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In this paper we present quantitative results for coherent pion production by neutrinos scattered off

nuclei within the framework developed by Gounaris, Kartavtsev, and Paschos. The method is based on

partially conserved axial-vector current and uses helicity cross sections for the scattering of weak gauge

bosons on nuclei. The process relies on experimental data for elastic pion-nucleus scattering. A detailed

analysis of the differential and integrated cross sections is presented for neutral and charged currents, with

special emphasis on the regions of integrations. The results are extended to energies of 10.0 GeV and are

compared with experimental data.
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I. INTRODUCTION

The process of coherent pion production by neutrinos is
one of the important reactions that occur in neutrino oscil-
lation experiments. It dominates at very low momentum
transfers of the leptons and in the forward direction which
may help to monitor the flux of the beam and will help to
estimate backgrounds. For instance in the oscillation of ��

into �e one searches in the far-away detector the reaction
�eN ! e�X and coherent production of �0’s produces a
background. For this reason there are new theoretical
articles and experimental measurements dealing with this
process.

The neutral and charged current reactions are

��ðkÞNðpÞ ! ��ðk0ÞNðp0Þ�0ðp�Þ (1)

��ðkÞNðpÞ ! ��ðk0ÞNðp0Þ�þðp�Þ; (2)

where N is a nucleus with mass M. For the process we use
variables in the rest frame of the nucleus with q ¼ k� k0,
Q2 ¼ �q2, � ¼ E� E0, E ¼ k0, E

0 ¼ k00, and t ¼ ðq�
p�Þ2. In the early experiments [1,2] coherent production of
pions was defined as the process where the nucleus does
not break up or alters its quantum numbers during the
process.

Because of the isospin structure of the charged and
neutral currents, the charged cross section is at high en-
ergies, approximately twice as big as the neutral one. At
low energies differences arise from the nonvanishing mass
of the outgoing lepton and the Cabibbo-Kabayashi-
Maskawa (CKM) matrix element in the charged current
case. Hence it is sufficient to concentrate on the charged
current reaction within the theory. Its Feynman diagram is
shown in Fig. 1.

Our calculation [3] is based on two basic facts:
(1) Coherent production of pions is the process where

the 4-momentum-transfer squared between the cur-

rent and the produced pion is small so the nucleus
remains intact. The minimum value is given to a
good approximation by

jtminj ¼
�
Q2 þm2

�

2�

�
2

(3)

and is achieved for �M � Q2 with M the mass of
the nucleus. The important experimental region will
turn out to beQ2 < 0:1 GeV2. We remind the reader
that, neglecting the nucleus recoil energy, t is calcu-
lated as [4]

jtj ¼
�X
�;�

p?
i

�
2 þ

�X
�;�

ðEi � pk
i Þ
�
2
: (4)

(2) In this region, the dominant component of the lep-
tonic current has helicity zero, i.e., ��ð� ¼ 0Þ de-
fined in Eq. (9) below. The domain �M � Q2,
Q2 ¼ ða fewÞm2

�, and �2 � Q2 [see Eq. (27)] is
the region where partially conserved axial-vector
current (PCAC) is valid and it has been shown that
the dominant amplitude is determined by chiral
symmetry. In fact when we write the amplitude for
the subprocess WN ! N� as the sum

pion pole þR�

with R� the remainder, the symmetry determines

q�R� ¼ �f�
ffiffiffi
2

p
Tð�þN ! �þNÞ; (5)

FIG. 1. Feynman diagram of the charged current reaction.
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which is exactly the term that the zero helicity
polarization selects and makes it dominant. In this
picture the weak current converts the axial current
into the pion field and the matrix element between
the states is a smooth function. We shall quantify
these results in the following sections.

This approach has many advantages:
(1) It avoids discussing what happens within the nu-

cleus since it will use �N elastic scattering data. In
this sense it incorporates the pion-nucleus diffrac-
tive peak into the neutrino scattering.

(2) It is applicable at low and high energies, provided
that some required kinematic cuts are made.

(3) It includes the lepton mass exactly and quantifies
various approximations.

