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A low-energy nonunitary leptonic mixing matrix is a generic feature of many extensions of the standard

model. In such a case, the task of future precision neutrino oscillation experiments is more ambitious than

measuring the three mixing angles and the leptonic (Dirac) CP phase, i.e., the accessible parameters of a

unitary leptonic mixing matrix. A nonunitary mixing matrix has 13 parameters that affect neutrino

oscillations, out of which four are CP violating. In the scheme of minimal unitarity violation we analyze

the potential of a neutrino factory for determining or constraining the parameters of the nonunitary

leptonic mixing matrix, thereby testing the origin of CP violation in the lepton sector.
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I. INTRODUCTION

There are several indications from particle physics, as
well as from cosmology, for the existence of physics
beyond the standard model (SM). For example, the gauge
hierarchy problem suggests that new physics exists at
energies close to the electroweak scale in order to stabilize
it against large quantum corrections. In cosmology, the
evidence for dark matter in the Universe requires the ex-
tension of the SM particle content. Last, but not least, the
discovery that neutrinos are massive provides the first clear
particle physics evidence that the SM has to be extended.

In general, extensions of the SM will also affect the
physics relevant at neutrino oscillation experiments. New
physics effects on neutrino oscillations are particularly
relevant for the next generation of precision neutrino os-
cillation facilities such as neutrino factories [1,2], which
aim at measuring the unknown leptonic mixing angle �13,
the neutrino mass hierarchy [i.e., sgnð�m2

31Þ], as well as

the Dirac phase �, which can induce CP violation in
neutrino oscillations. In most phenomenological studies
regarding the sensitivities of future neutrino oscillation
facilities, the leptonic mixing matrix is assumed to be
unitary.

In contrast to this common practice, it is well known that
one generic feature of new physics in the lepton sector is
the nonunitarity of the low-energy leptonic mixing matrix.
This nonunitarity appears whenever additional heavy par-
ticles mix with the light neutrinos or their charged lepton
partners [3–28]. After integrating the heavy states out of
the theory, the 3� 3 submatrix of the light neutrinos

remains as an effective mixing matrix. This low-energy
leptonic mixing matrix is, in general, not unitary.
While there are many models of physics beyond the SM

which induce nonunitarity, an extension of the SM featur-
ing a nonunitary leptonic mixing can be described in a
minimal way through an effective theory, the so-called
Minimal Unitarity Violation (MUV) scheme [19]. It con-
tains the relevant low-energy information for neutrino
oscillation experiments and is minimal in the sense that
only three light neutrinos are considered and that new
physics is introduced in the neutrino sector only. It pro-
vides an effective description of all models where addi-
tional heavy singlets mix with three light neutrinos.1

In MUV, the charged- and neutral-current interactions of
the neutrinos (i.e., their couplings to the W and Z bosons)
are modified. The nonunitary leptonic mixing matrix N,
which appears in the charged-current interaction, contains
the only additional degrees of freedom, since the neutral-
current interaction of the neutrinos is proportional to NyN
while the neutral-current interaction of the charged leptons
is unchanged. Thus, instead of the three mixing angles and
three CP phases of a unitary leptonic mixing matrix (with
only one affecting neutrino oscillations), the nonunitary
mixing matrix N contains 15 parameters, out of which six
are CP-violating phases (including two Majorana phases,
which do not affect neutrino oscillations).
In this study, we investigate the potential of a neutrino

factory for determining or constraining the parameters of
the nonunitary leptonic mixing matrix, thereby testing the
origin of CP violation in the lepton sector.
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1Other possibilities to introduce nonunitary leptonic mixing
are, e.g., via an additional vectorlike lepton generation or via
fermionic SUð2ÞL triplets, which are beyond MUV. Nonunitarity
in these schemes turns out to be significantly more constrained
by nonoscillation experiments than in MUV (see, e.g., Ref. [20]).
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II. GENERAL INTRODUCTION TO UNITARITY
VIOLATION

As motivated in the introduction, nonunitarity of the
leptonic mixing matrix is a generic manifestation of new
physics in the lepton sector. The MUV scheme provides an
effective field theory extension of the SM and is minimal in
the sense that only three light neutrinos are considered and
that new physics is only introduced in the neutrino sector.
Notice that this assumption is conservative, since new
physics affecting other sectors, such as that of the charged
leptons, will lead to stronger signals than the ones dis-
cussed here. The MUV scheme thus describes the relevant
effects on neutrino oscillations in the various types of
models where the SM is extended by heavy singlet fermi-
ons (where ‘‘heavy’’ refers to large masses compared to the
energies of the neutrino oscillation experiments) which
mix with the light neutrinos.

In the MUV scheme, the Lagrangian density of the SM
is extended by two effective operators, one of mass dimen-
sion five and one of mass dimension six. The dimension
five operator is the ubiquitous lepton number violating

Weinberg operator �Ld¼5 ¼ 1
2 c

d¼5
�� ð �Lc

�
~��Þð ~�yL�Þ þ

H:c:, the lowest dimensional effective operator for gener-
ating neutrino masses using the field content of the SM.
The coefficient matrix cd¼5

�� is ofOð1=MÞ and related to the
low-energy neutrino mass matrix by m� ¼ v2

EWcd¼5,
where vEW is the vacuum expectation value of the SM
Higgs field �, which breaks the electroweak symmetry,

and ~� ¼ i�2�
�. The SM neutrinos are contained in the

lepton doublets L�, with � ¼ e, �, � running over the
three families.

