An estimate of the branching fraction of $\tau \rightarrow \pi \eta' \nu_{\tau}$

S. Nussinov^{1,2} and A. Soffer¹

¹Tel Aviv University, Tel Aviv, 69978, Israel ²Schmid College of Science, Chapman University, Orange, California 92866, USA (Received 27 July 2009; published 28 August 2009)

We calculate the expected branching fraction of the second-class-current decay $\tau \rightarrow \pi \eta' \nu_{\tau}$, motivated by a recent experimental upper-limit determination of this quantity. The largest contribution to the branching fraction is due to the intermediate $a_0(980)$ scalar meson, assuming it is a $\bar{u}d$ state. Smaller contributions arise from $a_0(1450)$, $\rho(770)$, and $\rho(1450)$. Our calculated values are substantially below the experimental upper limit, and are smaller still if the $a_0(980)$ is a four-quark state, as often suggested. Thus, a precise measurement or tight upper limit has the potential to determine the nature of the $a_0(980)$, as well as provide information about new scalar interactions.

DOI: 10.1103/PhysRevD.80.033010

PACS numbers: 13.35.Dx, 12.60.Cn

I. INTRODUCTION

In a recent paper [1], we considered the branching fraction of the isospin-violating decay $\tau \rightarrow \pi \eta \nu_{\tau}$. We found an expected branching fraction of

$$\mathcal{B} \equiv \mathcal{B}(\tau \to \pi \eta \nu_{\tau}) = (0.3 - 1.0) \times 10^{-5}, \qquad (1)$$

in rough agreement with a detailed chiral perturbation theory calculation [2] and other evaluations [3], which yielded central values in the range

$$\mathcal{B} = (1.2 - 1.6) \times 10^{-5}.$$
 (2)

The experimental bound on this branching fraction, $\mathcal{B} < 1.4 \times 10^{-4}$ [4], was obtained by CLEO with an e^+e^- -collision data sample of 3.5 fb⁻¹, a fraction of a percent of currently available integrated luminosity. The only related high-luminosity measurement is a stringent *BABAR* upper limit on the branching fraction of $\tau \rightarrow \pi \eta' \nu_{\tau}$ [5],

$$\mathcal{B}' \equiv \mathcal{B}(\tau \to \pi \eta' \nu_{\tau}) < 7.2 \times 10^{-6} @90\% \text{CL}, \quad (3)$$

obtained with an integrated luminosity of 384 fb^{-1} .

The fact that the experimental limit is lower than the results summarized in Eq. (2) raises the question of a possible discrepancy between theory and experiment. Therefore, our goal in this article is to calculate the expected value of \mathcal{B}' and compare it to the experimental limit. We adapt the methods used in Ref. [1] to the present case, noting that a chiral perturbation theory calculation of this process, as performed for $\tau \to \pi \eta \nu_{\tau}$ by Neufeld and Rupertsberger [2], would be very useful.

First, we note several similarities and differences between the calculations of \mathcal{B}' and \mathcal{B} :

(i) The $\bar{u}u + \bar{d}d$ fraction of the wave function which, unlike the $\bar{s}s$ and gg parts, contributes to the decay amplitude, may be smaller for the η' . While it appears that the magnitude of the $\bar{s}s$ part in relation to that of the light quarks is very similar for both states, the current estimate of the gg fraction of the η' wave function, Z_{gg} , is $|Z_{gg}|^2 = 0.3 \pm 0.2$ [6]. In our calculations we take $Z_{gg} = 0$, as this yields the most conservative limits on \mathcal{B}' , and since the modification for finite values of Z_{gg} is straightforward.

