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We present a shortened and simplified version of our proof [C. S. Fischer and J.M. Pawlowski, Phys.

Rev. D 75, 025012 (2007).] of the uniqueness of the scaling solution for the infrared asymptotics of Green

functions in Landau gauge Yang-Mills theory. The simplification relates to a new renormalization group–

invariant arrangement of Green functions applicable to general theories. As before the proof relies on the

necessary consistency between Dyson-Schwinger equations and functional renormalization group equa-

tions. We also demonstrate the existence of a specific scaling solution for both, Dyson-Schwinger

equations and functional renormalization group equations, that displays uniform and soft kinematic

singularities.
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I. INTRODUCTION

The infrared behavior of strongly interacting quantum
field theories is of general interest. In particular the infra-
red behavior of Landau gauge Yang-Mills theory is a much
debated issue in the past years. This is due to the close
connection of the ghost and gluon propagators to confine-
ment scenarios proposed by Kugo and Ojima [1], Gribov
[2] and Zwanziger [3]. Within functional methods a self-
consistent infrared asymptotic solution of the whole tower
of Dyson-Schwinger equations (DSEs) and functional re-
normalization group equations (FRGs) has been found [4–
9] that supports these scenarios and is also consistent with
global Becchi-Rouet-Stora-Tyutin (BRST) symmetry [10].
This scaling solution implies that all Greens functions
scale like a power of momentum in the infrared with
interrelated anomalous dimensions if all momenta are
scaled. That entails the absence of mass scales below
which some degrees of freedom decouple. In such a sce-
nario the scaling power of Green functions can be extracted
by a power counting analysis. As a further direct conse-
quence all couplings have fixed points at zero momentum.

An alternative infrared solution of Yang-Mills theory is
provided by the decoupling solution [11–14]. This type of
solution is characterized by the decoupling of (part of) the
propagating degrees of freedom below a mass scale. In
such a case the infrared asymptotics cannot be fixed
uniquely by a scaling analysis, and will therefore not be
considered here. It has been discussed in detail in [10],
where it has been shown to be inconsistent with global
BRST symmetry. Both scaling and decoupling type of
solutions are confining as shown in [15].

In [8] we suggested a combined analysis of the towers of
DSEs and FRGs for an infrared scaling analysis, being
applicable to general theories. We have shown that apart
from decoupling there is only one, unique scaling solution
of infrared Yang-Mills theory in Landau gauge. Here we

present a greatly simplified version of our proof which also
allows the reduction of the number of presuppositions. The
result, of course, is the same as in [7–9]. In addition we
present an explicit scaling solution for DSEs and FRGs that
involves also kinematical singularities [16]. The knowl-
edge of these kinematical singularities is not necessary for
the proof of the existence and uniqueness of the global
scaling, and was not discussed explicitly in our previous
work [8].
In Sec. II we introduce FRG and DSE equations for the

effective action and discuss momentum and RG scaling for
the effective action and its vertices. With help of
Appendix A the functional equations are written in a
similar form. A convenient parametrization of the vertices
is introduced that splits off the renormalization group
(RG)-scaling and reduces the discussion to that of the
scaling properties of RG-invariant quantities. This very
natural reduction is the key ingredient of the simplification
of the proof, and is applicable to general theories. It also
allows us to provide heuristic arguments for the existence
of a unique scaling solution, that should facilitate the
following of the proof. In Sec. III we derive the respective
scaling constraints from FRG and DSE equations, the
combination of which provides a unique scaling solution.
In Sec. IV we extend our analysis to kinematical singular-
ities of vertices; the details can be found in Appendix B.
We close with a short summary of our findings.

II. FUNCTIONAL RELATIONS FOR THE
EFFECTIVE ACTION

The starting point of our analysis is the functional form
of FRGs and DSEs, depicted in Figs. 1 and 2 respectively.
In Fig. 1 we have rewritten the FRG in a form similar to

the DSEs in Fig. 2. This is detailed in Appendix A. It is well
known from the evaluation of critical physics that the DSE
is less amiable to the discussion of scaling than the FRG. In
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general scaling in the DSE only comes from a combination
of diagrams which hosts cancellations effectively leading
to the substitution of the bare vertex present in each dia-
gram with dressed ones. In general such a cancellation also
includes the classical term. One example for such cancel-
lations is the �4-theory.