The effective dimension six operator

cd¼6
�� ð �L�

~�Þi@6 ð ~�yL�Þ conserves lepton number2 and, after

electroweak symmetry breaking, contributes to the kinetic
terms of the neutrinos. After their canonical normalization,
they generate a nonunitary leptonic mixing matrix N, as
well as nonuniversal couplings of the neutrinos to the Z
boson proportional to NyN. The modified part of the
Lagrangian density in MUV is given by

Leff ¼ 1

2
ð ��ii@6 �i � ��c

imi�i þ H:c:Þ

� g

2
ffiffiffi
2

p ðW�
�
�l�	�ð1� 	5ÞN�i�i þ H:c:Þ

� g

2 cos�W
ðZ� ��i	

�ð1� 	5ÞðNyNÞij�j þ H:c:Þ:
(1)

We note that the MUV scheme is also minimal in the sense
that all new physics effects depend on the nonunitary

leptonic mixing matrix N. Regarding neutrino oscillation
experiments, the nonunitarity of N affects the processes at
the source and the detector as well as neutrino propagation
in matter.
To parametrize N, we use the fact that a general matrix

can be written as the product of a Hermitian matrix times a
unitary matrix. Decomposing the Hermitian matrix as 1þ
" (with " ¼ "y) and denoting the unitary matrix by U, we
can write [21]

N ¼ ð1þ "ÞU: (2)

For the complex off-diagonal elements of the matrix ", we
use the notation "�� ¼ j"��jei��� . Notice that, due to the

Hermiticity of ", j"��j ¼ j"��j, and ��� ¼ ����. The

diagonal elements are real and no further parametrization
is required. Constraints on the "�� can also be derived

from the experimental data on electroweak decays [11,12].
The present 90% CL bounds are j"�ej< 3:5 � 10�5,

j"�ej< 8:0 � 10�3, j"��j< 5:1 � 10�3 [19], and j"eej<
2:0 � 10�3, j"��j< 8:0 � 10�4, j"��j< 2:7 � 10�3 [25]. In

our analysis, we will consider unitarity violation consistent
with the present bounds. Analytic expressions for the
neutrino oscillation probabilities in terms of U and " can
be found in Appendix A.
Finally, we would like to comment on other possible

parametrization of a nonunitary leptonic mixing matrix. In
Refs. [15,22,23,27], a different parametrization is advo-
cated, in which the deviations from unitarity of the mixing
matrix involving the three light neutrinos is related to the
mixing between these light neutrinos and the heavy sin-
glets in seesaw type theories. The mixing matrix in a
seesaw scenario is the unitary matrix that diagonalizes
the extended neutrino mass matrix:

UT
6�6

0 mD

mT
D MN

� �
U6�6 ¼ m 0

0 M

� �
; (3)

where mD and MN are the neutrino’s Dirac and Majorana
mass matrices, respectively. In the case of only one neu-
trino family, the unitary matrix is just a rotation of angle
� ’ mD=M. The extension to three or more families is
straightforward, performing the diagonalization in two
steps: first a block-diagonalization and then two unitary
rotations to diagonalize the mass matrices of the light and
heavy neutrinos, i.e.,

U6�6 ¼ A B
C D

� �
U 0
0 V

� �
; (4)

where U and V are unitary matrices. Without loss of
generality, we can choose a basis for the heavy singlets
such that V ¼ I. Analogously to the one family example,
when performing the block-diagonalization, the mixing
between the light and heavy neutrinos is suppressed so that

B ’ � ¼ mDM
�1
N : (5)

This suppression is exploited in Refs. [23,27], where the

2We note that since the dimension six operator conserves
lepton number, it is not necessarily suppressed by the smallness
of the neutrino masses.
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block diagonalizing matrix is written as the product of the 9 possible rotations mixing the light and heavy states and then
expanded up to second order in the small mixing angles. This results in

A ¼ 1�
1
2 ðs214 þ s215 þ s216Þ 0 0

ŝ14ŝ
�
24 þ ŝ15ŝ

�
25 þ ŝ16ŝ

�
26

1
2 ðs224 þ s225 þ s226Þ 0

ŝ14ŝ
�
34 þ ŝ15ŝ

�
35 þ ŝ16ŝ

�
36 ŝ24ŝ

�
34 þ ŝ25ŝ

�
35 þ ŝ26ŝ

�
36

1
2 ðs234 þ s235 þ s236Þ

0
B@

1
CAþOð�4ijÞ;

B ¼
ŝ�14 ŝ�15 ŝ�16
ŝ�24 ŝ�25 ŝ�26
ŝ�34 ŝ�35 ŝ�36

0
@

1
AþOð�3ijÞ;

(6)

where ŝij ¼ sij expði�ijÞ and sij ¼ sinð�ijÞ. Notice that the
mixing matrix of the three light neutrinos is given by N ¼
AU. Thus, the deviation from unitarity, encoded in A, is
directly related to the mixing B between the heavy and
light neutrinos. We argue that this is also the case with the
Hermitian unitarity deviation adopted in Eq. (2). Indeed,
we can exploit the suppression of Eq. (5) to write the
unitary block-diagonalization as the exponential expansion
of an anti-Hermitian matrix:

A B
C D

� �
¼ exp

0 �
��y 0

� �

¼ 1� 1
2��y �

��y 1� 1
2�

y�

 !
þOð�3Þ: (7)

Thus, the Hermitian deviation from unitarity defined in
Eq. (2) is just " ¼ ���y=2 and its relation to the mixing
between light and heavy neutrinos in a seesaw scenario is
straightforward.3 Furthermore, notice that the deviation
from unitary mixing parametrized as in Eq. (6) can only
be applied to the specific case of the mixing between three
light and three heavy neutrinos while the product of an
Hermitian and a unitary matrix is a completely general
matrix and thus suitable to take into account more general
scenarios. In addition, the unitarity deviation " is given by
the coefficient of the d ¼ 6 operator (" ¼ �cd¼6=2) that
modifies the neutrino kinetic terms, introduced in theMUV
scheme and obtained in the effective theory of the seesaw
mechanism after integrating out the heavy singlets (see,
e.g., Ref. [29]).

III. NUMERICAL SIMULATION AND RESULTS

We will now discuss the sensitivity of future neutrino
oscillation experiments to the different parameters of the
MUV scheme. In particular, we study the ‘‘standard’’
neutrino factory setup proposed in the international design
study (IDS) [30,31], which consists of �e and �� beams

from 5� 1020 muon decays per year per baseline. We
consider a setting where the experiment is assumed to
run for five years in each polarity. The parent muons are
assumed to have an energy of 25 GeV. The beams are

detected at two far sites, the first located at 4000 km with
a 50 kton magnetized iron neutrino detector (MIND) [32]
and a 10 kton emulsion cloud chamber (ECC) for � detec-
tion [33,34], and the second located close to the magic
baseline [35,36] at 7500 km with an iron detector identical
to the one at 4000 km.
Since our main interest is the sensitivity of the standard

setup to nonunitarity, the only deviation from this standard
setup that we will consider is the addition of a near detector
at 1 km capable of �� detection. In this sense, even if the
experimental setup of the IDS neutrino factory seems more
demanding than, for example, the 130 km baseline consid-
ered in Refs. [21,24], we regard this setup as more realistic.
Indeed, if a neutrino factory is built, it will need both the
4000 km and the 7500 km baselines in order to have
competitive sensitivities to CP violation and the mass
hierarchy, but it would be too demanding to further divide
the flux by adding a third 130 km baseline to study devia-
tions from unitary mixing. Moreover, as we will discuss
later, the sensitivities achievable with this setup generally
outperform the ones obtained with only the 130 km base-
line. On the other hand, it is true that the sensitivities to the
new nonunitarity parameters will not depend critically on
the presence of the long 7500 km baseline, for instance.
However, this baseline is mandatory for the measurement
of standard parameters such as � or the mass hierarchy,
which are also allowed to vary in our numerical analysis.
A clean signal of a nonunitary mixing is the presence of

‘‘zero-distance effects’’ stemming from the nonorthogon-
ality of the flavor states. Indeed, if the flavor basis is not
orthogonal, a neutrino of flavor � can be detected with
flavor � without the need of flavor conversion in the
propagation. This translates to a baseline-independent
term in the oscillation probabilities, which is best probed
at short distances, since the flux is larger and it cannot be
hidden by the standard oscillations. For short baselines,
this term is (� � �)

P��ðL ¼ 0Þ ¼ 4j"��j2 þOð"3Þ: (8)

The oscillation probabilities for longer baselines up to
second order in the small parameters are derived in
Appendix A. Near detectors are thus excellent for probing
the zero-distance effect, in particular � detectors are of
importance, since the present bounds on "�e and "�� are

3The anti-Hermitian part can be reabsorbed in the unitary
rotation, and is thus related to using different parametrizations.
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rather strong. We will therefore study the impact of near �
detectors of different sizes located at 1 km from the beam
source. In particular, we will present all the results for near
detector sizes of 100 ton, 1 kton, and 10 kton, as well as the
results without any near � detector. Notice that 10 kton is
the detector mass discussed for the ECC detector located at
4000 km. However, we have seen no improvement adding
such a detector at that baseline while the gain in sensitivity
that a near detector capable of � detection can provide is
significant, as we will discuss below. Therefore, we also
considered the larger mass to show what could be achieved
with the planned 10 kton detector located at 1 km instead of
4000 km. To simulate the near detector, we use the point-
source and far-distance approximations. These assump-
tions are reasonable, although somewhat optimistic in the
high-energy region, as can be seen in Fig. 12 of Ref. [37].
However, the loss of flux at higher energies, which corre-
sponds to the on-axis neutrinos, may be recovered by using
rather elongated geometries of the near detector. These are
precisely the kind of geometries that are being discussed
for a magnetized version of the ECC. Such a detector
would be limited in size by the above mentioned geomet-
rical considerations and is not likely to be larger than
4 kton. On the other hand, all the decay channels of the �
could be studied in the magnetized version, which would
translate into an increase of the efficiency by a factor of 5
with respect to the ECC search for � decays into � con-
sidered here. The impact of near � detectors is still essen-
tially to normalize the neutrino flux and cross sections,
since the bounds on "�� and "�e from the unitarity of the