- (ii) Calculations of \mathcal{B} in Refs. [1–3] rely on extrapolations utilizing intermediate, low-mass $J^{PC} = 1^{--}$ and 0^{++} hadrons. Obvious intermediate states for the decay $\tau \to \pi \eta \nu_{\tau}$ are the ground-state mesons $\rho(770)$ and $a_0(980)$. In the case of $\tau \to \pi \eta' \nu_{\tau}$, these are off-shell processes, and the contributions of these resonances are suppressed. On the other hand, we do have now on-shell decays involving the next 1^{--} and 0^{++} states. These are the $\rho' \equiv \rho(1450)$ and $a_0(1450)$, which contribute to the *P*- and *S*-wave components of the decay, respectively.
- (iii) The ρ and ρ' vectors are the quark-model $\bar{u}d$, S-wave 1^{--} ground state and first radial excitation, respectively. However, the theoretical assignment of the $a_0(980)$ (and, consequently, that of the $a_0(1450)$ as well) is ambiguous, generating the largest uncertainty in both \mathcal{B} and \mathcal{B}' . Conversely, information on these branching fractions can help resolve the longstanding dilemma of the " $\bar{K}K$ -threshold" state $a_0(980)$. The significant branching fractions of $a_0(980)$ and $f_0(980)$ decays to $\bar{K}K$, despite the very small phase space, seem inconsistent with these mesons being the ground states of the quark-model scalar nonet, motivating a four-quark $(\bar{u}d\bar{s}s)$ interpretation [7]. In this case, the $\bar{u}d$ scalar ground state should most likely be identified with $a_0(1450)$. However, this would make the scalar 190 MeV heavier than the axial vector state $a_1(1260)$, implying a pattern of $L \cdot S$ splitting that is different from what is observed in any other L = 1, $\bar{Q}q$ or $\bar{Q}Q$ system. The more appealing possibility, namely, that the two 980-MeV states are indeed just $\bar{u}d$ states, may have been partially resurrected in recent work [8], in which 'tHooft's $\bar{u}u\bar{d}d\bar{s}s$ six-quark vertex was utilized to admix the 2- and 4- quark states.

S. NUSSINOV AND A. SOFFER

The plan of this note is as follows. As we did in Ref. [1], we discuss separately our estimates of the *P*- and *S*-wave contributions to \mathcal{B}' . In Sec. II we present the more robust results for the *P*-wave part, calculating upper bounds on the contributions of the ρ and ρ' using recently published experimental data involving η' and τ decays. In Sec. III we present the less clear-cut estimate of the *S*-wave component. This contribution depends most strongly on whether the $a_0(980)$ is a 4-quark state or the $\bar{u}d$ ground state. In any event, our predictions for $\mathcal{B}(\tau \to \pi \eta' \nu_{\tau})$ lie significantly below the *BABAR* limit [5]. A brief summary and future outlook are given in Sec. IV.

II. THE L = 1 CONTRIBUTION

In Ref. [1], we obtained the L = 1 contribution to \mathcal{B} assuming that it was dominated by the ρ , an assumption justified by the large branching fraction $\mathcal{B}(\tau \to \rho \nu_{\tau})$. We compared this branching fraction to \mathcal{B} using the ratio of coupling constants $g_{\eta\rho\pi}/g_{\rho\pi\pi}$, where $g_{\rho\pi\pi}$ was related to the width of the ρ , and $g_{\eta\rho\pi}$ was obtained by analyzing the Dalitz-plot distribution of the decay $\eta \to \pi^+ \pi^- \pi^0$, taking the scalar contribution to $\eta \to \pi^+ \pi^- \pi^0$ from $\mathcal{B}(\eta \to \pi^0 \pi^0 \pi^0)$.

This procedure is not directly applicable to \mathcal{B}' , since there is no experimental information on the Dalitz-plot distribution of the decay $\eta' \to \pi^+ \pi^- \pi^0$, nor a measurement of $\mathcal{B}(\eta' \to \pi^0 \pi^0 \pi^0)$. Therefore, we make use of the fact that the branching fraction $\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^0)$ depends on the coupling constant $g_{\eta'\rho\pi}$, under the conservative assumption that the ρ^{\pm} states dominate the decay $\eta' \to \pi^+ \pi^- \pi^0$. This yields a conservative upper bound on $g_{\eta'\rho\pi}$, from which we obtain an upper bound on the ρ contribution to $\tau \to \pi \eta' \nu_{\tau}$. We discuss the likelihood of this assumption and its implications below.

The differential branching fraction of $\eta' \rightarrow \pi^+ \pi^- \pi^0$ as a function of the Dalitz-plot position is given by

$$\frac{d\Gamma_{\eta'\to\pi^+\pi^-\pi^0}}{\Gamma_{\eta'}} = \frac{(g_{\eta'\rho\pi}g_{\rho\pi\pi})^2}{384\sqrt{3}\pi^3} \frac{Q^2}{m_{\eta'}\Gamma_{\eta'}} |\overline{\mathcal{M}}|^2 dXdY, \quad (4)$$

where

$$Q \equiv m_{n'} - 3m_{\pi} \tag{5}$$

is the kinetic energy in the decay, and

$$X \equiv \frac{\sqrt{3}}{Q}(T_{+} - T_{-}), \qquad Y \equiv \frac{3}{Q}T_{0} - 1 \tag{6}$$

are the Dalitz-plot variables, with T_c being the kinetic energy of the pion with charge *c*. Assuming ρ dominance, we obtain from Eq. (15) of Ref. [1] the reduced matrix element

$$\overline{\mathcal{M}} = -2 \frac{rY - \frac{1}{3}r^2(Y^2 + X^2)}{1 - \frac{2}{3}rY + \frac{1}{3}r^2(\frac{1}{3}Y^2 - X^2)},$$
(7)

