6 + §C7 + Cg)V,bV,d(él-xl + 4.X3 - X/3 - 3)

1 1 1 ,
X o) |k + [1603 [ (30 + Ca)VinVia + (565 + Cot 3 Co C )YV, J( + )8 )

1 1 . 1 .
- 32m0M1b<§ C5 + C6 + §C7 + CS)thVid(xg - 1)(]51{),1(}))]'7[/?()(/) + [16Mih[<§ Cl + Cz)Vuqud

1 1 1 1
+ <§ C; + Cy + gC9 + Clo)v,,,v,*d](z(x1 + x3) b (v) + 32moM3 (§ Cs + Cg + gC7 + Cg)

X VoV (200, +x3))¢,{4(y)]¢,€(x')}l 61772 [ bl db! f bydb, f bydbs f a6, f 6, exp[— ST (x, ', b, b')]

<R (VD7) [ s i (VT Yozt 5 [ (VT o (T12T)Jo- 200

(BI)
where the auxiliary functions in the above expression are defined as
Al = (1 — x’l)Mzb, BT = (xy + x§ — xzxg)Mib, ch = xzx’zM%b, DI = x3ngf\b,
z z1(1 = zy)
2 =AM =) 4 S BN m ) Chad X = (b = b Tk (B2)

i = max<\/|AT' L1871, yICT ] ID7 ], o, w’).

Similarly, the factorization formula for the form factor f, contributed by 7; can be written as

h— GF%fAhfp Jtaad ey [asta P of 1603, [ (361 + Ca)vanvia + (365 + €t 560+ Cao)

. 1 1 .
X V¥ |+ B + 32moM3, (€ + o 2C 4 G VaViaeh = D) [k )
1 o 1 )
+ |:16M?\h|:<§ C1 + Cz)VubVMd + (g C3 + C4 + §C9 + ClO)V,thd](—sz + (1 - 2)(?2))(7/1 - Xg)(i)ﬁ(y)

1 1 1 .
— 32m0Mj‘\h(§C5 + C6 + §C7 + Cg)Vle;kd(4x1 + 4)C3 - Xg - 3)¢f4(y)] ‘2(){/) + [16M§X1)[(§C1 + Cz)VubVZd

1 1 1 1
+ (g C3 + C4 + gCg + CIO)V,hV;‘diIQ(xl + X3))¢‘1At,1(y) - 32m0MjL\h(§ C5 + C6 + §C7 + Cg)

1
/ bl db) / bydb, f bydb, [ de, / d6, exp[— ST (x, x', b, b')]

1672

R (7o) [t (T o+ ST (TVT) ¢ o (BT o)

0 1Z5

X ViV (2(x, + x3>>¢;4(y>]¢,€(x'>}

(B3)
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For the 25th diagram in Fig. 4 (labeled as T»s5), which is a nonfactorizable diagram, we have

P =Gt ffAbf,, [t ftax) [ asta e p o, of 1603, [ (5e1 - 26 Vv, + (36 - 264

8 i} 8 8
+ §C9 - 2C10)V,bVld](x2 - y)(_X3 + )Cl3 - y + 1)¢?,[(y) + l6m0Mj‘\b(—C5 - 2C6 + §C7 - 2C8)

3
. P T Vi s [(8 « 8 8
XV Vixy (1= x3 = y) (3, (v) — (1) [ (X)) + loM; §C1 —2C, |V Vg + §C3 —2C4 + §C9

8 8
_C5 - 2C6 + §C7 - 2C8)

_ 2C10>Vzbvt*di|(x2 = (1 —x3 = x5 — y) i (y) + 16m0M?\b(3

8 8 8
X ViVt = xs = (@00 — 800 [t + [ 3203 [ (F€ =26 Wiy + (565 — 204 + 500 260

8 8
X ViaVia =301 = x5 = )00 + 32mo0, (€5 = 265 1565 = 265 ViVl — x2) ) | 1)

! 1 dzydzydz;s X?S
X —— | bydb [b db [b db [dﬁ fdﬂ exp[—S"s(x, x',y, b, b', b ‘
32772[ 2dba | bsdbs | bydby | dbh [ dBrexpl =Sy N, om0 200 -2 1Z57|

X {Kl (\/X?SZ?S)@(Z?S) + g[h (w/x?ﬁlz?il ) +iN, (\/X?‘IZ?S |)]®(—z§25)}, (B4)

where the auxiliary functions in the expressions above are defined as

AT =i +y =DMy, B™ =xh(n —yMy,  CTs=xm¥My, D' =My,

1 - 1 - 1-
2o( 22) (by — b, + bqZ1)2 n zi( 21)za( 22)
23 2223

2)[D<1 — )+ [A(L = 2) + le]],

X3T25 = (by = (b3 = by)zy + bz (1 = 2)P +

b2,
73 (B5)

(1 = 1(1 21)

s = max(YlaT L1571 1D, 0,00, 0, ).

