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Decays Z — ggg and Z' — ggg in the minimal 331 model
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We perform a complete calculation at the one-loop level for the Zggg and Z'ggg couplings in the
context of the minimal 331 model, which predicts the existence of a new Z’ gauge boson and new exotic
quarks. Bose symmetry is exploited to write a compact and manifest SU~(3)-invariant vertex function for
the Vggg (V = Z, Z') coupling. Previous results on the Z — ggg decay in the standard model are
reproduced. It is found that this decay is insensitive to the effects of the new exotic quarks. This in contrast
with the Z' — ggg decay, which is sensitive to both the standard model and exotic quarks, whose
branching ratio is larger than that of the Z — ggg transition by about a factor of 4.
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I. INTRODUCTION

There are no couplings of gluons with the neutral elec-
troweak gauge bosons (V = v, Z) at the level of classical
action in a renormalizable theory,' but they can be induced
via loops. At the one-loop level, only quartic couplings of
the type Vggg and VVgg can be generated, as the trilinear
V gg ones are forbidden at any order of perturbation theory
by Yang’s theorem [2]. In particular, the Zggg coupling is a
very interesting prediction of perturbative quantum field
theory, which allows one to examine the interplay of the
strong interactions and the weak interactions, as it repre-
sents a rare case where purely strong interacting particles
couple to purely weak interacting particles. Also, this
coupling is interesting from the phenomenological point
of view, because it is much less suppressed than the purely
electroweak couplings VVVV. Several authors have
studied the decay Z — ggg in the standard model (SM)
[3-6]. The Lorentz structure of this vertex is governed by
the vector and axial vector couplings of the Z boson to
quarks, which leads to an amplitude made of two finite and
gauge-invariant subamplitudes that do not interfere among
themselves due to their different color structure. Because
of this, both the vector and the axial vector subamplitudes
characterizing the Zggg coupling have separately been
studied in the literature. It turns out to be that, except for
some color factors, the vector part of the Zggg is the same
as the four photon interaction in QED [7]. This result was
used in Ref. [8] to calculate the y*ggg coupling, which
was further adapted to study the vector Zggg coupling [3].
The contribution of triangle diagrams to the axial vector
Zggg coupling was calculated in Ref. [4], which however
is not gauge invariant. The complete calculation for the
axial vector part, which comprises triangle and box dia-

"This class of couplings arises at the level of classical action in
the noncommutative standard model [1], but this theory is not
renormalizable.
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grams, was done in Ref. [S]. The impact of the third family
is analyzed analytically in the limit m;,, — 0 and m, — o0 in
Ref. [6]. In general terms, as we will see below, both the
vector and axial vector amplitudes are essentially deter-
mined by the third family, the latter one playing a marginal
role with respect to the former.

In this work we are interested in studying the rare decays
[9] Z— ggg and Z' — ggg within the context of the so-
called 331 model [10]. This model, which is based in the
SU-(3) X SU.(3) X Ux(1) gauge group, predicts the ex-
istence of new gauge bosons, among them, a new Z' gauge
boson that has some interesting features [11], such as the
possibility of yielding signals of new physics at the TeV
scale. In this model, the lepton spectrum is the same as in
the SM, but it is arranged in antitriplets of SU;(3). The
quark sector is also arranged in the fundamental represen-
tation of this group, which requires the introduction of
three new quarks. An interesting feature of the model is
that anomalies cancel out when all of the generations are
summed over, which means that the family number must
be a multiple of the color number, which suggests a pos-
sible approach to solving the generation replication prob-
lem. In order to endow all of the particles with mass, a
Higgs sector composed by three triplets and one sextet of
SU;(3) is required, though only one of the triplets is
needed to break down SU;(3) X Ux(1) into SU,(2) X
Uy(1) at the new physics scale u>wv, where v =
246 GeV is the Fermi scale. In the first stage of sponta-
neous symmetry breaking (SSB), singly and doubly
charged gauge bosons emerge in a doublet of the SU; (2)
group, as well as a new neutral Z’ boson. The three exotic
quarks (D and S with charge —4/3 in units of the positron
charge, and T with charge 5/3) do not couple to the W
gauge boson, since they emerge as singlets of SU; (2) and
get their mass at the u scale. However, these exotic quarks
do couple to all of the neutral gauge bosons of the theory,
namely, Z', Z, vy, and g [12]. Besides studying the impact
of the new quarks on the Z — ggg decay, we are interested
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in investigating the peculiarities that could present the
Z'ggg couplings due to the presence of these exotic quarks,
which are singlets under the SU; (2) group and present both
vector and axial vector couplings to Z’. Also, it is interest-
ing to investigate the sensitivity of a new heavy Z’ boson to
the three standard quark families, as well as to new quark
particles. We are motivated by the physics potential of the
LHC collider, which will allow one to study directly and in
detail the TeV scale region. In particular, the multipurpose
ATLAS detector [13] has the mission of detecting or ex-
cluding the presence of a new Z’ boson in the TeV scale.
Therefore, it is important to study the decays of this type of
particle, including those rare processes, as the Z' — ggg
transition. We will present exact analytical expressions for
the corresponding amplitudes, which will be used to re-
produce previous results given in the context of the SM for
the Z — ggg decay.

The paper has been organized as follows. In Sec. II, a
brief description of the minimal 331 model is presented
with emphasis in the neutral currents sector. In Sec. III, the
calculation for the one-loop generated on-shell Vggg ver-
tex is presented. Section IV is devoted to the discussion of
our results. In Sec. V, the results are summarized. Finally,
some large mathematical expressions are presented in the
Appendix.