CKM matrix and � ! e	 are particularly strong [19,25].
In our simulations, we will study the ‘‘golden’’ [38]

�e ! �� and �� disappearance channels in the MIND

detectors and the ‘‘silver’’ [33,34] �e ! �� and ‘‘discov-
ery’’ [39] �� ! �� channels at the ECC detectors, both

near and far. Since both detector technologies are capable
of charge identification and we consider runs with both
muon polarities, these channels are considered for both
neutrinos and antineutrinos. For the detector efficiencies
and backgrounds, we follow the study in Ref. [32] of the
MIND detector exposed to the neutrino factory beam. The
efficiencies and backgrounds for the silver channel with an
ECC detector are carefully discussed in Ref. [34] and we
follow the results of that reference. Lacking an analogous
study for the discovery channel, we assume the same
efficiencies and backgrounds as the ones for the silver
channel described in Ref. [34].

For our numerical simulations, we scan the complete
MUV parameter space, adding nine unitarity violating
parameters to the six standard neutrino oscillation parame-
ters. The scan is performed using the MONTECUBES soft-
ware [40,41], which allows one to perform Markov Chain
Monte Carlo (MCMC) simulations with GLOBES [42,43].
For the implementation of the unitarity deviations in the
neutrino oscillation probabilities, we use the

NONUNITARITY ENGINE distributed along with the

MONTECUBES package. Using the MCMC technique allows

the study of possible parameter correlations in the full
parameter space without restricting the search to varying
only a small subset of the parameters. This is due to the fact
that the number of evaluations required by Monte Carlo
techniques increases at most polynomially with the number
of parameters, while a scan based on grids in the parameter
space would require one to evaluate the event rates and
likelihoods at a number of points that grows exponentially.
For all of our figures, we have used simulations with four
MCMC chains containing 2� 106 samples each. In addi-
tion, we have checked that the chains have reached proper
convergence, in all cases better than R� 1 ¼ 10�2 [44]. It
is also important to note that, unlike in the standard usage
of the GLOBES software, the use of MCMC techniques is
based on Bayesian rather than frequentist parameter esti-
mation and, as such, the result depends on the adopted
priors. As priors, we will consider the current bounds on
both the standard and the unitarity violating parameters,
except for parameters to which the neutrino factory has
superior sensitivity, for which we use flat priors.
Before discussing the more detailed studies, let us com-

ment on some of the general results from the simulations.
First of all, one of the most remarkable features is that the
results do not contain significant correlations between any
of the unitarity violating parameters, nor are the unitarity
violating parameters significantly correlated with the stan-
dard neutrino oscillation parameters. The only exception
are some mild correlations between �13, � and the modulus
and phase of "�e in the absence of near � detectors which,
however, do not lead to new degeneracies between these
parameters or spoil the determination of �13 and � at the
neutrino factory. Furthermore, the addition of a near �
detector of only 100 ton is enough to almost completely
erase these correlations. This implies that the neutrino
factory setup considered here has enough sensitivity to
distinguish the effects induced by unitarity violation from
changes in the standard parameters. Second, the sensitiv-
ities of the neutrino factory to the diagonal parameters of
the "matrix, as well as to "�e, do not improve with respect

to the bounds derived from electroweak decays, which are
too stringent to allow for observable effects at the neutrino
factory. Notice that none of the oscillation probabilities
studied here depend on "ee, as shown in Appendix A.
We will thus concentrate on the sensitivities to "�� and

"�e in the next subsections, even though the other unitarity
violating parameters and standard oscillation parameters
are allowed to vary in the simulations. As an example of
the sensitivities and correlations to all the 15 parameters
considered, the 105 projections to the different two-
dimensional subspaces and the marginalized regions for
the 15 parameters can be studied in a triangle plot at
Ref. [41] for the case of no near � detector. The input
values chosen for the unknown parameters in this example
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were �13 ¼ 5�, � ¼ 0, j"�ej ¼ 0:005, and ��e ¼ 
=4, the
input for the rest of the nonunitary parameters was set to
zero. In all our simulations we assume [45,46] �12 ¼ 33�,
�23 ¼ 45�, �m2

21 ¼ 8 � 10�5 eV2, and �m2
31 ¼

2:6 � 10�3 eV2. We also assumed 4% priors on �12 and
�m2

21 at 1�, flat priors were used for the rest of the
standard oscillation parameters. For the unitarity violating
parameters, we consider Gaussian priors given by the
ranges mentioned in Sec. II.