PHYSICAL REVIEW D 80, 033010 (2009)

where

$$r = \frac{m_{\eta'}Q}{m_{\rho}^2 - \frac{1}{3}m_{\eta'}^2 - m_{\pi}^2 - i\Gamma_{\rho}m_{\rho}} = 1.6 + 0.7i. \quad (8)$$

The product $(g_{\eta'\rho\pi}g_{\rho\pi\pi})^2$ is then found by integrating Eq. (4) over the Dalitz plot. In the $\eta \to \pi^+ \pi^- \pi^0$ case, we exploited the small value of *r* to simplify the expression by expanding in *r*. Because of the O(1) value of *r* for $\eta' \to \pi^+ \pi^- \pi^0$, we resort to numerical integration, which yields

$$\int |\overline{\mathcal{M}}|^2 dX dY = 2.4. \tag{9}$$

From this we obtain, using $\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^0) = 3.7 \times 10^{-3}$ [9] and $g_{\rho\pi\pi} = 6.0$ [1],

$$g_{\eta'\rho\pi} < 0.025.$$
 (10)

As a cross check, we apply the procedure to the decay $\eta \rightarrow \pi^+ \pi^- \pi^0$, obtaining $g_{\eta\rho\pi} < 0.52$. This value is to be compared to the one obtained from the more precise Dalitz-plot analysis in Ref. [1], $g_{\eta\rho\pi} \approx 0.085$. The factor of 6 ratio between the results reflects the fact that the procedure used here yields but a conservative upper bound, obtained by assuming that the decay $\eta' \rightarrow \pi^+ \pi^- \pi^0$ is dominated by the ρ^{\pm} resonances. This assumption is manifestly false, as the $\eta' \rightarrow \pi^+ \pi^- \pi^0$ Dalitz-plot distribution is in much better agreement with a flat distribution than with that expected from ρ^{\pm} dominance [9]. By contrast, in Ref. [1], the value of $g_{\eta\rho\pi}$ obtained from the Dalitz-plot distribution yielded good agreement between the expected and measured values of $\mathcal{B}(\eta \rightarrow \pi^+ \pi^- \pi^0)$.

With this point in mind, we proceed to use the upper bound on $g_{\eta'\rho\pi}$ to calculate the upper bound on the ρ contribution to $\mathcal{B}(\tau \to \pi \eta' \nu_{\tau})$. We do this by relating $\mathcal{B}(\tau \to \rho_{(\pi\eta')}\nu_{\tau})$ to $\mathcal{B}(\tau \to \rho_{(\pi\eta)}\nu_{\tau})$ via the ratio of coupling constants and phase-space factors

$$\frac{\mathcal{B}(\tau \to \rho_{(\pi\eta')}\nu_{\tau})}{\mathcal{B}(\tau \to \rho_{(\pi\eta)}\nu_{\tau})} \approx \left(\frac{g_{\eta'\rho\pi}}{g_{\eta\rho\pi}}\right)^2 \frac{V(\tau \to \rho_{(\pi\eta')}\nu_{\tau})}{V(\tau \to \rho_{(\pi\eta)}\nu_{\tau})}, \quad (11)$$

where $\rho_{(\pi\eta')}$ indicates that the ρ is observed in the $\pi\eta'$ final state, and V(X) is the integral over the Dalitz plot of the three-body decay X. The ratio of phase-space integrals is 0.06, with up to 15% variation depending on whether one uses Blatt-Weisskopf and s-dependent widths for the ρ and on the choice of angular distribution. Using $\mathcal{B}(\tau \rightarrow \rho_{(\pi\eta)}\nu_{\tau}) = 3.6 \times 10^{-6}$ [1], we obtain

$$\mathcal{B}(\tau \to \rho_{(\pi \eta')} \nu_{\tau}) < 2 \times 10^{-8}, \tag{12}$$

more than 2 orders of magnitude below the *BABAR* upper limit, Eq. (3).