II. THE MINIMAL 331 MODEL

In this section, we will discuss briefly the main features
of the 331 model [10], which is based in the SU(3) X
SU; (3) X Ug(1) gauge group. As already mentioned in the
introduction, the lepton sector of the model is the same as
in the SM, but it is now arranged as antitriplets of SU; (3)
as follows:

li
L, = <y,,,>,(1,3*, 0), i=123. (D
i

In order to cancel the SU,; (3) anomaly, the same number of
fermion triplets and antitriplets are required. This means
that two quark families must be accommodated as triplets
and the other one as an antitriplet. It is customary to choose
the third family as the one transforming as an antitriplet in
order to distinguish the new dynamic effects in the physics
of the top quark from that of the lighter families.
Accordingly, the three families are specified as follows:

[ u c

Ql,Z = d ’ s 7(3’ 3) _1/3);
\D/) \S
/o @)
Q3 = b ’ (3: 3*’ 2/3)’

\ T
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u¢, ¢, ¢ (3%, 1, —=2/3), T¢: (351, -5/3), &
where the exotic quarks D, S, and T have electric charges
of —4/3, —4/3, and 5/3, respectively.

The Higgs sector comprises three triplets and one sextet
of SU;(3), but only one of the triplets is needed to break
SU;(3) X Uxg(1) into SU(2) X Uy(1). The next stage of
SSB occurs at the Fermi scale v and is achieved by the
remaining two triplets. The sextet is necessary to provide
realistic masses for the leptons [14]. In the first stage of
SSB, several particles acquire masses [11,12], among them
the new Z’ gauge boson and the exotic quarks, which are all
singlets of SU;(2) and thus they do not couple to the W
gauge boson at the tree level.” Many details of the Z’
dynamics have already been presented in Ref. [12]. Very
interestingly, in this model the new gauge boson masses are
bounded from above [10,12,15] due to the theoretical
constraint which yields sin?fy, = 5%, =< 1/4 [10,15]. The
fact that the value of s3, is very close to 1/4 at the m scale
leads to an upper bound on the scale associated with the
first stage of SSB, which translates directly into a bound on
the Z’ mass given by mz = 3.1 TeV [15]. It turns out that
when s3,(u) = 1/4, the coupling constant gy associated
with the Ux(1) group becomes infinite and a Landau pole
arises [16]. Here, we will focus on only those features that
are relevant for our discussion. In particular, we need the
couplings of the Z and Z' gauges bosons to quarks. The
neutral currents of the quark sector of the model can be
written as follows [12]:

. _ ig _
LN =ie> 0,(qy,. A" + EZ[qyu(gqu
q q
= &h,vs)aZt + gy, (&Y, — &, vs)aZ*], (5)

where the electromagnetic current has been included, too.
The intensity of the diverse couplings are presented in
Table I. In this table, sy(cy) stands for sinfy (cosfy,) of
the weak angle. On the other hand, the Feynman rules of
QCD are well-known, so we are ready to calculate the
amplitude for the on-shell Vggg (V = Z, Z') vertex. This
will be carried out in the next section. It should be men-
tioned that there is a different version of this model [17]
which introduces exotic leptons but with the same quark
sector. Since both versions the model the quark sector
accommodate the same representation of the SU,(3) X
Ux(1) gauge group, our results are also applicable to this
version with exotic leptons.

>The {Z, Z'} basis does not indeed represent mass eingenstates,
but it is related to the mass eigenstates {Z,, Z,} basis through an
orthogonal transformation [12]. The mixing angle is however
very small and can be ignored in the present analysis.
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TABLE I. Structure of the neutral currents for the quark sector
of the minimal 331 model.
q q q q
Quark 0, 8vz 84z vz 8az
u. ¢ + 2 3—83‘%, 1 _ 1—65%‘/ _ 1+25%V
’ 3 6 2 23c3,\[1-452, 23c3,\J1-452,
d. s _1 _ 3*433‘/ 1 _ 1 _ l—4.r€,/
’ 3 6 2 Zﬁ(rév\/l —45%‘, 2\/503‘,
D.§ —4 8y 0 1-9s} 1
’ 3 3 Vach\[1-4s3, VA1-453,
b 1 3—4s3, 1 1-2s3, 14253,
3 6 2 Zﬁc%,v \/1 —455‘/ Zﬁcﬁv\/l —4sﬁ,
; L2 3 1 1+4s2, V1453,
3 g 2 233, J1-453, 233,
1052 1-11s2 1
T +3 ¥ 0 - Lz —
3 3 V3cl,\[1=4s3, V3\[1-4s],

III. THE ONE-LOOP Vggg COUPLING

In this section, we present the calculation for the on-
shell Vggg (V = Z, Z') vertex. Since the Lorentz structure
of the neutral currents is the same for both the Z and Z’
gauge bosons, we will present a generic amplitude for the
Vggg vertex. We will present explicit expressions for this
amplitude in terms of Passarino-Veltman scalar functions
[18]. To begin with, we establish our notation and con-
ventions. The momenta, Lorentz indices, and color indices
are defined as follows:

Vi (pa)gs, (p1)gh,(p2)gs, (p3), (6)

where all momenta are taken incoming. We will present
our results in terms of scalar products of the way p; - p; =
pij» which are adequate to discuss both of the related
processes, namely, the V — ggg decay, which is the pur-
pose of this work, and the gg — gV reaction, which will be
reported in a future communication together with the pro-
cesses gg — yZ, gg — yZ', and gg — ZZ' [19].

We now proceed to describe the calculation. The con-
tribution to the Vggg coupling occurs through box and
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triangle diagrams, which are shown in Figs. 1 and 2,
respectively. There are six box diagrams and six triangle
diagrams, but only one is needed to work out one of each
class, as the rest are related by Bose symmetry. The invari-
ant amplitude can be written as follows:

Mygee = ZMZIJ?MMEZ“I(PI’ Al)EZZ(Pz, Ay)
q

X 654,3 (p3r /\3)6M4(P4; A4)r (7)

where the sum is over all quark flavors. This amplitude in
turns can be separated into two components as follows:

Wl Sy L — Moy o 3 g Moo 3 g
M abc - MBabc + MTabc ’ ®)

where B and T stand for box and triangle contributions.
The Lorentz tensor structure of the amplitude is dictated by
color gauge invariance and Bose symmetry. Gauge invari-
ance means that the amplitude must satisfy the following
transversality conditions:

pi’uimll«lﬂzﬂslu — 0’ i = 1, 2’ 3’ (9)

abc

whereas Bose symmetry requires that M%#2#3#4 be sym-
metric under the interchange of both i < j (i, j = 1, 2, 3)
and color indexes. The contribution from the box diagrams
displayed in Fig. 1 can be written as

6
Mg‘fm”” = ZT_Ig}#2M3M4 (10)
abc 1 1 i)
i=1
where
Firas= _g?gVNC%(dabc + ifape), (11)
Fr36 = —88vNcidupe = ifape)s (12)

where d,;,. and f,;. are the totally symmetric and totally
antisymmetric structure constants of the color group. The
color structure constants can be obtained from the commu-
tation relations [T¢, T?] = if,,,.T¢ and the anticommuta-

g (p1) Viu(pa)  9h,(p2)
9p,(p2) 9isps) gl (p1)
()
g *I)’Q (p2) V(1) gy (p3)
9is(P3) go (o) g (1)
4)
FIG. 1.