The purpose of this article is to quantify the results with
numerical calculations. There are other articles on this
topic [5–10]. One among them follows the same approach
[5]. A very different approach describes coherent pion
production at very low energies as the excitation of the
�-resonance and includes modifications through nuclear
medium effects demanding that the nucleus remains in its
ground state for coherent scattering [6–10].

II. THEORY REVISITED

The theoretical background of this paper is the same as
in [3]. For completeness we repeat its main features. The
invariant matrix element of the charged current reaction is

M ¼ �GFVudffiffiffi
2

p j�h�NjJ�jNi; (6)

whereGF is the Fermi coupling constant and Vud the CKM
matrix element. The leptonic current is expressed in a
straightforward way

j� ¼ �uðk0Þ��ð1� �5ÞuðkÞ; (7)

whereas the hadronic matrix element will be treated below.
The leptonic current is decomposed into the basis of the

four polarization vectors of the exchange boson. Select the
3-momentum of q� along the z axis and define the basis of

polarization vectors

�l� ¼ q�ffiffiffiffiffiffi
Q2

p ¼ 1ffiffiffiffiffiffi
Q2

p
�
0
0
j ~qj

0
BBB@

1
CCCA (8)

��ð�� 1Þ ¼ 1ffiffiffi
2

p
0
1
�i
0

0
BBB@

1
CCCA; ��ð� ¼ 0Þ ¼ 1ffiffiffiffiffiffi

Q2
p

j ~qj
0
0
�

0
BBB@

1
CCCA:

(9)

Note that they differ from the original paper [3] by their
normalization factors. This has been taken into account in

the following formulas but does not change the results. The
polarization vectors satisfy the completeness relationX

�¼0;�1

ð�1Þ���ð�Þ���ð�Þ � ��l �
�
l ¼ g��: (10)

In the cross sections the leptonic tensor appears

T�� ¼ 8ðk�k0� þ k�k
0
� � g��k � k0Þ þ 8i"����k

�k0�

(11)

¼ X
JJ0

LJJ0��ðJÞ���ðJ0Þ (12)

with the indices running over the four polarizations.
Numerical studies in Ref. [3] have shown that the trans-
verse polarizations, i.e., right- and left-handed cross sec-
tions are smaller in coherent scattering and they will be
omitted.
From Eq. (12) we obtain the relevant matrix elements:

L00 ¼ 4
½Q2ð2E� � �Þ � �m2

��2
Q2ðQ2 þ �2Þ � 4ðQ2 þm2

�Þ (13)

Ll0 ¼ 4m2
�

Q2ð2E� � �Þ � �m2
�

Q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ �2

p (14)

Lll ¼ 4m2
�

�
1þm2

�

Q2

�
: (15)

Here the mass of the lepton in the final state is explicit
and will be kept throughout the calculation. We also use
later ~Lij as in Ref. [3] and the relation between them is
~Lij ¼ 1

2Lij.

It is now possible to write the spin-averaged matrix
element as

jMj2 ¼ G2
FjVudj2
2

fL00jJ���0 j2 þ LlljJ���l j2

þ 2Ll0ðJ���l ÞðJ���0 Þ�g: (16)

As mentioned in the introduction the divergence of the
matrix element is determined by PCAC. The matrix ele-
ment of the axial current can be written as a sum of the pion
pole and the remaining contribution

� iAþ
� ¼

ffiffiffi
2

p
f�q�

Q2 þm2
�

Tð�þN ! �þNÞ �R�; (17)

where Tð�þN ! �þNÞ is the elastic scattering on a nu-
cleus andR� is a smooth function which includes all other

contributions. The PCAC relation gives

� iq�Aþ
� ¼

ffiffiffi
2

p
f�m

2
�

Q2 þm2
�

Tð�þN ! �þNÞ: (18)

Combining the two equations one obtains

E. A. PASCHOS AND DARIO SCHALLA PHYSICAL REVIEW D 80, 033005 (2009)

033005-2



q�R� ¼ � ffiffiffi
2

p
f�Tð�þN ! �þNÞ: (19)

With these relations one is also able to calculate all
matrix elements in Eq. (16) because

�l�A�þ ¼ �i
q�Aþ

�ffiffiffiffiffiffi
Q2

p (20)

is given by Eq. (18) and is proportional to m2
�.