Similarly, the factorization formula for the form factor f, contributed by 7,5 can be written as

75 =C(1 — z3) +

T — GF%AJ,, [t ftax [astaw o @ 1603, [ (Ge1 -2 vi, + (56 - 26436 -200)

8
3C5 —2Cs +§C7 - 2C8>Vthfdx'2(1 —x3 =)y ()

) 8
x V,hv;](xz (1= x5 = = D)y () — 16moM?, (f

8 8 8
= o) |k + [16m3 [ (560 ~26:)VanViy+ (565 - 260 +5Co =260 ViV 6 =)

8 8
X (=x3+x5—=y+ Dy () — 16m0M4Ab(§C5 2030~ 2C8)Vrbvt*dxlz(1 —x3 =) () — d’z@()’))]

8 8 8
X () 4] 32M73 | (€1 —2C5 |V, Vig +(5C3 —2C4 +2Co —2C 1 |V Vi |2 = )1 — x5 = y) by ()
b1 \3 3 3

8 8 ) 1
_32m01\44Ab<§c5—2c6+§c7 208) Vi Viah(y — x2)¢M(y)] ;(x’)}32772 j bydb, / badbs j b,db, [ a0,

1 dzidzd el
X [ d0yexp[—ST=(x, %', y, b, ', b,)] c1eeads iz [KI(N/XS”ZDS)@(Z?S)

0 21— 20— ) \ 121
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As can be seen from Eq. (B5), the color structures for the
baryonic decays are quite different from those in the mes-
onic decays. Only the operators with the color indices the
same as O can contribute to the nonfactorizable emission
diagrams in the two-body hadronic B-meson decays.
However, all the operators O; (i = 1-10) contribute to
the nonfactorizable emission diagrams in the nonleptonic
two-body bottom baryon A, decays. In particular, the (V —
A) ® (V + A)-type operators have no effect on the non-
factorizable emission diagrams for the hadronic B — PP

J

PHYSICAL REVIEW D 80, 034011 (2009)

decays, if the emitted meson is a 7, 7, or '. In contrast,
both the (V —A)® (V — A)and (V — A) ® (V + A) opera-
tors contribute to the nonfactorizable emission diagrams in
their baryonic counterparts.

2. Factorization formulas for the color-suppressed
emission diagrams

For the first diagram in Fig. 5 (labeled as C)), a factor-
izable diagram, we have

{1 =Gi ffA,,f,, [ [dx] [ [dx] f dyTa, (19 P, (I~ 16MY, (—(Cs + Co) + (Cg + Cy)VyVisImolay — 2)
(= DY) + L)) — My, (raly — 1) + (v = 200l T L) — pA))

+[—32Mm% L(=(Cs + C7) + (Co + C)) Vi Vi (y —

162

1
X / dz1dzy [K1<\/X2C‘ZZC‘)®(ZZC‘) +
0

7 (1 —z) |z Il

Dlmo(x, +y —

szdszb’db’ /b db /d@l jd02 exp[—SC (x, X', b, b’)]K()(\/ Cilby + bl — b |>
g[fl(\/xzcl |5 I) + iNl(\/X? |Z5! |>]®(—Z§‘)}, (B7)

D(dy () + 1, (0) = My, &30 115 ()}

where the auxiliary functions in the expressions above are defined as

ATV = (xh +y - x’zy)Mf\b,

22

Z =AM =)+ o
1 1

Bl = (x, + y)M%b,

[BT1(1 —z;) + CTzy],

T, — I A2 T, — 2
Cch = x2x2MAb, D't = x3yMAb,

711 —zy)

= (b} + z1by)* +
22

2
by, (BS)

€ = max<\/|AC1 L 1B yIcE L 4IDC ), o, w’).