In the present case, however, the functional ghost DSE
(second line of Fig. 2) prohibits cancellations between
diagrams as it only consists of one diagram. It is for this
reason that the DSE system of Yang-Mills theory cannot be
subject to cancellations except for kinematical and global
symmetry reasons. Moreover, in both sets of equations
Figs. 1 and 2 we have the classical term in the DSE or
the initial condition for the FRG �Sð�Þ=��. For infrared

enhanced vertices and inverse propagators this term is
subleading. On the other hand, scaling of infrared sup-
pressed vertices and inverse propagators requires cancella-
tions on the right-hand side of the FRGs and DSEs between
the diagrams and the classical term. As will become clear
later the only place where such a cancellation necessarily
has to occur for a scaling solution are the DSE and FRG of
the ghost propagator. The presence or absence of cancella-
tions in these equations therefore decides the existence of
the scaling solution, and is related to global properties of
the gauge fixing, namely, the Kugo-Ojima confinement

criterion and the Gribov-Zwanziger horizon condition,
see also [10].
The functional DSEs and FRGs are derived from the

effective action of the theory, expanded in its Green func-
tions. With the abbreviation

Z
p1���pl

�
Z Yl

i¼1

�
ddpi

ð2�Þd
�
ð2�Þd�d

�Xl
j¼1

pj

�
(1)

the effective action is given as

�½�� ¼ X
m;n

1

m!ðn!Þ2
Z
p1���p2nþm

�ð2n;mÞðp1 � � �p2nþmÞ

� Yn
i¼1

�CðpiÞ
Y2n

i¼nþ1

CðpiÞ
Y2nþm

i¼2nþ1

AðpiÞ;

� X
m;n

1

m!ðn!Þ2 �
ð2n;mÞ �CnCnAm; (2)

with the gluon field A and the (anti)ghost fields �C, C, � ¼
ðA; �C;CÞ and suppressed Lorentz- and color-indices. In the
third line in Eq. (2) we have introduced an abbreviated
notation which will be used throughout this work. The one-

particle-irreducible Greens functions �ð2n;mÞ with 2n exter-
nal (anti)ghost legs and m external gluon legs are the
expansion coefficients of the effective action in the field
expansion. It is convenient to reparametrize these expan-
sion coefficients with the help of the coefficients

�ð2;0Þ � Zð2;0ÞSð2;0Þcl ; �ð0;2Þ � Zð0;2ÞSð0;2Þcl (3)

of the kinetic terms. We then obtain the rescaled coeffi-

cients ��ð2n;mÞð ~pÞ given by

�ð2n;mÞð ~pÞ ¼ ��ð2n;mÞð ~pÞY2n
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð2;0ÞðpiÞ

q Ym
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð0;2Þðp2nþiÞ

q

(4)

with ~p ¼ ðp1; . . . ; p2nþmÞ. This parametrization implies
that the coefficients of the two point Green functions,

�� ð2;0ÞðpÞ ¼ Sð2;0Þcl ðpÞ; ��ð0;2ÞðpÞ ¼ Sð0;2Þcl ðpÞ; (5)

carry only the canonical momentum dependence of the

kinetic terms and Zð0;2Þ, Zð2;0Þ account for all quantum
corrections.
Thereparametrization (4) also entails that the Z-factors

on the right-hand side of (4) carry the whole rrenormaliza-

tion group scaling of the vertex functions �ð2n;mÞ in terms of
the renormalization scale �. Together with the standard
renormalization group (RG) equation of the theory,

�
d

d�
� ¼ 0; (6)

we then learn from (4) and (6) that the expansion coef-

ficients ��ð2n;mÞ do not depend on �, i.e.

FIG. 2. Functional Dyson-Schwinger equation for the effective
action. Filled circles denote fully dressed field dependent propa-
gators. Empty circles denote fully dressed field dependent ver-
tices; dots denote field dependent bare vertices.

