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We determine the O(a,) radiative corrections to polarized top quark pair production in e*e”
annihilations with a specified gluon energy cut. We write down fully analytical results for the unpolarized
and polarized O(a,) cross sections e™e™ — 7(G) and e'e™ — #1'(G) including their polar orientation
dependence relative to the beam direction. In the soft-gluon limit we recover the usual factorizing form
known from the soft-gluon approximation. In the limit when the gluon energy cut takes its maximum
value we recover the totally inclusive unpolarized and polarized cross sections calculated previously. We
provide some numerical results on the cutoff dependence of the various polarized and unpolarized cross
sections and discuss how the exact results numerically differ from the approximate soft-gluon results.
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L. INTRODUCTION

After the discovery of the heavy top quark at the
Tevatron in 1995 there has been much interest in the use
of the proposed high energy linear e*e™ collider as a
copious source of top quark pairs. When the proposed
linear collider ILC comes into operation it is necessary to
have available detailed radiative corrections to the produc-
tion and the decay of top quark pairs. Concerning produc-
tion there are a number of unpolarized and single spin
polarized structure functions that describe the e e~ pro-
duction process of massive top quark pairs. In the unpo-
larized case one has the three structure functions Hy,
(unpolarized transverse), H; (longitudinal), and Hp
(forward-backward) which determine the polar angle ori-
entation of the top pair relative to the beam axis. Partial
results on the full O(«;,) radiative corrections to the unpo-
larized structure functions Hy, H;, and Hy had been
written down in Refs. [1,2] starting with the early work
on the O(a) QED radiative corrections to the vector current
(yyete™) vertex function [3]. Complete results on the
O(a,) unpolarized structure functions have been first given
in Refs. [4,5]. All of the unpolarized O(a,) structure
functions were recalculated in the course of computing
the top quark’s O(a,) polarization asymmetries where
the unpolarized structure functions were needed to normal-
ize the polarization asymmetries [6—10]. The numerators
of the polarization asymmetries are expressed in terms of
polarized structure functions. In the case of the longitudi-
nal polarization of the top, one has the three structure
functions H!,, H!, and H', for which the full O(e,) radia-
tive corrections were given in Refs. [7,8,10]. In the case of
a top quark polarized transverse or normal to the event
plane, one has two structure functions in each case which
are H! and HY, and HY and HY, respectively (see e.g.
Ref. [9]). These were calculated in Refs. [9,11].

When doing the full O(«a,) radiative corrections one
integrates over the full (hard and soft) gluon phase space.
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For some applications it is also interesting to consider
radiative corrections where one integrates over gluon phase
space up to a given gluon energy cut E,." Such radiative
corrections may be dictated by experimental considera-
tions when soft gluons accompanying the top quark pair
cannot be resolved by the detector. Alternatively one could
attempt to measure the cross section for top-antitop-gluon
production with a given gluon energy cut E,. and compare
the energy cut dependence of the cross section with the
predictions of QCD. Finally, one could define a hard gluon
region by introducing a lower gluon energy cut and com-
pare experiment with QCD in the hard gluon region.

In this paper we provide analytical results for the O(«;)
radiative corrections to the three unpolarized structure
functions Hy;, H;, and Hj as well as for the seven polar-
ized structure functions H¢,, H¢, HE, H,T‘N , and H;N for
polarized top quarks where we integrate over the gluon
energy phase space up to a given energy cut E.. We
mention that radiative corrections with a gluon energy
cut have been treated before in the unpolarized case
[12,13].

We emphasize that we are not using the soft-gluon
approximation (SGA) in the present calculation but inte-
grate over the full O(a,) matrix element tree graph struc-
ture. However, we will compare our results with the soft-
gluon approximation. The soft-gluon approximation con-
sists of the factorization of the tree graph contribution into
the Born term contribution and a universal soft-gluon piece
which can be easily integrated. An O(a;) calculation of
some of the structure functions appearing in polarized top
pair production using variants of the soft-gluon approxi-
mation has been done before in Refs. [10,14].

One of the further aims of the present investigation is to
find out to what extent one can pin down a new non-SM
(standard model) coupling structure in top quark pair pro-

'Technically, this means that one is dealing with a three-scale
problem with the scales ¢, m,, and E...
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duction in the presence of O(«,) radiative corrections with
an exact treatment of gluon emission rather than soft-gluon
emission. In the latter approximation the tree graph con-
tribution is Born termlike and thus polarization-type ob-
servables would not be affected by the radiative tree graph
corrections but only by the non-Born term structure of the
one-loop contributions. Deviations from SM predictions
for the polarization-type observables could result from a
new non-SM coupling structure or from an exact treatment
of radiative corrections. As an example we will introduce
an anomalous CP-odd axial current and compare the re-
sults of our exact next-to-leading order (NLO) calculation
with the contributions of the anomalous axial current for
some relevant observables and structure functions.

II. UNPOLARIZED AND POLARIZED STRUCTURE
FUNCTIONS

In order to acquaint the reader with our notation, we use
this section to outline the main structure of the cross-
section calculation and to introduce the various unpolar-
ized and polarized structure functions that come into play.
To start with, we define a polarized hadron tensor for the
three-body process (yy, Z) = q(p1) + 4(p2) + G(p3) ac-
cording to

H,(q, pip29) =Y. (G9(9)Glj.10X01}139(s)G),
q,G spins

ey

where p,, p,, and ps are the four-momenta of the quark,
antiquark, and gluon, respectively, and ¢ = p; + p, + p3
is the four-momentum of the intermediate gauge boson.
The spin vector of the quark is denoted by s. A similar
definition holds for the Born case (yy, Z) — q(p;) +
g(p,). The hadron tensor defined in Eq. (1) depends on
the vector (V: y,) and axial-vector (A: y,ys) composi-
tion of the product of currents j, and j,. It is convenient to
introduce the four independent hadron tensor components
Hi, (i =1,2,3,4) defined according to

HYy = 3 (HYY + B, HE, = S(HIY — HAD),
i

1
3 VA _ pAV 4 _ VA AV
H#V_E(HMV Hy3), HMV_E(H#V—FHMV)‘

2

For notational convenience we have omitted all arguments
in the hadron tensor components in Egs. (2). In the follow-
ing we will use explicit arguments only when they are
needed. For example, we include the spin vector argument
when we define unpolarized and polarized structure func-
tions H),, and Hy% (i = 1,2,3,4, m = €, T, N) according
to

H., = H.,(s") + H,,(—s™),

im i m i m (3)
H,L’LV = H,U.V(s ) - H,LLV(_S )’
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where s is the spin vector corresponding to longitudinal
(m = €), transverse (m = T), and normal (m = N) polar-
ization of the top quark. Our choices of the three orthonor-
mal spin directions (ér, éy, é¢) are given by

: (P X p1) X Py 5 De XDy
T =73 > > N =13 S
[(Pe- X B1) X Pyl 1P X Pl @
. D
g =L
|P1|

(cf. Figure 1). For the hadron tensor components we in-
troduce the compact notation H ;i'ﬂ) where the round brack-
ets indicate that, in the unpolarized case, the index m and
the round bracket is omitted. We use this compact notation
to display the general features common to the unpolarized
and polarized parts.

For the process e e~ — Gq(G), the cross section can be
written in modular form consisting of the hadron tensor,
the lepton tensor, and the model dependent coupling co-
efficients g;;. The SM values of the coupling coefficients
gi; are listed in Appendix A. The unpolarized and polar-

ized cross sections read

A4 _ o
do'm = o i,/'Z:l gy, Li*H] dPs, (5)
where dPS is the phase-space factor. The lepton tensor
components Liw (i=1, 2, 3, 4) are defined in the same
way as in Eq. (2). The process e*e™ — Gq(G) can be
described either in the beam plane spanned by the electron
and positron beam and the outgoing quark, or the event
plane spanned by the quark, the antiquark, and the gluon.
In the Born case where no gluon is emitted, both planes
coincide by convention. The polar angle between the quark
momentum and the electron momentum is denoted by 6 (or
by 6,.-), and the azimuthal angle between the two planes is
denoted by y. In order to determine directions, we define
different frames with the (x, z) plane lying in the corre-
sponding plane. For the beam plane we define a lepton

FIG. 1 (color online). Orthonormal spin basis é7, ¢y, and &,
for the top quark. Also shown are the beam plane (light gray,
respectively, yellow) and the event plane (dark gray, respectively,
green).
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frame with the z axis determined by the momentum direc-
tion of the electron, and a beam frame with the z axis
determined by the momentum direction of the quark. For
the event plane we define an event frame with the
z direction determined again by the momentum direction
of the quark. The transition from one frame to the other is
performed by using the two Euler angles 6 and y.

The natural frame for describing the hadron tensor is the
event frame which makes no reference to the beam plane.
On the other hand, the lepton tensor is most naturally
described in the lepton frame. In this frame the lepton
tensor component L3#” vanishes identically and L?*” van-
ishes for zero lepton masses (which we assume). The
remaining two components have the simple form

(0000
Jiwr |0 100
2{0 0 1 0f
\0 0 0 0 .
00 0 0 ©
powr _ |0 0 =i 0
210 i 0 o
\0 0 0 0

The contraction of the lepton and hadron tensor has to be
done in one particular frame for which we choose the event
frame. We therefore have to rotate the lepton tensor into the
event frame. In doing so a variety of angular dependences
appear. In fact we can decompose the lepton tensors ac-
cording to

2

1

Liny — %{5(1 + coszﬂ)n’gy + SiHZQH/LLV
— 24/2sin6 cosﬂH}“’}, (7
7

[Aur — 7{cosﬂ]’[ﬁ” -2\2 sinﬁﬂﬁf"},

where I1; and I1 4 contain an implicit linear dependence on
siny and cos . The matrices I, I1;, II;, I1, and II , are
called projectors because when contracting the lepton
tensor with the hadron tensor they project out the relevant
coefficients of the hadron tensor that give rise to the various
angular dependences. The decomposition in Eq. (7) de-
scribes the complete angular dependence of unpolarized
and polarized top production in the process ete” —
qq(G). Tt gives rise to the decomposition of the differential
cross section according to

do™ 3 3
=2(1 + 2 (m) + “¢in2 (m) + = (m)
Jcosd 8(1 cos*0) o) 4 Sin bo, 2 cosfay.
3 3
- NG sin# cosﬂa'gm) - NG sinﬁafqm), (8)
where
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o (Ara)? & iom) dPS
ou = 3q* Zgij[Hé( )dcosﬁ’
= €]

HL™ =I5 HLY.

Without beam polarization effects one finds the following
pattern. For i = 1 one has contributions from a = U, L,
and for i = 4 one has contributions from a = F, A as
written out in Eq. (7). More details about the coupling
pattern including transverse and longitudinal beam polar-
ization effects can be found in [10]. In Egs. (9) we have
divided out the d cos@ differential which has already been
taken into account in the polar distribution (8). For the two-
particle final states (Born term and loop contribution) one
has the phase-space factor

v

dPS, =
2 8(2m)?

dcosfdy — %dcosﬁ, (10)
a

where v = 4/1 — 4m?/q” is the velocity of the outgoing
quark. The transition to the rightmost form in Eq. (10)
marked by an arrow expresses the fact that the azimuthal
integration over y is always implied throughout this paper.
As we shall see, the transverse and normal spin dependence
drop out for the components a = U, L, F in Hé(m) but are
retained for the components a = I, A after the azimuthal
integration over y.> Just the opposite happens to the spin
independent and longitudinal spin components. For the
two-particle final state one obtains

azv

(m) _
oy (Born, loop) = 3—614

4
Z ginﬁ(m)(Born, loop) (11)
=1

witha=U, L, fori=1and a=F, A for i =4 as
above.

