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We perform a complete calculation at the one-loop level for the Zggg and Z0ggg couplings in the

context of the minimal 331 model, which predicts the existence of a new Z0 gauge boson and new exotic

quarks. Bose symmetry is exploited to write a compact and manifest SUCð3Þ-invariant vertex function for

the Vggg (V ¼ Z, Z0) coupling. Previous results on the Z ! ggg decay in the standard model are

reproduced. It is found that this decay is insensitive to the effects of the new exotic quarks. This in contrast

with the Z0 ! ggg decay, which is sensitive to both the standard model and exotic quarks, whose

branching ratio is larger than that of the Z ! ggg transition by about a factor of 4.
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I. INTRODUCTION

There are no couplings of gluons with the neutral elec-
troweak gauge bosons (V ¼ �, Z) at the level of classical
action in a renormalizable theory,1 but they can be induced
via loops. At the one-loop level, only quartic couplings of
the type Vggg and VVgg can be generated, as the trilinear
Vgg ones are forbidden at any order of perturbation theory
by Yang’s theorem [2]. In particular, the Zggg coupling is a
very interesting prediction of perturbative quantum field
theory, which allows one to examine the interplay of the
strong interactions and the weak interactions, as it repre-
sents a rare case where purely strong interacting particles
couple to purely weak interacting particles. Also, this
coupling is interesting from the phenomenological point
of view, because it is much less suppressed than the purely
electroweak couplings VVVV. Several authors have
studied the decay Z ! ggg in the standard model (SM)
[3–6]. The Lorentz structure of this vertex is governed by
the vector and axial vector couplings of the Z boson to
quarks, which leads to an amplitude made of two finite and
gauge-invariant subamplitudes that do not interfere among
themselves due to their different color structure. Because
of this, both the vector and the axial vector subamplitudes
characterizing the Zggg coupling have separately been
studied in the literature. It turns out to be that, except for
some color factors, the vector part of the Zggg is the same
as the four photon interaction in QED [7]. This result was
used in Ref. [8] to calculate the ��ggg coupling, which
was further adapted to study the vector Zggg coupling [3].
The contribution of triangle diagrams to the axial vector
Zggg coupling was calculated in Ref. [4], which however
is not gauge invariant. The complete calculation for the
axial vector part, which comprises triangle and box dia-

grams, was done in Ref. [5]. The impact of the third family
is analyzed analytically in the limitmb ! 0 andmt ! 1 in
Ref. [6]. In general terms, as we will see below, both the
vector and axial vector amplitudes are essentially deter-
mined by the third family, the latter one playing a marginal
role with respect to the former.
In this work we are interested in studying the rare decays

[9] Z ! ggg and Z0 ! ggg within the context of the so-
called 331 model [10]. This model, which is based in the
SUCð3Þ � SULð3Þ �UXð1Þ gauge group, predicts the ex-
istence of new gauge bosons, among them, a new Z0 gauge
boson that has some interesting features [11], such as the
possibility of yielding signals of new physics at the TeV
scale. In this model, the lepton spectrum is the same as in
the SM, but it is arranged in antitriplets of SULð3Þ. The
quark sector is also arranged in the fundamental represen-
tation of this group, which requires the introduction of
three new quarks. An interesting feature of the model is
that anomalies cancel out when all of the generations are
summed over, which means that the family number must
be a multiple of the color number, which suggests a pos-
sible approach to solving the generation replication prob-
lem. In order to endow all of the particles with mass, a
Higgs sector composed by three triplets and one sextet of
SULð3Þ is required, though only one of the triplets is
needed to break down SULð3Þ �UXð1Þ into SULð2Þ �
UYð1Þ at the new physics scale u > v, where v �
246 GeV is the Fermi scale. In the first stage of sponta-
neous symmetry breaking (SSB), singly and doubly
charged gauge bosons emerge in a doublet of the SULð2Þ
group, as well as a new neutral Z0 boson. The three exotic
quarks (D and S with charge �4=3 in units of the positron
charge, and T with charge 5=3) do not couple to the W
gauge boson, since they emerge as singlets of SULð2Þ and
get their mass at the u scale. However, these exotic quarks
do couple to all of the neutral gauge bosons of the theory,
namely, Z0, Z, �, and g [12]. Besides studying the impact
of the new quarks on the Z ! ggg decay, we are interested

1This class of couplings arises at the level of classical action in
the noncommutative standard model [1], but this theory is not
renormalizable.
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in investigating the peculiarities that could present the
Z0ggg couplings due to the presence of these exotic quarks,
which are singlets under the SULð2Þ group and present both
vector and axial vector couplings to Z0. Also, it is interest-
ing to investigate the sensitivity of a new heavy Z0 boson to
the three standard quark families, as well as to new quark
particles. We are motivated by the physics potential of the
LHC collider, which will allow one to study directly and in
detail the TeV scale region. In particular, the multipurpose
ATLAS detector [13] has the mission of detecting or ex-
cluding the presence of a new Z0 boson in the TeV scale.
Therefore, it is important to study the decays of this type of
particle, including those rare processes, as the Z0 ! ggg
transition. We will present exact analytical expressions for
the corresponding amplitudes, which will be used to re-
produce previous results given in the context of the SM for
the Z ! ggg decay.

The paper has been organized as follows. In Sec. II, a
brief description of the minimal 331 model is presented
with emphasis in the neutral currents sector. In Sec. III, the
calculation for the one-loop generated on-shell Vggg ver-
tex is presented. Section IV is devoted to the discussion of
our results. In Sec. V, the results are summarized. Finally,
some large mathematical expressions are presented in the
Appendix.

II. THE MINIMAL 331 MODEL

In this section, we will discuss briefly the main features
of the 331 model [10], which is based in the SUCð3Þ �
SULð3Þ �UXð1Þ gauge group. As already mentioned in the
introduction, the lepton sector of the model is the same as
in the SM, but it is now arranged as antitriplets of SULð3Þ
as follows:

Li ¼
li
�li

lci

0
@

1
A; ð1; 3�; 0Þ; i ¼ 1; 2; 3: (1)

In order to cancel the SULð3Þ anomaly, the same number of
fermion triplets and antitriplets are required. This means
that two quark families must be accommodated as triplets
and the other one as an antitriplet. It is customary to choose
the third family as the one transforming as an antitriplet in
order to distinguish the new dynamic effects in the physics
of the top quark from that of the lighter families.
Accordingly, the three families are specified as follows:

Q1;2 ¼
u

d

D

0
BB@

1
CCA;

c

s

S

0
BB@

1
CCA; ð3; 3;�1=3Þ;

Q3 ¼
t

b

T

0
BB@

1
CCA; ð3; 3�; 2=3Þ;

(2)

dc; sc; bc: ð3�; 1; 1=3Þ; Dc; Sc: ð3�; 1; 4=3Þ; (3)

uc; cc; tc: ð3�; 1;�2=3Þ; Tc: ð3�; 1;�5=3Þ; (4)

where the exotic quarks D, S, and T have electric charges
of �4=3, �4=3, and 5=3, respectively.
The Higgs sector comprises three triplets and one sextet

of SULð3Þ, but only one of the triplets is needed to break
SULð3Þ �UXð1Þ into SULð2Þ �UYð1Þ. The next stage of
SSB occurs at the Fermi scale v and is achieved by the
remaining two triplets. The sextet is necessary to provide
realistic masses for the leptons [14]. In the first stage of
SSB, several particles acquire masses [11,12], among them
the new Z0 gauge boson and the exotic quarks, which are all
singlets of SULð2Þ and thus they do not couple to the W
gauge boson at the tree level.2 Many details of the Z0
dynamics have already been presented in Ref. [12]. Very
interestingly, in this model the new gauge boson masses are
bounded from above [10,12,15] due to the theoretical
constraint which yields sin2�W ¼ s2W � 1=4 [10,15]. The
fact that the value of s2W is very close to 1=4 at themZ0 scale
leads to an upper bound on the scale associated with the
first stage of SSB, which translates directly into a bound on
the Z0 mass given by mZ0 � 3:1 TeV [15]. It turns out that
when s2Wð�Þ ¼ 1=4, the coupling constant gX associated
with the UXð1Þ group becomes infinite and a Landau pole
arises [16]. Here, we will focus on only those features that
are relevant for our discussion. In particular, we need the
couplings of the Z and Z0 gauges bosons to quarks. The
neutral currents of the quark sector of the model can be
written as follows [12]:

L NC
q ¼ ie

X
q

Qqð �q��qÞA� þ ig

2cW

X
q

½ �q��ðgqVZ

� gqAZ�5ÞqZ� þ �q��ðgqVZ0 � gq
AZ0�5ÞqZ0��; (5)

where the electromagnetic current has been included, too.
The intensity of the diverse couplings are presented in
Table I. In this table, sWðcWÞ stands for sin�Wðcos�WÞ of
the weak angle. On the other hand, the Feynman rules of
QCD are well-known, so we are ready to calculate the
amplitude for the on-shell Vggg (V ¼ Z, Z0) vertex. This
will be carried out in the next section. It should be men-
tioned that there is a different version of this model [17]
which introduces exotic leptons but with the same quark
sector. Since both versions the model the quark sector
accommodate the same representation of the SULð3Þ �
UXð1Þ gauge group, our results are also applicable to this
version with exotic leptons.

2The fZ; Z0g basis does not indeed represent mass eingenstates,
but it is related to the mass eigenstates fZ1; Z2g basis through an
orthogonal transformation [12]. The mixing angle is however
very small and can be ignored in the present analysis.
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III. THE ONE-LOOP Vggg COUPLING

In this section, we present the calculation for the on-
shell Vggg (V ¼ Z, Z0) vertex. Since the Lorentz structure
of the neutral currents is the same for both the Z and Z0
gauge bosons, we will present a generic amplitude for the
Vggg vertex. We will present explicit expressions for this
amplitude in terms of Passarino-Veltman scalar functions
[18]. To begin with, we establish our notation and con-
ventions. The momenta, Lorentz indices, and color indices
are defined as follows:

V�4
ðp4Þga�1

ðp1Þgb�2
ðp2Þgc�3

ðp3Þ; (6)

where all momenta are taken incoming. We will present
our results in terms of scalar products of the way pi � pj �
pij, which are adequate to discuss both of the related

processes, namely, the V ! ggg decay, which is the pur-
pose of this work, and the gg ! gV reaction, which will be
reported in a future communication together with the pro-
cesses gg ! �Z, gg ! �Z0, and gg ! ZZ0 [19].

We now proceed to describe the calculation. The con-
tribution to the Vggg coupling occurs through box and

triangle diagrams, which are shown in Figs. 1 and 2,
respectively. There are six box diagrams and six triangle
diagrams, but only one is needed to work out one of each
class, as the rest are related by Bose symmetry. The invari-
ant amplitude can be written as follows:

MVggg ¼
X
q

M�1�2�3�4

abc �a�1
ðp1; �1Þ�b�2

ðp2; �2Þ

� �c�3
ðp3; �3Þ��4

ðp4; �4Þ; (7)

where the sum is over all quark flavors. This amplitude in
turns can be separated into two components as follows:

M �1�2�3�4

abc ¼ M�1�2�3�4

Babc þM�1�2�3�4

Tabc ; (8)

where B and T stand for box and triangle contributions.
The Lorentz tensor structure of the amplitude is dictated by
color gauge invariance and Bose symmetry. Gauge invari-
ance means that the amplitude must satisfy the following
transversality conditions:

pi�i
M�1�2�3�4

abc ¼ 0; i ¼ 1; 2; 3; (9)

whereas Bose symmetry requires that M�1�2�3�4

abc be sym-

metric under the interchange of both i $ j (i, j ¼ 1, 2, 3)
and color indexes. The contribution from the box diagrams
displayed in Fig. 1 can be written as

M �1�2�3�4

Babc ¼ X6
i¼1

F iI
�1�2�3�4

Bi ; (10)

where

F 1;4;5 � �g3sgVNC
1
4ðdabc þ ifabcÞ; (11)

F 2;3;6 � �g3sgVNC
1
4ðdabc � ifabcÞ; (12)

where dabc and fabc are the totally symmetric and totally
antisymmetric structure constants of the color group. The
color structure constants can be obtained from the commu-
tation relations ½Ta; Tb� ¼ ifabcT

c and the anticommuta-

(1) (2) (3)

(4) (5) (6)

FIG. 1. Box diagrams contributing to the Vggg vertex.

TABLE I. Structure of the neutral currents for the quark sector
of the minimal 331 model.

