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The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary

transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the

Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a

pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate

effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation

values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and

discuss some implications of this approach.
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I. INTRODUCTION

The origin of flavor remains one of the main mysteries in
modern particle physics, and many attempts have been
made to understand the phenomenon of flavor by postulat-
ing certain (discrete) flavor symmetries (see e.g. [1–6] and
references therein), or by localizing fermions in extra
dimensions (see e.g. [7–14] and references therein), to
name two popular ideas. While such scenarios can success-
fully explain some of the issues related to the hierarchies
observed in fermion masses and mixings, the origin of the
proposed new mechanisms (e.g. from the embedding into a
grand unified theory or even string theory, respectively)
still remains an open issue.

Alternatively, we may start from a bottom-up approach
in which the phenomenon of flavor is just parametrized as
in the standard model (SM). In fact, the SM has an ap-
proximate global flavor symmetry GF (see below), which
is broken by the Yukawa couplings, inducing the fermion
masses and mixings. Such an explicit symmetry breaking
is usually parametrized by introducing spurion fields with a
definite behavior under the symmetry to be broken. In the
case at hand, focusing on the quark sector, the Yukawa
matrices YU and YD are considered as complex spurion
fields [15], transforming nontrivially under GF.

A special role is played by the top quark, which has a
Yukawa coupling of order one, breaking the original flavor
symmetry group GF to a smaller subgroupG0

F (see below),
which is still a good symmetry as long as the remaining
Yukawa couplings are negligible. In a recent paper [16],
two of us have shown that in such a case it is convenient to
consider a nonlinear representation of GF in which the
subgroup G0

F is linearly realized. In this context, it turned
out to be useful to assign a canonical mass dimension to the
Yukawa spurion fields, since in this way the top Yukawa
coupling could be understood as originating from a
dimension-four operator, while the remaining Yukawa
terms are dimension five, thereby reflecting the hierarchy

between the top mass and the lighter quark masses.1 If we
take this approach seriously, two immediate implications
arise:
(i) The spontaneous breaking GF ! G0

F induces
Goldstone modes, which call for a dynamical inter-
pretation. One possibility is to consider local flavor
symmetries, where Goldstone modes become the
longitudinal modes for massive gauge bosons.
Another alternative is to keep the Goldstone modes
as physical axionlike degrees of freedom.2 These
issues will be discussed in somewhat more detail in
a separate publication [19].

(ii) The breaking GF ! G0
F induced by the top-quark

Yukawa coupling can be considered the first step in
a sequence of flavor symmetry breaking steps taking
place at different physical scales� � �0 � �00 �
. . . Through the vacuum expectation values (VEVs)
of the spurion fields, the hierarchy of scales should
be directly related to the observed hierarchy for
quark masses and mixings.

In the following, we shall identify the flavor subgroups for
each of the intermediate effective theories in the construc-
tion above and identify the corresponding representations
for quark fields, spurions, and Goldstone modes. We will
also briefly discuss the requirements for the spurion poten-
tial necessary for such a scenario.

II. SUCCESSIVE FLAVOR SYMMETRYBREAKING

In this section we identify the sequence of intermediate
(residual) flavor symmetries which arise when the original
flavor symmetry of the SM gauge sector is broken in a

1A similar construction can be performed in the lepton sector,
when the SM is minimally extended by a dimension-five opera-
tor in order to describe nonvanishing neutrino masses [17,18].

2An option to avoid Goldstone modes altogether is to restrict
oneself to discrete flavor symmetries.
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stepwise fashion at different scales, set by the VEVs of the
relevant spurion fields and linked to the observed hierar-
chies in the quark masses and Cabibbo-Kobayashi-
Maskawa (CKM) angles. Considering the Yukawa sector
for the quarks,

�LY ¼ YU
�QL

~HUR þ YD
�QLHDR þ H:c:; (2.1)

we may consider independent phase transformations for
the three quark multiplets ðQL;UR;DRÞ and the Higgs field
(H). Among these four phases, two are identified as baryon
number Uð1ÞB and weak hypercharge Uð1ÞY , which are not
broken by the Yukawa matrices, whereas the 2 remaining
Uð1Þ symmetries are broken by hYUi � 0 or hYDi � 0. We
thus define the flavor group in the quark sector as3

GF ¼ SUð3Þ3 �Uð1Þ4=ðUð1ÞB �Uð1ÞYÞ
¼ SUð3ÞQL

�SUð3ÞUR
� SUð3ÞDR

�Uð1ÞUR
�Uð1ÞDR

:

(2.2)

For the Yukawa sector to be formally invariant under GF,
we assign the following transformation properties to the
spurion fields:

YU � ð3; �3; 1Þ�1;0; YD � ð3; 1; �3Þ0;�1; (2.3)

where the terms in brackets refer to the three SUð3Þ factors,
and the subscripts to the two Uð1Þ factors, respectively.
Counting parameters, we have 2� 18 ¼ 36 entries for the
spurions YU;D and 3� 8þ 2 ¼ 26 symmetry generators,

leaving 36� 26 ¼ 10 physical parameters in the quark
Yukawa sector, which can be identified with the six quark
masses, the three CKM angles, and the CP-violating CKM
phase (see also [20]).4

In order to specify the sequence of flavor symmetry
breaking, we have to identify a hierarchy between the
Yukawa entries ðYUÞij and ðYDÞij. However, before the

flavor symmetry is actually broken, the Yukawa matrices
can be freely rotated by transformation matrices inGF, and
therefore the a priori ranking of individual entries in the
Yukawa matrices seems to be somewhat ambiguous. On
the other hand, the right-handed rotations and a common
left-handed rotation for up- and down-quarks are not ob-
servable in the SM, anyway, leaving the quark masses and
CKM angles as the only relevant parameters. We therefore
find it sufficient to choose a basis where the right-handed
rotations are unity, while for the left rotations we restrict
ourselves to matrices VuL and VdL , which scale in the same

manner as the CKMmatrix. This leaves us with the generic
power counting5

hYUiij � ðVuLÞijðyuÞj �
�nu �1þnc �3

�1þnu �nc �2

�3þnu �2þnc 1

0
B@

1
CA;

hYDiij � ðVdL ÞijðydÞj �
�nd �1þns �3þnb

�1þnd �ns �2þnb

�3þnd �2þns �nb

0
B@

1
CA;

(2.4)

where we introduced the scaling for quark Yukawa cou-
plings with the Wolfenstein parameter (�� 0:2 � 1) as
yi � �ni (with nt ¼ 0), and inserted the standard power
counting for CKM elements,

VuL � VdL � VCKM �
1 � �3

� 1 �2

�3 �2 1

0
B@

1
CA: (2.5)

The scaling of the quark masses can be constrained from
the phenomenological information in Table I, where we
assume in the following that renormalization-group effects
(in the sequence of effective theories to be constructed) do
not change the hierarchies observed at low scales a lot.
More precisely, to keep the discussion simple, we restrict
ourselves to
(i) nd > ns > nb > 0 and nu > nc > nt � 0,
(ii) nc � nb and ns > nc.