Next we turn to the O(a,) tree graph contributions. The
relevant three particle final state phase space is given by

qz

1672y

v

8(27r)?

dPS; = dcosfdy dydz

2

v q
— Y dcosh
167 > T6mv

dydz, (12)

where the transition to the last expression is again due to
the azimuthal integration. We have introduced two phase-
space variables y =1—2p,-¢q/q*> and z=1—2p, -
q/q*. The O(ay) tree graph contributions to the various

(m)

cross sections o, ~ are written as

21t is important to keep in mind that the transverse and normal
spin components are defined with respect to the beam frame.
When defined with respect to the event frame the transverse and
normal spin components average to zero after azimuthal
averaging.
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q4 (1677 v Z 8ij [ H{™ . Z)dydz)

13)

with a=U, L, I fori=1and a = F, A for i = 4, as
before. It is convenient to introduce the tree graph helicity

o (tree) =

structure functions H.™ (tree) by defining

| 2 |
HI (tree) = — 1~ f HY(y, 2)dydz.  (14)
v

The Born term and the O(a,) corrections H.™ (Born) and
Hé(m)(as) = HI™ (tree) + HI™ (loop) will be referred to
as the unpolarized and polarized structure functions to
leading (LO) and NLO order, respectively, while the sum
of the LO and NLO contributions will be referred to as the
O(a,) results.

In summary, one has three unpolarized and seven polar-
ized hadronic helicity structure functions. It is instructive
to list them together including a specification of whether
they are fed by the parity conserving (pc) or by the parity
violating (pv) part of the product of hadronic currents and
to which of the two classes of the so-called T-even and
T-odd structure functions they belong to. One has

T-even,
(15)

unpolarized : H(pc), H; (pc), Hp(pv)

longitudinally polarized: HY,(pv), H! (pv), H:(pc)

T-even, (16)
transversely polarized: HX(pc), H! (pv) T-even,

(17)

normal polarization: HY(pc), HY (pv) T-odd. (18)

If one neglects contributions proportional to the imaginary
part Imy, of the Breit-Wigner line shape of the Z boson
(see Appendix A) the T-odd helicity structure functions
HY(pv) and HY(pc) are contributed to by the imaginary
parts of the one-loop amplitudes leading to nonvanishing
triple product correlations of the type s, - (I X p,), whereas
the T-even structure functions obtain contributions from
the Born term, the O(«;) tree graph contributions, and the
real part of the one-loop contributions.

If one includes the contributions proportional to the
imaginary part Imy, the structure functions Hp(pv),
H{,(pv), and H (pv) are also contributed to by the imagi-
nary parts of the one-loop contributions, and, vice versa,
H f;’ (pv) obtains also contributions from the Born term, the
O(ay) tree graph contributions, and the real part of the one-
loop contributions. All the latter contributions originate
from the (VA — AV) part of the product of hadron currents
and thus belong to the class of helicity structure functions

PHYSICAL REVIEW D 80, 034001 (2009)

Hfl(m) according to the classification of Eq. (2). The latter
contributions can only be probed through the imaginary
part of the Breit-Wigner resonance shape which is strongly
suppressed for (¢7) production. In fact, the contributions
coming from the imaginary part of the Breit-Wigner reso-
nance shape are of order O(Imy(g*)/Rexz(g?)) and can
thus safely be neglected for top quark pair production. For
example, in the threshold region of top quark pair produc-
tion Imy,/Rey, is approximately 0.1% and decreases
further with a 1/g> power falloff behavior. We shall never-

theless include all H3(m) contributions for completeness
and for possible applications in (bb) production where

the HZ("” contributions cannot be neglected in the Z reso-
nance region.

III. COVARIANT EXPRESSIONS FOR THE
PROJECTORS
The projectors I1,, will be written in covariant form. We
go to the rest frame of the gauge boson such that g =

(\/q_z; 0,0,0). The z axis is defined by the momentum
direction of the top quark. For the top quark momentum
one has

=g -0 = =8 a9

(y = 0 for two-body decays) with & = 1 — v> = 4m?/q>.
We construct a four-transverse quark momentum and a
four-transverse metric tensor
qu9y

7

g,uvzgpw_

20

Pl q (20)
Pip =75 4du

Piu = 8uwpi =
© vl q

and use ¢ and p; to build up two elements of a coordinate
basis,

et = (q" /2

X (= (1;0,0,0) in the gauge boson rest system),
(21)

= (P4 (pr - @/ — m?)
X (= (0;0,0, 1) in the gauge boson rest system).
(22)

In covariant form the longitudinal spin vector of the top
quark reads (see e.g. [15])

St — _< " Plgpg»)/m (23)

In the gauge boson rest system Eq. (23) turns into
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o =Ji3( 1— - &001-y, 4

while in the top quark rest system one has s¢ = (0;0, 0, 1).
The longitudinal spin vector s¢ can be seen to be a linear
combination of the two basis vectors e and e3 and does not
provide a new direction in our vierbein basis. The projec-
tors that can be constructed with the help of ¢, and e; are
limited to the three projectors

MY suv M v [l Ay O
Iy = —gt" — eyes, II}" = e3es,

25
Ity =i el el (22
F L€ uvpa€3 €y,

where g,,,,, is the totally antisymmetric Levi-Civita ten-
sor with £¢53 = 1. They project out the three unpolarized
and three longitudinally polarized helicity structure func-
tions where, according to Eq. (3), the polarized structure
functions Hff (a=U, L, F) are obtained from Hff =
I (B, () — Hi,, (= s0).

The transverse and normal polarization vectors of the
top quark are defined in the beam frame. Viewed from the
event frame they are given by

ey = (0;siny, cosy, 0).
(26)

er = (0;cosy, — siny, 0),

These two vectors therefore allow one to span the beam
plane and a plane perpendicular to the beam plane in event
frame coordinates. With these new elements it is possible
to construct the remaining additional projectors. They read
(m=T,N)

-1
22

-1
!
H/“/(em) = ﬁi(sm)meé’ + Svpareg)ege3 Cm

117" (e,) =

(stef + efen),

27

—i
mv _ p
HA (em) - —S,U,Vpo'eoez’

242

v I v v
(e, = m(eﬁcg —eben).

For example, according to Eq. (3), one obtains the structure
function H}T by calculating HjT = I11"(er) X
(H},(s") — Hi,,(—s")). Note that since II;(ey) =
Hﬁ(er), II)(er) = _H}(C’N), I (ey) = _H,/Lx(eT)s and
I1,(e7) = II'(ey), the primed projectors are redundant.
This set of four [Eq. (27)] and six [Eq. (25)] covariant

PHYSICAL REVIEW D 80, 034001 (2009)

projectors allows one to calculate the complete set of ten
helicity structure functions from the hadron tensor.

In the following we list the Born term and loop contri-
butions calculated already in previous papers [8—10]. The
nonvanishing unpolarized Born term contributions are
given by

H},(Born) = 2N_.¢*(1 + v?),

H}(Born) = N.¢*(1 — v*) = H?(Born),
H?(Born) = 2N .¢*(1 — v?),

H}(Born) = 4N q*v.

The longitudinally polarized contributions read

H{f(Born) = 4N.q*v, H}‘(Born) = 2N,g*(1 + v?),
H{*(Born) = 0, HZ(Born) = 2N.¢*(1 — v?).  (29)

For the transverse and normal polarization components one
has [9]

H{T(Born) = Ncqzv\/g,

H)"(Born) = Ncqz\/g = H3'(Born), (30)

H3N(Born) = Ncq2v\/§.

Note that one has H} = H?, H}, = H}{, H}, = H¥ , H} =
H{f, H\' = H3T, and H}' = H3" at the Born term level.
We will return to these relations when we discuss the O(«a)
tree graph contributions.

Note that the transverse and normal spin components 7'

and N are proportional to /€ = 2m/\/? The origin of
this suppression factor is a helicity flip suppression factor
at the y/Z — t7 vertex. The same suppression factor also
occurs in the O(a,) one-loop and tree graph radiative
corrections to be treated later on. It is clear that this overall
suppression factor is not important for (¢7) production in
the threshold region and not very significant in the range of
beam energies considered in this paper. Altogether this
means that the transverse and normal spin components of
the top quark are non-negligible in the present application
[9,11].

Most of the nonvanishing one-loop contributions have
already been given in [8—10]
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H},(loop) = 4N.¢*((1 + v?)ReA — 2v° ReB),

H{(loop) = 8N.q*v(ReA — ReB),
H3'(loop) = 0 = H}¢(loop),

H#(loop) = 4N,q*((1 — v®) ReA + 2v? ReB),

PHYSICAL REVIEW D 80, 034001 (2009)

H?(loop) = 4N.¢*((1 — v?)ReA + 2v° ReB),
H} (loop) = 2N.q*((1 — v®>)ReA + v>ReB) = H:(loop),
H3!(loop) = —8N,q*v ImB,
H} (loop) = 4N,q*((1 + v*) ReA — 2v? ReB),

H3 (loop) = —8N.q*vImB,
H{(loop) = 8N,.q*v(ReA — ReB),

H;™(loop) = —N.q*v g(l + &) ImB/¢&,

3D

H{T(loop) = N.q*v g(z ReA + (1 — 3&)ReB/&), H!(loop) = Nc.qz\/g(ReA + v?ReB/¢) = H3 (loop),

H;"(loop) = Ncqzé(l — &) ImB/¢ = H}"(loop),

H3¥(loop) = N.q¢*v g(z ReA + (1 — 3&)ReB/§), Hi (loop) = N.q*v g(l + &) ImB/¢,

where the real part of the form factor A and the real and imaginary parts of the form factor B read

ReA = — —aSCFKz +
dar

ReB

4 v 1+v dar v

The imaginary contributions H3 (loop) and H;f (loop) com-
plete the list of one-loop contributions given in [8—10]. We
are now in full agreement with the one-loop contributions
given in [11]. ImB contributes to the 7-odd structure
functions H{T and H3" as mentioned after Eq. (18). The
infrared singularity has been regularized by the introduc-
tion of a gluon mass mg via m% = Ag?*. The loop induced
infrared singularities in the real part of the one-loop con-
tributions can be seen to cancel against the corresponding
infrared singularities in the tree graph contributions to be
treated later on.

In the next section we will present our results on the
cutoff dependent helicity structure functions. They must
coincide with the fully integrated results written down in
Refs. [8-10] when the cutoff is taken to its maximal value

Ei(max) = (¢* — 4m?)/(2y/¢?). This will be verified in
Sec. V.

IV. EXACT RESULT UP TO A GIVEN GLUON
ENERGY CUT

In this section we present the results of our calculations
for the O(a;) corrections to the helicity structure functions
with a given cut on the gluon energy. We define a scaled
gluon energy cut A = E;/+/g*> and do the phase-space

integration in the region 0 < E; < A,V ¢>. The maximal
value that the cut parameter A can take is A, = (1 —

1+v* (1-— Ag?
Y ln< "))m( (]2)+3vln<
v 1+v m

:asCFl—vz ln(l_v), ImB:asCFl—vzﬂ_

1—v>+4+1+v2<L,<2v )+112(1—v) 772)}
1 —In ——t
1+v v N1+v) 4 1+v 2

(32)

[

£)/2. In terms of our phase-space variables y and z the cut
phase space is defined by 0 =<y + z = 2A. In Fig. 2 we
have drawn a (y, z) phase-space plot choosing a specific
value for ¢ = 0.1 for illustrative purposes. The shaded area

1

BN £=0.1
0.9F A=0.3
0.8¢
0.7 »

o6l y=2=(1-¢)/2
z 045§
0.4
0.30 /// \
ozé %
O‘; { ,‘ TR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

FIG. 2. Phase-space diagram with gluon cut.
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corresponds to the integration region with the specific
choice of cut value A = 0.3. The upper boundary of the
integration region is given by the straight line z = —y +
2.

The full phase space is bounded from above and below
by the two functions z; and z_ where

oy E g - €

+ - (33)

The upper gluon cut given by z = —y + 2A intersects the
two boundary curves (33) at

I e
Yy = A(l + "%)

Since the phase space is symmetric with respect to reflec-
tions along the diagonal, the corresponding z values are
zp = yr and z = y;.

