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We calculate the expected branching fraction of the second-class-current decay � ! ��0��, motivated

by a recent experimental upper-limit determination of this quantity. The largest contribution to the

branching fraction is due to the intermediate a0ð980Þ scalar meson, assuming it is a �ud state. Smaller

contributions arise from a0ð1450Þ, �ð770Þ, and �ð1450Þ. Our calculated values are substantially below the

experimental upper limit, and are smaller still if the a0ð980Þ is a four-quark state, as often suggested. Thus,
a precise measurement or tight upper limit has the potential to determine the nature of the a0ð980Þ, as well
as provide information about new scalar interactions.
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I. INTRODUCTION

In a recent paper [1], we considered the branching
fraction of the isospin-violating decay � ! ����. We
found an expected branching fraction of

B � Bð� ! ����Þ ¼ ð0:3–1:0Þ � 10�5; (1)

in rough agreement with a detailed chiral perturbation
theory calculation [2] and other evaluations [3], which
yielded central values in the range

B ¼ ð1:2–1:6Þ � 10�5: (2)

The experimental bound on this branching fraction, B<
1:4� 10�4 [4], was obtained by CLEO with an
eþe�-collision data sample of 3:5 fb�1, a fraction of a
percent of currently available integrated luminosity. The
only related high-luminosity measurement is a stringent
BABAR upper limit on the branching fraction of � !
��0�� [5],

B 0 � Bð� ! ��0��Þ< 7:2� 10�6@90%CL; (3)

obtained with an integrated luminosity of 384 fb�1.
The fact that the experimental limit is lower than the

results summarized in Eq. (2) raises the question of a
possible discrepancy between theory and experiment.
Therefore, our goal in this article is to calculate the ex-
pected value of B0 and compare it to the experimental
limit. We adapt the methods used in Ref. [1] to the present
case, noting that a chiral perturbation theory calculation of
this process, as performed for � ! ���� by Neufeld and
Rupertsberger [2], would be very useful.

First, we note several similarities and differences be-
tween the calculations of B0 and B:

(i) The �uuþ �dd fraction of the wave function which,
unlike the �ss and gg parts, contributes to the decay
amplitude, may be smaller for the �0. While it ap-
pears that the magnitude of the �ss part in relation to
that of the light quarks is very similar for both states,
the current estimate of the gg fraction of the �0 wave

function, Zgg, is jZggj2 ¼ 0:3� 0:2 [6]. In our cal-

culations we take Zgg ¼ 0, as this yields the most

conservative limits onB0, and since the modification
for finite values of Zgg is straightforward.

(ii) Calculations of B in Refs. [1–3] rely on extrapola-
tions utilizing intermediate, low-mass JPC ¼ 1��
and 0þþ hadrons. Obvious intermediate states for
the decay � ! ���� are the ground-state mesons
�ð770Þ and a0ð980Þ. In the case of � ! ��0��, these
are off-shell processes, and the contributions of these
resonances are suppressed. On the other hand, we do
have now on-shell decays involving the next 1�� and
0þþ states. These are the �0 � �ð1450Þ and
a0ð1450Þ, which contribute to the P- and S-wave
components of the decay, respectively.

(iii) The � and �0 vectors are the quark-model �ud,
S-wave 1�� ground state and first radial excitation,
respectively. However, the theoretical assignment of
the a0ð980Þ (and, consequently, that of the a0ð1450Þ
as well) is ambiguous, generating the largest uncer-
tainty in both B and B0. Conversely, information on
these branching fractions can help resolve the long-
standing dilemma of the ‘‘ �KK-threshold’’ state
a0ð980Þ. The significant branching fractions of
a0ð980Þ and f0ð980Þ decays to �KK, despite the
very small phase space, seem inconsistent with these
mesons being the ground states of the quark-model
scalar nonet, motivating a four-quark ( �ud�ss) inter-
pretation [7]. In this case, the �ud scalar ground state
should most likely be identified with a0ð1450Þ.
However, this would make the scalar 190 MeV heav-
ier than the axial vector state a1ð1260Þ, implying a
pattern of L � S splitting that is different from what is
observed in any other L ¼ 1, �Qq or �QQ sysetm. The
more appealing possibility, namely, that the two 980-
MeV states are indeed just �ud states, may have been
partially resurrected in recent work [8], in which
’tHooft’s �uu �dd�ss six-quark vertex was utilized to
admix the 2- and 4- quark states.
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The plan of this note is as follows. As we did in Ref. [1],
we discuss separately our estimates of the P- and S-wave
contributions to B0. In Sec. II we present the more robust
results for the P-wave part, calculating upper bounds on
the contributions of the � and �0 using recently published
experimental data involving �0 and � decays. In Sec. III we
present the less clear-cut estimate of the S-wave compo-
nent. This contribution depends most strongly on whether
the a0ð980Þ is a 4-quark state or the �ud ground state. In any
event, our predictions for Bð� ! ��0��Þ lie significantly
below the BABAR limit [5]. A brief summary and future
outlook are given in Sec. IV.