The remaining degree of freedom in choosing values for
the ni leads to several options, among which are also cases
where one or two spurions receive their VEV at the same
scale simultaneously. To be concrete, we focus on three
cases with more or less natural and distinct scale separa-
tion, (a1) nc < nb þ 2< nb þ 3< ns, (a2) nc < nbþ
2< ns < nb þ 3, and (b) nb þ 2< nc < ns < nc þ 1,
which are summarized in Table II. A detailed derivation

3Our discussion differs from the one in [15] where the inde-
pendent phase rotations for the Higgs fields have been
overlooked.

4Similarly, considering the Uð1Þ phases in the lepton sector,
we obtain the SM flavor group

G
lepton
F ¼ Uð3Þ2=ðUð1Þe �Uð1Þ� �Uð1Þ�Þ

for massless neutrinos, and

~G
lepton
F ¼ Uð3Þ2

for massive neutrinos which are generated by a lepton-number
violating dimension-five term in the Lagrangian

�LMaj ¼ 1

�L

g�ðH‘LÞTðH‘LÞ:
In the first case, we have 18 parameters in the spurion YE and
2� 8� 1 ¼ 15 symmetry generators, leaving three physical
parameters to be identified with the three charged lepton masses.
In the second case, we have 18þ 12 ¼ 30 parameters from the
spurions YE and g�, from which we subtract 2� 9 ¼ 18 sym-
metry generators, to obtain 12 physical parameters, which are
the 6 lepton masses, the three Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) angles, one Dirac phase, and the two
Majorana phases.

5During the sequence of flavor symmetry breaking, some of
the entries can actually be set to zero by exploiting the freedom
to rotate the VEVs of certain spurion fields with respect to the
corresponding residual flavor group.
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of the various steps in the flavor symmetry breaking can be
found in the appendix.

Let us discuss some common and distinct features of the
different scenarios:

(i) Common to all scenarios is the second step of sym-
metry breaking, which (at least in our setup with
only one electroweak Higgs doublet) is unambigu-
ously induced by the VEV for the ðYDÞ33 element,
which gives rise to the bottom-quark mass. Below
the scale �0 � yb�, the residual flavor symmetry is

G00
F ¼ Uð2ÞQL

�Uð2ÞUR
�Uð2ÞDR

: (2.6)

At first glance, it appears as just the two-family
analogue of the original flavor group GF. However,
there are two important differences: First, it appears

one additional Uð1Þ factor compared to GF. Second,
it still contains an off-diagonal spurion field �s,
which is a doublet of SUð2ÞQL

and the only spurion

which is charged under the additional Uð1Þ. Only if
this spurion field (and the associated breaking of the
extra Uð1Þ symmetry) were absent, we would re-
cover an effective two-family model where, as is
well known, one would have no CP violation in
the quark Yukawa sector.

(ii) From an aesthetic point of view, the alternative
labeled (a1) in Table II is somewhat favored. It
can be realized with a rather natural hierarchy of
scales. For instance, taking

nb ¼ 2; nc ¼ 3; ns ¼ 6; nu;d ¼ 8;

TABLE II. Three alternative sequences of flavor symmetry breaking, and associated parameter counting for the Yukawa matrices.
Notice that the following equalities always hold: #Spurionsþ #VEVs� #Symmetries ¼ 10, #Goldstonesþ #Spurionsþ #VEVs ¼
36, where 10 refers to the 6 quark massesþ threeCKM rotationsþ oneCKM phase, and 36 refers to the original 2� 18 real
parameters in the Yukawa matrices YU and YD.

Flavor symmetry GBs Spur. VEVs Symm. Scale

SUð3ÞQL
� SUð3ÞUR

� SUð3ÞDR
�Uð1Þ2 0 36 0 26

SUð2ÞQL
� SUð2ÞUR

� SUð3ÞDR
�Uð1Þ3 9 26 1 17 �� yt�

SUð2ÞQL
� SUð2ÞUR

� SUð2ÞDR
�Uð1Þ3 14 20 2 12 �0 � yb�

(a1) SUð2ÞDR
� Uð1Þ4 19 14 3 7 �ð2aÞ � yc�

SUð2ÞDR
� Uð1Þ3 20 12 4 6 �ð3a1Þ � yb�

2�
SUð2ÞDR

� Uð1Þ2 21 10 5 5 �ð4a1Þ � yb�
3�

Uð1Þ2 24 6 6 2 �ð5a1Þ � ys�

(a2) SUð2ÞDR
� Uð1Þ3 20 12 4 6 �ð3a1Þ � yb�

2�
Uð1Þ3 23 8 5 3 �ð4a2Þ � ys�
Uð1Þ2 24 6 6 2 �ð5a2Þ � yb�

3�

(b) SUð2ÞUR
� SUð2ÞDR

�Uð1Þ3 17 16 3 9 �ð2bÞ � yb�
2�

SUð2ÞDR
� Uð1Þ3 20 12 4 6 �ð3bÞ � yc�

Uð1Þ3 23 8 5 3 �ð4bÞ � ys�
Uð1Þ2 24 6 6 2 �ð5bÞ � yc��

Uð1Þ2 (CP) 24 4 7þ 1 2 �ð6Þ � ys��
. . . (CP) 26 0 9þ 1 0 �ð7Þ � yu;d�

TABLE I. SM values for the quark masses [21], and approximate scaling with the Wolfenstein
parameter �� 0:2. Light-quark masses ðu; d; sÞ are given in the MS scheme at � ¼ 2 GeV,
charm and bottom masses as �mcð �mcÞ and �mbð �mbÞ, and the top mass is evolved down to the scale
mb. The evolution between the scales mb and mc is negligible for our considerations.

u d s

mq [1.5–4.5] MeV [5.0–8.5] MeV [80–155] MeV

nq ¼ log�ðmq=mtÞ 6–9 6–8 4–6

c b t

mq [1.0–1.4] GeV [4.0–4.5] GeV [250–300] GeV

nq ¼ log�ðmq=mtÞ 3–4 2–3 0

SEQUENTIAL FLAVOR SYMMETRY BREAKING PHYSICAL REVIEW D 80, 033003 (2009)

033003-3



which fits well to the phenomenological mass spec-
trum, one obtains an equal separation of scales,6

�ðnÞ ¼ �ðnþ1Þ�:

Moreover, the smallest non-Abelian subgroup for
this case is given by

SUð2ÞDR
�Uð1Þ2:

This residual flavor symmetry may thus be taken as
the simplest nontrivial example to study the dynam-
ics of flavor spurions and its consequences for flavor
physics, including the construction of higher-
dimensional operators for flavor transitions with
minimal flavor violation (or beyond [22]), the dy-
namics of Goldstone modes, and the construction of
realistic scalar potentials.