From a visual inspection of the phase-space plot, Fig. 2,
one can see that one has to discuss two cases when inte-
grating the cut phase space depending on whether (case A)
A= Apans OF (case B) A > Ayane- The transition value
Arans = (1 — /&)/(2 — J€) is defined by the A value at
which the straight boundary line of the cut intersects the
phase-space boundary at the point (y,,z5) = (1 —
VE VEQ — JE)/(2 — J€)). At this point the tangent of
the full phase-space boundary is vertical. From an inspec-
tion of the phase-space plot, Fig. 2, one concludes that in
case A the integration region is divided into two parts,
whereas one has to consider three integration regions in
case B. The specific example shown in Fig. 2 corresponds
to case A.

Let us denote the general y- and z-dependent tree graph
integrands in case A by I(y, z). One has to do the two
integrations

, . ) 21—y
[}1 fz I(y, z)dydz+[}2f "Iy, 2)dydz,  (35)
0 7 i 7

while in case B one has an additional integration, viz.

- ey
[} fz 1(y, z)dydz + [}2 f ’ I(y, 2)dydz
0 zZ- V1 -

1*\/3 pan
1(y, 7)dydz. 36
+/yz f (v, 2)dydz (36)

Z

(34)
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It is clear that one should recover the fully integrated
results listed in Sec. V when setting A to its maximal value
Amax = (1 — €)/2. When comparing to the fully integrated
result one has to discuss case B with A = A, =y =
y, = (1 — £)/2. In this case the second integral in Eq. (36)
vanishes and the remaining two integrals can be merged to
give

L Ve fz Z 1(y, 2)dydz 37)

which corresponds to the fully integrated tree graph con-
tribution entering the full NLO result given in Sec. V.

Let us return to case A involving the two integrations in
Eq. (35). For most practical applications case A will be the
relevant case since the ratio

Atrans _ 2
/\max (1 + \/E)(z - \/g)

(38)

remains close to 1 over most of the range of ¢ values. The
integration over z is straightforward. The second integra-
tion over y is done by using the Euler substitution

1 2
y=1- VB (39)

1—w

Equation (39) is easily inverted. The y-integration limits
y =0, y;, ¥2, 2A, and 1 — /€ translate into w = wy, w,
wo, w,, and 0, where

wo = - V&
Vi E
1—-2x—E

R ey 3

The value w, corresponds to the intersection of the upper
gluon cut boundary with any of the two axes. In addition to
the velocity parameter v = /1 — & we introduce modified

velocity parameters v; =+/(1 —y;)> — & and v, =

V(1 —2X)? — £. We shall also use the abbreviations a =
2 4+ /Eand b = 2 — /€. Our results for case A read (N =

achCqu/(47TU))

1_)’1,2_\/?
1=y, +&

(40)
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Hj = N{2<2 — E2(tg- — 19+) — (8 — 10 — &)1, — 114) + VE = JOQ + 4JE—38)1, — (6 — 116

2¢2
+202 — &), — 16¢6s, — %(8 +12¢ — )y + (16/\ Y TR )€7+

/\
201 =24 — (1 — A)VD)

2M?

(1 —&VE
4)@5[ bEVE
x ((1 — 22— &)+ 20E — @4+ INEE + 38 - Y \/—) (24 T3Vt )

bé/E

1 1
— — (48 + +6y2 ——(24 + .
4( 8+ 58y, 6y1 4( 58)v, 20 + aw,)

+g L g + 58y, - 6y%},

= §N{2(2 — E)tg- — to1) — (4= Ot1— — 113) + EU — JENr, + 20 + 20, — %§€6+ + (8A = &7 — £g)

2)@5 1—24— (1 — A)JE
(1 - VéE

—5 g + 4y € — 4y, — 2

(1 =21 — &+ MWEW; — 5v, — 5y, — 5v, + Syz}, (41)

H;*f=N{4(2—§)u(to_+zo+) (8 +2&+3&2)(t)- +14) — 1+J‘(2 VE? +4vl, —32—5&)vls

3¢2
+§(28 — 176 + ((6 — 164 — 13&)v +8—)€8_ — ‘U)‘(6 4N 13g—2ag + A 2 Cartaat+e+ 22 f )67_

A 31+ VEP2+VOVE 301 -VE2—-VEVE A

(20030 -8)+ e e e, ~ (202301~ 8)
3(1+\/_)2(2+\/_)\/_ 3(1 - VE?2 - VEVE 1-22—(1-A)VE

=y, + 78 M=y, 70 )62 - JDJE {2 BA+8A2—TE+5AE
+2A2§—3§2—(1—6A+8A2—9§+3A§)\/E}(i—i2)+ EZ:J(FI\/_/)\\)/\ZE{Z—S/\+8/\2—7§+5/\§
+2A2E=3E2+ (1 — 64+ 8A2 —9€ + 3AEVEN wy — w2)+i(40 48 — 335)(u1—u2)—4)l§(f %)

Y1 2

béVE beJE 1 1 B

+2(b_aW1)+2(b+aw2)+Z(24—33§—8v1)y1—2y%+1(24—33§+8v2)y2 2y§}, 42)

= N{§(2 = Ot~ 19:) = 26Q + Ot — 1) = VEW = JEQ + 4E =38, + %(16 —54¢ 38w

- i(8/\ —28A% + 16A% + 16A* + £ — 126 — 8A2& — 244,
211%‘

- %(8)\ +ANT — £ —8AE+ E2)g, — §(2y1 + ;yl)& + §(2y2 + 1y2)€2 (12(_12_/\2)‘\;_511__)‘\)/\1)—)\/_

X (2= 8A+ 8A — £+ 20¢ — 4A2E + TE2 — 3AE: — (2 — 6A + 407 + 3& — 3AE — 22%¢ + 3D

b, + 16605, + %(8 8 — 3)tq,

_ B PEVE 1 Lo 2 _
16(32 T2 + 562 — 8&y v, + 8 —aw) 16(32 726 + 5%y, 16(32 T2 4 562 — 8y,)v,
b VE
T8 +awy) - g2 726 #5ef “
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;= N2 = Olt- — 10.) = 202010 110) ~ VED ~ VB + 122 =300 + G+ 1 (8~ 86 436K

1 2A2 1 1 1—20—(1— AVE
+§@A+4M—¢M&+—€M)——?§Q++<bq+§ﬁyq—<m@+§ﬁyg+2 (1_J@JEJ_
1 bEJE 1 1
X (1 =21 — &+ ME; — E(72 —5¢+ 8y)v, — So—an) E(72 —58)y, + —R(72 —5& + 8y,)v,y
+ z;(b#\fwz) + 1_16(72 - 5§)y2}, (44)
H}t = N{f(lO +38)(t- +14) — §(24 — 76l — 13vé(ls — €5 ) — 4/:}2558 - U).<4§ - 8):452
A
L3+ VEPCH VOVE 301 - VP2 - \/?)\/3)6 Ly (4§ L 30+ VP + VOVE
2(1 — 24 + JB) 2(1 — 24 — JB) = : 2(1 — y, + /3
_30 -V - @ﬁ)g L <4§ L3+ VO VOVE 30 - VErQe - ﬁ)ﬁ)g
2(1 =y, — ) ! : 2(1 =y, + %) 2(1 =y, = é) g
I(I E’\Z; EIJE;\\)/%E& —8A 4 8A2 — TE+ SAE + 2026 —3€2 — (1 — 64 + 8A% — 9& + 3AE)E
X (wi] - Wiz) ¥ - 1(; EAJ iljg\)/g{z — 8A + 8A2 — TE 4 SAE + 2028 — 382

(1 — 64+ 822 — 9¢ + BAEVEN W, —wo) + R+ 7w, + 2+ T8y, — 2+ Té)vy + (2 + 7§)y2}, (45)

Hi' = N{z(z =&t —100) = B 26+ )0 — 1) +VEQ = VHQ - VO + )1, =206 + by

2(1 — 3
20— 0, + 866 — 3@+ 66 =380, + (16001 = ) =20 + o0 + £ -2,
A

- (u(s C30) =201+ AN+ A)E+ £ — ZU—A;>€8+ 1401 = 200 — 20)os + 29,(4 — 3& — )4,

2(1 =24 — (1 — )VE)
(124 = /B0~ )

—2y,(4 = 3& — y))b, — (6 — 161 + 8A2 + 11& — 5A& + 2226 — £2

— (15 =220 + 8A% + £+ AEWE (5 — g(4 —T7& —4y)v; + 7225\/? - l(16 =218y, + 3
4 2(b —aw,) 4
3 beE 1
0= 7¢ —dyu; — 5 (16 2160 53] (46)

Hi = fN{2(2 = 1o~ —100) = (4= O(t1- = 114) + VEQ = VO, + 20 + 20, - %fm (84 = 667 — €5.)

202¢ 1—2X— (1 — N)JE

+ €y + 4y € — 4y 0, — 2
8+ Yity Yata (1 — JEE

(1 =21 — &+ MWEV; — 5v, — 5y, — 5v, + 5y2},
47)

UZ
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1
Hj = N{4v<2 = Ot +19:) =204 =561 + 1) =51+ VHQ = VEP +4vly —6vls — 8E(s

2 2
C S (B 14N+ 2002 — 8N — 26— £2)0, + (3 — 8A+4A2 — 26 + 8AE — E)s + 4(1 — 220)(3 — 20)0,_
Uy v

1 b 4L Ev 1
=23 —y)vi€; + 23 — y)vaty + 1(12 + 16A + & —4dy))v, + £VE - vy + 1(24 + &y — ¥}

2(b — awy) V1
bf\/g + 4A§'U2
2(b + aw,) Vs

1 1
- 1(12 + 16A + & — 4y,)v, + + 1(24 + &)y, — y%}, (48)

HIT = %‘EN{ZU(Z = Ot +100) = 5164780+ 1) = (14D~ B + 20, + l(72 306 — 380,

& ¢ 31+ /92 +V8) [ 31—/ 2— )
+UA<2 S1-20- 0 —an— g VT NE VO Y )7,

- l(12 TEu(ls. — ) — —(m AN = £ SAE— NE+ E) +2(1— 20)Cs.

. (5 3(1+f)2(2+f)+3(1—@)2(2—@>)€_v<§+3(1+JE)2(2+¢E>+3(1—¢‘>2(2 f))
2T 2y 1) 20—y, —-v9 /' 2 20—+ 20—y, /7

.1 212_)‘2_)\(1 \/f‘))g/_{z 8A+8A2 =T+ 50+ 2226 — 382 — (1 — 61 + 82 —95+3A§)\/E}(Wl—vi2)
1=2A+ (1 — A\)WE e . B
T e C10— 8A+8A2 — T£ 4 SAE+ 2026 — 3¢ + (1 — 64+ 82 — 9F + 3AEWENwy — )
1 L 2Mév, | bEJE 1 1 206v, | bEJE 1
S8+ 56, s~ g8 Sy + g8+ Sy + g TV g 562},

(49)

Hyy = %\/5 N2 = O — 10 =316 =381 = 1) =51 = VD~ VBN + V), — 516 = 36w + 26,

4 2
+207 = Ol — —(8 —6& +38)g. +2(1 = 20l + %m - %m - 5(1 — A= ,,A )€7+
A

A2¢ 1 =24 — (1 — AE BA*VE
—(4)\(2—)\) £+ )€8+ TGN (6—4A—(9—§)\/E+(2—/\)§—m)€3
beE beve

1 1 1 1
- §(4 +5&)v; + 4(b——aw,)_ §(4 + 58y — §(4 + 58)v, — A6 + awy) +§(4 + 55))’2}, (50)

Hy = %\/%N{ze 0~ 10) — 58 =300 — 1)~ £0 = VB, + 2@ = O+ 26, + 20+ s,

L0 - O =30, + BN £~ A, - CEENETE —f)m — 21— 20y,

1=2A—(1—A
#36= =36 - At + G o aVE- e - 2= 50w,

bgf 1 1 béJE

1
T30 ey 302756 g (52— 58y + TR g(52 5§)yz}, (1)
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HY = é\/ézv{zu(z — 0 +10) — 58— 13O + 1) + 10— VB + VD + 2wl — S E+ ol