The matrix element for helicity zero is calculated in the
following way. From the property ��ð� ¼ 0Þq� ¼ 0 it

follows that the inner product of the pion pole with the
helicity zero polarization vanishes. The remaining term is
now estimated

��ð� ¼ 0ÞR� ¼ q�ffiffiffiffiffiffi
Q2

p R� þO
� ffiffiffiffiffiffi

Q2
p
�

�

¼ �
ffiffiffi
2

p
f�ffiffiffiffiffiffi
Q2

p Tð�þN ! �þNÞ þO
� ffiffiffiffiffiffi

Q2
p
�

�
:

(21)

Thus the matrix elements for both polarizations are
estimated.

We write next the triple differential cross section as

d	CC

dQ2d�dt
¼ G2

FjVudj2
2ð2�Þ2

�

E2
�

f2�
Q2

�
~L00 þ ~Lll

�
m2

�

Q2 þm2
�

�
2

þ 2 ~Ll0

m2
�

Q2 þm2
�

�
d	�

dt
; (22)

where 	� is the elastic pion-nucleus cross section and
where all muon mass terms have been kept in the calcu-
lation. As mentioned already, the right- and left-handed
cross sections are small and have been neglected. Since
they appear as positive additive terms, our estimate is a
lower bound for the coherent cross section.

The corresponding neutral current cross section is

d	NC

dQ2d�dt
¼ G2

F

4ð2�Þ2
�

E2
�

f2�
Q2

~L00

d	�

dt
: (23)

In this formula the muon mass in ~L00 has to be set zero.

III. METHODS OF INTEGRATION

The most detailed and convincing evidence for coherent
scattering is the explicit observation of the triple differen-
tial cross sections in Eqs. (22) and (23). The characteristic
signature is the sharp peak in the t distributions which was
the main feature in the original discovery and interpreta-
tion [1,2,11]. Subsequent and recent experiments integrate
over the t and other variables so that special attention must
be given to the ranges of integration in order to ascertain
that the model is still valid in these regions. In this article
we shall integrate over data for �þC12 elastic scattering.

We identify the incoming pion energy with the variable
� and integrate over experimental data for elastic pion-
nucleus scattering [12–14]. We parametrized the cross
section as follows:

d	�

dt
¼ a exp½�bjtj� (24)

and fitted the parameters a and b to the data. Their nu-
merical values are given in Table I.
As in Ref. [3] we integrate first the variable t over the

range

�
Q2 þm2

�

2�

�
2 � jtj � 1: (25)

The upper limit of integration should be the first diffractive
minimum and has been extended to infinity because the
numerical results are insensitive to values of the cross
sections beyond the first diffractive minimum, the cross
section being already too small. The other limit of integra-
tion is important at low energies and influences the Q2

dependence. The integrated elastic pion-nucleus cross sec-
tion

	�ðQ2; �Þ ¼
Z 1

tmin

d	�

dt
dt (26)

depends onQ2 and � and the results are shown in Fig. 2. In
Ref. [3] the � range was limited to 0.4 GeV and now we
extend it to � ¼ 1:0 GeV. The data have been extrapolated
as constants in regions not covered by data. We observe
again a sharp Q2 dependence.
The integration over � should respect the condition

� �
ffiffiffiffiffiffi
Q2

q
(27)

so that the helicity � ¼ 0 polarization can be expanded to
give

TABLE I. Parameters of the elastic pion nucleus cross section
model.

� (GeV) a (barn=GeV2) b (GeV�2)

0.210 28.526 159.657

0.228 28.659 147.986

0.260 32.012 129.022

0.290 27.162 101.910

0.320 23.600 90.824

0.340 22.734 90.660

0.370 19.000 83.814

0.400 17.924 84.590

0.420 14.594 73.256

0.766 3.759 49.459

0.864 4.172 58.149

0.942 3.649 56.197

1.046 3.523 53.497
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��ð� ¼ 0Þ � q�ffiffiffiffiffiffi
Q2

p þO
� ffiffiffiffiffiffi

Q2
p
�

�
; (28)

which has been used in Eqs. (21)–(23). In order to test this
condition we computed the double-differential cross sec-
tion d	

dQ2d�
over the entire range of Q2 and � using as input

the curves in Fig. 2. The results are shown in Figs. 3 and 4
where we also include four curves. These four curves
correspond to the kinematic regions defined in Table II.