Similarly, the factorization formula for the form factor f, contributed by C; can be written as

f =G ffAbf,, f [dx] [[dx/] [ Y (CVP Y 5, (NI~ 16MY, (—(Cs + C7) + (Cg + Cy)) Vi Viglmo(ialy — 2)

+ (= D)) + d3,(0) — My, (x2(y

— D+ =20y () — g + [32M3 (= (Cs + C7)

+(Co+ COVViyly = Dol +y = DISHO)+ $h0) = My, ShONI S} [ b, [ vhav,

1
f b,db, [ de, f d6, exp[—SCi (x, ', b, b’)]Ko(\/DCI by + bl — bql) /

0
+ §[11<,/x§1 1251 |) N, (\/xgl 1281 |)]@(—z§1)}.

dZ]dZ2 Xgl
z1(1—2zy) |ZZC'|

{Kl <\/X2C‘ VA% )@(zg' )

(B9)

For the 20th diagram in Fig. 5 (labeled C,,), a nonfactorizable diagram, we have
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2
P =G hnt, [t [Lax) [ vl (1612, (=320, (Cs + €)= (Co + COVip Vi M, x3040)

1
— 2mglos = DGO} f bidb, / badbs j bydb, j a9, [ d6 expl—S(x, ', y, b, b/, b,)]
ar

U dzyd X5 o oo
X K0<‘/DCzo|b2 + bé _ bql)f 21423 2 {K]( chznzgzn)@(zgzo) + g[‘]]( chzolzgml)
0

z (1 —zy) |ch20|
+ iN, (\/XZCZ‘)IZZCZ(’I):I(O(—ZZCZ‘))}, (B10)

where the auxiliary functions in the above expression are defined as

A€o = x3M2b, B = —x’zM?\b, CCo = xzx’zM?\b, D = x3ny\b,
257 = AC(1 2+ — 2 [B(1 ) + Cuz) XS = [(by + by) — 2y P+ e
z1(1 —2zy) 1 22 (B11)
(Cn — max(\/lACwI, 1B yicea ], ID%], w, o, wq).
Similarly, the factorization formula for the form factor f, contributed by C,, can be written as
fi0=—f3. (B12)

3. Factorization formulas for the exchange diagrams
For the 18th diagram in Fig. 6 (labeled as Eg), we have

77.2
=i gy mads [t [1ax) [ asla P b, CHR16mMS, L€y = CVig Vi + (€5 + C)
—(C4 + Cr))Vi Vil = Dl (v) + &1, (»)) + 16m0M1b((C5 +C7) = (Cs + Ce))Vy, Vi (v — D4, ()
QT NI ) +16moM3 [(C) — Co)Vi Vi + ((Cy + Co) = (Cy + Cro)V Vi = Db (3) + ¢1 ()

= 16mM, ((Cs + Cp) = (Co+ CNVVily = D) + SN 1o [badby [ bsdvs [y,

x [ao, [[avzexpl—s7 (0,0 b Ko VETR B Jorcrs) + T o YicEelient) + i yicEulieyl) |

I dzyd X5
xo(-com} [1 S Tk (Vb zE Yoz + 2 (VxEZE) v (Y eizE ) ez
0

(I —2zy) |Z§‘8|

(B13)
where the auxiliary functions in the expression above are defined as
Afis = (xf — 1)M? , Bfs = (y — 1)(1 — xg)Mzb, CEis = xh(y — l)Mzh, DEis = x3ny\b,
280 = ARl = )+ B =)+ DPa ) XE = b+ iy b+ 20k
s = max(J|AEns|, 1BE L yIcEs ], 1D, w, o, wq). (B14)
Similarly, the factorization formula for the form factor f, contributed from Eg can be written as
D= e, (B15)

For the 26th diagram in Fig. 6 (labeled as Eyq), we have
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=G \/—fA,,fp ] [dx] [ [dx] [ dyla,(tF) P, (H[16moM4, [(Cy — Co)V,Vig + ((Cy + Co)

—(Cy + CL)Vp Vi (1 = )i (v) + b3, )]y (x') + [16m0Mj§b[(C1 = C)Vy Vi + ((C3 + Cy)
—(Cy + CL)Vp Vi (1 = ) (4 () + b1, (0 ]p5(x) + [32Mf\b((cs + C7) = (Co + C))Vy, Vyy(y — 1)