Quark Qq gqVZ gqAZ gq
VZ0 gq

AZ0

u, c þ 2
3

3�8s2W
6

1
2 � 1�6s2W

2
ffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p � 1þ2s2W

2
ffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p

d, s � 1
3 � 3�4s2W

6 � 1
2 � 1

2
ffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p �
ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p
2
ffiffi
3

p
c2W

D, S � 4
3

8s2W
3 0

1�9s2Wffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p 1ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p
b � 1

3 � 3�4s2W
6 � 1

2

1�2s2W

2
ffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p 1þ2s2W

2
ffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p

t þ 2
3

3�8s2W
6

1
2

1þ4s2W

2
ffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p
ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p
2
ffiffi
3

p
c2W

T þ 5
3 � 10s2W

3 0 � 1�11s2Wffiffi
3

p
c2W

ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p � 1ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
1�4s2W

p

DECAYS Z ! ggg AND . . . PHYSICAL REVIEW D 80, 033006 (2009)

033006-3



tion relations fTa; Tbg ¼ �ab=3þ dabcT
c for the SUCð3Þ

generators. In addition, gV ¼ g=2cW , and NC ¼ 3 is the
quark color number. The I�1�2�3�4

Bi tensors appearing in
the above expression are given by

I �1�2�3�4

Bi ¼
Z dDk

ð2�ÞD
T
�1�2�3�4

Bi

�Bi

; (13)

where

T�1�2�3�4

B1 ¼ Trf��4ðgqVV � gqAV�
5Þðk6 þmqÞ

� ��1½ðk6 � p6 1Þ þmq�
� ��2½ðk6 � p6 1 � p6 2Þ þmq�
� ��3½ðk6 � p6 1 � p6 2 � p6 3Þ þmq�g; (14)

�B1 ¼ ðk2 �m2
qÞ½ðk� p1Þ2 �m2

q�½ðk� p1 � p2Þ2 �m2
q�

� ½ðk� p1 � p2 � p3Þ2 �m2
q�: (15)

The remainding 5 box integrals can be obtained by Bose
symmetry as illustrated in Fig. 1.

On the other hand, the contribution arising from the
triangle diagrams given in Fig. 2 can be written as follows:

M �1�2�3�4

Tabc ¼ X6
i¼1

F 0
iI

�1�2�3�4

Ti ; (16)

where

F 0
1;3;4;6 ¼ �g3sgVNC

�
� i

2
fabc

�
; (17)

F 0
2;5 ¼ �g3sgVNC

�
i

2
fabc

�
: (18)

In the above expression,

I �1�2�3�4

Ti ¼
Z dDk

ð2�ÞD
T�1�2�3�4

Ti

�Ti

; (19)

where

T�1�2�3�4

T1 ¼ Trf��4ðgqVV � gqAV�
5Þðk6 þmqÞ�!½ðk6 � p6 1 � p6 2Þ þmq���3½ðk6 � p6 1 � p6 2 � p6 3Þ þmq�g 1

ðp1 þ p2Þ2

�
�
g!	 þ ð
� 1Þ ðp1 þ p2Þ!ðp1 þ p2Þ	

ðp1 þ p2Þ2
�
½g�2�1ðp2 � p1Þ	 þ g�1	ð2p1 þ p2Þ�2 � g	�2ðp1 þ 2p2Þ�1�;

(20)

�T1 ¼ ðk2 �m2
qÞ½ðk� p1 � p2Þ2 �m2

q�½ðk� p1 � p2 � p3Þ2 �m2
q�: (21)

As in the box diagrams case, the remainding 5 triangle
integrals can be obtained by Bose symmetry as illustrated
in Fig. 2.

Notice that we have introduced the general propagator
for the virtual gluon, which depends on the gauge parame-
ter 
. However, the amplitude is gauge independent, as the
longitudinal component of the gluon propagator does not
contribute. To solve the above integrals, we have used the

Passarino-Veltman tensorial decomposition [18] imple-
mented in the FEYNCALC computer program [20].
Once the loop integrals are solved, the amplitude can be

expressed as the sum of the vector part and the axial vector
part as follows:

M �1�2�3�4

abc ¼ M�1�2�3�4

Vabc þM�1�2�3�4

Aabc : (22)

(1) (2) (3)

(4) (5) (6)

FIG. 2. Triangle diagrams contributing to the Vggg vertex.
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The vector amplitude M�1�2�3�4

Vabc receives contributions

only from box diagrams, whereas the axial vector ampli-
tude M�1�2�3�4

Aabc receives contributions from both box

diagrams and triangle diagrams. Both amplitudes satisfy
separately the transversality conditions

pi�i
M�1�2�3�4

Vabc ¼ 0; i ¼ 1; 2; 3; 4; (23)

pi�i
M�1�2�3�4

Aabc ¼ 0; i ¼ 1; 2; 3: (24)

Notice that the vector amplitude also satisfies transversal-
ity conditions for the V vector boson. It is important to
comment that the axial vector amplitude is transverse only
after summing over the box and triangle diagram contri-
butions. Also, each type of diagram leads to a finite am-
plitude, i.e., the contributions from box and triangle
diagrams to the axial vector amplitude are separately finite.
Also, Bose symmetry is satisfied separately by each type of
diagrams:

M �1�2�3�4

V;AB;ATabc ¼ M�1�2�3�4

V;AB;ATabcðp1; �1; a $ p2; �2; bÞ
¼ M�1�2�3�4

V;AB;ATabcðp1; �1; a $ p3; �3; cÞ
¼ M�1�2�3�4

V;AB;ATabcðp2; �2; b $ p3; �3; cÞ;
(25)

where V, AB, AT stand for vector contribution, axial con-
tribution from box diagrams, and axial contribution from
triangle diagrams. On the other hand, while the vector
amplitude is proportional to dabc, the axial amplitude is
proportional to fabc. Accordingly, the vector amplitude can
be written as

M �1�2�3�4

Vabc ¼ gqVVdabc

�
� ig3sgVNC

4�2

�X18
j¼1

fqVj
T�1�2�3�4

Vj
;

(26)

where the fqVj
are finite form factors given in terms of

Passarino-Veltman scalar functions, which are listed in
the Appendix. The T

�1�2�3�4

Vj
Lorentz tensors are gauge

structures, i.e., they satisfy

pj�j
T�1�2�3�4

Vj
¼ 0; j ¼ 1; 2; 3; 4: (27)

The set of 18 terms fqVj
T�1�2�3�4

Vj
appearing in the vector

amplitude can be divided into 3 subsets, each composed of
6 members, all related amongst themselves by Bose sym-
metry. These subsets can conveniently be organized as
follows:

ffqV1
T�1�2�3�4

V1
; � � � ; fqV6

T�1�2�3�4

V6
g;

ffqV7
T�1�2�3�4

V7
; � � � ; fqV12

T�1�2�3�4

V12
g;

ffqV13
T�1�2�3�4

V13
; � � � ; fqV18

T�1�2�3�4

V18
g:

In this way, it is only necessary to list one element of each
set, for instance, the first one of each subset. Making this
choice, the respective gauge structures can be written as

T�1�2�3�4

V1 ¼ ðp1 � p2g
�1�2 � p�1

2 p�2

1 Þ
� ðp1 � p3g

�3�4 � p�3

1 p�4

3 Þ; (28)

T�1�2�3�4

V7 ¼ ðp1 � p3p
�1

2 � p1 � p2p
�1

3 Þ
� ðp2 � p3g

�2�3 � p�2

3 p�3

2 Þp�4

2 ; (29)

TABLE II. Relations dictated by Bose symmetry among the diverse dabcf
q
Vj
T
�1�2�3�4

Vj
terms.