(iii) In all cases, the symmetry is eventually broken
down to

Uð1Þ2 ¼ Uð1ÞuR �Uð1ÞdR :
The corresponding effective theory now still con-
tains three complex spurion fields, among which
one spurion is uncharged under either of the two
Uð1Þ groups. Consequently, when the latter ac-
quires its VEV, its phase cannot be rotated away
by symmetry transformation.7 At this very step, we
therefore generically encounter a CP-violating
phase, which in our case is associated with the
ðYDÞ12 element.

(iv) Finally, the two Uð1Þ symmetries will be broken by
the ðYUÞ11 and ðYDÞ11 elements associated with the
up- and down-quark mass. Notice that these sym-
metries are chiral, and the corresponding Uð1Þ
anomalies contribute to the effective � parameter
in QCD. The related spurion fields may serve as a
solution to the strong CP problem as in the general
Peccei-Quinn setup [24–26]. This will be discussed
in more detail in [19].

III. INVARIANTS AND POTENTIALS FOR SCALAR
SPURION FIELDS

In this section we consider how the sequential symmetry
breaking, described in the last section, could be achieved
spontaneously. The question of how an appropriate poten-
tial could look like is discussed in many different contexts

(see e.g. [27–29]), but no general recipe for constructing a
potential that leads to a specific symmetry breaking has
been found.
In any case, a potential for the spurion fields can only

depend on invariants under the flavor symmetry group GF.
Because of the form of the potential these invariants should
take the appropriate VEVs, which finally specify the ten
physical parameters (six quark masses and four CKM
parameters). Of course we are unable to derive a potential
that achieves this complicated symmetry breaking, but we
may at least identify ten independent invariants in terms of
which we may express the physical quantities. These in-
variants can be constructed from monomials of the basic
scalar spurion fields YUðxÞ and YDðxÞ, and may thus be
classified by their canonical dimension.
Before considering the three-family case, it is instructive

to look at the simpler example of two families with the
flavor symmetry gF ¼ SUð2ÞQL

� SUð2ÞUR
� SUð2ÞDR

�
Uð1Þ2, first. It exhibits 11 symmetry generators, which
leaves 5 physical parameters (4 masses and the Cabibbo
angle) from the 16 parameters in the Yukawa matrices.
Classifying the invariants by increasing canonical dimen-
sion, we find

ið2Þ1 ¼ trðUÞ; vð2Þ
1 =�2 ¼ y2u þ y2c;

ið2Þ2 ¼ trðDÞ; vð2Þ
2 =�2 ¼ y2d þ y2s ;

ið4Þ1 ¼ trðU2Þ � ðið2Þ1 Þ2; vð4Þ
1 =�4 ¼ �2y2uy

2
c;

ið4Þ2 ¼ trðUDÞ � ið2Þ1 ið2Þ2 ;

vð4Þ
2 =�4 ¼ sin2�ðy2c � y2uÞðy2d � y2sÞ � y2cy

2
d � y2uy

2
s ;

ið4Þ3 ¼ trðD2Þ � ðið2Þ2 Þ2; vð4Þ
3 =�4 ¼ �2y2dy

2
s ; (3.1)

where we introduced the combinations

U ¼ YUY
y
U; D ¼ YDY

y
D; (3.2)

which transform homogeneously under SUð2ÞQL
, and

where we denote with vðkÞ
� ¼ hiðkÞ� i the VEVs of the 5

invariants. The potential V ¼ VðiðmÞ
� Þ may now be ex-

panded around its minimal value in the form

V ¼ X
k;m

X
�;�

1

�mþk�4
ðiðmÞ
� � vðmÞ

� ÞMðm;kÞ
�;� ðiðkÞ� � vðkÞ

� Þ; (3.3)

where � is a UV scale, which renders the positive semi-

definite matrix Mðm;kÞ
�;� dimensionless. Notice that higher-

dimensional operators appear unavoidably if we assign
canonical mass dimension to the (scalar) spurion fields
YU;D. As already mentioned, the mechanism showing

how such an effective potential could be generated by
integrating out some new degrees of freedom in an under-
lying theory, remains an open issue.
In principle we may also invert the relations to obtain the

Cabibbo angle and the masses as functions of the vðkÞ
i ;

6For comparison, scenario (a2) can be realized, for instance,
by nb ¼ 2:5, nc ¼ 3:5, ns ¼ 5, nu;d ¼ 7, leading to the tower of
scales ð�2:5; �3:5; �4:5; �5; �5:5; �6; �7Þ�. Similarly, case (b) could
be realized by nb ¼ 2, nc ¼ 4:5, ns ¼ 5, nu;d ¼ 7, with
ð�2; �4; �4:5; �5; �5:5; �6; �7Þ�.

7Alternatively, in a previous step of the construction, one could
have identified two spurion fields with the same quantum num-
bers, whose VEVs in general cannot be made real simulta-
neously. This mechanism thus gives a particular realization of
spontaneous CP violation [23].

THORSTEN FELDMANN, MARTIN JUNG, AND THOMAS MANNEL PHYSICAL REVIEW D 80, 033003 (2009)

033003-4



however, the above invariants are not yet very suitable for
the further discussion:

(i) As we have seen in the previous section, the order of
the different symmetry-breaking steps depends on
the relative size of the Yukawa entries, which in the
two-family case are characterized by the exponents
fnu; nc; nd; ns; ð1þ nsÞg (in the hierarchical limit). It
is therefore desirable to consider invariants that fea-
ture the very same exponents.

(ii) To put the invariants on a similar footing, they
should have the same canonical dimension (i.e. we
have to introduce rational functions of the above
invariants).