X [V, (5 = D) = moley = 20B50) + LG 1o [ viavi [ vhavs [v,av, [ ao,
x [ a6y expl— S (x, /. y, b, b, bq)]{K()(@ Ib’zl)H(CE%) 4 % [JO<\/E |b/2|) + iNO(E |b/2|)]e(—cEza)}

I dzydz X5 T .
X [0 - (11_ 21) lzgzsl{Kl(\/xf%zf%)(a(zf%)+§[J1(\/X2E%|Z§%|)+le(\/szZﬂzf%|)]®(—z§%)}, (B16)

where the auxiliary functions above are defined as

Abs = (y — 1)(1 — x’l)M[z\b, B = (x| — I)Mib, CE» = x)(y — 1)M2b, DFx = x3yM/2Xb,

22

711 —zy)

X5 = [(bh + b,) + z,(b} — by — b )P +

ZEza — AE18(1 —z ) + [BEls(l -z ) + DE]SZ ],
2 2 1 1

71(1 —z) (B17)
U 2 1 (bl1 - blz o bq)z’

fE = max(\/lAE%I, VIBEs|, yfIcE=), y/IDEx), 0, o, wq).

Similarly, the factorization formula for the form factor f, contributed by E,q can be written as

=G, ffAbf,, ] [dx] [ [dx'] [ dyla,(tE) P, (H[16moMY, [(Cy — Co)V,,Vig + (Cy + Co)

—(Cy + Ci)V Vi ) = (@4 () + ¢, N1y (x') + [16moM} J(CL = )V Vi + (G5 + Cy)
—(Cy + Ci)V Vi ) = )5 () + o1, 0N]pa() + [=32M% ((Cs + C7) = (Co + C))Vy, V(v — 1)

X[V, (5 = D40) = molet = 20B50) + SLOIWE 1o [ 1w, [ vhavs [v,av, [ ao,
X [ d6, exp[—SE»(x, x', y, b, b/, b )]{K()(\/@lb’zl)a(cfm) + 7[%(@%) + iNO(s/Elb'zl)]e(—cEm)}

1 dz,dz XE26 T . N
X /0 - (11_ ;) lzzszél{Kl(\/X?"Z?")@(Zf%)+§|:J1<\/X526|Z§2"|)+le(\/sz"’IZfJ)|)]®(—Z§2")}. (B18)

4. Factorization formulas for the bow-tie diagrams
For the 17th diagram in Fig. 7 (labeled as B;;), we have
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=6 ffAhf,, [ [dx] [ [dx'] ] e, (B, (I 16M3, [(—(Cs + C) + (Co + CoV,p V2]

X (5 +x1v — 1) =y + Doy (&) + [=32meM} [(=C + C)V,, Vg + (—(C5 + Co)
+(Cy + Co) Vi Vigly = Do () + &3, (») — 16M3 [(—(Cs + C7) + (Cg + C))V,, Vil + 21 (v — 1)
=y + Doy, (M]ga) + [32M?\b[(_cl + C)V,y Vi, + (=(C3 + Co) + (Cy + Cio))Vy, Vi I, iy ()

£ 3mM[((Cs + )+ (Co+ COWVVaI = D0) + S5 55 [ iav] [say

dz,dz,d x5
fb db [d01[d02exp[ $B(x, %, y, b, b, b,)] Qfealts lzﬁgwl{ 1<\/X§”z§”)®(z§”)

0 21(1 —z2)2(l — 25)

+ g[L(\/Xf”IZf”I) + N, (\/Xf”|Zf”|)i|®(—Zf”)}, (B19)

where the auxiliary functions in the above expression are defined as

AB]7

By
X3

By;
Z3

B

= x4y — 1)M2h, BB = (x| — 1)M§\b, CBr =y -1 — xﬁ)Mih, DBy = x3x’3M/2Xh
= ((=b} + b3) = (b3 + b)zy — (=b} + by — b,)z,(1 — z,))?