VM([M) gﬁ1<p1> Vu.i(p4>
95, (03) g5 (ps) b, (p2)
3
Vi (pa) _(]:';3 (ps) Vi (pa)
9h,(p2) ), (02) 9o (p)
(5 (6)

Box diagrams contributing to the Vggg vertex.
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Viua(pa)
PRGN
g1, (p1) g5 (p1)
Gy (p2) 95, (ps)
9., (P3)
(D
9, (p1)
by (p2) g5 (1)
g, (p3) 91,(D3)
Vi (pa)
NS
“4)
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Viua(pa) Via(pa)
I U NN I U
Ry
9:3(p3)
b, (p2) 9 (p1)
“000
2 3
b, (p2) 95 (p3)
g5, (p1)
b, (12)
Viiy(pa) Viu(ps)
NN NN
@) (6)

FIG. 2. Triangle diagrams contributing to the Vggg vertex.

tion relations {T% T*} = 6**/3 + d,,.T¢ for the SU~(3)
generators. In addition, gy = g/2cy, and N = 3 is the
quark color number. The I}!***3** tensors appearing in
the above expression are given by

D Moy po 3 ey
dPk Tk,

T lmabsbs — P A—Bi’ (13)
where
Ttk = Tr{y*(gly — ghyy) ) K + m,)
X ym[(Kk = py) + m,]
Xy [(f = 1 — B2) + m,]
Xy = py — po — B3) + myl}, (14)

Apy = (K — mé)[(k —p1)? - mé][(k —p1—p) - mé]
X [(k = py = ps— p3)* —mk] (15)

The remainding 5 box integrals can be obtained by Bose
symmetry as illustrated in Fig. 1.
|

On the other hand, the contribution arising from the
triangle diagrams given in Fig. 2 can be written as follows:

Tk = TrlyR(gly — ghv Y )R+ m)y (K = b1 = B2) + m vy [(K = 1 = o = F3) + mylt————

(P1 + P2)u(pr + P2),
(p1 + po)?

<[ gup + €= 1)

A = (k* — m?])[(k —P1— P2)2

As in the box diagrams case, the remainding 5 triangle
integrals can be obtained by Bose symmetry as illustrated
in Fig. 2.

Notice that we have introduced the general propagator
for the virtual gluon, which depends on the gauge parame-
ter £. However, the amplitude is gauge independent, as the
longitudinal component of the gluon propagator does not
contribute. To solve the above integrals, we have used the

6
Mpapatats = 3 FiIparars, (16)
i=1
where
i
Flaae = _g?ngc<— Efabc)’ (17)
i
hs = _gggVNC<§fabc)~ (18)
In the above expression,
]M}“2#3M4 — f de T’I’Ifil'uzlhlu4 (19)
n (27T)D Ar;
where
1
(p1 + pa)?

][8“2“‘(192 — p)? + g"P(2py + pr)*r — gPt2(py + 2py)H]

(20)

—mgl[(k = p; — py — p3)* — mg]. (21)

[

Passarino-Veltman tensorial decomposition [18] imple-
mented in the FEYNCALC computer program [20].

Once the loop integrals are solved, the amplitude can be
expressed as the sum of the vector part and the axial vector
part as follows:

M#]MZ.MMA — M#1#2M3M4 + M#1M2M3M4

abc - Vabc Aabc (22)
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The vector amplitude Mj,!72#3#4 receives contributions
only from box diagrams, whereas the axial vector ampli-
tude ML H2H3H receives contributions from both box
diagrams and triangle diagrams. Both amplitudes satisfy
separately the transversality conditions

P Myt =0, i=1,234  (23)

Pig, M2 =0, i=1273. 24)
Notice that the vector amplitude also satisfies transversal-
ity conditions for the V vector boson. It is important to
comment that the axial vector amplitude is transverse only
after summing over the box and triangle diagram contri-
butions. Also, each type of diagram leads to a finite am-
plitude, i.e., the contributions from box and triangle
diagrams to the axial vector amplitude are separately finite.
Also, Bose symmetry is satisfied separately by each type of
diagrams:

Mo 3y My o 3 g
MY A Tabe = MV apatabe(P1 i1, @ = pa, o, b)

— Moy o 3 g
- MV,AB,ATabc(pl’ M1, @ <> p3, (3, C)

— Moy Mo 3 g
= MV,AB,ATabL'(pZ’ M2, b P3s 13, C),

(25)

where V, AB, AT stand for vector contribution, axial con-
tribution from box diagrams, and axial contribution from
triangle diagrams. On the other hand, while the vector
amplitude is proportional to d,,., the axial amplitude is
proportional to f ;.. Accordingly, the vector amplitude can
be written as

PHYSICAL REVIEW D 80, 033006 (2009)
18
igig VN c
ML = gl E05E) ST

(26)

where the [},

Passarino-Veltman scalar functions, which are listed in
the Appendix. The T7'#*#3*¢ Lorentz tensors are gauge
J

are finite form factors given in terms of

structures, i.e., they satisfy

P, Ty =0, j=1,234 27)

The set of 18 terms f?,/ T"‘,‘j 1H21384 appearing in the vector

amplitude can be divided into 3 subsets, each composed of
6 members, all related amongst themselves by Bose sym-
metry. These subsets can conveniently be organized as
follows:

q ey o 3 g My Mo 3 g
TH ;"'er(,Ts },

{f‘] TM1M2M3M4 v q M,U«zlhlu
’ VRtV

q TM]MZIM/M e fq /J«lltzll«zlm
Vis® Vis * S Vig T Vig

In this way, it is only necessary to list one element of each
set, for instance, the first one of each subset. Making this
choice, the respective gauge structures can be written as