In the earlier article [3] we used the variable 
, which
defined kinematic regions available in the experiments. It
is a fortunate property of coherent scattering that the cross
section peaks at low values of Q2 and �. In fact the
contribution to the integrated cross section from the region

0< �<
ffiffiffiffiffiffi
Q2

q
(29)

is negligible. Our estimates are satisfied for � > 1:5
ffiffiffiffiffiffi
Q2

p
where most of the cross section is located. One can also
integrate over restricted regions of the phase space in order

to determine the fraction of the cross section in these
regions.
The structure of the cross section in Fig. 3 also indicates

the important regions of integration. To assure the validity
of the approximation in Eq. (21) we integrate over the
range

maxð

ffiffiffiffiffiffi
Q2

q
; �minÞ< �< �max: (30)

The values for �min and �max are given in the appendix of
Ref. [3].
The Q2 integration is discussed later on. The lower limit

of integration is given in Eq. (A8) of Ref. [3]. In the neutral
current case it is zero.
We calculated the differential cross section d	

dQ2 for E� ¼
1 GeV and four values for the lower limit of the energy �.
The results are shown for neutral currents in Fig. 5 and for
charged currents in Fig. 6. The four curves correspond to
various cuts in the minimum value of the energy �, defined

in Table II. We note that the cross section between �min <

�<
ffiffiffiffiffiffi
Q2

p
is negligibly small since the dashed curves for

� > �min coincide with the curves for � >
ffiffiffiffiffiffi
Q2

p
.

We repeated this calculation for various incident neu-
trino energies and the results are shown in Figs. 7 and 8 for
neutral and charged currents, respectively. The interesting
feature is that the cross section extends now to higher
values of Q2. Although the differential cross section is
concentrated at low momentum transfers, for higher neu-

approx. tot

Q2 = 0.01 GeV2

Q2 = 0.04 GeV2

Q2 = 0.08 GeV2

Q2 = 0.10 GeV2

Q2 = 0.20 GeV2

200 400 600 800 1000
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FIG. 2. Integrated elastic pion-nucleus cross section for some
momentum transfers.

FIG. 3 (color online). Double-differential charged current
cross section at E� ¼ 1 GeV. The lines represent different
integration limits (see text).

FIG. 4 (color online). Double-differential charged current
cross section at E� ¼ 10 GeV. The lines represent different
integration limits (see text).

TABLE II. Defining regions of phase space.

Condition Value of 
 in Ref. [3]

� ¼ �min 
 ¼ 0

� ¼ ffiffiffiffiffiffi
Q2

p

 ¼ 1

� ¼ 2
ffiffiffiffiffiffi
Q2

p

 ¼ 2

� ¼ 3
ffiffiffiffiffiffi
Q2

p

 ¼ 3
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trino energies there is a tail that extends to larger values of
Q2 and must be taken into account in the integrated cross
sections.

The neutral current cross section reaches a specific value
at Q2 ¼ 0, the Adler point. It is estimated from our for-
mulas (13) and (23) to give

d	NC

dQ2

��������Q2¼0
¼ G2

Ff
2
�

2�2

Z E�

m�

d�	�ð�Þ
�
1

�
� 1

E�

�
(31)

¼ G2
Ff

2
�

2�2
h	�i

�
ln
E�

m�

þm�

E�

� 1

�
; (32)

where h	�i is the weighted elastic pion-nucleus cross

section. For E� ¼ 1 GeV the Adler point is about 112 �
10�40 cm2

GeV2 for h	�i � 165 mb. This is a realistic average

of the weighted hadronic cross section (see Fig. 2). A
similar comparison for the charged current is more indirect
because of the phase space effects introduced by the mass
of the muon. For the charged current an integration over a

small region ofQ2 is more appropriate for comparison with
experiments.
It is worth mentioning that for higher energies the turn-

over of the differential cross section in the charged current
case is less prominent and disappears, a property caused by
the fact that the muon mass is negligible compared to the
neutrino energy.
At higher neutrino energies bigger momentum transfers

gain more importance. Figures 7 and 8 show the differen-
tial cross section of the neutral and charged current pro-
cess, respectively, for 
 ¼ 0. For higher energies the cross
section is not limited within a smallQ2 region. Thus theQ2

integration interval has to be extended to higher values.