1—- 1—- 1 -
+ ZZ( ZZ) ((_b3 + bq) _ Zl(_bll + b3 _ bq))z + Zl( ZI)ZZ( ZZ)
23 2223

A(l — z3) + ﬁ[ (1—2)+ [C(1 —zy) + DZl]jI,

(=b} + b3 — b,

22
21(1 - Zl)

— max(\/lABﬂl, 1821 AficB) 1057, 0, o, a)q>. (B20)

Similarly, the factorization formula for the form factor f, contributed by B, can be written as

J =G ffA,,f,, f [dx] [ [dx] [ dyla, (BN P, ([ =32meMA, [(—C) + CV, Vi + (—(Cs + C)

+(Cy + CL)Vp Vil — Doy () + ¢1,() + 16M?\h[(_(C5 + C;7) + (Cs + Co))V,, Vi

X (x5 +xj(y — 1) —y+ D]y (x) + [16M7 [(_(Cs +C7) + (Co + C))V,, V]

X (5 +x10 = 1) =y + Doy WMIgp () + [32M3 [(—=Cy + C) Vi Vg + (=(C5 + Co)

+(Cy + Cr)Vi Vi I iy (v) — 32’710M4 [( (Cs + C7) + (Cs + C)Vy, Vi Iy — D)4, (3) + 3,0 ]ep (N}

X1 [b'db’ fb db [b db [de jd& exp[—SB7(x, X, y, b, b', b )]/1 d21dzdzs X5
327T2 ! ! 33 T ! 2%P P27 P 0 Z1(1 —21)22(1 _Zz) |Z§17|

X {Kl (\/Xf”Zf”)@(Zf”) + g[ll (VXf”IZf”I) +iN, (\/Xf”IZB”I)]G)(—Zg”)}. (B21)

For the 19th diagram in Fig. 7 (labeled as B;9), we have
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= J_fA,jf,, [ [dx] [ [dx'] [ dyTa, (5P, ([~ 16M3, [(—(Cs + C3) + (Co + CoV, Vi T by (0014 ()
+ [—64m0Mj‘\b[(—C1 + CYV,, Viy + (=(C3 + Co) + (Cy + C1p)) Vi, Vi b (v) — 16M3 [(_(Cs +Cy)
+(Cs + Co))Vi Vi Ixs b3y 195 (6 + [32M3 [(=C1 + C) Vi, Vg + (=(C3 + Co) + (Cy + Cro)) Vi Vi b iy ()

— 64moMY, [(—(Cs + Cy) + (Co + C)V V(¥ - 2)¢§4(y)]¢;(x')}1617rz f bl db! [ bhdb) / bdb, f a0,

x / d6, exp[— 571 (x, X', y, b, b', b )]{K()(\/CBWIqu)ﬁ(CBW) + %[N(,(\/CBWIqu) " iKO(\/CB")Iqu):IB(—CB'g)}
1 By

X[ d(?leQ) |)Z(%?19|{K1( ,XQBI‘)Z§26 )@(Zgl()) +g|:‘]1< 'X§19|Z§|9|)+ iN]( lewlzgwl)]®(_zgl9)}’ (B22)
01\ =2 5

where the auxiliary functions in the above expression are defined as

ABv = —xéMZb, BBo = (x| — l)sz\b, CBo = x)(y — I)M%b, DB = x3ng/2\b

Bio _ ABio(] — 22 Bio(1 — Bio By __ _ 2 71(1—zy) 0
ZZ = A (1 ZZ) + m[B (1 Z]) + D Zl], X2 ® = [(b/2 + bq) Zlbll] + Tbll (B23)

B = max(\/lABwl, VIBEsL, yflcEsl, y/1DP0), 0, o, wq).

Similarly, the factorization formula for the form factor f, contributed by B9 can be written as

2
3 = Gr oty [1] [lav] [ dylan 0P v, (L= 64moM Y [(~Cy + CVsViy + (~(C + €

+(Cy + C1))V Vi 1k (y) + 16M3 J(=(Cs + C7) + (Co + Co))Vip Vi I iy )] ) (x)
+ [lﬁMih[(_(Cs + C;) + (Cg + C))V,, Vi Ixh iy (D) pp () + [32Mf\h[(_cl + C)V, Vg + (—(C5 + Cy)

+(Cy + Cr)V Vi Iy (v) + 64’“0M4 [( (Cs + C7) + (Cg + Ce))Vy, Vi I(x) — 2)ph (0] h(x

X [ bl db! f b db, [ bydb, [ a0, f a6, exp[—SPo(x, X', y, b, b/, b )]{K0<\/CBl9lbq|)0(CBl9)
1 319
+—[N0(JC519|b |) + zKO(\/CBl9|b |)]0( CB )}j dz1dzy [K1<\/X§”Z§%)®(Z§'9)