M�1�2�3�4

Vabc p1, �1, a $ p2, �2, b p1, �1, a $ p3, �3, c p2, �2, b $ p3, �3, c

dabcf
q
V1TV1 dabcf

q
V2TV2 dabcf

q
V6TV6 dabcf

q
V3TV3

dabcf
q
V2TV2 dabcf

q
V1TV1 dabcf

q
V5TV5 dabcf

q
V4TV4

dabcf
q
V3TV3 dabcf

q
V5TV5 dabcf

q
V4TV4 dabcf

q
V1TV1

dabcf
q
V4TV4 dabcf

q
V6TV6 dabcf

q
V3TV3 dabcf

q
V2TV2

dabcf
q
V5TV5 dabcf

q
V3TV3 dabcf

q
V2TV2 dabcf

q
V6TV6

dabcf
q
V6TV6 dabcf

q
V4TV4 dabcf

q
V1TV1 dabcf

q
V5TV5

dabcf
q
V7TV7 dabcf

q
V9TV9 dabcf

q
V12TV12 dabcf

q
V8TV8

dabcf
q
V8TV8 dabcf

q
V10TV10 dabcf

q
V11TV11 dabcf

q
V7TV7

dabcf
q
V9TV9 dabcf

q
V7TV7 dabcf

q
V10TV10 dabcf

q
V11TV11

dabcf
q
V10TV10 dabcf

q
V8TV8 dabcf

q
V9TV9 dabcf

q
V12TV12

dabcf
q
V11TV11 dabcf

q
V12TV12 dabcf

q
V8TV8 dabcf

q
V9TV9

dabcf
q
V12TV12 dabcf

q
V11TV11 dabcf

q
V7TV7 dabcf

q
V10TV10

dabcf
q
V13TV13 dabcf

q
V14TV14 dabcf

q
V17TV17 dabcf

q
V16TV16

dabcf
q
V14TV14 dabcf

q
V13TV13 dabcf

q
V18TV18 dabcf

q
V15TV15

dabcf
q
V15TV15 dabcf

q
V17TV17 dabcf

q
V16TV16 dabcf

q
V14TV14

dabcf
q
V16TV16 dabcf

q
V18TV18 dabcf

q
V15TV15 dabcf

q
V13TV13

dabcf
q
V17TV17 dabcf

q
V15TV15 dabcf

q
V13TV13 dabcf

q
V18TV18

dabcf
q
V18TV18 dabcf

q
V16TV16 dabcf

q
V14TV14 dabcf

q
V17TV17
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T
�1�2�3�4

V13 ¼ ðp1 � p3g
�1�2 � p

�1

3 p
�2

1 Þ
� ðp2 � p3g

�3�4 � p
�3

2 p
�4

3 Þ
þ ðp1 � p2p

�1

3 � p1 � p3p
�1

2 Þ
� ðp�2

3 g�3�4 � p�4

3 g�2�3Þ: (30)

The corresponding form factors are listed in the Appendix.
The remainding gauge structures and form factors can be
easily obtained by Bose symmetry, as indicated in Table II.

We now turn to discuss the mathematical structure of the
axial vector amplitude. As already mentioned, this ampli-
tude receives contributions from both box and triangle
diagrams, in contrast with the vector amplitude to which
only the box diagrams contribute. While the contributions
of both box and triangle graphs satisfy separately the Bose
symmetry, one needs to sum over both type of contribu-
tions in order to obtain invariance under the color group.
Because of this, it is more difficult to conciliate both
classes of symmetries in order to write a compact expres-
sion, as in the vector case. So, while a judicious use of the
Schouthen’s identity [21] allows us to write the amplitude
in terms of 21 Lorentz tensor gauge structures, explicit
Bose symmetry is sacrificed. However, we have find that if
the number of gauge structures is enhanced to 24, both
gauge and Bose symmetries can be maintained in a mani-
fest way. In this basis, the axial vector amplitude can be
written as

M �1�2�3�4

Aabc ¼ gqAVfabc

�
� ig3sgVNC

4�2

�X24
j¼1

fqAj
T�1�2�3�4

Aj
;

(31)

where the fqAj
coefficients are Lorentz scalar form factors,

whereas the T�1�2�3�4

Aj
tensors are gauge structures satisfy-

ing the transversality conditions

pj�j
T
�1�2�3�4

Aj
¼ 0; j ¼ 1; 2; 3: (32)

In this extended basis, the axial vector amplitude can be
written in terms of compact expressions. As it occurs for
the vector amplitude, in this case the set 24 gauge struc-
tures—together with their 24 associated form factors—can
be classified into 4 subsets, each composed of 6 elements,
all related through Bose symmetry. In this way, it is only
necessary to write one representative element of each
subset. Accordingly, we have chosen the following repre-
sentative gauge structures:

T�1�2�3�4

A1 ¼ ��3�4p1p3ðp�1

2 p�2

1 � p1 � p2g
�1�2Þ; (33)

T
�1�2�3�4

A7 ¼ ðp�1

3 ��3�4p1p3 � p1 � p3�
�1�3�4p3Þ

� ðp1 � p2p
�2

3 � p2 � p3p
�2

1 Þ; (34)

TABLE III. Relations dictated by Bose symmetry among the diverse fabcf
q
Aj
T
�1�2�3�4

Aj
terms.