Ty Ha#sts = (py - prghite — ph' pl?)
X (py - psghets — piPpst),  (28)
Tkt = (py - psph* — py - paph')

X (py - p3ghe#s — p52ph?)ph,  (29)

TABLE II.  Relations dictated by Bose symmetry among the diverse d,.. /7, Ty'"*"*"" terms.
Myt P1s M1, @< Po, oy b py, g, @ o ps3, us, ¢ po, Mo, b e p3, g,
dapef 1 Tvi dapef12Tva dapefV6Tve dapef13Tva
dapef Vo Tva dapefi1 Ty dapefysTys dapefV4Tva
dabcf@S TV3 dabcfil/s TVS dabcfg/leVél dahcfg/l TVl
dabcf€4TV4 dabcf?/(,TV6 dabcf%STV3 dab('fg/zTVZ
dapefysTvs dapef13Tv3 dape V2 Tva dapefV6Tve
dapef V6T ve dapef14Tva dape i1 Ty dapefysTvs
dapef 7Ty dapefoTvo dapef 12 Tvin dapefrgTvs
dabcf%STVS dabcfgloTVIO dabcfgllTVII dubcf§1/7TV7
dapefyoTvo dapef 17Ty dapefV10Tv10 dapefin Ty
dapefV10Tvio0 dapefisTvs dapefoTvo dapefV12Tviz
dabcfgl 1 TVll dabcfelzTVIZ dahcf?/gTVQK dab(fg/QTV‘)
dapef 12 Tvia dapef1 Ty dapef7Tv7 dapefi10Tv10
dapef13Tvi dapefV1aTv1a dapefy17Tvi7 dapefV16Tv16

dabr.fgLSTVIS
dabcf€17TV17
dapef18Tvis
dabcf@lSTVIS
dabcfelsTVIG

dabcfglétTVM
dabcf@]STVIS
dabcf%l6TV16
dapef 17 Tvi7
dabcfngTVléi

dapeSfT15Tvis
dabcf\q/14TV14
dab(rf;1/13T\/l3
dapefT1sTvis
dabcf€/17TV17

dubc.fgl8TV18
dabcfglﬁTVm
dapefV15Tvis
dapef13Tv13
dabcf€l4TV14
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ThEM = (p - psghite — pitpi?)

X (py * p3gh#s — ph? pk*)

+ (p1* 2P — p1 - p3py")
X (péngM3M4 —_ pé’qgl-”zﬂﬂ). (30)

The corresponding form factors are listed in the Appendix.
The remainding gauge structures and form factors can be
easily obtained by Bose symmetry, as indicated in Table II.

We now turn to discuss the mathematical structure of the
axial vector amplitude. As already mentioned, this ampli-
tude receives contributions from both box and triangle
diagrams, in contrast with the vector amplitude to which
only the box diagrams contribute. While the contributions
of both box and triangle graphs satisfy separately the Bose
symmetry, one needs to sum over both type of contribu-
tions in order to obtain invariance under the color group.
Because of this, it is more difficult to conciliate both
classes of symmetries in order to write a compact expres-
sion, as in the vector case. So, while a judicious use of the
Schouthen’s identity [21] allows us to write the amplitude
in terms of 21 Lorentz tensor gauge structures, explicit
Bose symmetry is sacrificed. However, we have find that if
the number of gauge structures is enhanced to 24, both
gauge and Bose symmetries can be maintained in a mani-
fest way. In this basis, the axial vector amplitude can be
written as

PHYSICAL REVIEW D 80, 033006 (2009)
ig3g VN c <
.7\45;2?”3”4 — gZVfabc( )qu T,ulﬂvusm
3D

where the ff{_ coefficients are Lorentz scalar form factors,
J
whereas the 7'#*#3*4 tensors are gauge structures satisfy-
J
ing the transversality conditions

Vo kY L —
pm]T A, =0,

j=1223. (32)
In this extended basis, the axial vector amplitude can be
written in terms of compact expressions. As it occurs for
the vector amplitude, in this case the set 24 gauge struc-
tures—together with their 24 associated form factors—can
be classified into 4 subsets, each composed of 6 elements,
all related through Bose symmetry. In this way, it is only
necessary to write one representative element of each
subset. Accordingly, we have chosen the following repre-
sentative gauge structures:

TXIIM2M3M4 = 6#3#4P1P1(p'u’1 Mo Py pagtite),  (33)

TK;M2M3M4 — (pé’“leﬂsll«tmpz - pr e p36M1M3M4P3)

X (p1 - paps? — P2 p3pid), (34)

TABLE III. Relations dictated by Bose symmetry among the diverse f . fZ,TX,l“ 24354 terms.

MZ:;ZLCZ#BMA Pis M1, @ < Py, po, b Pi> M1, d < pP3, U3, € P2 M2, b= p3, us, c
JaveS a1 Tar JaveS 42T FaveS 6T SaveS 43T a3
fabcfZZ TAZ fabcff\] TAI fahcfZS TAS fabcf,?m TA4
fabcfz3 TA3 fabcf;{j TAS fubcszt TA4 fab(er] TAl
JaveS3aTas FaveFa6T a6 Favef 33T a3 Favef 32 Ta2
fubcfzs TAS fubcf;]B TA3 fabcffu TA2 .fabcfZﬁ TA6
fabcffc]\()TAG fabc'fZ4TA4 fab(rf,?‘,] TAI fabcfgs TAS
FabeS 37T a7 SavefasTas favefi12Tarz SaveS 49T o
FavefasTas Savef 37T FaveSa11Tan FaveFa10Ta10
FaveS 49T no FaveSanTan FaveS410Ta10 SaveS 47 Ta7
fabcf,Z]()TAIO fab(fzuTAlZ fabcfZQTAQ fabcfZSTAS
JaveS a1 Tan favefroT a0 JaveSisTas faveS 412 Tar2
Favefa12Tarz Favefa10Tar0 SaveS 47 Ta7 FaveS i1 Tan
fubcfj]\l?)TAB fahcfZ]4TAl4 fabcfZ]7TAl7 fabcfZ]ﬁTAlé
FaveS1aTar4 FaveS 413 a13 Favef 18T ars FaveS 15T ars
FaveFaisTars JaveS 417 Ta17 FaveSa16Tat6 SaveSa1aTa1a