0 z1(1 —zy) |zBl9|l

+ g[h(\/W) + iN1<W)]®(—Z§'°)}- (B24)

5. Factorization formulas for the penguin annihilation diagrams

For the 14th diagram in Fig. 8 (labeled as P;,), we have
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a? 1
P = GFngAhfp /[dx] [[dx’]fdy[as(tpm)]z¢Ab(x){[48M?\b|:(C3 +Cy)— E(C9 + CIO)]

1 1
) + —(66 - —cs)]vzb VEN (M, X ()

XV Vi, (6= D)+ mo(8f0) = s 00 = 32m [ (€56 ) 4 5(e =

2

(o)~ o400 3203 [

1 1
(€5 5€1) + (€= 5C5) [VaViua, sy + moly = 281,

2

oy bl [0 + [ 483, [ (€54 €O = 3(Co+ Coo) [V Vi, (0 = Dy ) = mol 85,09 = #1,0)
+ 32Mj‘\b|:<C5 - %Q) + %(Q — %CS)]Vﬁ] Viy(My, xb iy (v) — mo(d1,(y) — 4, () + 32M1,,[%(C5 - %Q)
+(Com3.05) [VarVia w00 = moly = D500 = moyd o) )+ [ 96mon [ (€5 + o = 516,
+ Clo)]V,,,V;"dy(¢f,,(y) — L (y) + 64Mf\by|:(C5 - %Q) + %(Cé - %Cg)]m Vi = Dy ()

_ 64Mib[%<c5 — %C7) + ((76 - %Cg)]v,bv;“d(xg - 1)¢§4(y):|¢1§(x/) 161772 szdbszqdbq [bgdb’zfdel

[ dsexpl=5 3.1 b Ko (VEPea Joce) + T (it ) + (i l1a) Joc— o)

1 ledZ2 X§l4[
amL
o u1(1—2) \|Z5l

(eTzi Yozt + 2L (VxEmizEr) « imy (Y zi) Jec-zin) - w29

where the auxiliary functions in the above expression are defined as

APu = x’2M2b, BPu = (1 — xgy)Mzb, cPu = xzx'zM%b, DPu = Xy — l)Mzb,

2 P P Piy _ / b all—z),
——=[B"(1 — z;) + D"4z;], X514 =[(by + b)) — b, - + ——=b 7,
- Z])[ (1—2z) z1] 2 [(b, 5) — z21b,] 2 q (B26)

o = max(yflarel, I8yl iDL 0, wq).

Zy = APu(1 — z,) +

Similarly, the factorization formula for the form factor f, contributed by P4 can be written as
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a2 1
P = Gpmfj\bfp f[dx] [[dx’][dy[as(tP”)P¢A,,(X){[48M?\b|:(c3 +Cy) — §(C9 + C10)]

XVaViMa, (= D) + mo(@ ) = a0 + 32w [ (65 = 5¢7) + 5 (co - 564
1

X Vi Ma ) + mo( @) — aho) — 320 [

1 1
<C5 - §C7) + <C6 - ECS)]thV:d(MAbx/2¢I]?/[(y)
oy = D000+ my o) [u ) + [ 4803, (€4 + €0 = 5(€ + o) Vi, 0= D

= mo( 50 = SN =324 [ (€5 = 5¢7) + 5 = 565) [PV 0, X 0) — mol ) — 00

w323 [5 (5 = 560) + (€0 =5 G) [ Viaa, 5040) = oy = D880) = moydly o) )

+[oomonts, [ €5+ co = 5(C+ ) Vv - oo + 6amg o] (€5 - 367) + 5 (Co = 564)]

1 1 1 1
X VaVily = D840 + 643, [ 5 (Cs =3 €1) + (Co =5 66) [VaViatol = D) [wh) o [ by

ey i [
X ‘[qubq‘[blzdbé‘/'dgl /d@zexp[—SP“‘(x, x', v, b, bl,b )]{Ko( CP14|b2|)6(CP14) +7[N0< |CP]4||b2|)
1 dzd X3
o e [ it e (ot - S ()
=2 >