M�1�2�3�4

Aabc p1, �1, a $ p2, �2, b p1, �1, a $ p3, �3, c p2, �2, b $ p3, �3, c

fabcf
q
A1TA1 fabcf

q
A2TA2 fabcf

q
A6TA6 fabcf

q
A3TA3

fabcf
q
A2TA2 fabcf

q
A1TA1 fabcf

q
A5TA5 fabcf

q
A4TA4

fabcf
q
A3TA3 fabcf

q
A5TA5 fabcf

q
A4TA4 fabcf

q
A1TA1

fabcf
q
A4TA4 fabcf

q
A6TA6 fabcf

q
A3TA3 fabcf

q
A2TA2

fabcf
q
A5TA5 fabcf

q
A3TA3 fabcf

q
A2TA2 fabcf

q
A6TA6

fabcf
q
A6TA6 fabcf

q
A4TA4 fabcf

q
A1TA1 fabcf

q
A5TA5

fabcf
q
A7TA7 fabcf

q
A8TA8 fabcf

q
A12TA12 fabcf

q
A9TA9

fabcf
q
A8TA8 fabcf

q
A7TA7 fabcf

q
A11TA11 fabcf

q
A10TA10

fabcf
q
A9TA9 fabcf

q
A11TA11 fabcf

q
A10TA10 fabcf

q
A7TA7

fabcf
q
A10TA10 fabcf

q
A12TA12 fabcf

q
A9TA9 fabcf

q
A8TA8

fabcf
q
A11TA11 fabcf

q
A9TA9 fabcf

q
A8TA8 fabcf

q
A12TA12

fabcf
q
A12TA12 fabcf

q
A10TA10 fabcf

q
A7TA7 fabcf

q
A11TA11

fabcf
q
A13TA13 fabcf

q
A14TA14 fabcf

q
A17TA17 fabcf

q
A16TA16

fabcf
q
A14TA14 fabcf

q
A13TA13 fabcf

q
A18TA18 fabcf

q
A15TA15

fabcf
q
A15TA15 fabcf

q
A17TA17 fabcf

q
A16TA16 fabcf

q
A14TA14

fabcf
q
A16TA16 fabcf

q
A18TA18 fabcf

q
A15TA15 fabcf

q
A13TA13

fabcf
q
A17TA17 fabcf

q
A15TA15 fabcf

q
A13TA13 fabcf

q
A18TA18

fabcf
q
A18TA18 fabcf

q
A16TA16 fabcf

q
A14TA14 fabcf

q
A17TA17

fabcf
q
A19TA19 fabcf

q
A21TA21 fabcf

q
A24TA24 fabcf

q
A20TA20

fabcf
q
A20TA20 fabcf

q
A22TA22 fabcf

q
A23TA23 fabcf

q
A19TA19

fabcf
q
A21TA21 fabcf

q
A19TA19 fabcf

q
A22TA22 fabcf

q
A23TA23

fabcf
q
A22TA22 fabcf

q
A20TA20 fabcf

q
A21TA21 fabcf

q
A24TA24

fabcf
q
A23TA23 fabcf

q
A24TA24 fabcf

q
A20TA20 fabcf

q
A21TA21

fabcf
q
A24TA24 fabcf

q
A23TA23 fabcf

q
A19TA19 fabcf

q
A22TA22
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T
�1�2�3�4

A13 ¼ ��1�3�4p3ðp2 � p3p
�2

1 � p1 � p2p
�2

3 Þ
þ ��3�4p1p3ðp�1

2 p�2

3 � p2 � p3g
�1�2Þ; (35)

T
�1�2�3�4

A19 ¼ p1 � p2ðp�2

3 ��1�3�4p2 � p
�3

2 ��1�2�4p3

� g�2�3��1�4p2p3 � p2 � p3�
�1�2�3�4Þ

þ p
�1

2 ðp�3

2 ��2�4p1p3 � p
�2

3 ��3�4p1p2

� g�2�3��4p1p2p3 � p2 � p3�
�2�3�4p1Þ:

(36)

The corresponding form factors are listed in the Appendix.
Starting from these representative form factors and gauge
structures, it is easy to construct explicitly the remainding
ones, as it is illustrated in Table III.

IV. RESULTS AND DISCUSSION

In this section, we discuss our results for the branching
ratios of the Z ! ggg [9] and Z0 ! ggg decays. The
expression for the decay width of the V ! ggg transition
can be write in a generic way as follows:

�ðV ! gggÞ ¼ mV

3!256�3

Z 1

0

Z 1

1�x
jMj2dydx

¼ �3
sðmVÞ�N2

CmV

384�3c2Ws
2
W

Z 1

0

Z 1

1�x

�X
q;q0

�
40

3
gqVVg

q0
VV

�
1

3

X
�1;�2;�3;�4

V qV �
q0

�

þ 24gqAVg
q0
AV

�
1

3

X
�1;�2;�3;�4

AqA�
q0

��
dydx;

(37)

where the sums in �i represent the boson polarization
sums. The last expression was obtained after using the
following definition:

M V!ggg ¼ gqVVdabc

�
� ig3sgVNC

4�2

�
V q

þ gqAVfabc

�
� ig3sgVNC

4�2

�
Aq; (38)

with

V q ¼
X18
j¼1

fqVj
T�1�2�3�4

Vj
��a�1

ðp1; �1Þ��b�2
ðp2; �2Þ

� ��c�3
ðp3; �3Þ��4

ðp4; �4Þ; (39)

Aq ¼
X24
j¼1

fqAj
T�1�2�3�4

Aj
��a�1

ðp1; �1Þ��b�2
ðp2; �2Þ

� ��c�3
ðp3; �3Þ��4

ðp4; �4Þ: (40)

The phase space dimensionless variables x and y are

defined by

x ¼ 2p0
1

mV

; y ¼ 2p0
2

mV

; z ¼ 2p0
3

mV

; (41)

which satisfy the relation xþ yþ z ¼ 2. In terms of these
variables, the scalar products pi � pj are given by

p1 � p2 ¼ m2
V

2
ðxþ y� 1Þ; (42)

p1 � p3 ¼ m2
V

2
ð1� yÞ; (43)

p2 � p3 ¼ m2
V

2
ð1� xÞ: (44)

The definition domain of these variables is 0 � x � 1 and
1� x � y � 1. Now, we are ready to present numerical
results. In obtaining these numerical results, the Passarino-
Veltman scalar functions were evaluated numerically using
FF-FORTRAN library routines [22].

A. Decay Z ! ggg

In the minimal 331 model, the contribution to the decay
width of the Z ! ggg transition can be written as the sum
of three partial widths:

�ðZ ! gggÞ ¼ �qi þ �Qi
þ �qi�Qi

; (45)

were �qi , �Qi
, and �qi�Qi

are the contributions of the SM

quarks, the exotic quarks, and the interference between
these contributions, respectively. Before presenting the
numerical values for these quantities, let us present a brief
discussion about the decoupling nature of the vector and
the axial vector amplitudes when considered as a function
of the quark mass. In Fig. 3, the behavior of the vector
amplitude (VVVV, left panel) and the axial vector ampli-
tude (AVVV, right panel) are shown as a function of the
quark mass. The behavior is shown for the bare amplitudes
�ðZ ! gggÞ=ðgqVZÞ2 and �ðZ ! gggÞ=ðgqAZÞ2. It can be
seen from this figure that these amplitudes vanish in the
heavy mass limit, which shows their decoupling nature.
The behavior of the real and imaginary parts of the ampli-
tudes are shown, too. From this figure, it can be appreciated
that the width decay reaches its maximum value for a quark
mass of about mq ¼ 3:2 GeV and immediately drops to a

negligible value. As we will see below, the vector ampli-
tude is dominated by the bottom quark. As it can be
appreciated from Fig. 3, the bare axial vector amplitude
reaches its maximum value for mq ¼ 0:67 GeV. Since the

axial vector couplings of Z to up and down quarks are
equal in magnitude but have opposite signs, there is no
contribution in the degenerate case, but a maximum con-
tribution is found for the highest mass difference of the
members of a family. Consequently, the dominant contri-
bution to this amplitude arises from the third family.
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Indeed, both the vector and axial vector amplitudes present
a nondecoupling behavior when considered as a function of
the mass difference between the members of a family, as
they tend to a finite nonzero value for a large mass differ-
ence. This behavior, which nicely reproduces the results
given in Ref. [6], is shown in Fig. 4.

