
Second-order corrections to the wave function at the origin in muonic hydrogen and pionium

Vladimir G. Ivanov

Pulkovo Observatory, 196140, St. Petersburg, Russia and D. I. Mendeleev Institute for Metrology (VNIIM),
St. Petersburg 198005, Russia

Evgeny Yu. Korzinin

D. I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 198005, Russia

Savely G. Karshenboim*

D. I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 198005, Russia
and Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

(Received 13 January 2009; published 29 July 2009)

Nonrelativistic second-order corrections to the wave function at the origin in muonic and exotic atoms

are considered. The corrections are due to the electronic vacuum polarization. Such corrections are of

interest due to various effective approaches, which take into account QED and hadronic effects. The wave

function at the origin plays a key role in the calculation of the pionium lifetime, various finite nuclear size

effects, and the hyperfine splitting. The results are obtained for the 1s and 2s states in pionic and muonic

hydrogen and deuterium and in pionium, a bound system of �þ and ��. Applications to the hyperfine

structure and the Lamb shift in muonic hydrogen are also considered.
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I. INTRODUCTION

A number of atomic effects, particularly in exotic atoms,
in the nonrelativistic approximation involve various local
operators, which are proportional to the � function in
coordinate space. The related contributions are propor-
tional to the squared value of the wave function at the
origin j�NRð0Þj2. Two examples of such operators are the
operator of interaction of the muon spin and the nuclear
spin in a muonic atom (that is responsible for the hyperfine
structure) and the �þ���0�0 vertex operator (that is
responsible for the lifetime of the pionium atom).

These are common features of various nonrelativistic
approximations and various effective nonrelativistic ap-
proaches, which are based on a separation of low-energy
and high-energy physics. Atomic scale physics contributes
to the nonrelativistic wave functions, while the higher
energies and momenta are responsible for various contact
terms. This is very similar to the operator approach in the
theory of strong interactions.

Meanwhile, there is an important difference between
‘‘conventional’’ atoms and various exotic atoms in the
calculation of j�NRð0Þj2. In conventional (electronic)
atoms the nonrelativistic wave function is, in most cases,
determined by its pure Coulomb value j�Cð0Þj2 and most
of the corrections are either relativistic or have a many-
body origin. In contrast, in muonic and pionic atoms, there
is a specific class of nonrelativistic corrections, which can
still be described by a nonrelativistic potential. The orbit-
ing mass m in such atoms is much higher than the electron

mass me and, in particular,1

m � m� ’ 207me:

The characteristic momentum in such atoms Z�mc is
higher or comparable to mec, and thus the electronic
vacuum polarization produces a nonrelativistic potential
with a radius of �@=ðmecÞ, which is somewhat larger than
the atomic Bohr radius �@=ðZ�mcÞ.
The related potentials depicted in Fig. 1 modify the

value of the nonrelativistic wave function at the origin,

j�Cð0Þj2 ! j�NRð0Þj2

¼ j�Cð0Þj2
�
1þ �

�
c1 þ

�
�

�

�
2
c2 þ . . .

�
: (1)

The related diagrams are presented in Fig. 2. The coef-
ficient c1 for the one-loop corrections is due to the Uehling
potential and was evaluated for a number of problems (see,
e.g., [1–6]).
The second-order effects (see Fig. 3) are due to subse-

quent iterations of the Uehling term and to the Källen-
Sabry potential, and here we present a calculation of c2 for
the 1s and 2s states in muonic and pionic hydrogen and
deuterium, and for the pionium atom.
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1Technically, in the nonrelativistic case the reduced mass
enters the equations. It may be somewhat below the muon
mass m�. The smallest values are in systems of ���, ��, and
�þ��: m�� ¼ 0:5m�, m�� ’ 0:569m�, and m�� ¼ 0:660m�.
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II. GENERAL EXPRESSION FOR THE
CORRECTION TO THEWAVE FUNCTION AT THE

ORIGIN: ORDERS � AND �2

We consider a nonrelativistic two-body system, with the
interaction

VðrÞ ¼ VCðrÞ þ VVPðrÞ; (2)

which includes the Coulomb potential and its modification
by the first- and the second-order vacuum polarization (see
Fig. 1),