1. 8t E L 1-20—¢ ~ 3. 3M%
+ §(8 30§ + 352)€6— ( ) U\ fT)€7_ + ‘U(4(1 )\)2 + Ef v )eg_
o 1 1 1 C20u, | bEVE

2(1 2A)€9_ 5(8 + f)vlgl + 5(8 + f)Uzgz + §(52 + 5§)U1 v 4(b — an)

1 1 206v,  bEJE 1

The logarithmic rate terms €; and the double and dilogar-
ithmic rate terms ty_, fo4, t;—, t;+, and t,, are listed in
Appendix C. Note the exact O(a,) tree graph relation
H% = H?, which was also noticed in [11]. We have not
been able to derive this relation from general principles.
We shall not dwell on the technical details of how the
finite integrals have been calculated but rather concentrate
on the class of IR-divergent integrals. For instance, the

integral
24 dydz Vi <z+(y))dy
1 «“r
o= [0S )T e

|

is IR divergent and will be regularized by a gluon mass
mg = v/Ag*. The introduction of a gluon mass changes the
lower y limit from Otoy_ = A + /A&, and the z limits to

1
2y — 2y — &y + 2Ay + 2A
4y+§(y y: =&y y

=2y — AP — AL =2 = 8. (54

z+(y) =

Therefore, the integration over z gives rise to

T (=1 1) fyll <2y—2yz—§y+2/\y+2A+2\/(y—/\)2
-1,-1) = n
) 2y —2y2 — £y + 2Ay + 2A — 2/(y — A)?

yo

This integral is not analytically calculable for general
values of A. However, we can divide the integral into a
divergent and a convergent part which are separately cal-
culable as long as A is a small parameter. The residue of
the divergent part should coincide with the residue of the
original integrand at the IR singular pole at y =0. A
simplified IR-divergent part can be constructed from the
full integrand by neglecting higher powers in y whenever
possible. Before this approximation we shift the integration
by — A in order to facilitate the expansion around the lower
boundary. We obtain

Y1 ln<(1 + v2)y + 2uy? — Af)ﬂ
VAE \(1+ vy —2vy2 — A/ Y .
(56)

This integral can be calculated analytically and one obtains

P(=1,-1) = lnG il ”)m(K—Z) L <(1 2vv)2)
) st )

()

. I+v
—-t,,—ln1

- v

I°(-1,-1)=

) InA. (57)

(55)

— A& —y)* - 5)@
— A& —y) -

f
In the case A — 0 we have the limiting value (we write

e =+/A&)
1+U)lim [y‘@ (58)
1 —v/s=0 e

I°(-1,-1)— 21n<
which is an ill-defined quantity for € = 0. However, we
can subtract the singular piece from the original integral
also taken in the limit A — 0. As a result the divergences
cancel and one obtains

. [ 22— E+ 20—y - €
(-1, -1 =1 1
o =t n(2—2y—§—2x/(1—y)2—§)

d 1+ i d
<2 —an(i=2) [ 2] (59)
y I—=v/Je y
or symbolically
- A 1
I¢(—1,-1) = 1in(1){1§“’(— ) — 21n<1 )1’( 1)}
(60)

where the primes indicates that the lower limit is . With
the Euler substitution Eq. (39), and after partial fractioning
according to

dy dw dw dw dw

- =- - + - 61
y wo—w wogtw 1l—w 1+w D)
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S. GROOTE AND J.G. KORNER
one obtains
" L 2=y —E+ 20— )7 - &\d
2-2y—¢-2fI -y =&V
= 154 (wp) — Ig%(wy) — 154 (wp) + 154 (wy)

= I (wp) + I (wy) + 15 (wp) = 175 (wy),

€

(62)
f-n= "%
= Io—(wp) — To—(wy) — Ly (W) + Ios(wy)
—Li_(wp) + I—(wy) + I (w) — I (wy),
(63)
where
I — 1_8_\/?_ _S\E

The variable wy, tends to w( for & — 0. It is instructive to
note that the divergences now reside in the terms 75% (w))
and Io_(w() which contain the integrand factor (w, —
w)~!. We obtain

1+
15 (w) = th(w) — 21n(1 U) In(wy — w),
v

(65)
Iy-(w) = —In(wy — w),

where tﬁ, is a decay rate term which vanishes in the limit
w — wy. For this reason the two expressions in Eq. (65) do
not contribute to the convergent part at all. Using Egs. (62)
and (63) we can calculate the convergent part in Eq. (60)
and add the divergent part in Eq. (57) to obtain

PHYSICAL REVIEW D 80, 034001 (2009)

] 1+
L(-1,-D)=t,- 1n(1 ”) InA

—-v
1+v

_.{Igi(mq) —-21n(1 )107(wq)}.+...

= 154 (wg) — 154 (wy) — 154 (wp) + 154 (w))

-V

TR 1n<i Al ”) InA. (66)

- v

The dots indicate further contributions according to
Egs. (62) and (63) where we can replace w{, by wy. The
decay rate terms 5% (w), 154 (w),... are listed in
Appendix C. It is obvious that 5% (wg) in Eq. (66) has to
be replaced by the special value ¢, defined in Eq. (57).

We now turn to case B when A > A,,.. As discussed in
the beginning of this section this entails the calculation of
the second integral in Eq. (36) which has to be added to the
first and the third integral in Eq. (36). The latter two
integrals are already known from case A. Using some
additional decay rate terms listed in Appendix C the results
for this additional phase-space portion are given by

HY =N - 07065~ 1)~ (8- 106 £)65 1)
+VE = VE2 + 4E = 38)1, — 82 — &)ty
—16&€5, + G(S + 128 — &) + 8y, — 2y§>€5

- f)vz}’

1

(67)

HY = fN{2(2 — 5. —15.)— (4= ) —15,)

+ JE(1 — B, — 8ute, + @g + 4y2)€g + 10v2},

HYf = N{4(2 — Ol +15,) — (82 +3EN(_ +15,) — 8(1 — E)E5_ + 16(1 — £)¢5

- %(28 —1TE2e + ) — 16(1 — £ + v2<2(y2 31— g) +

301 = VP2 — VEE
2(1 =y, — \/E)

H} = N{§(2 — ENt5_ — 16,) — 262 + ENE_ — £5,) — JEQ + 2JE — TE + 3ESEN, — Afvl, + 16£€5,

1 1 1
- g(ﬁ (8 +8&—3&%) +2y, + §y§>€5 +gB2-T28 + 567 = 8&y))vy —

(68)
3(1 + (2 + JEVE
2(1 =y, + %)
. 1 B _ 3 . _ §(4 - 5)2
)52 + (64 + 64VE = 3526 + 2326VE + &) — S (8 — 11€)y, + 473 m}

(69)

£ Hv,

St B 7o
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= enf2 - 965 — 1)~ 20 - D05~ 1f,) — VEQ ~ VB — dveg. — (18— 86 +36) 20— 113)6s

2
+ é(n —5£+ 8yy)us + %}, (71)
it = NE104 3061+ 15 + €04 = 065+ S €4 - 70065 + (;’f @~ VB — VB
- 3@“ @ +VE1 + 8 - 4§v2)€; 201 = VEQ ~ 6VE +136) — 22 + 7§>y2}, (72)
HY = N{2(2 — OXt5_ —15,) — 8+ 28 + ENS_ — 15,) + JEB — 10JE + & + EJEN, — 8(2 — E)vLs,
#8665, + (34 + 66 =36+ 204 =36, — 23)5 + 24— 76 — oy — 50— 73)

HY = gzv{z(z — 5 — 15.) — (4= E5_ — 15,) + VEO =, — 8vly, + (%f + 4yz)€§ + 10vz}, (74)

Hi = N{4(2 — O+ 15,) — 24 — 5615+ 15,) — 8(1 — E)5_ + 1665 +8£€5_ — 16(1 — £)5_

1 1 4- ¢
~ 23— st + 480~ GHE— 8¢+ )~ 24+ O+ 23— 2] s)
1 f¢ 1 1
HT = E\[EN{M — &t +15,) — E(16 +TEE_ +15,) — 41 — E5_ — 1(4 — E)(10 + 3&)¢5
- é(n —30& — 3¢2)0c_ — 8(1 — )5 + (% + zi(z VD - VB + 220+ B+ JE)2)eg
%) 2
I I £ — ¢
- R(304 — 4964[€ + 208& — 24&[E — £2) + 1(28 +58)y, — m}, (76)
HIT = % gzv{z(z — e — ) - %(16 —3E)(5 —1,) — %(8 — 10V + & + &), — 8vis,
— < ! — l c l — M
#2071 - 065, + (58— 66 +36) + S m )65+ 4+ 5w, — ) )
HAT = %\EN{z(z — o5 —15,) - %(8 — 3K —£,) - %f(l — VO, — 8uts, + 201+ o)ts,
(Lo nu—3e-Ls- R &4 - v,
(520130 36— om)es + 362~ 5o, + 55— 78)
HY = 1\/51\1{2(2 — U 1) — 28— 13O+ 15,) — 41— E)S + - (24 — 26 — 380
A 2\2 0— 0+ 2 1- 1+ - 4 -
- %(8 —30& + 3£2)¢c_ — 8(1 — &5 — %(8 + Evls + 1—16(208 — 208/ + 16& — 24&JE — &2)
1 (4 - &7
~ g2+ se + ) (79)

Note again that one has the remarkable relation H %‘5 =H %, We mention that, differing from Ref. [12], we have been able to
obtain a closed form result for the cut-dependent structure function Hj‘7 [see Eqgs. (48) and (75)].
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Numerically, the contribution of the second integral in
Eq. (36) calculated above is quite small. This is because the
relevant integration region is far away from the IR region
where the rate is largest. Nevertheless, this contribution is
needed if one wants to check on the consistency of our
case B result with the fully integrated results in Refs. [7—
11]. In fact, we have performed an explicit check that for
each of the unpolarized and polarized rate functions the
sum of the three integrals in Eq. (36) reproduces the full
phase-space result calculated previously in Refs. [7-11]
when the gluon energy cut is set to its maximal value
Amax = (1 — &€)/2 [which corresponds to setting y; and
v, to (1 = £)/2 in Eq. (36)]. We have also checked that

|

PHYSICAL REVIEW D 80, 034001 (2009)

our exact result converges to the soft-gluon expression to
be derived in Sec. VI when A — 0.