A. Sensitivity to "��

In the left panel of Fig. 1, we show the sensitivity to the
"�� parameter for the four different sizes considered for

the near ECC. The input values for all the nonunitarity
parameters and �13 were set to zero to derive these curves.
We have checked that the results do not depend strongly on
this assumption. The most remarkable feature of this figure
is the extreme sensitivity to the real part of "�� which is

present already without any near detector. This sensitivity
mainly originates from the matter effect on the disappear-
ance channel, where the leading nonunitarity correction to
the oscillation probability is given by

P̂ �� ¼ PSM
�� � 2Reð"��ÞAL sin

�
�m2

31L

2E

�
þOð"��Þ;

(9)

where A ¼ ffiffiffi
2

p
GFne, the terms we have omitted here can

be found in Appendix A. Notice that the discovery channel
also depends linearly on "�� and that the dependence is CP

violating. On the other hand, the mass and efficiency of the
ECC detector are much smaller compared to those of the
MIND detectors for the �� disappearance channel and

therefore the sensitivity is dominated by the latter. As
can be seen in the figure, a near � detector will determine
the modulus of "�� through the zero-distance effect. This

would translate into a vertical band in the left panel of
Fig. 1 and thus the increase of the mass of the near detector
improves the measurement of the imaginary part. However,

given the linear dependence due to the matter effects on
propagation, the bound on the real part from the disappear-
ance channel remains stronger. We can also see that the
bound on the modulus does not require a very large near
detector, the bound on the imaginary part is essentially
only improved by approximately 30% in moving from a
1 kton to a 10 kton ECC detector.
Another important question is how well the neutrino

factory would be able to measure the unitarity violating
parameters if they are nonzero. For this reason, in Fig. 2,
we show the sensitivity to "�� assuming that j"��j ¼ 3:2 �
10�3 as well as ��� ¼ 45� and�90�, respectively, which
is disfavored at only 1� by current bounds. Thus, this gives
a flavor of the best possible situation for actually discov-
ering unitarity violation and a new source of CP violation.
Again, we can see that the sensitivity without the near
detector is only to the real part of "��. In this setting,

there is a degeneracy extending essentially as j"��j /
1= cosð���Þ, along which the real part of "�� is constant

and the imaginary part is changing. For the case with
purely imaginary "�� in the right panel of Fig. 2, it is

also no surprise that the results without the near detector
are compatible with "�� ¼ 0. The introduction of near

detectors results in an effective measurement of j"��j,
i.e., a vertical band in the plot, which intersects the far
detector measurement giving rise to two degenerate solu-
tions, one for positive and one for negative imaginary part.
Again, the actual size of the near detector is not crucial and
no significant gain is seen beyond 1 kton.
These figures also show the strong complementarity

between the near and far detectors when it comes to
measuring the phase of the unitarity violating parameter,
and thus also a nonstandard source of CP violation.
Neither the near nor the far detectors alone can establish
a CP-violating phase by themselves. However, combining
the two results excludes CP conservation at 90% confi-
dence level, even if a degeneracy on the sign of the
CP-violating phase remains.

|ετµ|

φ τµ

0 1 2 3 4 5 6

x 10
−3

−180

−90

0

90

180

|ετ e
|

φ τ 
e

0 1 2 3 4 5

x 10
−3

−180

−90

0

90

180

FIG. 1 (color online). The 90% confidence level sensitivity of the IDS neutrino factory to the unitarity violating parameters "�� (left)
and "�e (right). The different curves correspond to different sizes of the near � detector, from left to right, 10 kton, 1 kton, 100 ton, no
near detector.
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Note that the slight widening of the allowed region when
including the near detector results from the use of Bayesian
statistics. Since the near detectors discard a large range of
allowed values for ��� when j"��j is close to zero, a

slightly larger region in ��� close to the correct absolute

value of "�� is needed in order to include 90% of the

probability distribution.

B. Sensitivity to "�e

The right panel of Fig. 1 shows the sensitivity to the
unitarity violation parameter "�e when the input values for
�13 and all the unitarity violating parameters are set to zero.
Analogously to the sensitivity to "��, the setup with only

the far detectors is more sensitive to the real part of the
parameter, although the difference is not as pronounced.
Furthermore, as can be seen in the oscillation probabilities
in Appendix A, the probabilities that depend on "�e are

only the golden, silver, and discovery channels, where the
dependence is quadratic rather than linear, which translates
into a weaker bound. Thus, the inclusion of the near �
detector has a major impact also on the bound which is
placed on the real part of "�e. Indeed, for a 1 kton near �
detector, the sensitivity is essentially flat as a function of
��e and is dominated by the near detector.
Again, the larger mass and efficiency of the MIND

detector compared to the ECC translates into the golden
rather than the silver or the discovery channels dominating
the sensitivity to "�e from the far detectors alone. However,
unlike the �� disappearance channel, the golden channel is

strongly dependent on the unknown parameters �13 and �
and the input values assumed for them will influence the
expected sensitivity to "�e. Indeed, the �e ! �� probabil-

ity in the presence of nonunitarity is modified to

P̂ e� ¼ PSM
e� þ j"e�j2sin2

�
E3L

2

�
þ Im

�
"e�

�
1

2

E2

A
sinð2�12Þ þ E3s13e

i�

A� E3

��
sin

�
AL

2

�
sin

�
E3L

2

�
sin

�
E3 � A

2
L

�

þ Re

�
"e�

�
1ffiffiffi
2

p E2

A
sinð2�12Þ sin

�
AL

2

�
cos

�
E3 � A

2
L

�
� 2

ffiffiffi
2

p
E3s13e

i�

A� E3

cos

�
AL

2

�
sin

�
E3 � A

2
L

���
sin

�
E3L

2

�

þOð"3Þ; (10)