(iii) Instead of ið4Þ2 it would be desirable to have an

invariant that vanishes in the no-mixing case (� ¼
0). Such invariants can be constructed from the
commutator ½U;D�,

ið8Þ1 ¼ detð½U;D�Þ;
vð8Þ
1 =�8 ¼ 1

4ðy2c � y2uÞ2ðy2s � y2dÞ2sin22�:
(3.4)

We therefore modify the above definitions as follows:

I1 ¼ trðUÞ; V1=�
2 ¼ y2u þ y2c;

I2 ¼ trðDÞ; V2=�
2 ¼ y2d þ y2s ;

I3 ¼ 1

2
ðI1 � trðU2Þ=I1Þ; V3=�

2 ¼ y2uy
2
c

y2u þ y2c
;

I4 ¼ 1

2
ðI2 � trðD2Þ=I2Þ; V4=�

2 ¼ y2dy
2
s

y2s þ y2d
;

I5 ¼ 4
detð½U;D�Þ
I1I2ðI1 þ I2Þ ;

V5=�
2 ¼ ðy2c � y2uÞ2ðy2s � y2dÞ2sin22�

ðy2u þ y2cÞðy2d þ y2sÞðy2u þ y2c þ y2d þ y2sÞ
: (3.5)

The invariants I1–5 now take their VEVs according to the
power counting for masses and mixing angles. For in-
stance, with our standard case, nc < ns < 1þ ns < nu �
nd, we have

V1 � �2nc � V2 � �2ns � V5 � �2þ2ns � V3;4 � �2nu;d ;

which defines the sequence of symmetry breaking. We may
then solve (3.5) for masses and mixing angle to obtain

y2c;u ¼ V1 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðV1 � 4V3Þ

p
2�2

’
�
V1=�

2

V3=�
2

;

y2s;d ¼
V2 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðV2 � 4V4Þ

p
2�2

’
�
V2=�

2

V4=�
2

;

sin22� ¼ ðV1 þ V2ÞV5

ðV1 � 4V3ÞðV2 � 4V4Þ ’
V5

V2

;

(3.6)

where the approximate relations refer to the SM
hierarchies.
We note in passing that models based on texture zeros,

which imply relations between the masses and the mixing
angles [30], may be mapped onto relations between invar-
iants. In turn, a relation between invariants always charac-
terizes a class of Yukawa matrices that may or may not
feature texture zeros in a particular flavor basis. This may
be explicitly demonstrated by considering a simple two-
family model with one texture zero. We use the basis in
which YU is diagonal and

YD ¼ 0 a
a 2b

� �
(3.7)

is given in terms of two parameters a and b. This model
implies the relation

V5 ¼ 4ðV1 � 4V3Þð
ffiffiffiffiffiffiffiffiffiffiffi
V2V4

p � 2V4Þ
V1 þ V2

’ 4
ffiffiffiffiffiffiffiffiffiffiffi
V2V4

p
; (3.8)

which translates into a relation between the Cabibbo angle
and the down-type masses,

tan� ’
ffiffiffiffiffiffiffi
md

ms

s
; (3.9)

which is phenomenologically reasonable.
We now turn to the three-family case, which can be

studied along the same lines. We have to identify in total
ten independent invariants. The two quadratic and the three
quartic invariants are again given by

ið2Þ1 ¼ trðUÞ; ið2Þ2 ¼ trðDÞ; (3.10)

and

ið4Þ1 ¼ trðU2Þ � ðið2Þ1 Þ2; ið4Þ2 ¼ trðUDÞ � ið2Þ1 ið2Þ2 ;

ið4Þ3 ¼ trðD2Þ � ðið2Þ2 Þ2: (3.11)

The remaining five invariants, which are necessary to
specify the physical quark flavor parameters, thus have to
be built from even higher-dimensional invariants. For the
dimension-six terms, we choose

ið6Þ1 ¼ trðU3Þ � 3
2i
ð4Þ
1 ið2Þ1 � ðið2Þ1 Þ3 � 3 detðUÞ;

ið6Þ2 ¼ trðU2DÞ � 1
2i
ð4Þ
1 ið2Þ2 � ið4Þ2 ið2Þ1 � ið2Þ2 ðið2Þ1 Þ2;

ið6Þ3 ¼ trðUD2Þ � 1
2i
ð4Þ
3 ið2Þ1 � ið4Þ2 ið2Þ2 � ið2Þ1 ðið2Þ2 Þ2;

ið6Þ4 ¼ trðD3Þ � 3
2i
ð4Þ
3 ið2Þ2 � ðið2Þ2 Þ3 � 3 detðDÞ:

(3.12)

Finally, among the dimension-eight invariants only one is
independent, and we choose
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ið8Þ1 ¼ trðU½U;D�DÞ; (3.13)

which completes the list of invariants for the 3� 3 case.

The potential V ¼ VðiðmÞ
� Þ can again be expanded as in

(3.3). The sequential breaking ofGF as proposed in the last
section can emerge only through a hierarchy of VEVs for
the various invariants. This hierarchy has to be put in by
hand in (3.3) and may perhaps find its explanation in an
underlying theory above the scale�.8 In fact, our choice of
VEVs is such that the first breaking of GF ! G0

F is ob-
tained, if the potential V generates a (sizeable) VEV for the

ið2Þ1 invariant, only,

vð2Þ
1 ’ y2t�

2; vðmÞ
k ’ 0 otherwise; (3.14)

in which case we obtain a nonvanishing top-quark Yukawa
coupling, while all other parameters (which give rise to the
lighter quark masses and CKM parameters) still (approxi-
mately) vanish.

The next step is the breaking of G0
F ! G00

F. Clearly, the
relevant potential V 0 can only depend on the invariants of

G0
F, which we denote as jðmÞ

k . As before, we introduce

quadratic terms which transform under SUð2ÞL �Uð1ÞT ,
namely, two triplets,

U0 ¼ Yð2Þ
U Yð2Þy

U ; D0 ¼ ~Yð2Þ
D

~Yð2Þy
D ; (3.15)

one charged doublet

X0 ¼ ~Yð2Þ
D 	b; (3.16)

and one singlet

�0 ¼ 	y
b	b: (3.17)

In terms of these, the invariants of dimension-two can be
written as

jð2Þ1 ¼ trðU0Þ; jð2Þ2 ¼ trðD0Þ; jð2Þ3 ¼ �0; (3.18)

while the fourth-order invariants are

jð4Þ1 ¼ trððU0Þ2Þ � ðjð2Þ1 Þ2; jð4Þ2 ¼ trðU0D0Þ � jð2Þ1 jð2Þ2 ;

jð4Þ3 ¼ trððD0Þ2Þ � ðjð2Þ2 Þ2; jð4Þ4 ¼ X0yX0 � jð2Þ2 jð2Þ3 :