Next, we evaluate the contribution of the on-shell ρ' . One expects that this state, being a radial excitation and hence having a node in its wave-function, couples to the ground-state particles η and π more weakly than the ρ . We

AN ESTIMATE OF THE BRANCHING FRACTION OF ...

hypothesize that this ρ' suppression mechanism works equally strongly for the final states $\pi \eta'$ and $\pi \pi$, leading to an equality of the ratios of the squared matrix elements

$$\frac{\mathcal{B}(\tau \to \rho'_{(\pi\eta')}\nu_{\tau})}{\mathcal{B}(\tau \to \rho_{(\pi\eta')}\nu_{\tau})} \frac{V(\tau \to \rho_{(\pi\eta')}\nu_{\tau})}{V(\tau \to \rho'_{(\pi\eta')}\nu_{\tau})} \approx \frac{\mathcal{B}(\tau \to \rho'_{(\pi\pi)}\nu_{\tau})}{\mathcal{B}(\tau \to \rho_{(\pi\pi)}\nu_{\tau})} \frac{V(\tau \to \rho_{(\pi\pi)}\nu_{\tau})}{V(\tau \to \rho'_{(\pi\pi)}\nu_{\tau})}.$$
(13)

The relevant phase-space integral ratios are

$$\frac{V(\tau \to \rho_{(\pi\eta')}\nu_{\tau})}{V(\tau \to \rho_{(\pi\eta')}'\nu_{\tau})} \approx 0.06, \qquad \frac{V(\tau \to \rho_{(\pi\pi)}\nu_{\tau})}{V(\tau \to \rho_{(\pi\pi)}'\nu_{\tau})} \approx 2.5.$$
(14)

We use the upper bound of Eq. (12) and the central value plus 1 standard deviation of the recent Belle result [10]

$$\sqrt{\frac{\mathcal{B}(\tau \to \rho'_{(\pi\pi)}\nu_{\tau})}{\mathcal{B}(\tau \to \rho_{(\pi\pi)}\nu_{\tau})}} = 0.15 \pm 0.05^{+0.15}_{-0.04}$$
(15)

to obtain the conservative upper limit

$$\mathcal{B}(\tau \to \rho'_{(\pi\eta')}\nu_{\tau}) < 8 \times 10^{-8}.$$
 (16)

We note that this is an upper bound both due to the way we use Eq. (15) and since Eq. (12) is an upper bound.

III. THE L = 0 CONTRIBUTION

Calculating the L = 0 contributions to \mathcal{B}' is not as straightforward as the L = 1 case, where one can make use of the dominant ρ coupling to the leptonic vector current. Therefore, it is important to evaluate the scalar component using different methods, as has been done for the $\tau \to \pi \eta \nu_{\tau}$ decay [1–3]. It should be noted that these calculation are performed under the assumption that the relevant scalar resonances are $\bar{u}d$ states. The coupling of a 4-quark state to the $\bar{u}d$ scalar current is "Zweig-Rule" suppressed, making it significantly smaller than the predictions.

Here we perform a more detailed version of the calculation used in Ref. [1]. We begin with the ratio of branching fractions

$$R_{a_1}^{a_0} \equiv \frac{\mathcal{B}(\tau \to a_0 \nu_{\tau})}{\mathcal{B}(\tau \to a_1 \nu_{\tau})} = \frac{p_{a_0}}{p_{a_1}} \times \frac{|\langle a_0 | V_{h\mu} | 0 \rangle \langle \nu_{\tau} | J_l^{\mu} | \tau \rangle|^2}{|\langle a_1 | A_{h\mu} | 0 \rangle \langle \nu_{\tau} | J_l^{\mu} | \tau \rangle|^2},$$
(17)

where a_0 stands for either $a_0(980)$ or $a_0(1450)$, a_1 is the $a_1(1260)$, p_X is the τ -rest-frame momentum of the products of the decay $\tau \to X \nu_{\tau}$, $V_{h\mu} \equiv \bar{\psi}_u(x) \gamma_{\mu} \psi_d(x)$ is the hadronic vector current, $A_{h\mu} \equiv \bar{\psi}_u(x) \gamma_{\mu} \gamma^5 \psi_d(x)$ is the hadronic axial vector current, and $J_l^{\mu} \equiv \bar{\psi}_{\nu_{\tau}}(x) \gamma^{\mu}(1 - \gamma^5) \psi_{\tau}(x)$ is the leptonic current. The calculation of the leptonic parts of this ratio is well defined, while all the uncertainty in the hadronic parts comes down to a single