:
+ iN, (W)]@(—Zﬁm)}. (B27)
For the 26th diagram in Fig. 8 (labeled as P,4), we have
= Gr T pgy [0 flax) [ata P, of 16w [ (05 = 367) = (€0 -3 65) Jravion o
= 2yl = D) — 163, [ (€5 = 37) = (5 = 5.Co) YV 13,00 + 2ty 00) ] )
n [— 16M1h[(c5 -G - (q, - %CS)]V,,,V;;(MMQ A (5) + 2molx — 2B () + 16M4Ab|:(C5 - %Q)

~ (€5 = 568) [Pavia x o) = 2modfy o0 [wser} o [oiast [oadb [,am, [ao, [ ao,

1672

X exp[— P (x, ¥, y. b, b, b )]{K()(\/DPZbIqu)@(DP%) +%[NO< |DP26||bq|> + iKO( |DPze||bq|)]a(—DPze)}

1 P
v j dzydz; X2 [Kl( /X?"Z?")@(Zf%) + gl:‘ll( 'Xgmlzg)zol) + iNl( ,X§26|Z§26|)]®(—Z§26)}, (B28)
0

a1 —z) \|Z5>|L

where the auxiliary functions in the above expression are defined as

AP» = —x’lesz, BP» = (x}, — 1)M2b, Chs = xzx'zM%b, DP» = xl (y — 1)M?\b

(1 - Z1)
22

= [BPx(1 — z;) + CPzy], X?G =[(b} +b,) — 2iby ] + &

21 —2zy)

P2 = max(J|Ast|, VIBZ5],yflcP=l, /1072, 0, o, wq).

Similarly, the factorization formula for the form factor f, contributed by P, can be written as

PZ j— 2 —
705 = APu(1 — 2,) + by% (B29)
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0= Gr Tty [lan) flax]) [ rtaserP s oof -1oai [ (cs—567) = (=565 [avia s o)

~ 2ol = D00~ 16M3, [ (€5 =365) = (€6 =36 ) Vi 218,00 + 2m0y 00 [ 0)
sL1em [(cs—2c7) (o= 2cs) [vaViaa, & s 6) + 2mot, — 200 + 16m4 [ (€5 -2
[t [ (5 -3¢7) = (e ;
~(Co=5.65) [Vaviatat, 1 6400 - 20ty |wp ks [[v1am [bsabs [5,am, [[a0, [ a,

X expl[ 8" (xx, 3., by Ko (VDT 1o, )o(07#) + 7| No(YiD#11b, 1) + iKo(YIDP 11, 1) Jo- D)

1 dz,dz x5 X T ) )
X.[()Zl(ll_2 |Z§,26|{ (\/X§-6Z§26>®(z§26)+5[J1<\/x§2 |Z§26|)+1N1(\/X§2“|Z§2"I)]®(—Z§”)}. (B30)

71)

6. Factorization formulas for the three-gluon-vertex diagrams

Now, we can focus on the hard amplitudes contributed by the topological diagrams shown in Fig. 3 with the insertion of
the three-gluon vertex; they have been grouped in Fig. 9. It needs to be pointed out that the insertion of the three-gluon
vertex into the external and internal W emission diagrams, namely, the diagrams G777 and GCi (i = 1-4) in Fig. 9, have
null effects on the decay amplitude, since the color factors in these diagrams are proportional to €;;;€; iy fPe(T); X
(T%) 7#i(T¢)wx» which equals zero, taking into account the symmetry property of the structure constant f abe This is also the
reason why the Feynman diagrams with the three-gluon vertex are neglected in computing the hard amplitudes for the
semileptonic decays of the A, baryon [15,17,39].

For the 1st diagram in Fig. 9 (labeled as GE1), we have

77.2
17 = Ge Tty [las) flax] [ aslaoeEu, of 160,065 + €~ (o + )

X Vi Vig(My, (35 + x3) iy (») + mo((3 = 2x3) ¢ (v) — (1 = 2y — 2x5)) b, ()14 (x) 672

X j b,db, [ bldb), f b,db, [ do, / df, exp[—SCF! (x, X', y, b, b/, bq)]{Ko(\/AGE‘Ib,I)G(AGE‘)

; 1 XGEI
+ (VA ]) + o (yiace o) Joc-acen] [ S WXt (Jemizgm Jozge
) 0 21— 2 \IZg 1
a .
+ 5[11(\/X2051|220E1|) + 1N1<\/X§ElIZgEll)](a(—ZzGEl)}, (B31)

where the auxiliary functions in the expression above are defined as

AGEI — _X/ZM%\,,’ BGEI — _x/M/ZX , CGEI — x/z(y _ 1)M2 g DGEI — x3yM%\b’
ZGE! = BOEV(] — z,) + (1 2 )[CGEI(I — z;) + DOE1Z,],