(3.19)

Finally, there are two independent invariants of dimension
six,

jð6Þ1 ¼ X0yU0X0; jð6Þ2 ¼ X0yD0X0: (3.20)

At tree level, the potential V 0 simply follows from the

original potential V by expressing the invariants iðmÞ
k by the

invariants jðmÞ
� and the VEV for the top Yukawa coupling,

see Appendix C. Including radiative corrections in the
effective theory below the scale � (or more precisely,
below the mass scale of the scalar degree of freedom
related to the VEV yt�), the parameters of the effective
potential might change accordingly. The general form is
thus again given by

V 0 ¼ X
k;m

X
�;�

1

ð�0Þmþk�4
ðjðmÞ

� � wðmÞ
� ÞNðm;kÞ

�;� ðjðkÞ� � wðkÞ
� Þ:

(3.21)

The next step in the symmetry breaking G0
F ! G00

F will

then be achieved by wð2Þ
3 ’ y2bð�0Þ2. This scheme can be

repeated until the complete flavor symmetry is broken.

Note, that the invariants iðmÞ
i and jðmÞ

i introduced above

are all real. Therefore, the parameters Mðm;kÞ
i;j and Nðm;kÞ

i;j

have to be real as well to yield a Hermitian potential. As
described above, the CKM phase, corresponding to the SM
mechanism for CP violation, appears when one of the
spurion fields receives a complex VEV. The potential
allows for spontaneous CP violation, as soon as an invari-
ant of one of the residual flavor symmetries becomes
complex. In the scenarios discussed above, this is the
case for

G3a1
F : Lð4Þ

1 ¼ Reð�

13	

y
d	s�23Þ;

Lð4Þ
2 ¼ Imð�


13	
y
d	s�23Þ;

(3.22)

and Gð3bÞ
F : L0ð4Þ

1 ¼ Reð	y
u	c	

y
s 	dÞ;

L0ð4Þ
2 ¼ Imð	y

u	c	
y
s 	dÞ;

(3.23)

where Lð0Þð4Þ
2 is odd under CP.

As in the two-family example, we again introduce ra-
tional functions of the invariants that are convenient for the
discussion of power counting or parameter relations in
models with texture zeros. The modified set of invariants
for the three-family case reads

8We note, however, that restricting ourselves to the most
general set of dimension-four operators, where

V ¼X
i

m2
i i

ð2Þ
i þX

i;j

2
iji
ð2Þ
i ið2Þj þX

i

�ii
ð4Þ
i ;

only part of the flavor symmetry will be broken by the minimum
of the potential, including the case GF ! G0

F for a particular
subset of parameter space.

THORSTEN FELDMANN, MARTIN JUNG, AND THOMAS MANNEL PHYSICAL REVIEW D 80, 033003 (2009)

033003-6



I1 ¼ trðUÞ; V1=�
2 ¼ y2u þ y2c þ y2t � �0;

I2 ¼ trðDÞ; V2=�
2 ¼ y2d þ y2s þ y2b � �2nb ;

I3 ¼ 1

2
ðI1 � trðU2Þ=I1Þ;

V3=�
2 ¼ y2uy

2
c þ y2uy

2
t þ y2cy

2
t

y2u þ y2c þ y2t
� �2nc ;

I4 ¼ 1

2
ðI2 � trðD2Þ=I2Þ;

V4=�
2 ¼ y2dy

2
s þ y2dy

2
b þ y2sy

2
b

y2s þ y2d þ y2b
� �2ns ;

I5 ¼ detðUÞ=I1=I3;

V5=�
2 ¼ y2uy

2
cy

2
t

y2uy
2
c þ y2uy

2
t þ y2cy

2
t

� �2nu ;

I6 ¼ detðDÞ=I2=I4;

V6=�
2 ¼ y2dy

2
sy

2
b

y2dy
2
s þ y2dy

2
b þ y2sy

2
b

� �2nd ; (3.24)

which determines the 6 Yukawa couplings corresponding
to the quark masses, and

I7 ¼ trðU½U;D�DÞ
I1I2ðI1 þ I2Þ ; V7=�

2 ’ y2b�
2
23 � �2ðnbþ2Þ;

I8 ¼ 1

2

detð½U; ½U;D��Þ
I21I2ðI1 þ I2Þ2I23I7

;

V8=�
2 ’ y2b�

2
13 þ y2s

�12�13
�23

cos�� �2ðnbþ3Þ þ �2ðnsþ1Þ;

I9 ¼ 1

2

detð½½U;D�; D�Þ
I22I1ðI1 þ I2Þ2I24I7

;

V9=�
2 ’ y2bð�213 þ �212�

2
23 � 2�12�23�13 cos�Þ � �2ðnbþ3Þ;

I10 ¼ � i

2

detð½U;D�Þ
I21I

2
2ðI3 þ I4Þ

;

V10=�
2 ’ y2s�12�23�13 sin�� �4�2ðnsþ1Þ; (3.25)

which determines the angles and the CP-violating phase in
the standard parametrization [31]. Again, the invariants
I7–10 are defined in such a way that they vanish in the
no-mixing case. Moreover, I10 � 0 signals CP violation.

We may again solve for the SM parameters to obtain the
quark Yukawa couplings y2t;c;uðV1;3;5Þ and y2b;s;dðV2;4;6Þ, as
well as the (approximate) solutions for the mixing angles

�223 ’
V7

V2

; �213 ’
V8

V2

;

�
�12 cos�� �13

�23

�
2 ’ V9

V7

� V2
2V

2
10

V2
4V7V8

;

�212sin
2� ’ V2

2V
2
10

V2
4V7V8

;

(3.26)

where we also neglected terms of order ��4y2s=y
2
b. Finally,

we consider again a simple model with texture zeros in the
3� 3 Yukawa matrices [32],

YU ¼
0 Cu 0
C

u 0 Bu

0 B

u jAuj

0
@

1
A; YD ¼

0 Cd 0
C

d 0 Bd

0 B

d jAdj

0
@

1
A;

(3.27)

which yields the following approximate relations between
quark masses and mixing angles:

jVubj2
jVcbj2

’ �213
�223

’ mu

mc

;

jVtdj2
jVtsj2

’ �213 þ �212�
2
23 � 2�12�23�13 cos�

�223
’ md

ms

:

(3.28)

As before, this can be formulated in a basis-independent
way in terms of the following approximate relations be-
tween invariants:

V8

V7

’
ffiffiffiffiffiffi
V5

V3

s
;

V9

V7

’
ffiffiffiffiffiffi
V6

V4

s
: (3.29)

IV. CONCLUSIONS

In this paper we have shown how the hierarchies in
quark masses and mixings can be associated with a par-
ticular sequence of flavor symmetry breaking. The differ-
ent scales at which the individual steps of partial flavor
symmetry breaking occur are separated among each other
by not more than 1–2 orders of magnitude. Depending on
the assumed power counting for the quark masses, we have
identified different scenarios that are compatible with phe-
nomenology. We have also given some general arguments
for the possible form of scalar potentials that may realize
the sequence of flavor symmetry breaking and identified
the invariants that may be used to expand the potential
around its minimum or to classify ansätze for the Yukawa
matrices involving texture zeros in a basis-independent
way.
In all cases, the minimal non-Abelian flavor subgroup is

given by SUð2ÞDR
�Uð1Þ2ð3Þ. Its further breaking eventu-

ally leads to an effective theory with a residualUð1Þ2 flavor
symmetry, where one of the spurion fields is uncharged.
When this spurion achieves a complex VEV, its phase
cannot be rotated away and provides the one and only
source for CP violation in the quark Yukawa sector. The
CP-violating phase is thus generated at rather low scales
(compared to, say, a grand unified theory scale).
A dynamical interpretation of the Goldstone modes,

appearing at each step of the (global) flavor symmetry
breaking, can be achieved by promoting the flavor symme-
tries to local ones, where the Goldstone modes become the
longitudinal modes of the corresponding massive gauge
bosons. One the other hand, the final chiral Uð1Þ2 symme-
tries are anomalous, and the associated Goldstone bosons
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couple to the QCD instantons. They may thus be used to
resolve the strong CP problem as in the general Peccei-
Quinn setup, with the corresponding Goldstone modes
appearing as axion fields. Details will be presented in a
separate publication [19].
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Note added in proof.—While completing this work, the
paper [33] appeared, where a 2-Higgs-doublet scenario
(2HDM) with a large ratio of VEVs ( tan��mt=mb �
1) was considered. In this case, the original flavor symme-
try is broken in one step as GF ! G00

F ¼ Uð2Þ3, see
Eq. (2.6) and the discussion in [16]. The possible enhance-
ment with tan� allows for interesting observable devia-
tions from the SM and from minimally flavor-violating
scenarios with minimal Higgs sector. In [33] it has been
shown that they can be identified in a very transparent way
using the nonlinear representation of flavor symmetries
suggested in [16]. It is evident, that the related change in
the hierarchies of the Yukawa matrices for tan� � 1
would also imply a different pattern for the sequence of
flavor symmetry breaking, which could be worked out in
an analogous way as presented in our work.

APPENDIX A: SEQUENCE OF FLAVOR-
SYMMETRY BREAKING IN THE SM

In this appendix, we present the detailed derivation of
the different scenarios for sequential flavor-symmetry
breaking as discussed in the text.

1. Leading order

Neglecting all terms ofOð�Þ in YU and YD, only the top-
quark Yukawa coupling in ðYUÞ33 survives, due to our
general assumption nq > 0. We thus obtain the breaking

(which—apart from the additionalUð1Þ factors—coincides
with the discussion in [16])

GF ! G0
F ¼ SUð2ÞQL

� SUð2ÞUR
� SUð3ÞDR

�Uð1ÞT
�Uð1Þ

Uð2Þ
R
�Uð1ÞDR

; (A1)

� SUð2ÞQL
� SUð2ÞUR

� SUð3ÞDR
�Uð1Þ

Qð2Þ
L

�Uð1Þ
Uð2Þ

R
�Uð1ÞDR

; (A2)

where the equivalence in the second line arises if we take
into account the globally conserved baryon number, im-
plying the relation

3B ¼ T þQð2Þ
L þUð2Þ

R þDR

for the quark charges, where T counts the quark number for

the third generation inQL andUR, andQ
ð2Þ
L andUð2Þ

R for the
first two generations (see also Appendix B). The decom-
position of YU and YD in terms of irreducible representa-
tions of G0

F and the representation of the nine Goldstone
modes (�a¼4::8

L;UR
, �8

L ¼ ��8
UR
) remains as in [16], with

YU ¼ Uð�LÞ Yð2Þ
U

0
0

0 0 yt�

0
@

1
AUyð�UR

Þ;

YD ¼ Uð�LÞ
~Yð2Þ
D

	y
b

 !
;

(A3)

and Uð�Þ ¼ exp½i�aTa=��.

2. Order �0=�
Let us first consider the transformation properties of the

residual spurion fields with respect to G0
F [here the sub-

scripts refer to the Uð1Þ factors defined in Eq. (A1)], and
their scaling with �,

Yð2Þ
U � ð2; 2; 1Þ1;�1;0 /

�nu �1þnc

�1þnu �nc

 !
�;

~Yð2Þ
D � ð2; 1; �3Þ1;0;�1 /

�nd �1þns �3þnb

�1þnd �ns �2þnb

 !
�;

	y
b � ð1; 1; �3Þ0;0;�1 / �3þnd �2þns �nb

� �
�:

(A4)

We now assume that at the scale �0 � �, the next-
highest entry in the residual spurion fields gets its VEV.

For nc > nb, the spurion 	y
b will have the largest eigen-

value,9

h	y
b i ¼ ð0; 0; ~ybÞ� � ð0; 0; xbÞ�0; (A5)

with xb ¼ Oð1Þ such that ~yb ��0=��mb=mt. Similarly,
as for the discussion of the 2HDM with large tan� in [16],
this further breaks the flavor symmetry to

G0
F ! G00

F ¼ SUð2ÞQL
� SUð2ÞUR

� SUð2ÞDR
�Uð1Þ

Qð2Þ
L

�Uð1Þ
Uð2Þ

R
�Uð1Þ

Dð2Þ
R
; (A6)

� SUð2ÞQL
� SUð2ÞUR

� SUð2ÞDR
�Uð1ÞIII

�Uð1Þ
Uð2Þ

R
�Uð1Þ

Dð2Þ
R
; (A7)

9If we allow for nc ¼ nb, the spurion Y
ð2Þ
U also will get its VEV

simultaneously, such that in the scenario (a) discussed below, the
scales �0 and �00 would coincide.
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where nowUð1ÞIII acts on all quarks in the third generation.
The five additional Goldstone modes (�0

DR

a¼4::8) are in-

troduced as

~Yð2Þ
D ¼ Yð2Þ

D �s

� �
Uyð�0

DR
Þ;

	y
b ¼ 0 0 xb�

0� �
Uyð�0

DR
Þ;

(A8)

with Uð�0Þ ¼ exp½i�0aTa=�0�.