We now proceed to present numerical results. We will
use the following values for the various parameters appear-
ing in the amplitudes [23]: mZ ¼ 91�1876 GeV, mu ¼
0�00255 GeV, md ¼ 0�00504 GeV, ms ¼ 0�104 GeV,
mc ¼ 1�27 GeV, mb ¼ 4�2 GeV, mt ¼ 171�2 GeV, s2W ¼
0�23119, �sðmZÞ ¼ 0�1176, and �ðmZÞ ¼ 1=128.
Regarding the masses of the exotic quarks, the lower bound
mQ > 240 GeVwas derived from the search for supersym-

metry at the Tevatron and would reach the level of 320 at
run 2 [24]. In Ref. [25] the production of exotic quarks at
THERA and LHC via E6 theories has been studied, and
they have found that exotic quark masses can be high as
450 GeVand 1.2 TeV. It is then reasonable to consider the
range 500 GeV � mQ � 700 GeV for our numerical

analysis. In this scenario we will consider that mD;S;T ¼
500 GeV. With these values, one obtains

�qi ¼ 3:49� 10�5 GeV; (46)

�Qi
	 10�12 GeV; (47)

�qi�Qi
	 10�10 GeV: (48)

From these results, it is clear that the exotic quark contri-
bution is absolutely marginal. As far as the contribution of
the known quark is concerned, in Table IV more detailed
information is presented. From this table, it can be appre-
ciated that both the vector amplitude and the axial vector
amplitude are essentially determined by the third family
and that the latter is almost 1 order of magnitude lower than
the former. All of our results are in perfect agreement with
those given in the literature, especially with those pre-
sented in Ref. [6].
Finally, the branching ratio for the Z ! ggg decay in the

minimal 331 model is given by

Br ðZ ! gggÞ ¼ 1:4� 10�5; (49)

which is determined essentially by the third family of
quarks, as the contribution of the exotic quark is negligible.

B. Decay Z0 ! ggg

We now turn to present numerical results for the Z0 !
ggg decay. Although the mathematical structure of the
decay width is identical to the one associated with the
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FIG. 4. Nondecoupling of vector and axial vector amplitudes
of the Z ! ggg decay as a function of the mass difference of the
members of the doublet �m ¼ mu �md. The graphic shown
corresponds to the case md ¼ 0.
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FIG. 3. Decoupling of the vector and the axial vector amplitudes of the Z ! ggg decay when considered as a function of the quark
mass. The behavior of both the real and imaginary parts of the amplitudes are shown.
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Z ! ggg decay, its numerical behavior presents some
differences due to the fact that the 331 model treats the
third family differently compared to the other two. As it
can be appreciated from Table I, the main differences
between the Z0 �qq and Z �qq couplings are the following:
i) The vector (gq

VZ0) and axial vector (gq
AZ0) couplings,

which are about 1 order of magnitude larger than the
respective couplings of the Z boson. As we will see below,
these facts lead to partial decay widths larger than those
associated with the Z boson. ii) The axial vector couplings
of Z0 to the members of a doublet are not the negatives of
one another, as it occurs for the case of the standard Z
boson. iii) The Z0 coupling to the third family differs from
its couplings to the first two, which are replicas of onean-
other. As in the case of the Z ! ggg decay, we express the
decay width into three contributions:

�ðZ0 ! gggÞ ¼ �qi þ �Qi
þ �qi�Qi

; (50)

where �qi , �Qi
, and �qi�Qi

are the contributions of the SM

quarks, the exotic quarks, and the interference between
these contributions, respectively. As far as the Z0 boson
mass is concerned, although it is not possible to obtain
model-independent bounds, current limits from precision
experiments imply that mZ0 * 500 GeV [12]. Similar
bounds were obtained in Ref. [26] from both the 331
minimal model and the 331 model with right-handed neu-
trinos. In Ref. [27], a bound for the Z0 mass of the order of

300 GeV has been obtained from 331 models at the elec-
troweak scale. Studies in the context of 331 models predict
lower bounds greater than 1.5 TeV [28]. In addition,
model-dependent upper bounds of the Z0 mass are im-
posed, too, by means of the Landau pole in the context
of a perturbative treatment of the model [16], where such
bounds are usually estimated around 3 TeV. Therefore, we
have considered four scenarios corresponding to mZ0 ¼
500, 1000, 2000, and 3000 GeV for decoupling analysis,
to which a maximum value is found for the vector ampli-
tude in values of quark masses of mq ¼ 18, 35, 71, and

107 GeV, respectively. A similar behavior is observed for
the axial vector contribution when considered as a function
of the quark mass. In Fig. 5, the decoupling nature of the
partial vector and axial vector decay widths are shown as a
function of the quark mass for the case mZ0 ¼ 1000 GeV.
The nondecoupling nature of both the vector and axial
vector contributions, when considered as a function of
the mass difference between the members of a doublet, is
shown in Figs. 6 and 7. It is interesting to compare these
figures with Fig. 4, from which a very different behavior on
the nondecoupling nature of the amplitudes can be
appreciated.
We now proceed to present numerical results.

From now on, we will consider two scenarios, namely,
fmZ0 ¼ mQ ¼ mD ¼ mS ¼ mT ¼ 500 GeVg and fmZ0 ¼
1500 GeV; mQ ¼ mD ¼ mS ¼ mT ¼ 700 GeVg. The re-

TABLE IV. Family contribution to the �ðZ ! gggÞ decay in the standard model. Here, �VI and �AI represent the interference effect
induced by the three families into the vector and axial vector width decays, respectively.

Family �V GeV �A GeV �VI GeV �AI GeV �qi GeV �Qi
GeV �qi�Qi

GeV

u, d 1:95� 10�6 	10�11 � � � � � � � � � � � � � � �
c, s 2:21� 10�6 1:5� 10�6 � � � � � � � � � � � � � � �
t, b 1:09� 10�5 4:69� 10�6 � � � � � � � � � � � � � � �
Total 1:51� 10�5 6:19� 10�6 1:66� 10�5 �3:03� 10�6 3:49� 10�5 	10�12 	10�10
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FIG. 5. Decoupling of the vector and the axial vector amplitudes of the Z0 ! ggg decay when considered as a function of the quark
mass. The behavior of both the real and imaginary parts of the amplitudes are shown.
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sults are shown in Table V, where the more important role
played by the exotic quarks can be appreciated. Although
the contribution of the third family of known quarks to the
Z0 ! ggg is dominant, as it occurs for the Z ! ggg tran-
sition, it should be noticed that in this case there is a
significant contribution from the exotic quarks, which
tends to be dominant for a heavier Z0 boson. This situation
is illustrated in Tables VI and VII where the contributions
arising from the three families, as well as the interference

effects, are shown. In these Tables, we also present the
values for �s obtained from Ref. [23]. On the other hand,
the contribution coming from the exotic quarks is shown
with some detail in Table VIII, in which the interference
effects among exotic quarks is also shown. It is important
to notice that the individual contribution of the exotic
quarks is so important as those of the known quarks;
however, the global contribution is reduced considerably
due to an interference effect between the D and S quarks