II. THE L ¼ 1 CONTRIBUTION

In Ref. [1], we obtained the L ¼ 1 contribution to B
assuming that it was dominated by the �, an assumption
justified by the large branching fraction Bð� ! ���Þ. We
compared this branching fraction to B using the ratio of
coupling constants g���=g���, where g��� was related to

the width of the �, and g��� was obtained by analyzing the

Dalitz-plot distribution of the decay � ! �þ���0, taking
the scalar contribution to � ! �þ���0 from Bð� !
�0�0�0Þ.

This procedure is not directly applicable to B0, since
there is no experimental information on the Dalitz-plot
distribution of the decay �0 ! �þ���0, nor a measure-
ment of Bð�0 ! �0�0�0Þ. Therefore, we make use of the
fact that the branching fraction Bð�0 ! �þ���0Þ de-
pends on the coupling constant g�0��, under the conserva-

tive assumption that the �� states dominate the decay
�0 ! �þ���0. This yields a conservative upper bound
on g�0��, from which we obtain an upper bound on the �

contribution to � ! ��0��. We discuss the likelihood of
this assumption and its implications below.

The differential branching fraction of �0 ! �þ���0 as
a function of the Dalitz-plot position is given by

d��0!�þ���0

��0
¼ ðg�0��g���Þ2

384
ffiffiffi
3

p
�3

Q2

m�0��0
jMj2dXdY; (4)

where

Q � m�0 � 3m� (5)

is the kinetic energy in the decay, and

X �
ffiffiffi
3

p
Q

ðTþ � T�Þ; Y � 3

Q
T0 � 1 (6)

are the Dalitz-plot variables, with Tc being the kinetic
energy of the pion with charge c. Assuming � dominance,
we obtain from Eq. (15) of Ref. [1] the reduced matrix
element

M ¼ �2
rY � 1

3 r
2ðY2 þ X2Þ

1� 2
3 rY þ 1

3 r
2ð13Y2 � X2Þ ; (7)

where

r ¼ m�0Q

m2
� � 1

3m
2
�0 �m2

� � i��m�

¼ 1:6þ 0:7i: (8)

The product ðg�0��g���Þ2 is then found by integrating

Eq. (4) over the Dalitz plot. In the � ! �þ���0 case,
we exploited the small value of r to simplify the expression
by expanding in r. Because of theOð1Þ value of r for �0 !
�þ���0, we resort to numerical integration, which yields

Z
jMj2dXdY ¼ 2:4: (9)

From this we obtain, using Bð�0 ! �þ���0Þ ¼
3:7� 10�3 [9] and g��� ¼ 6:0 [1],

g�0�� < 0:025: (10)

As a cross check, we apply the procedure to the decay
� ! �þ���0, obtaining g��� < 0:52. This value is to be

compared to the one obtained from the more precise
Dalitz-plot analysis in Ref. [1], g��� � 0:085. The factor

of 6 ratio between the results reflects the fact that the
procedure used here yields but a conservative upper bound,
obtained by assuming that the decay �0 ! �þ���0 is
dominated by the �� resonances. This assumption is man-
ifestly false, as the �0 ! �þ���0 Dalitz-plot distribution
is in much better agreement with a flat distribution than
with that expected from �� dominance [9]. By contrast, in
Ref. [1], the value of g��� obtained from the Dalitz-plot

distribution yielded good agreement between the expected
and measured values of Bð� ! �þ���0Þ.
With this point in mind, we proceed to use the upper

bound on g�0�� to calculate the upper bound on the �

contribution to Bð� ! ��0��Þ. We do this by relating
Bð� ! �ð��0Þ��Þ to Bð� ! �ð��Þ��Þ via the ratio of cou-

pling constants and phase-space factors

Bð� ! �ð��0Þ��Þ
Bð� ! �ð��Þ��Þ �

�
g�0��

g���

�
2 Vð� ! �ð��0Þ��Þ
Vð� ! �ð��Þ��Þ ; (11)

where �ð��0Þ indicates that the � is observed in the ��0

final state, and VðXÞ is the integral over the Dalitz plot of
the three-body decay X. The ratio of phase-space integrals
is 0.06, with up to 15% variation depending on whether one
uses Blatt-Weisskopf and s-dependent widths for the � and
on the choice of angular distribution. Using Bð� !
�ð��Þ��Þ ¼ 3:6� 10�6 [1], we obtain

B ð� ! �ð��0Þ��Þ< 2� 10�8; (12)

more than 2 orders of magnitude below the BABAR upper
limit, Eq. (3).
Next, we evaluate the contribution of the on-shell �0.