3. Alternative (a1): nc < nb þ 2 < nb þ 3 < ns

At this stage, the further breaking of the flavor symmetry
depends on the details about the assumed power counting
for the quark masses. Let us first discuss the scenario (a1):

a. Order �00=�
In the case of nc < nb þ 2, it is convenient to classify

the residual spurion fields of G00
F according to (A7),

Yð2Þ
U � ð2; 2; 1Þ0;�1;0 /

�1þnu �1þnc

�1þnu �nc

 !
�;

Yð2Þ
D � ð2; 1; 2Þ0;0;�1 /

�nd �1þns

�1þnd �ns

 !
�;

�s � ð2; 1; 1Þ�1;0;0 /
�3þnb

�2þnb

 !
�;

(A9)

such that the next spurion getting a VEV is

hYð2Þ
U i ¼ 0 0

0 ~yc

� �
� � 0 0

0 xc

� �
�00; (A10)

with xc ¼ Oð1Þ, implying ~yc ��00=��mc=mt. The VEV

of Yð2Þ
U thus further breaks the flavor symmetry as

G00
F ! Gð3a1Þ

F ¼ SUð2ÞDR
�Uð1ÞC �Uð1ÞIII �Uð1Þ

Qð1Þ
L

�Uð1Þ
Uð1Þ

R
; (A11)

� SUð2ÞDR
�Uð1ÞC �Uð1Þ

Qð1Þ
L
�Uð1Þ

Uð1Þ
R

�Uð1Þ
Dð2Þ

R
; (A12)

where Uð1ÞC refers to the second-generation quarks in QL

and UR. This implies five additional Goldstone bosons
(�00

L;UR

a¼1::3, �003
L ¼ ��00

UR

3), appearing via

Yð2Þ
U ¼ Uð�00

LÞ Yð1Þ
U 0
0 xc�

00

 !
Uyð�00

UR
Þ; (A13)

Yð2Þ
D ¼ Uð�00

LÞ 	y
d

	y
s

 !
; �s ¼ Uð�00

LÞ �13

�23

� �
: (A14)

b. Order �ð3Þ=�

The residual spurions of Gð3a1Þ
F now scale/transform as

Yð1Þ
U � ð1Þ0;1;�1;0 / �nu;

	y
d � ð2Þ0;1;0;�1 / �nd �1þns

� �
;

�13 � ð1Þ0;1;0;0 / �3þnb ;

	y
s � ð2Þ1;0;0;�1 / �1þnd �ns

� �
;

�23 � ð1Þ1;0;0;0 / �2þnb ;

(A15)

where the subscripts refer to the Uð1Þ charges in (A12). In
this case, assuming ns > nb þ 2, the next spurion to re-
ceive a VEV is �23, which breaks the Uð1ÞC symmetry,

Gð3a1Þ
F ! Gð4a1Þ

F ¼ SUð2ÞDR
�Uð1Þ

Qð1Þ
L
�Uð1Þ

Uð1Þ
R

�Uð1Þ
Dð2Þ

R
: (A16)

The associated Goldstone boson �000 appears as a simple
phase,

�23 ¼ xsbe
i�000=�000

�000 and 	y
s ! 	y

s ei�
000=�000

; (A17)

with �000=�� yb�
2.

c. Order �ð4Þ=�

The residual spurions for Gð4a1Þ
F read

Yð1Þ
U � ð1Þ1;�1;0 / �nu ;

	y
d � ð2Þ1;0;�1 / �nd �1þns

� �
;

	y
s � ð2Þ0;0;�1 / �1þnd �ns

� �
;

�13 � ð1Þ1;0;0 / �3þnb :

(A18)

For ns > nb þ 3, the next spurion to get a VEV is �13,
which breaks another Uð1Þ symmetry,

Gð4a1Þ
F ! Gð5a1Þ

F ¼ SUð2ÞDR
�Uð1Þ

Uð1Þ
R
�Uð1Þ

Dð2Þ
R
:

(A19)

The corresponding Goldstone mode �ðivÞ appears again as

a phase factor used to redefine the spurions Yð1Þ
U and 	d

according to theirUð1Þ charge. It should be noted that after
the Uð1Þ

Qð1Þ
L
is broken, the residual spurions 	d and 	s have

the same quantum numbers with respect to Gð5a1Þ
F , and

therefore the relative phase of their VEVs will provide
the source for spontaneous CP violation.

d. Order �ð5Þ=�
Taking h	si � 0, we next break

Gð5a1Þ
F ! Gð6a1Þ

F ¼ Uð1Þ
Uð1Þ

R
�Uð1Þ

Dð1Þ
R
; (A20)

and the remaining spurion fields are given by
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Yð1Þ
U � ð1Þ�1;0 / �nu ; Yð1Þ

D � ð1Þ0;�1 / �nd ;

�12 � ð1Þ0;0 / �1þns :
(A21)

Here, we have decomposed the SUð2ÞDR
doublet 	d into

two complex singlets Yð1Þ
D and �12,

	y
s ¼ ð0; xss�ð5a1ÞÞUyð�ðvÞ

R Þ;
	y
d ¼ ðYð1Þ

D ; �12ÞUyð�ðvÞ
R Þ:

(A22)

4. Alternative (a2): nc < nb þ 2 < ns < nb þ 3

a. Order �00=� and order �ð3Þ=�
These steps are the same as for the alternative (a1)

above.

b. Order �ð4Þ=�
In this case, i.e. for ns < nb þ 3, the next spurion to

receive a VEV is h	si � ys�, which breaks

Gð4a1Þ
F ! Gð5a2Þ

F ¼ Uð1Þ
Qð1Þ

L
�Uð1Þ

Uð1Þ
R
�Uð1Þ

Dð1Þ
R
; (A23)

leaving us with four singlet spurion fields

Yð1Þ
U � ð1Þ1;�1;0 / �nu ; Yð1Þ

D � ð1Þ1;0;�1 / �nd;

�12 � ð1Þ1;0;0 / �nsþ1; �13 � ð1Þ1;0;0 / �nbþ3:

(A24)

c. Order �ð5Þ=�
Taking now h�13i � 0, we break

Gð5a2Þ
F ! Gð6a2Þ

F ¼ Uð1Þ
Uð1Þ

R
�Uð1Þ

Dð1Þ
R
; (A25)

with the remaining spurion fields as for case (a1).