VVPðrÞ ¼ Vð1Þ
VPðrÞ þ Vð1�1Þ

VP ðrÞ þ Vð2Þ
VPðrÞ:

We find that the wave function �VðrÞ is related to a
potential VðrÞ, or rather, only its value at the origin. For
the latter, we can introduce an additional perturbation,

V�ðrÞ ¼ A�ðrÞ;
and the obvious result of the perturbation theory, which is
linear in �V�ðrÞ, is

�E� ¼ Aj�NRð0Þj2:
This means that instead of finding the wave function, we
can calculate the perturbation theory expansion for energy
with the perturbation VVPðrÞ þ V�ðrÞ, taking terms linear
in A and of a proper order in �.
So, to find the coefficient c1 it is enough to consider

linear terms in VVPðrÞ, and for the latter to apply the
Uehling term only. To find c2 we have to evaluate two
kinds of contributions, which are
(i) terms quadratic in VVPðrÞ, but including only the

Uehling potential [VVPðrÞ ! Vð1Þ
VPðrÞ] [see Figs. 3(c)

and 3(d)];
(ii) terms linear in VVPðrÞ, which include the second-

order vacuum polarization, both reducible and irre-

ducible: VVPðrÞ ! Vð1�1Þ
VP ðrÞ þ Vð2Þ

VPðrÞ [see Figs. 3(a)
and 3(b)].

The results of the calculation of the coefficients c1 and
c2 are collected in Table I.
More details of the calculation of the c2 coefficient can

be found in Table II, where we present separately all
contributions for the 1s state. The result for the contribu-
tion in Fig. 3(d) is split into two terms. This reflects the fact
that, in general, a contribution in the third order of a
perturbative theory is determined by the expression (see,
e.g., [7,8])

�Eð3ÞðnsÞ ¼ h�nsj�V ~G½�V � �Eð1Þ
ns � ~G�Vj�nsi; (3)

where �Eð1Þ
ns ¼ h�nsj�Vj�nsi, �V is a sum of all pertur-

bations under consideration, and �ns and ~G are the wave
function and the reduced Green function, respectively, of
the unperturbed problem (i.e., of the nonrelativistic
Coulomb problem in our case).
A calculation of the subtraction term in (3), which is of

the form

�EsubðnsÞ ¼ ��Eð1Þ
ns � h�nsj�V ~G2�Vj�nsi; (4)

is different from that of the main term in (3), and in fact, for
the wave function it is even somewhat more complicated.
To calculate the complete �2 corrections to any quantity,

one indeed has to take into account relativistic corrections

FIG. 2. The first-order correction to the wave function at the
origin. The filled circle is for �ðrÞ. The double line stands for the
nonrelativistic reduced Coulomb Green function.

FIG. 1. Vacuum polarization corrections to the electrostatic

Coulomb potential (VVP): the Uehling potential (Vð1Þ
VP), and the

reducible two-loop (Vð1�1Þ
VP ) and irreducible two-loop (Vð2Þ

VP) po-

tentials (the Källen-Sabry potential).

FIG. 3. The second-order vacuum polarization correction to
the wave function at the origin.
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and corrections to the operators, which are not universal.
Let us briefly discuss possible applications.

Let us consider two systems, namely, pionium and
muonic hydrogen.

(i) For the pionium, some of the �2 corrections are
known [9], and progress in experiment [10] requires
improvement of theory and the calculation of the
remaining �2 terms, which are, in particular, pre-
sented in this paper.

(ii) Another application of interest is due to the hyper-
fine splitting in muonic hydrogen. In this case the
complete result includes various nuclear-structure
dependent effects, and the �2 corrections are rather
irrelevant for comparison with expected experimen-
tal data, both for the 1s [11] and the 2s [12] hyper-
fine intervals. However, if both experiments deliver
accurate results, one can consider a specific differ-
ence [5],

�E21 ¼ 8� Ehfsð2sÞ � Ehfsð1sÞ; (5)

and for this difference the calculation of the �2

terms is relevant. The contribution induced by the
correction to the wave function is only part of the
complete result (cf. Fig. 4) for the vacuum polariza-
tion contributions, which is (see [13] for details)

�EVPð1sÞ ¼
�
2:614 19

�

�
þ 12:545 84

�
�

�

�
2
�

� �Eð0Þ
hfsð1sÞ; (6)

�EVPð2sÞ ¼
�
2:314 51

�

�
þ 10:657 90

�
�

�

�
2
�

��Eð0Þ
hfsð2sÞ; (7)

where

�Eð0Þ
hfsðnsÞ ¼

8

3
ð1þ a�Þ�ðZ�Þ

3mc2

n3
m

mp

�

�N

�
mr

m

�
3
:

(8)

�N is the nuclear magneton,� stands for the proton
magnetic moment, and mr is the reduced mass.