V. FULLY INTEGRATED O(«,) RESULTS

The cutoff dependent helicity structure functions calcu-
lated in the previous section must coincide with the fully
integrated results written down in Refs. [8—10] when the
cutoff is taken to its maximal value. For the convenience of
the reader we collect the fully integrated results of [8—10]

and list them in terms of the sum H.™(a,) =
HI™ (tree) + HL™ (loop). As before we define [N =
a,N,.Crq*/(4mv)]. One has

Hylay) = N{(Z +7Hv + %(48 —48¢ + T8 + VEQ — TE)1 + EQ2 + 381y — 15) = 22 = (2 — (15— 1)

+ 2u(tyy + 2112))},

H}(ay) = EN{6V + (6 — )13 + Vet — &ty — 15) — 2(2 — &)(t5 — 1o) + 2u(tyo + 2110)},

H} (a,) = N{%(16 —46¢ +38%)v + 5(88 — 328 + 3801 — JEQ — TE)1y — EQ2 + 3E)(1y — 15)

— (2 = H)(15 — t9) + 2u(tyy + 2f12))},

Hi(ay) = §N{%(10 — v+ 5(24 —16¢ — 3E0)1, — &ty + £(ty — 15) — (2 — E)(tg — to) + 20(tyo + 2112))},

Hi(a,) = —4&ENv,

Hi(a,) = N{—8VE(1 — &) = 8(1) — 13) + 4(2 = 3&)vty — 2(4 — 5E) 15 — 4v((2 — O)(tg — 17) + 2v(tyo + 1)}

H*?f(as) = —4¢Nv,

(80)

Hi (a,) = N{—(Z +35¢) + (8 +29¢) — %(32 —60& + 176%)(t; — 1) + 2(4 + 9€) vty — (8 + 2& + 3E2)1,

— 42— Ots — 1) + vlty + m))},

H[:ie(aY) = 0)

HY(a,) = N{2(2 +19¢) — 2JES + 13¢) — %g(zzx “ I8ty — 1) — 26Ev; + £(10 + 3g)z6},

Hif (@) = N{=2(2 + 3&)v + (24 = 12& + )13 + EB + &)1y, — £(10 — §)(1g — 15)

=22 = (2 = §)(ts — 1) + 20ty + 2112))},

H¥(a,) = éN{6v + (6 — E)13 + Vet — £ty — 15) — 22 — €)(15 — 1o) + 2u(tyy + 211))},

(81)
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H (ay) = —%\EN(I + &v,
£

PHYSICAL REVIEW D 80, 034001 (2009)

Hi(a) = —% EN{48 + 176 — JE62 + 3¢) — %(4 = &)(10+38)(t; — 1) — 221 +2&)v1y

+ (16 + 78)1s + 4v((2 — )t — 1) + 2v(110 + m))},

HY (@) = —1\/§N{(8 — 38)u — 572 386 + 381, —VE10 — iy + B+ )t~ 19

4

+4(2 = é)(t5 — 19) + 2u(tyy + 2112))},

H (ay) = — %/%N{—(zo ~ 36y — 332~ 146 — 38, — EE + £y — 15) + 42— Dty — 15) + 2v(ag + 2r12)>},

1
HWV(a,) = E\/%NUZW = HV(ay),

(82)

HN (o) = %J%N{% +9£ — JEQ6 +38) — %(24 L2638y — 1) + 2(1 — 68wy

— (8 — 138)15 — 4u((2 — &)t — 17) + 2vltyg + m))},

HiN(ay) = %\/%N(l + v

The fully integrated O(«;) results are given in terms of the
rate functions ¢#; to ¢}, which are listed in Appendix B. It is
clear that one again has the relation H%' () = H?(a)
because both loop and tree contributions satisfy this
identity.

VI. THE SOFT-GLUON APPROXIMATION

The basic ingredient of the SGA for the tree graph
matrix elements is the eikonal approximation where the
gluon momentum is neglected in the numerators of
Feynman diagram contributions. In the eikonal approxi-
mation the hadron tensor is proportional to the Born term.
In the present case one has

2
: Pi 2(p1p2)
Hi, (soft) = g2C ( —

g i) (P1p3)(paps)

2

P3 ) i

+ H! ,(Born), (84)
(p2p3)?) "

where H L,,(Born) refers to the Born term tensor in the two-
body case where g = p; + p,. On the other hand, the
eikonal factor multiplying H’,,(Born) refers to the three-
body case where ¢ = p; + p, + p3 and depends on the

dimensionless three-body phase-space variables x =

(83)

Eq/N@ = p3q/q* and u = (p; — p»)q/q*. When inte-
grating H,,(soft) over the three-body phase space the
Born term contribution H,,(Born) can be taken outside
of the integral. In this sense the integration on the soft-
gluon factor in Eq. (84) is universal in the sense that it is
process and polarization independent.

When projecting the eikonal contribution in Eq. (84)
onto the various helicity structure functions one recovers
the various Born term contributions H'(Born) listed in
Sec. III. Referring to the integration measure in Eq. (14)
and using dydz = 2dxdu one obtains

2q2 A Uy .
ik S [ f H,,,(soft)dxdu
167%v JVA J —u,

asCF A U+
- fJK '/u+ h(x, u)dxdu,  (85)

= H!,,(Born)

where

(1—=2x+ A)w? — (x — A)?) + &x — A)?

hix, u) =8 W= = AP

(86)

The limits of the u integration are given by *u, where
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1—2x+A— &2
M+(X) = <(X2 - A) #4—/&5) . (87)

After integration over u one obtains

L —2u, ¢ 2—4x—2A - £
h(x) = 4<(x —A)? —u} x—A
x—AN+u,
X ln(m>). (88)

Further integrating over the scaled gluon energy x from A
to A one finally has

= =2 [0 - om0 n( )

+ AT =20 T—2A—¢—-v) + 2(1n(zl)

20

2
L)) —Inzy + 4AInz, + 2 — &)
I 20 — 1

1 2\ 2320 — 1 1
X —ln2<—) + 21nz ln(i) + —In?z
(2 20 0 2(2) -1 4 0

+ 21n<

. 2u
+ L12<

. < .
1+ U) + L12<1 - —A) + L12(1 - Z)‘Z())

20
— Liy(1 — zg))}, (89)
where
1+v VI=2A+ 1 =21 — &
=—) Z = .
1—v AN T—2A-JT-2r-¢

The function hg;, will be referred to as the eikonal form of
the SGA factor.
For A — 0 one obtains

hsga = — a;SF {(21; -—2-8) lnG t Z)) ln<\2/—%)

~ n f Z + (- f)(%lnz(l Al ”)

20 (90)

1—v

+ Li2<1 ﬁ’v))} 1)

Following the literature [14,16] we shall refer to the SGA
factor (91) as the soft-gluon approximation of Eq. (89).

In addition to the check on our case A results discussed
in Sec. IV we have performed a second and independent
check by taking the A — O limit in the relevant exact
expressions in Sec. I'V. In this limit the exact result can
be seen to factor into a Born term contribution times the
soft-gluon factor given in Eq. (91). This proves that the
exact results given in Sec. IV have the correct soft-gluon
limiting behavior.

In order to be able to compare the eikonal SGA factor
Eq. (89) and its approximate version Eq. (91) we (mini-
mally) subtract the IR-divergent piece A from both ex-
pressions where

PHYSICAL REVIEW D 80, 034001 (2009)

hg = — “:TiF {<2u +02-¢&) lnG ; Z)) 1n<\/ix)}
92)

The remaining IR finite pieces are then hl, = hey — hg
and hi;, = hsga — hr. In Fig. 3 we show a plot of the
relative fraction (hl, — hgga)/higa as a function of the
cutoff parameter A/Ay,.. Figure 3 shows that |, | >
|hsgal since both functions A, and hi;, are negative
over the whole range of A. The SGA Eq. (91) is a poor
approximation to the eikonal approximation Eq. (89) ex-
cept for the region very close to the soft-gluon point. For
/s = 1000 GeV the fractional deviation can become as
large as 100% at the maximal cut value.

As it turns out the eikonal approximation with the eiko-
nal factor (89) approximates the exact result rather well
numerically even up to the hard end of the gluon spectrum.
In Fig. 4 we show a plot of the total rate o(= o) as a
function of the cutoff parameter A/A,, for the three
center-of-mass energies \/E = 400, 500, and 1000 GeV
where we take m, = 175 GeV and a, = 0.0964, 0.0941
and 0.0875, respectively, for the above three energies. The
rates rise very quickly from the soft region to values close
to the total rates showing that the contributions from the
soft region dominate the total rates. The quality of the
eikonal approximation becomes marginally weaker when
the hard gluon region becomes larger with the increase of
the center-of-mass energy. The exact result is hardly dis-
cernible from the eikonal result at the scale of the figure
even for the highest c.m. energy. The SGA approximation
can be seen to be quite poor. Also shown are the respective
LO Born term contributions which appear as dotted hori-
zontal lines in Fig. 4. The radiative corrections can be seen
to be quite large. At the point where the O(«;) rate inter-
sects the LO Born term rate the «, corrections go to zero.
This can be seen to happen at A/A,, =2 X 107°, 0.014,

WOOV“‘\““\““\““\““ TTTT TT 71T TTTT LA LELILE
[ m.= 175 CeV
5 801 Vs = 1000 GeV
= [oemmee Vs = 500 GeV
E [ Vs = 400 GeV
< 605 =
';““ 40F ]
£ 20fF ]
Ok T b b b Lo b b b Lo
O 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

)\/)\mox

FIG. 3. Dependence of the relative fraction (hl, —
hica)/hsga on the scaled gluon energy cutoff parameter
A/ Amax Where A = (1 — £€)/2. Curves are shown for the three
center-of-mass energies /s = 400 (dotted line), 500 (dashed
line), and 1000 GeV (full line).
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FIG. 4. Dependence of the total rate (solid line: exact NLO;
dash-dotted line: eikonal; dashed line: SGA) on the scaled gluon
energy cutoff parameter A/A,,, where A, = (1 — £)/2. Also
shown are the respective cutoff independent LO Born term
contributions (horizontal dotted lines). Curves are shown for
the three center-of-mass energies /s = 400, 500, and 1000 GeV.

and 0.200 for the above three c.m. energies. At even
smaller cut values the total O(a;) rate goes to zero alto-
gether. This happens at A/, = 1072, 107%, and 5 X
10~* for the same three above c.m. energies. It is clear that
perturbation theory should not be used for such small
values of A. This holds, in particular, for the polarization-
type observables to be discussed later on since they are
normalized to the total rate and are thus very sensitive to
the vanishing of the total rate. It is important to keep in
mind that the NLO rate goes to —oc when A — 0 even if
this is not apparent in Fig. 4.

In order to show the quality of the eikonal approxima-
tion in Fig. 5 we show a plot of the cutoff dependence of
the relative difference of the exact cross section and the
eikonal approximation (o — oy )/o for the same three
center-of-mass energies. For /s = 400 GeV the relative
difference is very small and remains below 0.1% over the

2'5:‘“\““\““\““\“““““““““““ ]

[ m,= 175 GeV ]

. 2F Vs = 1000 GeV ]
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)\/)\mﬂx

FIG. 5. Dependence of the relative difference of the exact cross
section and the eikonal approximation on A/ A, where Ay, =
(1 — &)/2 for center-of-mass energies /s = 400 (dotted line),
500 (dashed line), and 1000 GeV (full line).
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whole gluon energy spectrum. For the largest energy
shown (/s = 1000 GeV), where the hard gluon region is
the largest, the relative difference rises from zero at the soft
end of the spectrum to about 2% at the hard end of the
spectrum.

VII. NUMERICAL RESULTS

Let us begin the numerical section by the statement that
we shall, as in the previous section, always use a top quark
mass of 175 GeV in our numerical results. Since all our
results are given in analytical form the corresponding
results for other values of the top quark mass can be readily
calculated. For the strong coupling constant we take the
same values as described at the end of the previous section.

We shall divide our numerical results into two sections
according to whether the observables or structure functions
have a nonvanishing or vanishing Born term contribution.

A. NLO corrections to nonvanishing LO observables

We shall use a terminology where the NLO results are
partitioned into a soft and a hard region by a cutoff value
for the gluon energy E.. The soft and hard regions are
defined by their respective integration regions. In the soft
region one integrates from zero gluon energy up to the
gluon energy cut E, including, of course, the one-loop
results. In the hard region, one integrates from the (lower)

gluon energy cut E, to the maximal gluon energy E =

(1 — é)Wg%/2. We use this terminology to differentiate
between choosing an upper cutoff (soft region) and a lower
cutoff (hard region) even if the respective integrations
extend into regions with maximal and minimal gluon
energy. The hard gluon contribution can be obtained by
subtraction. Thus, for example, o(hard) = o — o(soft).
The definition of the two regions holds irrespective of the
actual value of the cutoff energy.

In Fig. 6 we show a plot of the ratio o(hard)/c(full)
(o(full) = o) as a function of the cutoff parameter A/ A,
for the three c.m. energies J_ = 400, 500, and 1000 GeV.
Note that the hard gluon fraction is proportional to «. The
hard gluon fraction is generally quite small. As the lower
cutoff tends to zero o(hard) and thereby o(hard)/o(full)
tends to +oo (due to the positive — logA singularity). Away
from A = 0 the hard gluon fraction then drops very quickly
as the lower cutoff is raised and reaches zero at A/ A, =
1 where there is no phase space left. The hard gluon
fraction becomes larger as the energy increases. For ex-
ample, at A/ A, = 0.2 the hard gluon fraction is 1.5, 4.4,
and 13.6% for /s = 400, 500, and 1000 GeV, respectively.
The corresponding soft-gluon fractions can be obtained by
subtraction as mentioned above.