0x100

1x10-3

2x10-3

3x10-3

4x10-3

5x10-3

6x10-3

 0  250  500  750  1000  1250

Γ (
Z

’ →
 g

 g
 g

) 
 [G

eV
]

∆m [GeV]

mZ’=500 GeV
mZ’=1500 GeV

0x100

1x10-3

2x10-3

3x10-3

4x10-3

 0  250  500  750  1000  1250

Γ (
Z

’ →
 g

 g
 g

) 
 [G

eV
]

∆m [GeV]

mZ’=500 GeV
mZ’=1500 GeV

FIG. 6. Nondecoupling behavior of the vector (left) and the axial vector (right) amplitudes of the Z0 ! ggg decay when considered
as a function of the mass difference of the members of the doublet of the first family. The behavior for the second family is identic.
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FIG. 7. Nondecoupling behavior of the vector (left) and the axial vector (right) amplitudes of the Z0 ! ggg decay when considered
as a function of the mass difference of the members of the doublet of the third family.

TABLE V. Partial and total decay widths for the scenarios fmZ0 ¼ mQ ¼ mD ¼ mS ¼ mT ¼ 500 GeVg and fmZ0 ¼
1500 GeV; mQ ¼ mD ¼ mS ¼ mT ¼ 700 GeVg.
mZ0 GeV mQ GeV �s �qi GeV �Qi

GeV �qi�Qi
GeV �ðZ0 ! gggÞ GeV

500 500 0.104482 2:74� 10�3 1:33� 10�8 8:97� 10�6 2:73� 10�3

1500 700 0.150079 2:27� 10�2 2:8� 10�3 9:11� 10�3 3:46� 10�2
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with the T quark, which is a direct consequence of the
way in which they appear in the SULð3Þ fundamental
representation.

Using the results given in Ref. [12] for the total decay
width of the Z0 boson, the corresponding branching ratio is
given by

Br ðZ0 ! gggÞ ¼ 2:15� 10�5 (51)

for the scenario characterized by a mass of mZ0 ¼
500 GeV and

Br ðZ0 ! gggÞ ¼ 4:95� 10�5 (52)

for the scenario with mZ0 ¼ 1500 GeV.

V. SUMMARY

In this paper, a comprehensive analysis of the rare Z !
ggg and Z0 ! ggg decays in the context of the minimal
331 model has been presented. Explicit expressions for the
amplitudes generated at the one-loop level given in terms
of Passarino-Veltman scalar functions are presented. The
fact that the Vggg vertex (V ¼ Z, Z0) is governed by the
Bose symmetry is exploited to write its associated vertex
function in a compact and manifest SUCð3Þ-invariant way.
The total amplitude is composed by the vector amplitude

and the axial vector amplitude, which are finite and gauge
invariant by themselves and do not interfere among them-
selves, as they are proportional to the color structures dabc
and fabc, respectively. While the axial vector amplitude
receives contributions from both box and triangle diagrams
and can be expressed in terms of 24 form factors, the vector
amplitude arises only from box diagrams and comprises 18
form factors. It turns out to be that each type of diagram
(box or triangle) leads to amplitudes which are free of
ultraviolet divergences and satisfy Bose symmetry.
However, in the case of the axial vector amplitude, gauge
invariance is obtained only after summing over the contri-
butions arising from box and triangle diagrams. It is found
that the vector amplitude also satisfies the transversality
conditions with respect to the V vector boson, which means
that in this amplitude, this vector boson appears only
through the V�� ¼ @�V� � @�V� tensor field. This prop-

erty is not present in the axial vector amplitude, which is
transverse only with respect to the gluonic fields. Our
results are valid for any renormalizable theory and are
model independent in this sense.
As far as the numerical results are concerned, the be-

havior of the vector and axial vector amplitudes are ana-
lyzed as a function of the mass quark and also as a function
of the mass difference of the members of the quark family.

TABLE VI. Family contribution to the �ðZ0 ! gggÞ decay in the scenario mZ0 ¼ 500 GeV. Here, �VI and �AI represent the
interference effect induced by the three families into the vector and axial vector width decays, respectively.

Family �V GeV �A GeV �VI GeV �AI GeV �qi GeV

u, d 2:24� 10�4 4:19� 10�4 � � � � � � � � �
c, s 2:22� 10�4 4:36� 10�4 � � � � � � � � �
t, b 7:18� 10�4 4:05� 10�4 � � � � � � � � �
Total 1:16� 10�3 1:26� 10�3 1:05� 10�3 �7:39� 10�4 2:73� 10�3

TABLE VII. Family contribution to the �ðZ0 ! gggÞ decay in the scenario mZ0 ¼ 1500 GeV. Here, �VI and �AI represent the
interference effect induced by the three families into the vector and axial vector width decays, respectively.

Family �V GeV �A GeV �VI GeV �AI GeV �qi GeV

u, d 2� 10�3 3:73� 10�3 � � � � � � � � �
c, s 1:98� 10�3 3:78� 10�3 � � � � � � � � �
t, b 2:34� 10�2 3:44� 10�3 � � � � � � � � �
Total 2:74� 10�2 1:09� 10�2 �8:85� 10�3 �6:74� 10�3 2:27� 10�2

TABLE VIII. Exotic quark contribution to the Z0 ! ggg decay in the scenario fmZ0 ¼ 1500 GeV; mQ ¼ mD ¼ mS ¼ mT ¼
700 GeVg.
Quark �V