Performing a calculation of third-order terms depicted in
Figs. 3(d) and 4(g) as a test, we also calculated a contri-
bution to the Lamb shift (see Fig. 5), which was previously
calculated for muonic hydrogen in [14].

TABLE II. Contributions to the value of c2ð1sÞ for different diagrams in Fig. 3. The results for the contributions in Figs. 3(c) and 3(d)
are split into two parts [cf. (3)].

Atom cðaÞ2 ð1sÞ cðbÞ2 ð1sÞ cðcÞ2 ð1sÞ cðdÞ2 ð1sÞ c2ð1sÞ
���þ 1.3336 3.1031 0:6502� 0:0719 0:4558� 0:0330 5.4378

�H 1.8551 3.7967 1:0755� 0:1525 0:7492� 0:0682 7.2558

�D 1.9590 3.9166 1:1655� 0:1719 0:8110� 0:0765 7.6038

�H 2.3937 4.3693 1:5575� 0:2635 1:0790� 0:1150 9.0209

�D 2.5608 4.5253 1:7137� 0:3032 1:1853� 0:1315 9.5504

TABLE I. The results of the calculation of the coefficients c1 and c2 in various atoms for the 1s and 2s states. The c1 coefficient was
discussed in the literature (see, e.g., [1–6]), while the results for c2 are found in this work. The accuracy of the presented results is
determined by rounding the numerical results.

1s 2s
Atom mr=me c1 c2 c1 c2

���þ 136.566 1.350 25 5.4378 1.134 40 4.3723

�H 185.841 1.731 15 7.2558 1.404 25 5.5552

�D 195.742 1.801 16 7.6038 1.452 30 5.7730

�H 237.764 2.077 48 9.0209 1.638 50 6.6402

�D 254.215 2.177 42 9.5504 1.704 77 6.9584

FIG. 4. The second-order vacuum polarization corrections to
the hyperfine splitting in muonic hydrogen. The wavy line stands
for the hyperfine interaction.
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The result [14] was for the correction to the Lamb shift
(i.e. for a splitting of the 2s and 2p states). This value is of
particular interest because of the Paul Scherrer Institute
experiment [12]. We have also calculated the same quan-
tity and have found

�E
ðFig: 5Þ
2p�2s ðthis workÞ

¼ ½ð�7:3861� 10�6 þ 0:3511� 10�6Þ

� ð�0:002 541 2þ 0:001 366 1Þ��
5

�3
mrc

2

¼ 0:001 168 1
�5

�3
mrc

2;

where the terms in the first set of brackets are for the 2p
contribution, while the terms in the second set of brackets
are for the 2s one; each set of brackets consists of a main
term and a subtraction term as introduced in (3).

Our result disagrees with the result published in [14],

�EðFig: 5Þ
2p�2s ðRef: ½14�Þ ¼ 0:002 535ð1Þ�

5

�3
mrc

2: (10)

After this work was finished, we contacted the authors of
[14]. As a result of our communications, it has been agreed
that our results for the main terms for both states (2s and
2p) confirm calculations in [14], while the subtraction term
was missing there. After correcting for subtraction, their
result agrees with ours (see [15] for details).
In conclusion, we calculated nonrelativistic corrections

in the relative order �2 to the wave function at the origin in
muonic and exotic atoms for the 1s and 2s states, presented
a result for the nonrelativistic �2 correction to the hyper-
fine structure in muonic hydrogen for the same states, and
corrected the result [14] for the �5m�c

2 contribution to the

Lamb shift in muonic hydrogen. Details of our calculations
of the second-order vacuum polarization effects for the
wave function at the origin in various atoms, and the
hyperfine splitting and the Lamb shift in muonic hydrogen
are in preparation and will be published elsewhere.
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FIG. 5. The �5m correction to the Lamb shift in muonic
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