5. Alternative (b): nb þ 2 < nc < ns < nc þ 1

The case nc > nb þ 2 may be considered as somewhat
less likely, because in order to have yc=yb & �2 at some
high scale we would have to require sizeable renormaliza-
tion effects in order to recover mc=mb � 0:3 at low scales.

a. Order �00=�
In that case, the next spurion to get a VEV would be

h�si ¼ 0
y23

� �
� ¼ 0

x23

� �
�00; (A26)

with x23 ¼ Oð1Þ and thus�00=� ¼ �2mb=mt. This leads to
the breaking

G00
F ! Gð3bÞ

F ¼ SUð2ÞUR
� SUð2ÞDR

�Uð1Þ
Qð1Þ

L
�Uð1Þ

Uð2Þ
R

�Uð1Þ
Dð2Þ

R
: (A27)

Introducing three new Goldstone bosons (ð�00
LÞa¼1;2;3), we

parametrize

Yð2Þ
U ¼ Uð�00

LÞ 	y
u

	y
c

 !
; Yð2Þ

D ¼ Uð�00
LÞ 	y

d

	y
s

 !
;

�s ¼ Uð�00
LÞh�si:

(A28)

b. Order �ð3Þ=�

The residual spurions of Gð3bÞ
F scale/transform as

	y
u � ð2; 1Þ1;�1;0 / �nu �1þnc

� �
;

	y
d � ð1; 2Þ1;0;�1 / �nd �1þns

� �
;

	y
c � ð2; 1Þ0;�1;0 / �1þnu �nc

� �
;

	y
s � ð1; 2Þ0;0;�1 / �1þnd �ns

� �
:

(A29)

In this case, the next spurion to receive a VEV is 	y
c , which

breaks

Gð3bÞ
F !Gð4bÞ

F ¼ SUð2ÞDR
�Uð1Þ

Qð1Þ
L
�Uð1Þ

Uð1Þ
R
�Uð1Þ

Dð2Þ
R
;

(A30)

introducing three new Goldstone bosons at the scale�ð3Þ �
yc�.

c. Order �ð4Þ=�

Decomposing the doublet 	y
u into two singlets Yð1Þ

U and

’12, the remaining spurions of Gð4bÞ
F are

Yð1Þ
U � ð1Þ1;�1;0 / �nu ; and ’12 � ð1Þ1;0;0 / �1þnc ;

	y
d � ð2Þ1;0;�1 / �nd �1þns

� �
;

	y
s � ð2Þ0;0;�1 / �1þnd �ns

� �
:

(A31)

Notice that the flavor group and the representations of the

spurion fields are the same as for Gð4a1;4a2Þ
F , only that the

role of �13 is now played by ’12.
As in the case of scenario (a2), we assume that the next

spurion to get a VEV is 	s, breaking the flavor symmetry at

�ð4bÞ � ys�,

Gð4bÞ
F ! Gð5bÞ

F ¼ Uð1Þ
Qð1Þ

L
�Uð1Þ

Uð1Þ
R
�Uð1Þ

Dð1Þ
R
: (A32)

The remaining steps in the flavor symmetry breaking fol-

low scenario (a2), except for �ð5bÞ � h’12i � �yc�.

6. Order �ð6Þ=� and order �ð7Þ=�
Since in all scenarios the residual spurion field �12 is

uncharged underGð6Þ
F , its VEVwill in general be a complex

number whose phase cannot be rotated away by flavor
transformations. The CP symmetry in the Yukawa sector

will thus be broken spontaneously by h�12i=�� �ys �
�ð5Þ=�, if the potential singles out a nonvanishing imagi-
nary part.
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Finally, the VEVs for Yð1Þ
U and Yð1Þ

D break the remaining
flavor symmetry

Gð6a1Þ
F ! nothing (A33)

and give masses to the up- and down-quark, where the
order of symmetry breaking is not really important.

APPENDIX B: VARIOUS Uð1Þ CHARGES

For convenience, we collect in Table III the variousUð1Þ
charges appearing in the construction of the flavor symme-
try breaking. Notice that some Uð1Þ charges are linear
dependent,

3B ¼ T þQð2Þ
L þUð2Þ

R þDR; (B1)

¼ IIIþQð2Þ
L þUð2Þ

R þDð2Þ
R ; (B2)

¼ IIIþ CþQð1Þ
L þUð1Þ

R þDð2Þ
R : (B3)

APPENDIX C: EXPRESSING THE GF INVARIANTS
THROUGH G0

F INVARIANTS

The explicit relations between the ten invariants iðmÞ
� of

the full flavor group GF and the nine invariants jðmÞ
� of the

residual flavor group G0
F read

ið2Þ1 ¼ jð2Þ1 þ y2t�
2; ið2Þ2 ¼ jð2Þ2 þ jð2Þ3 ; (C1)

for the dimension-two invariants, and

ið4Þ1 ¼ jð4Þ1 � 2y2t�
2jð2Þ1 ;

ið4Þ2 ¼ jð4Þ2 � jð2Þ1 jð2Þ3 � y2t�
2jð2Þ2 ;

ið4Þ3 ¼ jð4Þ3 þ 2jð4Þ4 ;

(C2)

for the dimension-four terms, together with

ið6Þ1 ¼ �3
2y

2
t�

2jð4Þ1 ;

ið6Þ2 ¼ �y2t�
2jð4Þ2 � 1

2j
ð2Þ
3 jð4Þ1

ið6Þ3 ¼ jð6Þ1 � 1
2y

2
t�

2jð4Þ3 � jð2Þ1 ðjð4Þ4 þ jð2Þ2 Jð2Þ3 Þ � jð2Þ3 jð4Þ2 ;

ið6Þ4 ¼ 3jð6Þ2 � 3jð2Þ2 ðjð4Þ4 þ jð2Þ2 jð2Þ3 Þ � 3
2j

ð2Þ
3 jð4Þ3 ;

(C3)

and

ið8Þ1 ¼ ðjð2Þ1 � 2y2t�
2Þjð6Þ1 þ ðy4t�4 þ 1

2j
ð4Þ
1 Þ

� ðjð4Þ4 þ jð2Þ2 Jð2Þ3 Þ þ jð4Þ1 jð4Þ3 � jð4Þ2 ðjð4Þ2 þ jð2Þ1 jð2Þ2 Þ
þ 1

2ðjð2Þ1 Þ2jð4Þ3 þ 1
2ðjð2Þ2 Þ2jð4Þ1 : (C4)
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