where Ei ¼ �m2
i1=ð2EÞ. It is then clear that the relative

importance of the real and imaginary parts of "�e in this
probability strongly depends on the actual values of �13
and �. As an example of this dependence, in Fig. 3, we
again show the sensitivity to "�e, but for input values of
�13 ¼ 5� as well as for � ¼ 
=4 (left panel) and � ¼ 0
(right panel). Notice that while for � ¼ 
=4 the far MIND
detectors are more sensitive to the imaginary part of "�e the
situation is reversed for � ¼ 0. However, the addition of
the near � detector for the silver channel dominates the
bound and the curves incorporating the near detectors

forecast the same sensitivity regardless of the true values
of �13 and �.
In Fig. 4, we show the analogue of Fig. 2 for ��e. In this

case, we assume j"�ej ¼ 5:0 � 10�3 and ��e ¼ 45� and
�90�, which again corresponds to the 1� disfavored re-
gion. For this example, CP violation would not be discov-
ered for the��e ¼ 45� case (left panel) at the 90% CL, but
it would be constrained around its true value already by the
far detectors. In addition, the inclusion of a near � detector
would again constrain the modulus and therefore be com-
plementary to the far detector result. For the ��e ¼ �90�
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FIG. 2 (color online). The sensitivity of the IDS neutrino factory to the unitarity violating parameter "��, assuming that it takes the
value "�� ¼ 3:2 � 10�3 expði
=4Þ (left) and "�� ¼ �i3:2 � 10�3 (right). The different curves correspond to different sizes of the near

� detector, from inner to outer curves, 10 kton, 1 kton, 100 ton, no near detector.
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case (right panel), the complementarity of the near and far
detectors is able to exclude CP conservation at the 90%
CL.

IV. SUMMARYAND DISCUSSION

We have considered the sensitivity of the IDS Neutrino
Factory setup to minimal unitarity violation (MUV) by
using the Markov Chain Monte Carlo methods imple-
mented in MONTECUBES to explore the full parameter
space, consisting of the six standard neutrino oscillation
parameters and nine additional parameters describing the
deviation from unitarity. Our simulations were performed
with several different near ECC � detector setups, ranging
from no near detector to near detector masses up to
10 kton.

Our results imply that the neutrino factory will be ex-
cellent for probing some of the unitarity violating parame-
ters. In particular, a sensitivity of Oð10�4Þ to the real part
of the unitarity violating parameter "�� is found. This is

mainly due to the matter effects in the �� disappearance

channel at the far detectors, for which the oscillation
probability is only linearly suppressed in Reð"��Þ. On the

other hand, we find that a near � detector with a mass as
small as 100 ton would dominate the sensitivity to "�e, as
well as that to the imaginary part of "��, through the

measurement of the zero-distance effect, providing sensi-
tivities down to Oð10�3Þ. For the other unitarity violating
parameters, we recover the priors of our simulation, which
were set to the current experimental bounds. The setup
studied here will therefore not improve our present knowl-
edge of them.
Furthermore, we find no degeneracies neither among the

different unitarity violating parameters, nor between the
unitarity violating parameters and the small standard neu-
trino oscillation parameters, such as �13. This means that
the sensitivities to the standard oscillation parameters are
robust even in presence of unitarity violation.
Regarding the prospects of an actual detection of uni-

tarity violation, and especially CP-violation stemming
from nonunitary mixing, we find that the near and far
detectors play a very complementary role. In the case of
"��, the far detectors are only sensitive to the real part of

the unitarity violating parameter while the near detector
can measure its modulus, neither is sensitive to unitarity
violating CP violation by themselves. However, it can be
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FIG. 4 (color online). The sensitivity of the IDS neutrino factory to the unitarity violating parameter "�e, assuming that it takes the
value "�e ¼ 5:0 � 10�3 expði
=4Þ (left) and "�� ¼ �i5:0 � 10�3 (right). The different curves correspond to different sizes of the near �

detector, from inner to outer curves, 10 kton, 1 kton, 100 ton, no near detector.
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FIG. 3 (color online). The 90% confidence level sensitivity of the IDS neutrino factory to the unitarity violating parameter "�e with
�13 ¼ 5� as well as � ¼ 
=4 (left) and � ¼ 0 (right). The different curves correspond to different sizes of the near � detector, from left
to right, 10 kton, 1 kton, 100 ton, no near detector.
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effectively probed by considering the combination of the
two, as illustrated in Fig. 2.

We would like to stress that, while the sensitivity to
unitarity violation at a neutrino factory has been studied
before [21,24,26,28,47], the sensitivity to the real part of
"�� due to matter effects in the �� disappearance channel

has not been discussed (however, a similar term is present
in and has been studied for the case of oscillations into
sterile neutrinos [39]). Furthermore, these studies have not
systematically scanned the parameter space while keeping
all parameters free within their prior values. Thus, the
observation that there are no extended degeneracies, nei-
ther between the standard and unitarity violating parame-
ters, nor among the unitarity violating parameters
themselves, is also new.