We do not show corresponding plots for the other partial
unpolarized and polarized rates agm) because they do not

differ much from those shown in Fig. 6. This can be under-
stood from the discussion in Sec. VI where we demon-
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FIG. 6. Dependence of the ratio o (hard)/o(full) on A/ A,y in
the hard region where A denotes a lower cutoff. Curves are
shown for the three center-of-mass energies /s = 400 (dotted
line), 500 (dashed line), and 1000 GeV (full line).

strated that the real gluon emission contributions are very
well approximated by the eikonal approximation which in
turn is proportional to the Born term contribution. This
implies that all ratios agm)(hard)/ (rgm)(full) are approxi-
mately equal to one another as well as approximately equal
to o(hard)/c(full). An exception is of where the Born
term contribution is zero. This case will be discussed in
more detail later on.

In Fig. 7 we show a plot of do/d cos6 as a function of
cosf for the three c.m. energies /s = 400, 500, and
1000 GeV and for three respective cutoff parameter values
of A/Apax = 0.2, 0.4, and 0.8. The cosf dependence is
marked and strongest for /s = 500 GeV showing that
the forward-backward contribution oy is non-neglible.
The radiative corrections are large for /s = 400 GeV
and /s = 500 GeV similar to the total rate plotted in
Fig. 4. The cutoff dependence is generally quite weak
showing that the bulk of the different partial rates comes
from the region close to the soft-gluon point A = 0.

0.7 1

m, = 1756 GeV J
0(e,) contributions for A=0.2, 0.4, 0.8
——————— Born term contributjon

0.6
0.5
0.4
0.3
0.2

do/d cosO [pbl

Vs = 1000 GeV ]

cos®

FIG. 7. Dependence of the differential rate do/d cosf on cosf
in the soft region. Curves are shown for the three center-of-mass
energies /s = 400 (dotted line), 500 (dashed line), and
1000 GeV (full line) and three upper cutoff values A/, =
0.2, 0.4, and 0.8 (from bottom to top).

PHYSICAL REVIEW D 80, 034001 (2009)

100 rrrr e e e
80k
[ Vs = 1000 GeV |
- 60 OO ]
X [ Vs = 500 GeV
< O |
[ Vs = 400 GeV |
[ m, =175 GeV ° ¢
20 L 0(a,) contribution
******* Born term contribution
OVlllllll11111111111111111111111111111111111111111
0O 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

>\/>\mc|x

FIG. 8. Dependence of the forward-backward asymmetry Apg
on the (upper) cutoff A/ A, in the soft region (full line). Curves
are shown for the three center-of-mass energies f = 400, 500,
and 1000 GeV. Also shown are the respective cutoff independent
LO Born term contributions (horizontal dashed lines).

In Fig. 8 we show a plot of Agg as a function of the upper
cutoff A/ A, again for the three c.m. energies /s = 400,
500, and 1000 GeV where we have defined the forward-
backward asymmetry by

_ o(forward) — o(backward)
o(forward) + o(backward)

Agp (93)

Note that one has to separately integrate the numerator and
denominator of Eq. (93) over the gluon energy when
calculating Apg. The radiative corrections are generally
small and the dependence on the cutoff A is quite weak.
Apg is largest for \/s = 1000 GeV as can also be appreci-
ated by looking at Fig. 7. The radiative corrections are
largest for /s = 400 GeV. For example, for an upper cut-
off of A/Ay,x = 0.2 they amount to 2.7%.

The radiative corrections to polarization-type observ-

ables Pg.m) are in general quite small even if the radiative
corrections to the polarized rates themselves are large. The
reason is that polarization-type observables correspond to
normalized density matrix elements defined by the ratio of
a polarized rate and the total rate. The radiative corrections
to the numerator and the denominator tend to go in the
same direction and thus tend to cancel out in the ratio.
Take, for example, a generic polarization observable PE’")
which, at O(a,), is defined by’

a'gm)(Born) + a’f’")(as; A)
o(Born) + o(ay; A)

_ o Born)(1 + Ay (ay; A)
o(Born)(1 + AL, (ay; A))

= P\ (Born). (94)

P (0(@); 2) =

The forward-backward asymmetry Agg defined in Eq. (93) is
such a polarization-type observable with aﬁ’” = 0.
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Thus PE’")(O(as); A) = PE’")(Born) as long as one can ne-
glect non-Born termlike structures in the radiative
a, corrections resulting either from the one-loop or the
A-dependent hard gluon corrections. As it turns out the
non-Born termlike a; corrections are in general small but
can amount to several percent. The above reasoning breaks
down when either the numerator or the denominator in
Eq. (94) approaches zero which can happen for very small
values of A. As has been argued before such small cut
values are not acceptable from the physics point of view.

In Fig. 9 we show a plot of P¢ as a function of A/,
again for the three c.m. energies /s = 400, 500, and
1000 GeV where P is the longitudinal polarization of
the top quark P‘ = o'/co. Note that again one has to
separately integrate the numerator and denominator over
the gluon energy when calculating P, ie. PY(A) =
o®(A)/a(A). As in Fig. 8 the radiative corrections and
the dependence on A can be seen to be quite small. The
longitudinal polarization P* is largest for /s = 1000 GeV.

In order to highlight the size of the radiative corrections
to P* we define a fractional deviation of P’ from its Born
term value for different cutoff values by writing

PY(A) — P“(Born)
P!(Born)

5(PY = , (95)

where PY()) is the value of P! for the upper cutoff pa-
rameter A, i.e. in our above terminology P¢(A) refers to the
value of the observable in the soft region. Figure 10 shows
that close to A = 0 the fractional deviations 8(P?) tend to
infinity because the denominator in P(A) = o‘(A)/o(A)
goes to zero, as mentioned before. Away from A = 0 the
dependence of 8(P’) on the gluon cut A is not very pro-
nounced except for the highest energy value ./s =
1000 GeV. The fractional deviation is largest for /s =
400 GeV.

0 [ e e
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—-5F 0(a,) contribution ]
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FIG. 9. Dependence of the longitudinal polarization P¢ on the
(upper) cutoff A/, in the soft region (full line). Curves are
shown for the three center-of-mass energies /s = 400, 500, and
1000 GeV. Also shown are the respective cutoff independent LO
Born term contributions (horizontal dashed lines).
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FIG. 10. Dependence of the fractional deviation of the longi-
tudinal polarization 8(P?) on the (upper) cutoff A/A,,, in the
soft region. Curves are shown for the three center-of-mass
energies /s = 400 (dotted line), 500 (dashed line), and
1000 GeV (full line).

Also of interest are the values of a rate function in the
hard gluon region. To this end we define a lower scaled
gluon energy cutoff A,y and integrate from Ay, to the
upper limit A, = (1 — £)/2. As before this is effectively
done by subtraction, ie. o (hard) = " (A,,y) —
a™(A) since we have not separately listed analytical for-
mulas for the hard gluon rates. We then define a forward-
backward asymmetry Apg(hard) and a longitudinal polar-
ization P(hard) in the hard region by writing

o(forward) — o(backward)
Apg(hard) = 96
v (hard) o(forward) + o(backward) | naq 6)
and
ot
Pf(hard) = — G
O | hard

In Fig. 11 we show a plot of Agg(hard) as a function of
A/ Amax again for the three c.m. energies /s = 400, 500,
and 1000 GeV. As the lower cutoff tends to zero Agg(hard)
reaches values very close to those of Apg(soft) in Fig. 8
showing that the non-Born term structures in the
o -radiative corrections are not very significant. Only for
larger cutoff values does one find significant deviation
from the Born term values. For example, for A/A, =
0.6 and /s = 1000 GeV one has a 30% deviation from the
Born term value.

Figure 12 shows the same plot for the longitudinal
polarization P¢. Similar remarks apply as in the discussion
of Apg(hard) except that the dependence on the lower
cutoff is not as pronounced as in Fig. 11. Marked devia-
tions from the Born term values only set in at larger values
of A.

034001-19



S. GROOTE AND J.G. KORNER

100 prer e e e

r m, = 175 GeV ]

80k =

N L ]
—~ 60 ]
o :"'::::::::::::IZ::::::::::::: ””””””””””””””””” —
. E R 4
o L |
P F X 1
< s Vs = 1000 GeV ]
200 Vs = 500 GeV ]
Foo Vs = 400 GeV
Oiummmmmmmmmx R T N B

0O 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
>\/)\mux

—_

FIG. 11. Dependence of the forward-backward asymmetry
Apg on A/, in the hard region where A denotes a lower
cutoff. Curves are shown for the three center-of-mass energies
/s = 400 (dotted line), 500 (dashed line), and 1000 GeV (full
line). The straight lines indicate the Born term level results.

B. NLO contributions to vanishing LO observables or
structure functions

It was pointed out already in Ref. [8] that the longitudi-
nal polarization of the top quark produced from a longi-
tudinally polarized gauge boson (y and/or Z) denoted by
P{ vanishes at the Born term level. P¢ vanishes at the Born
term level and also for the one-loop contribution due to the
two facts that there are no second-class currents in the SM
and that one is dealing with a two-body final state in these
two cases. Technically this comes about since the contrac-
tions of the first class axial currents iy, ysv and iq, ysv
with the longitudinal projector €4 [see Eq. (25)] vanish in
the two-body case. In the standard model a nonvanishing
value of the polarization P¢ is generated only at NLO (or
higher orders) from real gluon bremsstrahlung. This NLO
effect is quite small as can be seen from Fig. 2a in Ref. [8]
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FIG. 12. Dependence of the longitudinal polarization P¢ on
A/Amax in the hard region where A denotes a lower cutoff.
Curves are shown for the three center-of-mass energies /s =
400 (dotted line), 500 (dashed line), and 1000 GeV (full line).
The straight lines indicate the Born term level results.
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which shows that P! rises from zero at threshold to
—0.21% at \/s = 1000 GeV.

A larger absolute value of P{ is obtained in the hard
gluon region since P¢ is an O(«;) effect. To this end we
define the ratio

¢
P! (hard) = k2 ,
O | hard

(98)

where the hard gluon region is defined as in the beginning
of this section. In Fig. 13 we show a plot of P! (hard) as a
function of the scaled gluon energy cutoff where the cutoff
parameter A now refers to a lower cutoff. It goes without
saying that P¢(hard) =0 in the soft gluon or eikonal
approximation since then o (a,) « o (Born) = 0 in the
soft gluon or eikonal approximation. Figure 13 shows that
P! (hard) can become as large as —4% for \/s = 1000 GeV
and A/Ap. = 0.8. P{(hard) increases when the energy
increases. P! (hard) goes to zero as A — 0 since in this
limit o is finite whereas o diverges.

We mention that a nonvanishing contribution to P¢ can
also be obtained by adding an anomalous axial current to
the usual SM first class top quark current structure. This
will be discussed later on.

There are two classes of relations among the structure
functions H{;(m) at the two-body level. The first class of
relations depends solely on the fact that one is dealing with
a two-body final state at the Born term and one-loop level.
There are four relations of this kind

real part: H}, = H, H} = HY, H} = HY,
99)
imaginary part: Hy = H;f. (100)

The second class of relations depends on the two-body
dynamics and on the fact that one has only first class

O —1-;>;4;.i,:‘,.\ T -‘--J..‘..,‘_,‘__‘ ..... \\\\ TT T T [T T T T [T T T T [T T T T [T T T T[T TTT
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FIG. 13. Dependence of the longitudinal polarization from a

longitudinal polarized gauge boson P¢ on A/Ap, in the hard
gluon region where A denotes a lower cutoff. Curves are shown
for the three center-of-mass energies \/E = 400 (dotted line), 500
(dashed line), and 1000 GeV (full line).
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currents in the SM. There are six relations of this kind.
These are

real part: H} = H?, H}' =0, o)
(
H\T = H?T, H3T = HY,
imaginary part: H{N = H;T, HN = HN. (102)

One can explicitly check with the Born term and one-loop
expressions listed in Sec. III that these relations are in fact
satisfied.