fahcmeTAl()
fabcf,?\17TA17
FaveSarsTars
FaveS 10T 410
fabcszoTAm
fabcf,?\zl TA21
FavefannTarn
Favef a3 Tars
JaveSaaT a4

fabcf/(ilgTAIB
fab(fZ]jTAIS
fabcfZl()TAm
FaveS a1 Tazt
fabcfgzz TA22
fabcfX19TA19
FaveS 20T a20
JaveS 424 Taz4
fabcfZZB TA23

fabcfﬁ]STAH
fahcfZl3TAl3
Javefa1aTars

fabcfZl:;TAlS
fabcfgISTAIS
favefh17Tar7

FaveS2aTaza FaveS 20T a20
FaveS 33T a23 FaveSa10Ta10
FaveS a2 Tar Favef 33T az3
FaveSanTan FaveSa2aTa0a
FaveS 20T a20 FaveS a1 Tant
Favefa10Tar0 FaveS 32T a2
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My Mo 3 g . M2 . 1%
Tyi3 = eliistals(py - pypi® — py - paps?)

M1 M2
+ 6#3#4!’1?3(1)2 Pyt —poy- p3gﬂlﬂ«2), (35)
T§f9MMM =p .pz(pgbzeﬂmwwz — p;’ eM1ma14P3
— gM2M3EMIM4P2P3 - pa- pgeﬂlﬂzlhﬂat)

K (M3 — pM2
+ pb (P2 eM2M4P1P3 P4 eM3H4P1P2

— gM2M36M4P1P2P3 — Py p36“2'"’3'“4p1).

(36)
The corresponding form factors are listed in the Appendix.
Starting from these representative form factors and gauge

structures, it is easy to construct explicitly the remainding
ones, as it is illustrated in Table III.

IV. RESULTS AND DISCUSSION

In this section, we discuss our results for the branching
ratios of the Z— ggg [9] and Z' — ggg decays. The
expression for the decay width of the V — ggg transition
can be write in a generic way as follows:

ryv-— 2dyd
(V—ggg) = 3,2567T fflxlﬂ\/ll ydx
_ (mv)aNCmV//
38473 ¢y, 5%, 1—x

XZ[ 8(\1/vg(\1/’v(; Z quz/)

AL A2 A3, Ay
(1 .
+24gjgvgzv(§ > ﬂlqﬂlq,)]dydx,
AL Ay A3, Ay
37

where the sums in A; represent the boson polarization
sums. The last expression was obtained after using the
following definition:

- 3
igs8vNc
477.2 )Vfi

— o4 —
M V—ggg = gVVdabc(

. 3 N
i858y C)ﬂq, (38)

+ ggvfabc(_ 477_2

with
18
Vq — qu TM1M7M2M4 *a(pl’ A )EM(Pz» )\2)

X €,5.(P3, A3)€,,(Pay As), (39)

24
leq = ZfA TMMMM " (Pp 1)62172(1?2, Ay)
j=1

X €55 (p3, A3)€, (P4, Ag)- (40)

The phase space dimensionless variables x and y are
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defined by

2 2p9 29

N . ST
my my my

which satisfy the relation x + y + z = 2. In terms of these

variables, the scalar products p; - p; are given by

m2

P pz——(x+y—1) (42)
my

P p3= 7(1 - (43)

P2 p3 = —(1 - x). (44)

The definition domain of these variables is 0 = x = 1 and
1 —x =y =1. Now, we are ready to present numerical
results. In obtaining these numerical results, the Passarino-
Veltman scalar functions were evaluated numerically using
FF-FORTRAN library routines [22].

A. Decay Z — ggg

In the minimal 331 model, the contribution to the decay
width of the Z — ggg transition can be written as the sum
of three partial widths:

I'(Z — ggg)

were I',, 'y, and Iy _, are the contributions of the SM
quarks, the exotic quarks, and the interference between
these contributions, respectively. Before presenting the
numerical values for these quantities, let us present a brief
discussion about the decoupling nature of the vector and
the axial vector amplitudes when considered as a function
of the quark mass. In Fig. 3, the behavior of the vector
amplitude (VVVV, left panel) and the axial vector ampli-
tude (AVVV, right panel) are shown as a function of the
quark mass. The behavior is shown for the bare amplitudes
I'(Z— ggg)/(gl,)* and T'(Z — ggg)/(g4,)*. 1t can be
seen from this figure that these amplitudes vanish in the
heavy mass limit, which shows their decoupling nature.
The behavior of the real and imaginary parts of the ampli-
tudes are shown, too. From this figure, it can be appreciated
that the width decay reaches its maximum value for a quark
mass of about m, = 3.2 GeV and immediately drops to a
negligible value. As we will see below, the vector ampli-
tude is dominated by the bottom quark. As it can be
appreciated from Fig. 3, the bare axial vector amplitude
reaches its maximum value for m, = 0.67 GeV. Since the
axial vector couplings of Z to up and down quarks are
equal in magnitude but have opposite signs, there is no
contribution in the degenerate case, but a maximum con-
tribution is found for the highest mass difference of the
members of a family. Consequently, the dominant contri-
bution to this amplitude arises from the third family.

= r‘h‘ + FQi + Ff]f—Qi’ (45)
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FIG. 3. Decoupling of the vector and the axial vector amplitudes of the Z — ggg decay when considered as a function of the quark
mass. The behavior of both the real and imaginary parts of the amplitudes are shown.

Indeed, both the vector and axial vector amplitudes present
anondecoupling behavior when considered as a function of
the mass difference between the members of a family, as
they tend to a finite nonzero value for a large mass differ-
ence. This behavior, which nicely reproduces the results
given in Ref. [6], is shown in Fig. 4.