One expects that this state, being a radial excitation and
hence having a node in its wave-function, couples to the
ground-state particles � and�more weakly than the �. We
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hypothesize that this �0 suppression mechanism works
equally strongly for the final states ��0 and ��, leading
to an equality of the ratios of the squared matrix elements

Bð� ! �0
ð��0Þ��Þ

Bð� ! �ð��0Þ��Þ
Vð� ! �ð��0Þ��Þ
Vð� ! �0

ð��0Þ��Þ

� Bð� ! �0
ð��Þ��Þ

Bð� ! �ð��Þ��Þ
Vð� ! �ð��Þ��Þ
Vð� ! �0

ð��Þ��Þ : (13)

The relevant phase-space integral ratios are

Vð� ! �ð��0Þ��Þ
Vð� ! �0

ð��0Þ��Þ � 0:06;
Vð� ! �ð��Þ��Þ
Vð� ! �0

ð��Þ��Þ � 2:5:

(14)

We use the upper bound of Eq. (12) and the central value
plus 1 standard deviation of the recent Belle result [10]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð� ! �0

ð��Þ��Þ
Bð� ! �ð��Þ��Þ

vuut ¼ 0:15� 0:05þ0:15
�0:04 (15)

to obtain the conservative upper limit

B ð� ! �0
ð��0Þ��Þ< 8� 10�8: (16)

We note that this is an upper bound both due to the way we
use Eq. (15) and since Eq. (12) is an upper bound.

III. THE L ¼ 0 CONTRIBUTION

Calculating the L ¼ 0 contributions to B0 is not as
straightforward as the L ¼ 1 case, where one can make
use of the dominant � coupling to the leptonic vector
current. Therefore, it is important to evaluate the scalar
component using different methods, as has been done for
the � ! ���� decay [1–3]. It should be noted that these
calculation are performed under the assumption that the
relevant scalar resonances are �ud states. The coupling of a
4-quark state to the �ud scalar current is ‘‘Zweig-Rule’’
suppressed, making it significantly smaller than the
predictions.

Here we perform a more detailed version of the calcu-
lation used in Ref. [1]. We begin with the ratio of branching
fractions

Ra0
a1 �

Bð� ! a0��Þ
Bð� ! a1��Þ ¼

pa0

pa1

� jha0jVh�j0ih��jJ�l j�ij2
jha1jAh�j0ih��jJ�l j�ij2

;

(17)

where a0 stands for either a0ð980Þ or a0ð1450Þ, a1 is the
a1ð1260Þ, pX is the �-rest-frame momentum of the prod-
ucts of the decay � ! X��, Vh� � �c uðxÞ��c dðxÞ is the
hadronic vector current, Ah� � �c uðxÞ���

5c dðxÞ is the

hadronic axial vector current, and J�l � �c ��
ðxÞ��ð1�

�5Þc �ðxÞ is the leptonic current. The calculation of the
leptonic parts of this ratio is well defined, while all the
uncertainty in the hadronic parts comes down to a single

parameter �, which shall be defined shortly. With this in
mind, we can take the a0 matrix element to be

ha0jVh�j0i ¼ f0
q�
ma0

ha0jShj0i; (18)

where f0 is an isospin-violation suppression factor, and
Sh � �c uðxÞc dðxÞ is the scalar current operator. The weak
vector current is conserved up to the difference between
the u- and d-quark masses, plus a smaller electromagnetic
part that we neglect. Therefore,

@�Vh� � ðmd �muÞSh: (19)

Using this relation in Eq. (18) yields

f0 ¼ md �mu

ma0

: (20)

We use the fact that both the a0 and the a1 are P-wave
states to relate the axial and scalar decay constants

ha1jA�j0i ¼ �	��ha0jSj0i: (21)

We note that this is reminiscent of applying SUð6Þ [11] or,
in this case, just SUð4Þ [12] flavor-spin symmetry to the
(L ¼ 0) 15-plet plus singlet containing the �, �, �, and !,
or the (L ¼ 1) states a0, a1, f0, and h1.
Naively, one expects � in Eq. (21) to be of order unity.

However, this parameter incorporates all the hadronic un-
certainty in our procedure. With Eqs. (18)–(21), Eq. (17)
becomes, after spin averaging and index contraction,

R
a0
a1 ¼ j�j2 pa0

pa1

�
md �mu

ma0

�
2 m2

� �m2
a0

m2
� �m2

a1

�
ma1

ma0

�
2

� 1

1þ 2ðm�=ma1Þ2
: (22)