Note that the class 1 relation Hy = H;/, and the class 2
relations H{Y = H;T and H}¥ = H? will not be affected
by the O(a,) tree graph contributions since they result
from the imaginary parts of the (two-body) one-loop con-
tributions. As mentioned before, the relation H?, = H%
interestingly also holds at the O(«) tree graph level. In the
following we shall numerically investigate how the re-
maining relations in (99) and (101) are affected by the
O(a) tree graph contributions. It goes without saying that
the relevant remaining relations in (99) and (101) still hold
at NLO if one uses the soft-gluon or eikonal approxima-
tions rather than the exact form of the radiative corrections.

We start our numerical discussion with the first class of
relations in Eq. (99). In order to obtain a quantitative
handle on how the tree graph contributions affect the first
class relations H}, = H}' and H} = H{ in Eq. (99) we
consider differences of the relevant structure functions and
(arbitrarily) normalize them to H},(Born). In Fig. 14 we
show a plot of the ratios (H{, — H}')/H},(Born) and
(H} — HY)/H},(Born) as functions of the upper cutoff
(“soft region’’) in terms of the scaled gluon energy cut
A Amax for /s = 500 GeV. The violation of the class 1
relations slowly rises from zero at the soft-gluon point and
reaches values of 0.27 and —0.02%, respectively, for the

O-BJ‘“\““\““\““\““\““\““\““ T
% i m, = 175 GeV, vs = 500 GeV
=~ oL (H} — Hy)/H(Born) h
S (H? = H{)/Hy(Born) ]
g -
? 0.1F .
> L
5 o
T L
g - N .
_O"]Vlllllllll1111111111l11111111111111111111111111117
0 0.1 0.2 0.3 0.4 0506 0.7 0.8 0.9 1

x/xfﬂfl)(

FIG. 14. Goodness of the class 1 relations against radiative
corrections using an upper gluon energy cut. Dependence of the
ratios (H}, — HL')/H},(Born) (solid line), and (H} —
H{')/H},(Born) (dashed line) on A/An, where A denotes an
upper cutoff. Curves are shown for the center-of-mass energy
/s =500 GeV in the soft region.
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two above ratios at A,,, where one integrates over the full
gluon phase space. In Fig. 15 we consider the hard region
where A/A,, now refers to a lower cutoff in the gluon
energy. Now A = 0 corresponds to a full phase-space in-
tegration and one therefore recovers the A/ A, = 1 limit-
ing values of Fig. 14 remembering that there are no loop
contributions to the above four quantities. The relevant
ratios go to zero for A = A, in Fig. 15 since phase space
goes to zero.

The influence of the tree graph contributions on the
second class of relations Eq. (101) is tested in a similar
manner. We consider again differences of the relevant
structure functions (or structure functions themselves) nor-
malized to H},(Born). In Figs. 16 and 17 we show plots of
the ratios (H]} — H?)/H},(Born), H}'/H},(Born), (H\" —
H3T)/H},(Born), and (H{" — H3")/H} (Born) for upper
and lower cutoff values of the gluon energy, respectively.
In Fig. 16 (soft region) the violations rise from zero at the
soft-gluon point to the values 0.29, 0.15, 0.08, and 0.03%
for A = A« Where one integrates over the full gluon
phase space. Figure 17 shows the same four ratios in the
hard gluon region. As before the rightmost values in
Fig. 16 agree with their leftmost pendants in Fig. 17. The
violations of the class 1 and class 2 relations due to hard
gluon radiation can be seen to be generally quite small.

The effect of the radiative corrections to the class 2
relations (101) can be mimicked by adding an anomalous
axial current to the SM currents. The anomalous axial
current to be added reads (see e.g. [17,18])

ict’q,

Jj*(anomalous) = g, 1,7/, —— Y5,

103
o (103)

In general g, can be complex, g, = Reg, + iIlmg,. Note
that the current in Eq. (103) is a so-called second-class
current with JP¢ = 17~ quantum numbers. In particular,
the contraction of the anomalous current with the longitu-
dinal projector €4 [see Eq. (25)] no longer vanishes, i.e.
one now has eé’“ﬁawq”v # 0, and therefore H}' # 0. It
should be clear that the addition of the anomalous axial

0.3 e P e
§ C (Hy — H¢)/Hy(Born) ]
= L T~ e (Hs = HY)/Hy(Born) |
c 0.2F h
o L ]
9’]/ L ]
Zoir ]
™~ L ]
S ]
2 o ,
3 f m, = 175 GeV, vs = 500 GeV ]
70.’]kll11111111111111111111111111111111111111111111117

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

>\/>\mux

FIG. 15. The same as in Fig. 14 for the hard region.
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FIG. 16. Goodness of the class 2 relations against radiative
corrections using an upper gluon energy cut. Dependence of the
ratios (H} — H?)/H},(Born) (solid line), H}*/H! (Born) (dashed
line), (H\T — H3T)/H},(Born) (dash-dotted line), and (H}T —
H3N)/H!,(Born) (dotted line) on A/Ay,, where A denotes an
upper cutoff. Curves are shown for the center-of-mass energy
/s =500 GeV.

current does not affect the class 1 two-body relations in
Eq. (99) but, in general, violates the class 2 relations. We
assume that the coupling strength g, is small and we
therefore only consider the interference contribution of
Eq. (103) with the SM (¢7) current, i.e. terms that are linear
in g,.

The interference contribution of the anomalous axial-
vector current can be calculated using the projection for-
mulas written down in Sec. III. One finds

Hy — H = 0(g2),
H?f} = —2N.q*vReg,,

Ve
2m

Ve

2m

It is noteworthy that only the real part of g, contributes to
the relations (104). In order to obtain a quantitative handle

H}‘T — HiT = N, q2v2 Reg,,

HIT — HE\N = N, q*vReg,. (104)

L
3 - (H{ — HE)/Hi(Born)
= Co TN H'/HY(Born) ]
c 02r S (MY - HE)/HBorn) ]
@ e <_(H" = H)/Hi(Born) ]
T 01fF .
S [ ]
T Fe
= i
< F m,= 175 GeV, vs = 500 CGeV
_O.Wkl11111111111lll111111111111111111111111111111111
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>\/>\mux

FIG. 17. The same as in Fig. 16 for the hard region.

PHYSICAL REVIEW D 80, 034001 (2009)

on the coupling parameter g, we determine the values of
the anomalous parameter g, that would reproduce the fully
integrated  quantities Hj‘/H}(Bom), (H\' —H3T)/
H},(Born), and (H{" — H3N)/H}(Born), i.e. the values
that these quantities take at the right-hand side of Fig. 16
at A/Ap = 1. One finds g, = —0.0032, 0.0023, and
0.0007 for H#¢, H\T — H3T, and H{" — H3", respectively.
Values substantially larger than these combinations of
structure functions would signal contributions from a
second-class current with coupling strength exceeding
the above values of g,,.

VIII. SUMMARY AND OUTLOOK

We have presented analytical results for the O(«;) ra-
diative corrections to polarized top quark pair production
in e*e” annihilation with a specific gluon energy cut.
When the gluon energy cut is taken to its maximal value
we recover previously known results [7,11]. The size of the
radiative corrections to polarization-type observables in-
volving the top quark is generally quite small in the soft-
gluon region but can become substantial in the hard gluon
region. This in turn implies that the dependence of the
polarization-type observables on the gluon energy cut is
generally quite small in the soft-gluon region but can
become large in the hard gluon region. We have calculated
the contributions of a CP-odd non-SM coupling to some
linear combinations of structure functions that vanish in the
two-body SM case. These were compared to SM contribu-
tions resulting from radiative corrections.

We have not considered beam polarization effects in our
analysis. However, in as much as we have calculated the
complete set of single spin structure functions, beam po-
larization effects can be easily incorporated into our analy-
sis as described e.g. in more detail in Ref. [8].

We have decomposed the top spin vector in the helicity
basis, i.e. the z direction of our spin basis is determined by
the momentum of the top quark. In addition to the helicity
basis the authors of Refs. [16,19] have also considered a
beam line and an off-diagonal basis. A discussion of how
these bases are related to the helicity basis in the context of
the NLO corrections can be found in Ref. [11].

All the results in this paper refer to the polarization of
the top quark. In order to obtain the SM and anomalous
coupling predictions for the polarization of the antitop
quark let us first set up an orthonormal spin basis for the
antitop quark by replacing the momenta in Eq. (4) by their
charge conjugate partners, i.e. p; — p, and p,- — pP,+.
The three orthonormal basis vectors (ér, €y, €,) are now
given by

s _ B XP)XPy o B XD
T — - - > > N — 1> < > |
+ X X + X
[(Pe+ X P2) X pol ) [Per X Dol (105)
> P2
€€ = 5.
|P2|

In the polar angle distribution Eq. (8) the polar angle now
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refers to 67,- and not to 6 = 6,,- as in the top quark case
discussed in the main part of this paper. Since the lepton
pair is back to back, one has 6;,- = 7 — 6;,+, i.e. the two
terms in Eq. (8) proportional to cosf change sign if written

in terms of cosfy,+.
|

H}, =2Neq* (1 +v%),  Hy =2Ncg*(1 —v2),

2
H] = Ncg*(1—v?) + Ncq2U2_|g§| ,

H}' = —2Ncq’vReg,,  H}' =2Ncg*(1 + ),

Ncq? Ncg?

BT =" yImg,, HY = +¢& + Reg,),
I \/Z—f—v 8a I \/-2—5”( f ga)
N, q2 _N, q2
HN ==—~L 1 Img,, HP = F—%v’Img,
foTEE e T

where the upper and lower signs refer to the top quark and
antitop quark cases, respectively. As concerns the SM Born
term contributions one finds

o,(cosb,,-) = ocosb;,+),
PN (cosh,,-) = —Pf’N(cos05g+),

Pl (cosb,,-) = PI(cosb;,+).

(107)

In the three-body case one has to simultaneously exchange
(y < z) in the SM part of Egs. (106) and (107). For
example, one has Hi’”(top;y, 7) = —Hi’“(antitop;z, y).
If one performs an integration symmetric in y and z as
done in this paper the SM part of the relations (106) and
(107) also hold for the integrated three-body results.

The linear contributions of the anomalous coupling to
the polarization vector behave in the opposite way to those
in Eq. (107), i.e.

PN (anomalous; cosf,,) = P‘;’N (anomalous; cos6,+ ),

P! (anomalous; cosf,,-) = — P! (anomalous; cos6s, ).
(108)

It is clear that one can obtain an additional handle on the
anomalous contributions by taking sums and differences of
the top quark and antitop quark polarizations. For example,
(PN (cosb,,-) + Pf’N(COSH;e+)] and  [P!(cosf,,-) —
PI(cosb;,+)] are contributed to only by the anomalous
contributions.

In this paper we have not discussed how the spin of the
top quark can be analyzed. The top quark decays weakly
and is therefore self-analyzing. If one assumes SM inter-
actions in the cascade decay t — bW (— [Ty, qg) the
polarization of the top quark can be reconstructed by
measuring spin-momentum correlations either in the top
quark rest system (see e.g. Refs. [20-23]) or in the W rest
system as e.g. discussed in Refs. [15,24,25]. We mention
that there exists a large body of literature of how non-SM

Hif =0,
Hi = Ncg*(1 = v?) — Ncqzva,
H¥ =2Ncq?(1—v?),  H} =0,

1T —
H, =

3N —
HY =
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Let us list the SM Born term and the anomalous con-
tributions in the antitop quark case given by Eq. (103)
together with the relevant contributions in the top quark
case. One finds

H?f = +4N qv,
lga” 3¢ _ >
H;' = —2Ncg“vImg,,

H} = *4N.q%v,

N q2 N q2 _

ﬁ(f +v?Reg,), H{T = %(f * v?Reg,),
Neg? Neg?

¢ (=& —Reg,), HY =~LyImg,  (106)

V2€ V2€

interactions in the production (see e.g. Ref. [26]) [such as
the anomalous coupling Eq. (103)], and/or in the decay
affect such spin-momentum correlations (see e.g. Ref. [27]
and references therein).