We now proceed to present numerical results. We will
use the following values for the various parameters appear-
ing in the amplitudes [23]: m; = 91.1876 GeV, m, =
0.00255 GeV, my; = 0.00504 GeV, m; = 0.104 GeV,
m, = 1.27 GeV, mj, = 4.2 GeV, m, = 171.2 GeV, s3, =
0.23119, a,(my) =0.1176, and a(my) = 1/128.
Regarding the masses of the exotic quarks, the lower bound
mg > 240 GeV was derived from the search for supersym-

2.0x10°

1.5x10°

1.0x10°®

r(Z-gg9) [GeV]

5.0x10°®

N
: 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Am [GeV]

FIG. 4. Nondecoupling of vector and axial vector amplitudes
of the Z — ggg decay as a function of the mass difference of the
members of the doublet Am = m, — m,. The graphic shown
corresponds to the case m,; = 0.

metry at the Tevatron and would reach the level of 320 at
run 2 [24]. In Ref. [25] the production of exotic quarks at
THERA and LHC via Eg4 theories has been studied, and
they have found that exotic quark masses can be high as
450 GeV and 1.2 TeV. It is then reasonable to consider the
range 500 GeV = m,y =700 GeV for our numerical
analysis. In this scenario we will consider that mp g =
500 GeV. With these values, one obtains

I, =3.49 X 1075 GeV, (46)
T, ~ 10712 GeV, 47)
T, o ~ 10719 GeV. 48)

From these results, it is clear that the exotic quark contri-
bution is absolutely marginal. As far as the contribution of
the known quark is concerned, in Table IV more detailed
information is presented. From this table, it can be appre-
ciated that both the vector amplitude and the axial vector
amplitude are essentially determined by the third family
and that the latter is almost 1 order of magnitude lower than
the former. All of our results are in perfect agreement with
those given in the literature, especially with those pre-
sented in Ref. [6].

Finally, the branching ratio for the Z — ggg decay in the
minimal 331 model is given by

Br(Z— ggg) = 1.4 X 1077, (49)

which is determined essentially by the third family of
quarks, as the contribution of the exotic quark is negligible.

B. Decay Z' — ggg

We now turn to present numerical results for the Z/ —
ggg decay. Although the mathematical structure of the
decay width is identical to the one associated with the
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TABLE IV. Family contribution to the I'(Z — ggg) decay in the standard model. Here, 'Y/ and I/ represent the interference effect
induced by the three families into the vector and axial vector width decays, respectively.

Family IV Gev I GeV 'V Gev 4 Gev I, Gev Iy GeV Iy —o, GeV
u, d 1.95 X 107° ~10~H

¢, s 221 X 107 1.5 107

t,b 1.09><1075 4.69><1076
Total 1.51 X 107 6.19 X 107° 1.66 X 107 —3.03 X 107° 3.49 X 107 ~10712 ~10°10

Z — ggg decay, its numerical behavior presents some
differences due to the fact that the 331 model treats the
third family differently compared to the other two. As it
can be appreciated from Table I, the main differences
between the Z'Gqg and Zgq couplings are the following:
i) The vector (g{,) and axial vector (g4,) couplings,
which are about 1 order of magnitude larger than the
respective couplings of the Z boson. As we will see below,
these facts lead to partial decay widths larger than those
associated with the Z boson. ii) The axial vector couplings
of Z' to the members of a doublet are not the negatives of
one another, as it occurs for the case of the standard Z
boson. iii) The Z' coupling to the third family differs from
its couplings to the first two, which are replicas of onean-
other. As in the case of the Z — ggg decay, we express the
decay width into three contributions:

F(Zl - ggg) = F‘Ii + FQi + F‘IifQi’ (50)

where Fql_, FQ,»’ and quQi are the contributions of the SM
quarks, the exotic quarks, and the interference between
these contributions, respectively. As far as the Z’ boson
mass is concerned, although it is not possible to obtain
model-independent bounds, current limits from precision
experiments imply that my = 500 GeV [12]. Similar
bounds were obtained in Ref. [26] from both the 331
minimal model and the 331 model with right-handed neu-
trinos. In Ref. [27], a bound for the Z’ mass of the order of

2.5x10° |

2.0x10°

1.5x10°3

1.0x10°

r(Z - g9 9)/(g%yz)? [GeV]

5.0x10

ol . ! . . .
0.0x10% ;05 500 700 800 900

mq [GeV]

1 1 1
200 300 400 600 1000

300 GeV has been obtained from 331 models at the elec-
troweak scale. Studies in the context of 331 models predict
lower bounds greater than 1.5 TeV [28]. In addition,
model-dependent upper bounds of the Z' mass are im-
posed, too, by means of the Landau pole in the context
of a perturbative treatment of the model [16], where such
bounds are usually estimated around 3 TeV. Therefore, we
have considered four scenarios corresponding to mzy =
500, 1000, 2000, and 3000 GeV for decoupling analysis,
to which a maximum value is found for the vector ampli-
tude in values of quark masses of m, = 18, 35, 71, and
107 GeV, respectively. A similar behavior is observed for
the axial vector contribution when considered as a function
of the quark mass. In Fig. 5, the decoupling nature of the
partial vector and axial vector decay widths are shown as a
function of the quark mass for the case m, = 1000 GeV.
The nondecoupling nature of both the vector and axial
vector contributions, when considered as a function of
the mass difference between the members of a doublet, is
shown in Figs. 6 and 7. It is interesting to compare these
figures with Fig. 4, from which a very different behavior on
the nondecoupling nature of the amplitudes can be
appreciated.