We conclude that a neutrino factory would provide
powerful tool for probing unitarity violation in the leptonic
mixing matrix. For the parameters to which it is most
sensitive, the sensitivity is an order of magnitude better
than the current experimental bounds. Finally, the interplay
between the near and far detectors would allow one to test
new sources of CP violation in the lepton sector.
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APPENDIX: OSCILLATION PROBABILITIES IN
THE PRESENCE OF UNITARITY VIOLATION

In this appendix, we derive the probabilities P�� in

matter assuming constant density. In order to perform the
calculation, we will use the Kimura-Takamura-Yokomura
(KTY) formalism [48,49], which has already been applied
to the MUV scheme in the appendix of Ref. [21]. Since the
constraint on "e� is strong enough to safely neglect "e� in

the oscillation probabilities, we will not consider it below.
However, it has been considered in the numerical analysis
presented in the main part of this paper. The effective flavor
eigenstates are given by

j��i ¼
ð1þ "�Þ��U�

�i

½1þ 2"�� þ ð"2Þ���1=2
j�ii

� ð1þ "�Þ��
½1þ 2"�� þ ð"2Þ���1=2

j�SM
� i: (A1)

The parameters that appear linearly in the normalization
factors are "ee, "��, and "��, which are already better

constrained by other considerations than the sensitivities
we find for a neutrino factory. Thus, the determination of
the fluxes and cross sections by the near detectors only
suffer from a minor additional theoretical uncertainty. We

will present the oscillation probabilities P̂ð�� ! ��Þ ¼
P̂�� without taking the normalization factors into account.

Notice that this will not be at all relevant for the golden and
silver channels, since the probabilities are already order "2

before taking the normalization factors into account. Thus,
the corrections would be at most Oð"3Þ.
The oscillation probability P̂��, expressed as a function

of the KTY parameters, is [21]

P̂�� ¼ jðNNyÞ��j2 � 4
X
j<k

Reð ~X��
j

~X���
k Þsin2

�
�~EjkL

2

�

þ 2
X
j<k

Imð ~X��
j

~X���
k Þ sinð�~EjkLÞ; (A2)

where �~Ejk � ~Ej � ~Ek and ~X��
j � ðN�WÞ�jðN�WÞ��j

(j ¼ 1, 2, 3). Here, ~Ei are the effective eigenvalues in
matter and Wij is the unitary matrix which diagonalizes

the evolution equation for the mass eigenstates:

i
d

dt
j�ii ¼ ½diagðE1; E2; E3Þ þ Ny ffiffiffi

2
p

GF

� diagðne � nn=2;�nn=2;�nn=2ÞN�jij�ji
� H jij�ji; (A3)

where Ei ¼ �m2
i1=ð2EÞ. Assuming that the electron and

neutron number densities are equal4 (i.e., ne ¼ nn),H can
be expressed as

H ¼ diagðE1; E2; E3Þ þ Nydiag
�
A

2
;�A

2
;�A

2

�
N;

(A4)

where A ¼ ffiffiffi
2

p
GFne. Finally, according to the KTY for-

malism applied to the MUV scheme (again, see Ref. [21]),
~X��
j can be expressed as

~X ��
j � X

l

ðV�1ÞjlY��
l ¼ X

l

ðV�1Þjl½NH l�1Ny���;

(A5)

where

V�1 ¼
ð�~E21� ~E31Þ�1ð ~E2

~E3;� ~E2 � ~E3; 1Þ
�ð�~E21� ~E32Þ�1ð ~E3

~E1;� ~E3 � ~E1; 1Þ
ð�~E31� ~E32Þ�1ð ~E2

~E1;� ~E2 � ~E1; 1Þ

0
B@

1
CA: (A6)

Once the effective eigenvalues in matter are known, it is

4This is a very good approximation in the case of neutrino
oscillations in the Earth.
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straightforward to obtain the expressions for the neutrino
oscillation probabilities. However, in order to obtain rea-
sonably simple expressions, it is necessary to expand them
in small parameters. Here, we present the oscillation prob-
abilities to second order in the parameters listed in Table I.

To second order in ", we can find the eigenvalues by
using perturbation theory. We find that

~E1 ¼ A

�
1þ E2

A
s212 þ

1

4

E2
2

A2
sin2ð2�12Þ þ E3s

2
13

A� E3

þ "ee

þ "2ee
2

� j"e�j2
2

�
þOð"3Þ; (A7)

~E2 ¼ A

�
E2

A
c212 �

E2
2

4A2
sin2ð2�12Þ

þ Reð"��Þ
�
1þ 1

2
ð"�� þ "��Þ

�
� 1

2
ð"�� þ "��Þ

� 1

4
ð"2�� þ "2��Þ �

j"��j2
2

þ j"e�j2
4

� ��23

�
"�� � "�� þ 1

2
ð"2�� � "2��Þ � j"e�j2=2

�

� A

E3

Reð"��Þ2 � A

4E3

ð"�� � "��Þ2
�
þOð"3Þ; (A8)

~E3 ¼ A

�
E3

A
� E3s

2
13

A� E3

� Reð"��Þ
�
1þ 1

2
ð"�� þ "��Þ

�

þ ��23ð"�� � "��Þ � 1

2
ð"�� þ "��Þ

� 1

4
ð"2�� þ "2��Þ �

j"��j2
2

þ j"e�j2
4

�
þOð"3Þ: (A9)