Qi
GeV �V

QD�S
GeV �V

QD�T
GeV �V

QS�T
GeV �A

Qi
GeV �A

QD�S
GeV �A

QD�T
GeV �A

QS�T
GeV

D 8:58� 10�3 � � � - � � � � � � 6:05� 10�6 � � � � � � � � �
S 8:58� 10�3 � � � � � � � � � 6:05� 10�6 � � � � � � � � �
T 1:76� 10�2 � � � � � � � � � 6:05� 10�6 � � � � � � � � �
D, S � � � 1:71� 10�2 � � � � � � � � � 1:21� 10�5 � � � � � �
D, T � � � � � � �2:45� 10�2 � � � � � � � � � �1:21� 10�5 � � �
S, T � � � � � � � � � �2:45� 10�2 � � � � � � � � � �1:21� 10�5
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It was found that both types of amplitudes show a decou-
pling nature with respect to the former case, whereas a
nondecoupling behavior is shown with respect to the latter
case. In the case of the Z ! ggg decay, the axial vector
amplitude vanishes in the degenerate case and reaches its
maximum value for the third family. The axial vector
contribution to this decay is marginal, as it is almost 1
order of magnitude lower than that associated to the vector
amplitude. This decay is insensitive to the presence of
exotic quarks, as it is essentially governed by the third
family, especially by the bottom quark, whose branching
ratio is given by BrðZ ! gggÞ ¼ 1:4� 10�5. All results
given in the literature were nicely reproduced. As for the
Z0 ! ggg decay, its behavior presents some differences
with respect to the standard Z ! ggg decay, as it couples
differently to the SM quarks. In particular, its couplings to
the third family of quarks differs from its couplings to the
first and second families, as in the 331 model in which the
former is accommodated as an antitriplet of SULð3Þ,
whereas the latter two are introduced as triplets of this
group. In this case, the axial vector amplitude does not
vanish in the degenerate case and its contribution is, in
some scenarios, as important as the one given by the vector
amplitude. In a scenario with mZ0 ¼ 500 GeV, the three
families give contributions of the same order of magnitude
to both the vector amplitude and the axial vector ampli-
tude. The situation changes substantially for a heavier Z0
boson, as the vector amplitude receives a dominant con-
tribution from the third family, especially from the top
quark. In this case, the contribution of the exotic quarks
is much less marginal than in the case of the Z ! ggg
decay, and tends to assume a dominant role for a heavier Z0
boson. Although the separate contribution of each exotic
quark is as important as the one arising from the known

quarks, there is an interference effect between the D and S
quarks with the T quark that reduces their global contribu-
tion by about 1 order of magnitude. For instance, in a
scenario withmZ0 ¼ 1500 GeV, this contribution is 1 order
of magnitude lower than that arising from the known
quarks, but it tends to increase with the Z0 mass. In this
scenario, the contribution of the third family to the vector
amplitude is 1 order of magnitude larger than the corre-
sponding contribution of the other two families and also 1
order of magnitude larger than the axial vector component
of the decay width, which receives contributions of the
same order of magnitude from the three families. Thus,
while the Z ! ggg decay is governed by the third family,
the Z0 ! ggg one receives important contributions from
the three families. The contribution of exotic quarks to the
Z ! ggg decay is completely marginal, but they play a
significant role in the case of the Z0 ! ggg decay, espe-
cially for a relatively heavy Z0 boson. In general terms, the
decay width for Z0 ! ggg is almost 3 orders of magnitude
larger than that for Z ! ggg. Also, the Z0 ! ggg decay
has a branching ratio larger than the Z ! ggg decay, which
is of BrðZ0 ! gggÞ ¼ 2:15� 10�5 and BrðZ0 ! gggÞ ¼
4:95� 10�5 for mZ0 ¼ 500 GeV and mZ0 ¼ 1500 GeV,
respectively.
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APPENDIX: FORM FACTORS OF THE Vggg
VERTEX

The 3 representative vector form factors are given by

fqV1 ¼ �B0ð1Þðp13 � 2p23Þ
6p2

13p23

þ B0ð3Þð2p12 � p13Þp23

6p2
12p

2
13

� B0ð2Þðp12 þ p23Þ
6p2

12p23

� C0ð2Þp13ð2p3
12 þ 3p2

23p12 þ 2p3
23Þ

12p3
12p

2
23

þ B0ð4Þðp12 þ p13 þ p23Þ½p12ðp13 � 2p23Þ þ p13p23�
6p2

12p
2
13p23

þD0ð1Þ½2p2
23m

4
q þ p12ð2p13 � 3p23Þp23m

2
q þ 2p2

12p
2
13�

6p12p13p
2
23

þ C0ð4Þðp13 þ p23Þð2p3
13 � 3p2

23p13 � 4p3
23Þ

12p3
13p

2
23

þ C0ð5Þðp12 þ p23Þ½2p13p
3
12 þ 3ð2m2

q þ p13Þp2
23p12 þ 2p13p

3
23�

12p3
12p13p

2
23

� C0ð6Þðp12 þ p13Þ½ð3p13 þ 4p23Þp3
12 � 3p3

13p12 � 2p3
13p23�

12p3
12p

3
13

þ C0ð1Þ
�
1

12
p12

�
3p13 þ 4p23

p3
13

� 2

p2
23

�
� m2

q

2p12p13

�

þ C0ð3Þp23½ð3p13 þ 4p23Þp3
12 � 3p2

13ð2m2
q þ p13Þp12 � 2p3

13p23�
12p3

12p
3
13

� 1

6p12p13

þD0ð3Þ½2p2
12m

4
q þ p12ð�3p2

12 þ 3p13p12 þ 5p13p23Þm2
q þ p2

13p23ð3p12 þ 2p23Þ�
6p3

12p13

þD0ð2Þf2p2
13m

4
q þ p13½3p13ðp13 þ p23Þ � p12ð3p13 þ 4p23Þ�m2

q � p2
12p23ð3p13 þ 4p23Þg

6p12p
3
13

; (A1)
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fqV7 ¼
D0ð2Þm2

q

2p2
23

�
2m2

q

p12

þ p23

p13

�
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fqV13 ¼
B0ð3Þð4p12 þ p13Þ
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The 4 representative axial vector form factors are given by
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In writing the above expressions we have introduced the following definitions:
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where pij � pi � pj, with i, j ¼ 1, 2, 3.

[1] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M.
Wohlgenannt, Eur. Phys. J. C 23, 363 (2002).

[2] C. N. Yang, Phys. Rev. 77, 242 (1950); L. D. Landau,
Dokl. Akad. Nauk, SSSR 60, 207 (1948).

[3] M. L. Laursen, K. O. Mikaelian, and M.A. Samuel, Phys.
Rev. D 23, 2795 (1981); 25, 710 (1982); M. L. Laursen
and M.A. Samuel, Z. Phys. C 14, 325 (1982); M. L.
Laursen, M.A. Samuel, G. B. Tupper, and A. Sen, Phys.
Rev. D 27, 196 (1983).

[4] S. C. Lee and W.C. Su, Phys. Rev. D 38, 414 (1988).
[5] J. J. van der Bij and E.W.N. Glover, Nucl. Phys. B313,

237 (1989).

[6] R. Hopker and J. J. van der Bij, Phys. Rev. D 49, 3779
(1994).

[7] V. Costantini, B. De Tollis, and G. Pistoni, Nuovo Cimento
Soc. Ital. Fis. 2A, 733 (1971).

[8] V. N. Baier, E. A. Kurayev, and V. S. Fadin, Yad. Fiz. 31,
700 (1980) [Sov. J. Nucl. Phys. 31, 364 (1980)].

[9] For some reviews on rare Z decays, see E.W.N. Glover
and J. J. van der Bij, in Z. Physics at LEP-1, Proceedings
of the Workshop, Geneva, Switzerland, September 4-5,
1989, edited by G. Altarelli et al. (CERN Yellow Report
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