We now proceed to present numerical results.
From now on, we will consider two scenarios, namely,
{mzy = mg = mp = mg = my = 500 GeV} and {my
1500 GeV, my = mp = mg = my = 700 GeV}. The re-

8x10™

6x10™ f

axt0t

NZ - g9 9)(g%z)? [GeV]

2x107 i

0 1 L ! ! ! !
0x10% 00 500 600 700 800 900

mq [GeV]

400

- 1
200

1000

FIG. 5. Decoupling of the vector and the axial vector amplitudes of the Z' — ggg decay when considered as a function of the quark
mass. The behavior of both the real and imaginary parts of the amplitudes are shown.
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FIG. 6. Nondecoupling behavior of the vector (left) and the axial vector (right) amplitudes of the Z' — ggg decay when considered
as a function of the mass difference of the members of the doublet of the first family. The behavior for the second family is identic.

mz=500 GeV
mz=1500 GeV --------
ax02F |
S
8 \
— 2x102 |
o \
o
o
1
N
=t )
o | A ]
» \/L
o 250 500 750 1000 1250
Am [GeV]

m,=500 GeV
mz=1500 GeV --------

4x10° | g
— 3x10°f E
>
[0
O,
C
o
T 2x10®f 1
N
[

1x10° | E

0 100 1 1 1 1

X0 250 500 750 1000 1250
Am [GeV]

FIG. 7. Nondecoupling behavior of the vector (left) and the axial vector (right) amplitudes of the Z' — ggg decay when considered
as a function of the mass difference of the members of the doublet of the third family.

sults are shown in Table V, where the more important role
played by the exotic quarks can be appreciated. Although
the contribution of the third family of known quarks to the
7' — ggg is dominant, as it occurs for the Z — ggg tran-
sition, it should be noticed that in this case there is a
significant contribution from the exotic quarks, which
tends to be dominant for a heavier Z’ boson. This situation
is illustrated in Tables VI and VII where the contributions
arising from the three families, as well as the interference

effects, are shown. In these Tables, we also present the
values for a;, obtained from Ref. [23]. On the other hand,
the contribution coming from the exotic quarks is shown
with some detail in Table VIII, in which the interference
effects among exotic quarks is also shown. It is important
to notice that the individual contribution of the exotic
quarks is so important as those of the known quarks;
however, the global contribution is reduced considerably
due to an interference effect between the D and S quarks

TABLE V. Partial and total decay widths for the scenarios {my = mgy = mp = mg=my =500 GeV} and {my =

1500 GeV, mg = mp = mg = mg = 700 GeV}.

my GeV mg GeV a, I, Gev [y, GeV I, o, GeV I'(Z' — ggg) GeV
500 500 0.104482 2.74 X 1073 1.33 X 1078 8.97 X 107 2.73 X 1073
1500 700 0.150079 2.27 X 1072 2.8 X 1073 9.11 X 1073 3.46 X 1072
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Family contribution to the I'(Z' — ggg) decay in the scenario my = 500 GeV. Here, '/ and I'*! represent the

interference effect induced by the three families into the vector and axial vector width decays, respectively.

Family 'V Gev I Gev V' Gev A Gev I, Gev
u, d 224 X 1074 4.19 X 1074

c,s 2.22 X 107* 4.36 X 107*

t, b 7.18 X 107* 4.05x 107*
Total 1.16 X 1073 1.26 X 1073 1.05 X 1073 —7.39 X 1074 2.73 X 1073
TABLE VIL. Family contribution to the I'(Z' — ggg) decay in the scenario m, = 1500 GeV. Here, I'"" and T'*! represent the
interference effect induced by the three families into the vector and axial vector width decays, respectively.

Family I'V Gev ' Gev 'V Gev ' GeV I, GeV
u, d 2% 1073 3.73 X 1073

c, s 1.98 X 1073 3.78 X 1073

1, b 2.34 X 1072 3.44 X 1073
Total 2.74 X 1072 1.09 X 1072 —8.85 X 1073 —6.74 X 1073 2.27 X 1072
TABLE VIII.  Exotic quark contribution to the Z’' — ggg decay in the scenario {mz = 1500 GeV, my = mp = mg = my =
700 GeV}.

Quark  Tj GeV T} GeV T[  GeV Iy, GeV Iy Gev T GeV  Tj  GeV Iy, , GeV
D 8.58 X 1073 S SRR 6.05 X 107

N 8.58 X 1073 E . 6.05 X 107¢

T 1.76 X 1072 e 6.05 X 107¢ -

D, S 1.71 X 1072 : 1.21 X 1073 :

D, T —2.45x 1072 - -1.21 X 1073

S, T —2.45 X 1072 : -1.21 X 1073

with the T quark, which is a direct consequence of the
way in which they appear in the SU,(3) fundamental
representation.

Using the results given in Ref. [12] for the total decay
width of the Z’ boson, the corresponding branching ratio is
given by

Br(Z' — ggg) = 2.15 X 107 (51

for the scenario characterized by a mass of my =
500 GeV and

Br(Z' — ggg) = 4.95 X 107 (52)

for the scenario with m, = 1500 GeV.

V. SUMMARY

In this paper, a comprehensive analysis of the rare Z —
ggg and Z' — ggg decays in the context of the minimal
331 model has been presented. Explicit expressions for the
amplitudes generated at the one-loop level given in terms
of Passarino-Veltman scalar functions are presented. The
fact that the Vggg vertex (V = Z, Z') is governed by the
Bose symmetry is exploited to write its associated vertex
function in a compact and manifest SU~(3)-invariant way.
The total amplitude is composed by the vector amplitude

and the axial vector amplitude, which are finite and gauge
invariant by themselves and do not interfere among them-
selves, as they are proportional to the color structures d_;,.
and f,;., respectively. While the axial vector amplitude
receives contributions from both box and triangle diagrams
and can be expressed in terms of 24 form factors, the vector
amplitude arises only from box diagrams and comprises 18
form factors. It turns out to be that each type of diagram
(box or triangle) leads to amplitudes which are free of
ultraviolet divergences and satisfy Bose symmetry.
However, in the case of the axial vector amplitude, gauge
invariance is obtained only after summing over the contri-
butions arising from box and triangle diagrams. It is found
that the vector amplitude also satisfies the transversality
conditions with respect to the V vector boson, which means
that in this amplitude, this vector boson appears only
through the V,,, = 9,V, — 9,V tensor field. This prop-
erty is not present in the axial vector amplitude, which is
transverse only with respect to the gluonic fields. Our
results are valid for any renormalizable theory and are
model independent in this sense.