parameter ξ , which shall be defined shortly. With this in mind, we can take the a_0 matrix element to be

$$\langle a_0 | V_{h\mu} | 0 \rangle = f_0 \frac{q_\mu}{m_{a_0}} \langle a_0 | S_h | 0 \rangle,$$
 (18)

where f_0 is an isospin-violation suppression factor, and $S_h \equiv \bar{\psi}_u(x)\psi_d(x)$ is the scalar current operator. The weak vector current is conserved up to the difference between the *u*- and *d*-quark masses, plus a smaller electromagnetic part that we neglect. Therefore,

$$\partial^{\mu} V_{h\mu} \approx (m_d - m_u) S_h. \tag{19}$$

Using this relation in Eq. (18) yields

$$f_0 = \frac{m_d - m_u}{m_{a_0}}.$$
 (20)

We use the fact that both the a_0 and the a_1 are *P*-wave states to relate the axial and scalar decay constants

$$\langle a_1 | A_\mu | 0 \rangle = \xi \epsilon^*_\mu \langle a_0 | S | 0 \rangle. \tag{21}$$

We note that this is reminiscent of applying SU(6) [11] or, in this case, just SU(4) [12] flavor-spin symmetry to the (L = 0) 15-plet plus singlet containing the π , ρ , η , and ω , or the (L = 1) states a_0 , a_1 , f_0 , and h_1 .

Naively, one expects ξ in Eq. (21) to be of order unity. However, this parameter incorporates all the hadronic uncertainty in our procedure. With Eqs. (18)–(21), Eq. (17) becomes, after spin averaging and index contraction,

$$R_{a_1}^{a_0} = |\xi|^2 \frac{p_{a_0}}{p_{a_1}} \left(\frac{m_d - m_u}{m_{a_0}}\right)^2 \frac{m_\tau^2 - m_{a_0}^2}{m_\tau^2 - m_{a_1}^2} \left(\frac{m_{a_1}}{m_{a_0}}\right)^2 \times \frac{1}{1 + 2(m_\tau/m_{a_1})^2}.$$
(22)

This yields the branching fractions

$$\mathcal{B}(\tau \to a_0(980)\nu_{\tau}) = 1.6 \times 10^{-6} |\xi|^2,$$

$$\mathcal{B}(\tau \to a_0(1450)\nu_{\tau}) = 6.4 \times 10^{-8} |\xi|^2,$$
(23)

where, as in Ref. [1], we chose the mass difference of the two light quarks to be 4 MeV [13] and, assuming that the $\tau \rightarrow 3\pi\nu_{\tau}$ decay is dominated by the a_1 , we took $\mathcal{B}(\tau \rightarrow a_1\nu_{\tau}) = 0.18$. We compare $\mathcal{B}(\tau \rightarrow a_0(980)\nu_{\tau})$ of Eq. (23) with the value $\mathcal{B} = 1.2 \times 10^{-5}$, obtained from the more elaborate calculation of Ref. [2], minus the ρ contribution to \mathcal{B} , which is 3.6×10^{-6} [1]. This yields $|\xi|^2 \approx 5$, from which we conclude

$$\mathcal{B}(\tau \to a_0(1450)\nu_{\tau}) \approx 3 \times 10^{-7}.$$
 (24)

The $a_0(1450)$ contribution to $\tau \to \pi \eta' \nu_{\tau}$ depends also on the branching fraction $\mathcal{B}(a_0(1450) \to \pi \eta')$, regarding which there is only partial information. However, from the branching-fraction measurements that have been made [13], it is clear that $\mathcal{B}(a_0(1450) \to \pi \eta') < 0.3$. Hence

$$\mathcal{B}(\tau \to a_0(1450)_{(\pi n')}\nu_{\tau}) < 1 \times 10^{-7}.$$
 (25)

If the $a_0(1450)$ is a radial excitation, which is the case if the $a_0(980)$ is the $\bar{u}d$ ground state, then $\mathcal{B}(\tau \rightarrow a_0(1450)_{(\pi\eta')}\nu_{\tau})$ should be suppressed by an additional wave-function overlap factor.