1 —

XGEV = [(—by + by + by) — 2yb, P+ L 2 o max<J|AGE1 L1951 4111, AIDE |, w, o wq).
22

(B32)

Similarly, the factorization formula for the form factor f, contributed by GE1 is written as
fEE = —pGEL. (B33)

For the 3rd diagram in Fig. 9 (labeled as GE3), we have
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195 = G T fuf, [t [tax] [ aplaytom0F p, H-8M3,[(C) = CV Vi + (s + C)
24:/3 b
= (Cy + Ci))Vp Vi d2M y, Xy 5 (v) + me(Bh(y) + (1 = 2y)p}, () — 8M1h((C5 + C;7) — (Cg + Cy))
X Vi VM x93 (9) + mo(By(v) + (1 = 20) 3,y () + [=8M] [(C; — Co)V,,Vig + ((C5 + Co)
—(Cy + CL))Vip Vi 12M x5 1 (v) + mo(Bh(y) + (1 — 2y) () + 8M4Ah((C5 + C;7) — (Cg + Cy))
X Vi Vig2My, x5 ¢9(9) + moBéiy(y) + (1 = 23) 1,y (x)} + [16M7 ((Cs + C7) = (Cs + Cy))

XYVl = DM, 2y = DI0) = moB30 = D) + (1 + DLW 1 [ vhavs [bsaby

x f b,db, f a9, f 6, exp[—SSF(x, X', y, b, b/, b )]{KO(\/AGE3|b’2|)0(AGE3)+%|:JO( |AGE3||b’2|)

I dzyd X§E3
I iN0< |AGE3||b/2|):|0(_AGE3)}/O : (fl_zs ) |Z§?E3|{K‘< /Xg;mZg;Es)@(Zg;Es) 4 g[‘,l( /X26E3|Z2GE3|)
i | 5
+iN, (\/X§E3|Z2GE3|):|®(—22GE3)}, (B34)

where the auxiliary functions in the above expression are defined as

ACE3 = (xf — I)M?\b, BGE3 = _x/zM?\,,’ CGE3 = xh(y — I)Mib, DYE3 = x3ny\b,

Zl(l - Zl)
22

22

2 (1 —zy)
(GE3 max(\/MGEsL JlBGE3|’ chGESl’ JlDGE3|, o, o wq).

ZGE = BOE3 (1 — z5) + [COE3(1 — z;) + D9B37], X§E = [(b + b,) — 21b, ] +

2
by (B35)

Similarly, the factorization formula for the form factor f, contributed by GE3 can be written as
T .
195 = ~Gr oo fy [lan] flax] [ aslanOR) P, (HL-8ML,[C) = CoVinViy + (€3 + )

—(Cy + CL)Vip Vi 12M Xy iy (v) + mo(Bt (y) + (1 — 2y) b1, () — 8M1h((C5 + C;7) — (Cg + Cy))
X Vi VM x5 (9) + moBy(v) + (1 = 20) 3,0y () + [=8M] [(C; — Co)V,,Vieg + ((C5 + Co)
= (Cy + Cip))Vyp Vi J2M y, Xy 1 (v) + mo(Bely (v) + (1 — 2y) b}, () + 8M4Ah((C5 + C;7) — (Cg + Cy))
X Vi ViM% ¢9(9) + mo(Béy(y) + (1 = 23) 3,0y (x)} + [—16M} ((Cs + C7) — (Cs + Cy))

1
XV Vi = DM, @y = DSY0) = mol30 = DSHO) + (1 + NSLONWF 1o [ habh [ bsdbs
X f bydb, f a6, f 60, exp[— S5 (x, X', y, b, b/, b )]{KO(\/AGE3|b’2|)0(AGE3)+%|:JO( |AGE3||b’2|)
. GE3|| 3/ __ AGE3 I dzydz, X2G E3[ GE37GE3 GE3y 4. 7 GE3|7GE3
camiacmi)Joac [LoGe G (a2 o) « S (freizm)
+iN, (\/XzGE3|Z2GE3|):|®(—22GE3)}. (B36)
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