As far as the numerical results are concerned, the be-
havior of the vector and axial vector amplitudes are ana-
lyzed as a function of the mass quark and also as a function
of the mass difference of the members of the quark family.
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It was found that both types of amplitudes show a decou-
pling nature with respect to the former case, whereas a
nondecoupling behavior is shown with respect to the latter
case. In the case of the Z — ggg decay, the axial vector
amplitude vanishes in the degenerate case and reaches its
maximum value for the third family. The axial vector
contribution to this decay is marginal, as it is almost 1
order of magnitude lower than that associated to the vector
amplitude. This decay is insensitive to the presence of
exotic quarks, as it is essentially governed by the third
family, especially by the bottom quark, whose branching
ratio is given by Br(Z — ggg) = 1.4 X 1075, All results
given in the literature were nicely reproduced. As for the
7' — ggg decay, its behavior presents some differences
with respect to the standard Z — ggg decay, as it couples
differently to the SM quarks. In particular, its couplings to
the third family of quarks differs from its couplings to the
first and second families, as in the 331 model in which the
former is accommodated as an antitriplet of SU;(3),
whereas the latter two are introduced as triplets of this
group. In this case, the axial vector amplitude does not
vanish in the degenerate case and its contribution is, in
some scenarios, as important as the one given by the vector
amplitude. In a scenario with m, = 500 GeV, the three
families give contributions of the same order of magnitude
to both the vector amplitude and the axial vector ampli-
tude. The situation changes substantially for a heavier Z’
boson, as the vector amplitude receives a dominant con-
tribution from the third family, especially from the top
quark. In this case, the contribution of the exotic quarks
is much less marginal than in the case of the Z — ggg
decay, and tends to assume a dominant role for a heavier Z’
boson. Although the separate contribution of each exotic
quark is as important as the one arising from the known

PHYSICAL REVIEW D 80, 033006 (2009)

quarks, there is an interference effect between the D and S
quarks with the T quark that reduces their global contribu-
tion by about 1 order of magnitude. For instance, in a
scenario with m, = 1500 GeV, this contribution is 1 order
of magnitude lower than that arising from the known
quarks, but it tends to increase with the Z’ mass. In this
scenario, the contribution of the third family to the vector
amplitude is 1 order of magnitude larger than the corre-
sponding contribution of the other two families and also 1
order of magnitude larger than the axial vector component
of the decay width, which receives contributions of the
same order of magnitude from the three families. Thus,
while the Z — ggg decay is governed by the third family,
the Z' — ggg one receives important contributions from
the three families. The contribution of exotic quarks to the
Z — ggg decay is completely marginal, but they play a
significant role in the case of the Z' — ggg decay, espe-
cially for a relatively heavy Z’ boson. In general terms, the
decay width for Z' — ggg is almost 3 orders of magnitude
larger than that for Z — ggg. Also, the Z' — ggg decay
has a branching ratio larger than the Z — ggg decay, which
is of Br(Z' — ggg) = 2.15X 107> and Br(Z' — ggg) =
4.95 X 107> for my = 500 GeV and my = 1500 GeV,
respectively.
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APPENDIX: FORM FACTORS OF THE Vggg
VERTEX

The 3 representative vector form factors are given by
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[m3p13(p3; + 2p13p2s — P3) + Prapas(piz + pa3)*1Co(4)
+ pCo(1) + prapr3Co(3) — —L22 S . 2eBes Te o0
P23(P13 + p23)
n m2pi3(pi2 + pa3)Co(5) B [mZp13(pt, + 2p1ap1s — Pi3) + Paps(pia + pi3)? ]Co(6) mgp1opi;Do(1)
D23 P23(pi2 + pi3) P23
— p1aBmipis + 2p1apa3)Do(2) + qu13Do(3)} (AS)
= 1{2[17131723 + pi(pis +2p2s)] | (phy — 2pi3pas — p33)[Bo(1) — By(4)]  Bo(2) — By(4)
A 4lpips(pi + pia)(pis + pas) p13p3(pi3 + pa)? P12P23
~(ph, H4pipis + p)Bo(3) — Bo@)]  pinCo(1)  pi3Co(2)  paslpiy + pii)Co(3)
pi2pi3(pr2 + pi3)? Ph Ph PhPTs
[4qu13 + pia(pi3 + p23)*1Co(4) (P12 + p23)Co(5) [4’”(2;17%2%3 + pu(pin + P13)2(P%2 + P%3)]C0(6)
P12p13(pis + pa3) Ph PP P3(P1a t pis)
2[qu12(P1% + pa3) + pap5IDo(2)  2mgpia(piy — pas) — P1%P23]D0(3)} (A6)
p23p13 p23P12
o= 1{_ 2 2[By(2) — Bo(4)] | 2[By(3) — Bo(4)] | p13Co(2) | p23Co(3)  (p1n + p23)Co(5)
A4l pi(pint pi3) pi(pi + p) (P12 + p13)? rh rh rh
[4mqp12 + p(pio + p13)*1Co(6) 2m§[D0(1) — Dy(2)] z(mqp12 + P13P23)D0(3)} (A7)
PP (P2 + pi3) P12 rh

In writing the above expressions we have introduced the following definitions:

By(1) = By(2pyp, m2, m3), By(2) = By(2py3, m2, m3), By(3) = By(2pys, m2, m2),
By(4) = By(m3, m%, m ) Co(1) = Cy(0,0,2p 1o, m2, m2, m2), C0(2) Co(0,0,2py3, mj, m3, m?),
Co(3) = Cp(0, 0, 2py3, m2, m2, m2), Co(4) = Co(0,2p1p, my, m2, m2, m2), Co(5) = Co(0, 2py3, myy, m3, m3, m3),
Co(6) = Cy(0, 2py3, mv, mé, mé, mé) Dy(1) = Dy(0,0,0, mv, 2p12, 2p13 m m m mz)
Dy(2) = Dy(0,0,0, m3, 2p12, 2paz, mg, mg, m3, my), Dy(3) = Dy(0,0,0, my, 2p13, 2paz, mz, mg, m3, my),
where Pij = DPi"Pj with i, j =1, 2, 3.
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