Notice that, for "�� ! 0, we recover the SM results as

expected. These results allow us to obtain V�1 at second

order. Thus, we only need to compute Y��
j at the same

order, the computation is straightforward but tedious [see
Eq. (A5)]. For brevity, we do not present the results for V�1

and Y��
j here. However, we would like to comment that,

for the golden and silver channels, it is enough to compute

these quantities to first order, since ~X��
j is already of first

order in . This is not true in the case of the ��-�� sector,

where ~X
��
2 j"¼0 ¼ ~X

��
3 j"¼0 ¼ � ~X

��
2 j"¼0 ¼ ~X

��
3 j"¼0 ¼

1=2. The advantage of this sector, from the point of view
of discovering new physics, is that the effects of the new
physics can appear in the probability at first order as an
interference term between the SM and the new physics
without additional suppression by . For this reason, we
keep only the interference between the Oð"��Þ terms and

the OðÞ ones at second order5 in that sector.
In the end, we obtain the following expanded oscillation

probabilities at the orders mentioned above:

P̂�� ¼ PSM
�� þ 4"�� þ 4"2�� þ 4

�
�"�� þ 2Reð"��Þ��23 � 2��23ð"�� � "��Þ AE3

�
sin2

�
E3L

2

�

� ½2Reð"��Þ � ��23ð"�� � "��Þ�AL sinðE3LÞ þOð"2��Þ; (A10)

P̂�� ¼ PSM
�� þ 4j"��j2 þ

�
2Reð"�� þ "��Þ þ 8��23ð"�� � "��Þ AE3

�
sin2

�
E3L

2

�
þ ½�2 Imð"��Þ � ��23ð"�� � "��ÞAL�

� sinðE3LÞ �
ffiffiffi
2

p
Im

�
"e�

�
E2

A
sinð2�12Þ þ 2E3s13e

i�

A� E3

��
sin

�
AL

2

�
sin

�
E3L

2

�
sin

�
E3 � A

2
L

�

þ ffiffiffi
2

p
Re

�
"e�

�
E2

A
sinð2�12Þ sin

�
AL

2

�
cos

�
E3 � A

2
L

�
� 2E3s13e

i�

A� E3

cos

�
AL

2

�
sin

�
E3 � A

2
L

���
sin

�
E3L

2

�
þOð"2��Þ;

(A11)

TABLE I. The small expansion parameters used in our neu-
trino oscillation probabilities. We will refer to the set of SM
expansion parameters as . The full set of expansion parameters
will be referred to as ", while only the set of MUV expansion
parameters will be denoted by "��.

SM expansion parameters () MUV expansion

parameters

�13, �m
2
21=�m

2
31, ��23 ¼ �23 � 
=4 "��

5It could also be justified to neglect the Oð"�� �m2
21

�m2
31

Þ terms, since the maximal allowed value of
�m2

21

�m2
31

is at least 1 order of magnitude

smaller than the maximal allowed values of s13 and ��23. However, we keep also these terms for completeness.

PROBING NONUNITARY MIXING AND CP VIOLATION . . . PHYSICAL REVIEW D 80, 033002 (2009)

033002-9



P̂e� ¼ PSM
e� þ j"e�j2sin2

�
E3L

2

�
þ Im

�
"e�

�
1

2

E2

A
sinð2�12Þ þ E3s13e

i�

A� E3

��
sin

�
AL

2

�
sin

�
E3L

2

�
sin

�
E3 � A

2
L

�

þ Re

�
"e�

�
1ffiffiffi
2

p E2

A
sinð2�12Þ sin

�
AL

2

�
cos

�
E3 � A

2
L

�
� 2

ffiffiffi
2

p
E3s13e

i�

A� E3

cos

�
AL

2

�
sin

�
E3 � A

2
L

���
sin

�
E3L

2

�

þOð"3Þ; (A12)

P̂e� ¼ PSM
e� þ 4j"e�j2 � 2

�
j"e�j2 �

ffiffiffi
2

p
E3s13

A�E3

Reð"e�ei�Þ
�
sin2

�
E3 �A

2
L

�
� 2

�
j"e�j2 � 1ffiffiffi

2
p E2

A
sinð2�12ÞReð"e�Þ

�

� sin2
�
AL

2

�
� Im

�
"�e�

�
1ffiffiffi
2

p E2

A
sinð2�12Þ sinðALÞ�

ffiffiffi
2

p
E3s13e

�i�

A�E3

sinðfE3 �AgLÞ
��

� 2
ffiffiffi
2

p
Re

�
"e�

�
1

2

E2

A
sinð2�12Þ�E3s13e

i�

A�E3

��
sin

�
AL

2

�
cos

�
E3L

2

�
sin

�
E3 �A

2
L

�

þ Im

�
"e�

� ffiffiffi
2

p E2

A
sinð2�12Þ sin

�
AL

2

�
cos

�
E3 �A

2
L

�
þ 2

ffiffiffi
2

p
E3s13e

i�

A�E3

cos

�
AL

2

�
sin

�
E3 �A

2
L

���
cos

�
E3L

2

�
þOð"3Þ:

(A13)

Notice that we do not neglect the zero-distance effect in the ��-�� sector. Although this is not within the order of the
expansion, we keep it as it plays an important role in the analysis of the neutrino flavour transitions at near detectors.
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