IV. INTEGRATED CROSS SECTION

The results in Fig. 8 indicate that the formulas we
derived have a tail that extends to higher values of Q2.
However, at large values of Q2 the nucleus breaks up and
the scattering is not coherent. At the same time the PCAC
approximation does not hold. Experimental groups sepa-
rate the coherent events from other events by the absence
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FIG. 5. Differential neutral current cross section for 
 ¼ 1; 2; 3
(top to bottom) and 
 ¼ 0 (dashed) at E� ¼ 1 GeV.
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FIG. 6. Differential charged current cross section for 
 ¼
1; 2; 3 (top to bottom) and 
 ¼ 0 (dashed) at E� ¼ 1 GeV.
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FIG. 7. Differential neutral current cross section for 
 ¼ 0 at
E� ¼ 1, 5, and 10 GeV (bottom to top).
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FIG. 8. Differential charged current cross section for 
 ¼ 0 at
E� ¼ 1, 5, and 10 GeV (bottom to top).
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of stubs in bubble chambers, a signature indicating that the
nucleus does not break up. The BEBC Collaboration [15]
found that the Q2 values are lower for coherent events and
do not extend beyond 2:0 GeV2. These results suggest that
a Q2

max must be introduced in the integration of the cross

section or a phenomenological factor ð m2
A

Q2þm2
A

Þ2 in order to

provide a cutoff in the Q2 dependence (see [16]).
Fortunately, in the curves in Figs. 9 and 10, to be described
below, the change between Q2 ¼ 1 and 4 GeV2 is rela-
tively small.

In this work we calculate integrated coherent cross
sections for various upper values of Q2

max ¼ 0:2, 0.5, 1.0,
and 4:0 GeV2. The results are shown in Fig. 9 for neutral
current and Fig. 10 for charged current reactions, where the
effect of Q2

max is important.
For comparison we also included experimental results

from several groups [1,17–21]. The experiments use differ-
ent targets which we must rescale to the carbon target.
Since the pion-nucleus cross section is a main input in this
work we must rescale the results according to

	carbon ¼ 	exp

�
Acarbon

Aexp

�
2=3

; (33)

which has been established in pion-nucleus elastic scatter-
ing [22]. With this rescaling the agreement at higher en-
ergies prefers a Q2

max close to 1:0 GeV2. For the energy of
the neutrinos we use an average value from the neutrino
flux.

There are two ways to account for the Q2 dependence:

(1) Whenever possible, introduce an experimental cut-
off to the coherent events where our model is valid.

(2) Integrate the cross sections on Eqs. (22) and (23)

with a phenomenological factor ð m2
A

Q2þm2
A

Þ2, intro-

duced by other authors [11,16], which represents
the effects of heavier vector mesons and treat mA

as a parameter.

V. SUMMARY

Neutrino-induced coherent pion production is described
adequately by the method described in Ref. [3]. It is argued
again that chiral symmetry relates coherent production of
pions to the pion-nucleus elastic scattering in a general
way, provided that Q2 � ða fewÞ �m2

�.
Our formalism and results are close but not identical to a

recent article [5], where the elastic pion-carbon data are
now used as well, which reduces the earlier prediction [11].
We both use elastic pion-nucleus scattering data and the
small differences arise from the handling of the experi-
mental data and the limits of integrations.
Using pion-carbon scattering data we presented quanti-

tative results for many cross sections. We emphasize that
kinematic limits, as in Eq. (25) for t and the maximum
value of Q2 in Figs. 7–10, are important. An overview of
the double-differential cross section is shown in Figs. 3 and
4 showing the main features of the process. The calculation
can be extended to higher energies when the value of Q2

max

is better understood.
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