Next, we look at the contribution of the $a_0(980)$ to $\tau \rightarrow \pi \eta' \nu_{\tau}$, which can be extracted from the relation

$$\frac{\mathcal{B}(\tau \to \nu a_0(980)_{(\pi\eta')})}{\mathcal{B}(\tau \to \nu a_0(980)_{(\pi\eta)})} = \frac{V(\tau \to \nu a_0(980)_{(\pi\eta')})}{V(\tau \to \nu a_0(980)_{(\pi\eta)})} R_{\eta}^{\eta'},$$
(26)

where

$$R_{\eta}^{\eta'} \equiv \left| \frac{\mathcal{M}(a_0(980) \to \pi \eta')}{\mathcal{M}(a_0(980) \to \pi \eta)} \right|^2 \tag{27}$$

is the square of the ratio between the relevant hadronicdecay matrix elements. We assume that $R_{\eta}^{\eta'}$ equals the corresponding ratio of $a_0(1450)$ -decay matrix elements, and is hence obtained from

$$R_{\eta}^{\eta'} \approx \frac{\mathcal{B}(a_0(1450) \to \pi\eta')}{\mathcal{B}(a_0(1450) \to \pi\eta)} \times \frac{p_{\eta}}{p_{\eta'}}, \qquad (28)$$

where p_X is the $a_0(1450)$ -rest-frame momentum of the products of the decay $a_0(1450) \rightarrow \pi X$. Given the ~50% error [13] on the ratio of branching fractions appearing in Eq. (28) and the uncertainty on the $a_0(1450)$ width, $R_{\eta}^{\eta'}$ comes out in the range [0.25, 1.25]. The ratio of the phase-

space integrals in Eq. (26) is 0.06, with some dependence on what one takes for the $a_0(980)$ width. Using the range for \mathcal{B} from Eq. (2), we obtain

$$\mathcal{B}(\tau \to a_0(980)_{(\pi\eta')}\nu_{\tau}) \approx [0.2 \text{ to } 1.2] \times 10^{-6}.$$
 (29)

IV. CONCLUSIONS

Combining Eqs. (12), (16), (25), and (29), we obtain the branching fraction limit

$$\mathcal{B}\left(\tau \to \pi \eta' \nu_{\tau}\right) < 1.4 \times 10^{-6},\tag{30}$$

in no conflict with the experimental upper limit, Eq. (3), which is about 5 times greater. Our result is dominated by the $a_0(980)$ contribution, assuming it is a $\bar{u}d$ state.

The experimental limit was obtained with only a third of the currently available *BABAR* and Belle data sets, and with the η reconstructed only in the $\gamma\gamma$ final state. Therefore, an improvement in the limit can be expected from the current generation of *B* factories, but probably not to the level of Eq. (30). By contrast, a Super *B* factory [14], with 2 orders of magnitude more luminosity, will be able to use \mathcal{B} and \mathcal{B}' to investigate the nature of the $a_0(980)$ and to search for new interactions mediated by heavy scalars [1].

ACKNOWLEDGMENTS

The authors thank Leonid Frankfurt and Swagato Banerjee for useful suggestions and discussions.

- [1] S. Nussinov and A. Soffer, Phys. Rev. D 78, 033006 (2008).
- [2] H. Neufeld and H. Rupertsberger, Z. Phys. C 68, 91 (1995).
- [3] A. Pich, Phys. Lett. B 196, 561 (1987); S. Tisserant and T. N. Truong, Phys. Lett. 115B, 264 (1982).
- [4] J. E. Bartelt *et al.* (CLEO Collaboration), Phys. Rev. Lett. **76**, 4119 (1996).
- [5] B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. D 77, 112002 (2008).
- [6] R. Escribano, arXiv:0807.4201; F. Ambrosino *et al.* (KLOE Collaboration), Phys. Lett. B 648, 267 (2007).
- [7] R.L. Jaffe, Phys. Rev. D 15, 267 (1977).

- [8] G. 't Hooft, G. Isidori, L. Maiani, A.D. Polosa, and V. Riquer, Phys. Lett. B 662, 424 (2008).
- [9] P. Naik *et al.* (CLEO Collaboration), Phys. Rev. Lett. **102**, 061801 (2009).
- [10] M. Fujikawa *et al.* (Belle Collaboration), Phys. Rev. D 78, 072006 (2008).
- [11] F. Gursey and L. A. Radicati, Phys. Rev. Lett. 13, 173 (1964).
- [12] E. Wigner, Phys. Rev. 51, 106 (1937).
- [13] C. Amsler *et al.* (Particle Data Group), Phys. Lett. B 667, 1 (2008).
- [14] M. Bona et al., arXiv:0709.0451.