This yields the branching fractions

B ð� ! a0ð980Þ��Þ ¼ 1:6� 10�6j�j2;
Bð� ! a0ð1450Þ��Þ ¼ 6:4� 10�8j�j2; (23)

where, as in Ref. [1], we chose the mass difference of the
two light quarks to be 4 MeV [13] and, assuming that the
� ! 3��� decay is dominated by the a1, we took Bð� !
a1��Þ ¼ 0:18. We compare Bð� ! a0ð980Þ��Þ of Eq. (23)
with the value B ¼ 1:2� 10�5, obtained from the more
elaborate calculation of Ref. [2], minus the � contribution
to B, which is 3:6� 10�6 [1]. This yields j�j2 � 5, from
which we conclude

B ð� ! a0ð1450Þ��Þ � 3� 10�7: (24)

The a0ð1450Þ contribution to � ! ��0�� depends also on
the branching fraction Bða0ð1450Þ ! ��0Þ, regarding
which there is only partial information. However, from
the branching-fraction measurements that have been
made [13], it is clear that Bða0ð1450Þ ! ��0Þ< 0:3.
Hence
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B ð� ! a0ð1450Þð��0Þ��Þ< 1� 10�7: (25)

If the a0ð1450Þ is a radial excitation, which is the case if the
a0ð980Þ is the �ud ground state, then Bð� !
a0ð1450Þð��0Þ��Þ should be suppressed by an additional

wave-function overlap factor.
Next, we look at the contribution of the a0ð980Þ to � !

��0��, which can be extracted from the relation

Bð� ! �a0ð980Þð��0ÞÞ
Bð� ! �a0ð980Þð��ÞÞ ¼ Vð� ! �a0ð980Þð��0ÞÞ

Vð� ! �a0ð980Þð��ÞÞ R
�0
� ;

(26)

where

R�0
� �

��������
Mða0ð980Þ ! ��0Þ
Mða0ð980Þ ! ��Þ

��������
2

(27)

is the square of the ratio between the relevant hadronic-

decay matrix elements. We assume that R�0
� equals the

corresponding ratio of a0ð1450Þ-decay matrix elements,
and is hence obtained from

R�0
� � Bða0ð1450Þ ! ��0Þ

Bða0ð1450Þ ! ��Þ �
p�

p�0
; (28)

where pX is the a0ð1450Þ-rest-frame momentum of the
products of the decay a0ð1450Þ ! �X. Given the �50%
error [13] on the ratio of branching fractions appearing in

Eq. (28) and the uncertainty on the a0ð1450Þ width, R�0
�

comes out in the range [0.25, 1.25]. The ratio of the phase-

space integrals in Eq. (26) is 0.06, with some dependence
on what one takes for the a0ð980Þ width. Using the range
for B from Eq. (2), we obtain

B ð� ! a0ð980Þð��0Þ��Þ � ½0:2 to 1:2	 � 10�6: (29)

IV. CONCLUSIONS

Combining Eqs. (12), (16), (25), and (29), we obtain the
branching fraction limit

B ð� ! ��0��Þ< 1:4� 10�6; (30)

in no conflict with the experimental upper limit, Eq. (3),
which is about 5 times greater. Our result is dominated by
the a0ð980Þ contribution, assuming it is a �ud state.
The experimental limit was obtained with only a third of

the currently available BABAR and Belle data sets, and
with the � reconstructed only in the �� final state.
Therefore, an improvement in the limit can be expected
from the current generation of B factories, but probably not
to the level of Eq. (30). By contrast, a Super B factory [14],
with 2 orders of magnitude more luminosity, will be able to
useB andB0 to investigate the nature of the a0ð980Þ and to
search for new interactions mediated by heavy scalars [1].

ACKNOWLEDGMENTS

The authors thank Leonid Frankfurt and Swagato
Banerjee for useful suggestions and discussions.

[1] S. Nussinov and A. Soffer, Phys. Rev. D 78, 033006
(2008).

[2] H. Neufeld and H. Rupertsberger, Z. Phys. C 68, 91
(1995).

[3] A. Pich, Phys. Lett. B 196, 561 (1987); S. Tisserant and
T.N. Truong, Phys. Lett. 115B, 264 (1982).

[4] J. E. Bartelt et al. (CLEO Collaboration), Phys. Rev. Lett.
76, 4119 (1996).

[5] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77,
112002 (2008).

[6] R. Escribano, arXiv:0807.4201; F. Ambrosino et al.
(KLOE Collaboration), Phys. Lett. B 648, 267 (2007).

[7] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).

[8] G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa, and V.
Riquer, Phys. Lett. B 662, 424 (2008).

[9] P. Naik et al. (CLEO Collaboration), Phys. Rev. Lett. 102,
061801 (2009).

[10] M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78,
072006 (2008).

[11] F. Gursey and L.A. Radicati, Phys. Rev. Lett. 13, 173
(1964).

[12] E. Wigner, Phys. Rev. 51, 106 (1937).
[13] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).
[14] M. Bona et al., arXiv:0709.0451.

S. NUSSINOVAND A. SOFFER PHYSICAL REVIEW D 80, 033010 (2009)

033010-4