Gluons can be emitted from the original production
process et e~ — t1(G) as well as from the follow-up decay
process t — b + W (G) and 7— b + W~ (G) where we
take the W’s to decay leptonically. Interference effects
between the two processes are expected to be quite small
since they are suppressed by a factor of = I',/m, ~ 1%. In
order to identify the gluons of the original production
process (which are the subject of this paper) one has to
demand that the gluon’s four-momentum satisfies g =
p; + p; + pg- Gluons that satisfy p, = p, + pw + pg
or p; = p; + pw + pg clearly originate from the follow-
up processes and can thus be vetoed. How effectively
gluons not originating from the original production process
can be removed from the data sample has to be carefully
studied in detailed Monte Carlo simulation runs.

With the appropriate modifications our results can also
be applied to the (hb) case. While the Imy, contributions
resulting from the imaginary part of the Breit-Wigner line
shape are negligibly small in the (#7) case [since (¢7)
threshold is far away from the Z pole] the Imy, contribu-
tion is more pronounced in the (bb) case, in particular, in
the vicinity of the Z pole. However, close to the Z pole the
transverse and normal polarizations of the bottom quark
are severely suppressed due to the overall helicity suppres-
sion factor 2m/./s. In this sense the phenomenology of the
top quark spin above (#7) threshold is richer than that of the
bottom quark in the high energy realm.
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APPENDIX A: SM VALUES OF THE ELECTROWEAK COUPLING COEFFICIENTS

The electroweak coupling matrix elements g; j(qz) are given by

g1 = 07 = 20sv,vsRex; + (v + ag)(vi + ap)lxI*,

g2 = 07 —20sv,v,Rex; + (v + a))(v; — ap)lxzI%,

813 = _2vaeaf Imyy,

g1 = 20pv,a;Rex; — 2(v2 + ad)vsaslxz12 g = Q% —20Qsv,v,Rex, + (v — az)(v} + aj%)l)(zlz,

8 = 07 = 20v,vsRexz + (v7 — ag) (v} — af)lxzI,
824 = 2Qsv.arRex; — 2(v; — ag)Ufaf|Xz|2, 831 = —2Qra,vyImyy,

833 = 2Qfaeaf Reyz,

84 = 2Qra,vyRexy — zveae(U} - a?-)|/\/z|2, 84

8u = —20sa,asReyxy; + 4v,a,vsa| xz1%

where xz(q%) = gM3q°/(¢* — M3 + iM;T'7), with My
and T, the mass and width of the Z° and g=
Gr(8v2ma)™! =~ 4.49 X 107 GeV 2. Q; are the charges
of the final state quarks to which the electroweak currents
directly couple; v, and a,, vy and a; are the electroweak
vector and axial-vector coupling constants. For example, in
the Weinberg-Salam model, one has v, = —1 + 4sin?6,,
a, = —1 for leptons, vy =1 — %sinzé’w, ay =1 for up-
type quarks (Q; = %), and v, = —1 + 3sin’6y, a; = —1
for down-type quarks (Qy = —%). The left- and right-
handed coupling constants are then given by g; = v + a
and gr = v — a, respectively. In the purely electromag-
netic case one has g; = g3 = g2 = &n = szc and all
other g,,, = 0. The terms linear in Rey, and Imy, come
from y — Z° interference, whereas the terms proportional
to | xz|* originate from Z exchange.

Contributions coming from the imaginary part of the
Breit-Wigner  resonance shape are of  order
O(Imy4(g?)/Rex,(¢*) and can thus safely be neglected
for top quark pair production. For example, in the threshold
region of top quark pair production Imy,/Rey, is ap-
proximately 0.1% and decreases further with a 1/¢* power
falloff behavior.

APPENDIX B: DECAY RATE TERMS ¢;

It is convenient to define the mass dependent variables

a:=2+ & b:=2— ./ and w:=+/(1 — /&) /(1 + J¢).
The rate functions ¢y, .. ., |, appearing in the main text are
then given by

g3 = —2Qsv.arlmyy,

834 = 2Qfaeaf Imyz, g41 = 2Qfaevf Reyx; — 2Ueae(U} + a.,zc)|)(z|2,

(A1)
gn = —20sa,v;Imyy,
3 = 2Qra.ayImyy,
t = 1n<$§_/§_§)), -
ty = ln(1 Z—i_\/_\gf/g) =t — 1= 1n<b—i),
o= (), (B2)
t4 := Liy(w) — Lio(—w) + Liz(% w) - Li2<— %w),
(B3)
55 1“(4<1a+ﬁ ) (i)t Liz(a(lz—fw))
i ) () ()
+ Liz(ia(li W)> - Liz(ia(l . W)), (B4)

te :=102(1 + w) + In?(1 — w) + ln(%) In(1 — w?)

VY (2 o ()

* Liz(a(l +w) a(l —w) a

+ —
n Liz(l W) + Liz<1 W) - 2L12(1)
2 2 2

+ Liz(a(l : W)) + Liz<a(1 - W)) - 2L12<%),
(B5)
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1-¢ 1+v . 2v
t7:=21 Inl—— ) —Lih| ————
=2l (i) - o)
(2 ()
1 —Li,| —[——
N (-0 272 U-v
() ) relEs)
22\ +v P\
. 2w w
- L12<_ m) 2L12(1 T ) + 2L12< m)

. 2aw . 2aw
* LlZ(b + aw) B le(_ b— aw)

. aw . aw
- 2le(m) + 2L12<_ h— aw), (B6)
1+ 2 2
[8 =1 <§)l < _Z>+L12(1 v )_le(_l—v )—77'2’
(B7)

PV ST RS,

T ) )
(B8)
wesll) o)

t = ln(4(1§_ éf)).

APPENDIX C: DECAY RATE TERMS ¢, to., 1+,
AND ¢,

The logarithmic rate terms €; are given by

¢ = n(w%—wi)_ln<l+w1) 1((l—i-\/_)\/_)

b — aw; 1—2A+ €&
(ChH

€= 1H<W% — wi) + ln(b * awz) — ln(w)

w3 — w3 1—w, 1 =21+ €/
(C2)
05 = 1n(ﬂ), (C3)

Wi

PHYSICAL REVIEW D 80, 034001 (2009)

i_lf+§_f+ 2 [4 - 2]n(4v\v/?l)

() ()|
+ (2v —2-9 ln(i J_r Z))
<[n(S) eon(P) 1] e

n(2\/§y1) N 1n<(1 + w;)(b —zawl))

Wo = W

+1 >)] " (21} -
) () ]

Cyr =

€ = 2u[2 - 21

2-9

((b +aw,)(1 — w,
n

2 _ .2
Wo — W3

(C5)
- - +
s, = ln(1 WZ) - ln<1 Wl), l;_ = 21n<1 v)’
I —wy 1+ wy 1—v
(Co)
+ + -
Co, =21 (1 v) 1 ( 1+ w ) (b awz)y
1—v b — aw, 1—w,
(C7)

L= w,
2 2
(P2 Wa
€7+ = 1n<w2 — Wz),
1 A (C9)
€ _ 1n<W2 - W)L) . hl(Wz + W)‘)
= Wi — W) w1 + W)
2 2
— 10" W2
€8+ == ln(w(z) — W%),
(C10)
€ _ ln(W() Wz) ln(WO + W2)
8= Wo Wi Wo + Wi ’
1 —w3
€9+ = (1 — wz))
! (C11)

1_W2 1+W2>
€y =1 —1 ,
0 n(l_Wl) n(l"‘Wl

while for the additional phase-space contribution we have
to use
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1+ b+ +
€ = ln( W2> + ln< awz), €¢5_ = In(1 — w}) + In(b* — a’w3), 0, = 1n<W0 WZ),
I —w, —aw, Wo — W,

(C12)

¢ —tnb—=1nQ2-yE, €. —mn( " G =l —wd) — @ —and), € = n[— 0
¢_ =1Inb = In( &), 5+—nﬁ, ¢ =1In(1 —w3 n( a‘ws), - =Inl—5——}
2 Wo = W3

For the double and dilogarithmic decay rate terms we obtain

Ly, = —(2t{’va(W0) — 154 (wy) — 154(wy)) + (£,(wa) — £,(w))) — —(fab(Wz) — 14 (wy)) — (th(wa) — 1 (w)))

2
(1+ JEVE
—H(—Z/\—i-\/_) ( ) (C13)
fox = %(2%+(W0) f(b)i(wl) - fgi(wz)) + (5. (wa) — 15 (wy)) — %(Iﬁi(wz) - tSi(wl)) - (f(}i(wz) - féi(WJ)
(A OVEY, (woEw,
* ln(1 ey \/E) ln(w0 " W1>’ (C14)

fe = l(2t’1"£(w(>) — 11(wp) = 7L (wo)) + (6. (wy) — £ (wy) — —(t“” (wa) = 12 (w1)) — (1 (W) — 11 (w))

a <(1—+2)Q\\//_‘) (ii:?) (C15)

while for the additional phase-space contribution we take
lﬁ, = t?va(WZ) - tI:Va(())’ t()+ = t0+ (Wz) - t0+(0) ti‘j = tlf—a_k(WZ) - llf«a_r(o); (Cl16)
where

A20) = LiaG) = Lin(—w) + Lio(3) = Lio 5 )

£5,(w) = 21n(wo) In(w) + Lir(w) — Liz(—w) — Liz(%) - Liz(:v_?),
(C17)

137 (w) = 21In(b) In(w) + Liy(w) — Lir(—w) — Liz(%) a Li2<_ZW)’

t2(w) = In’(w) + Liy(w) + Li)(—w) + L12( w) + Li ( v:”)’

034001-26



ANALYTICAL RESULTS FOR O(«;,) RADIATIVE ...

PHYSICAL REVIEW D 80, 034001 (2009)

= {0+ (E55) () () )
D)) ) B ) B )

1+v
144 (w) = —21n<
1 — +1

J’_
)ln(wo + W) + L12<WO W)

Wo

+ +
L12<W° vIV)JFLQ(i"(WO w)

b

) L (CZ(WO + W))
wo awg + b 2 awg — ’

1 & 1 [ wo— W C(wo— W C(wo— W
t5_(w) == ln(1 = f) In(wy — w) — Elnz(wo —w) + L12( gwo ) - Ll2(w(()) — 1) - le(w(; n 1),
f . W()+W . W()+W . W0+W
5. (w) = —51 (1 5) In(wg + w) + EIHQ(WO +w) — L12( v ) + le(wo — 1) + L12(W0 " 1),

18b (w) = —Inéln(wy — w) + Li2<ac(lv:}27:2})) + Liz<

188 (w) = InéIn(wy + w) — Liz(%) _ Liz(%
l‘())L (W) = - ln(ﬁ) ln(wo W) + le(w

i, (W) = (g + w) — In(1 — wd) In(wg + w) + L12<

24 (w) = In>(1 — w) + ln(g)ln(l —w)+ L12<

29 (w) = In*(1 + w) + 1n<8)1n(1 +w) + L12<

/\vv

£o(w) = — ln<%) In(1 - w) - le( )

o0 =I5 i+ )~ Lin(f ) L (

#2 (w) = = In(2a) In(1 — w) — Liz(a(lz_J_Ew)) - Liz(a(l

4% (w) = In(2a) In(1 + w) + LiZ(a(lziﬁ»)) - Liz(m%

1
nHo(w) = Elnz(l —w) + In2In(1 —w) —

A

w
)+
w

1 1 —
thy(w) = Elnz(l +w) — In21n(1 + w) + Li2< T

a(wo — W))

awg+ b

—w)

In(1 — w})In(l — w) + Li,

Lis(

- Li2<vv‘;(; - v:) - Liz(v:}(; ~ vlv)
) rue( =) ()

() (1) ()
) ) )
L) (5

()
)u(5)
L

=)
)-u(5)
) r(5)
(=) ol

—-w

1_\/1/)l

1+ w, (1 +w
+L .

1—|—w) 12( 2 )

+b

A

\_/\_/

)

4

w)

(C19)
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