FIG. 1. Infrared asymptotics of the FRG. Filled circles denote
fully dressed field dependent propagators. Empty circles denote
fully dressed field dependent vertices.
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�
d

d�
��ð2n;mÞ ¼ 0; 8 n;m 2 Z: (7)

Note in this context that (6) is also valid in the presence of
the RG-adapted regulator terms in the functional renormal-
ization group equations [17,18]. This allows us to derive

constraints for the vertex functions ��ð2n;mÞ also in the
presence of the regulator, see [6,8] for details. In the
present work we also show, see Appendix A, that the
FRG-analysis of the IR-asymptotics can be further simpli-
fied, allowing for a more direct approach.

Equation (7) already suggests that the RG-invariant co-

efficients ��ð2n;mÞ do not carry any (global) anomalous
scaling in terms of momenta. We shall show in the follow-
ing that this is indeed the case.

III. UNIQUENESS OF THE GLOBAL SCALING

For this proof we are only interested in the global scaling

behavior for the coefficient functions ��ð2n;mÞ. Modulo log-
arithms this entails the global scaling

lim
�!0

��ð2n;mÞð� ~pÞ ¼ �2ðd2nþmþ ��2n;mÞ ��ð2n;mÞ
as ð ~pÞ; (8)

where ��as stands for the infrared leading term, and ~p ¼
ðp1; . . . ; p2nþmÞ. The coefficient

dl ¼ d

2
� l

d� 2

4
(9)

is the canonical scaling dimension of the vertex �ð2n;mÞ with
l ¼ 2nþm. Note that it is only sensitive to the total
number of external legs. It can be directly derived from
Eq. (2): plugged into Eq. (2) it matches the canonical
scaling of the �-function of total momentum conservation,
�d=2, and that of ghost, antighost and gluon fields in
position space, ðd� 2Þ=4. Thus it matches the momentum
scaling of the momentum integral

R
p1���p2nþm

and that of the

fields in momentum space. As a result the scaling (9)
includes the canonical momentum scaling of the one-
particle irreducible Green functions as well as the scaling
of the couplings. Hence, only in the critical dimension of
Yang-Mills theory, d ¼ 4, the canonical scaling dimension
(9) agrees with the classical momentum scaling.

It turns out that the present parametrization (8) in terms
of ��2n;m enables us to significantly simplify the proof given

in Ref. [8] of the uniqueness of the �2n;m. At its core the

reason is the natural bookkeeping of the necessary RG-
scaling by the Z-factors that incorporate one factor of
1=2�2;0 or 1=2�0;2 for each external leg of the vertex

�ð2n;mÞ.
As for the most basic ��2n;m we obtain by definition

(cf. Equation (5))

�� 2;0 ¼ ��0;2 ¼ 0: (10)

Then the scaling relations for the kinetic terms, the ghost
and gluon dressing functions, read

lim
�!0

Zð2;0Þð�pÞ ¼ ��2;0Zð2;0ÞðpÞ;
lim
�!0

Zð0;2Þð�pÞ ¼ ��0;2Zð0;2ÞðpÞ:
(11)

The total global scaling �2t2n;m of the full vertices �ð2n;mÞ
also involves the anomalous dimensions of the propagators
and reads

t2n;m ¼ d2nþm þ 1

2
ð2n�2;0 þm�0;2Þ þ ��2n;m: (12)

Previous analyses in [7–9,16] were initiated similarly.
However, instead of evaluating the deviation ��2n;m to the

standard anomalous scaling, the deviation �2n;m from the

canonical scaling in the critical dimension four of Yang-
Mills theory was evaluated,

t2n;m ¼ d2n;mjd¼4 þ �2n;m; (13)

where

�2n;m ¼ �d2nþm þ 1

2
ð2n�2;0 þm�0;2Þ þ ��2n;m; (14)

with the deviation �d2nþm of the canonical scaling from
that in the critical dimension four,

�dl ¼ dl � dljd¼4 ¼ ð2� lÞ d� 4

4
; (15)

and l ¼ 2nþm. This is adapted such that the �2n;m for

primitively divergent vertices describe the full scaling of
the corresponding dressing functions in d dimensions.
We emphasize that in principle additional logarithmic

scalings should be included into (8) and (11). However,
even if present, additional logarithmic scalings do not
change the relations between the ��n;m and are therefore

irrelevant for the purpose of the present investigation. We
also add that self-consistent logarithmic scaling laws have
to satisfy additional consistency conditions.
In four dimensions an explicit solution of the whole

tower of DSEs and FRGs in terms of �2n;m was first derived

in [7] and then generalized to d dimensions in [9]. It reads

� � �2;0 ¼ � 4� d

4
� 1

2
�0;2

�2n;m ¼ ðn�mÞ�þ ð1� nÞ
�
d

2
� 2

�
:

(16)

In [8] we already gave a proof for the uniqueness of
Eq. (16). In the following we reformulate this proof in a,
to our mind, more elegant and instructive manner that also
allows us to reduce the number of presuppositions. We first
derive constraints for ��2n;m from the functional renormal-

ization group and Dyson-Schwinger equations and then
show that ��2n;m ¼ 0 for all n;m. The resulting expression

for the �2n;m from Eq. (14) then agrees with Eq. (16).
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A. Constraints from the functional RG

The FRGs for the ghost and gluon propagators are given
diagrammatically in Fig. 3. With a mode cutoff, which only
removes a single momentum mode, the regulator insertion
is proportional to a �-function and simply restricts the loop
integral to a given momentum p2 which we take to be
vanishing. Then the loops on the right-hand side of the flow
simply count the powers of global momentum scaling of
the quantum fluctuations, no initial condition, similar to the
classical term in the DSE, appears; see also [8]. The
potential cancellations necessary for the initial condition
are discussed at the end of our proof.

We are now counting anomalous dimensions on both
sides of the equations in terms of powers of one external
momentum scale p2 in the infrared region p2 � �2

QCD.

For the global scaling (8) considered here all anomalous
dimensions in terms of internal momenta of the loops
translate directly into anomalous dimensions of the exter-
nal momentum scale. This is also true for the vertex
equations considered below. In this respect the regulator
insertion, denoted by the crosses, carries the anomalous
dimensions of inverse propagators [6,8].

The constraint equations for ��2n;m can be derived in

several ways. A somewhat pedestrian approach is to count
anomalous dimensions �2n;m of the dressing functions on

both sides of the equations and then converting to ��2n;m

with the help of (14). More efficiently, we note that the
�2;0; �0;2 carry the renormalization group scaling of the

corresponding Green functions and match on both sides of
the FRG equations. In particular this is true for the propa-
gator FRGs in Fig. 3. Consequently all �2;0, �0;2 drop out of

the FRG-relations for a general vertex �2n;m. Note also that

the sum of the canonical dimensions d2i;j, (9), in a given

diagram for �2n;m simply gives the total canonical dimen-

sion d2nþm, and hence the d2i;j also drop out of the FRG-

relations. Then, we are left with relations for solely the
��2i;j. For the propagators the constraints read

0 ¼ ��0;2 ¼ minð2 ��2;1; 2 ��0;3; ��0;4; ��2;2Þ; (17)

0 ¼ ��2;0 ¼ minð2 ��2;1; ��2;2; ��4;0Þ; (18)

from the gluon and ghost-FRGs. For the left-hand side of
these equations we used that ��2;0 ¼ ��0;2 ¼ 0 by definition,
cf. Equation (10). The minimum prescription on the right-
hand side of (17) and (18) takes into account that only one
of the diagrams may be leading in the infrared. The con-
straint (18) from the ghost-FRG entails

�� 2;1 � 0; ��2;2 � 0; ��4;0 � 0; (19)

and at least one of these has to be zero for (18) to be
satisfied,

�� 2;1 ¼ 0; or ��2;2 ¼ 0; or ��4;0 ¼ 0: (20)

The same analysis for (17) entails that ��2;1, ��0;3, ��0;4,

��2;2 � 0 with at least one of them being zero. For the proof

below, however, Eqs. (19) and (20) will be sufficient.
We conclude the FRG-analysis with a discussion of the

FRG-relations for general Green functions. Schematically
these relations read

�� 2n;m ¼ minð ��2nþ2;m; ��2n;mþ2; . . .Þ; (21)

where the first two terms are the tadpole contribution with
ghost tadpole ( ��2nþ2;m), and a gluon tadpole ( ��2n;mþ2),

respectively. The dots stand for other diagrams with at
least two vertices. It follows that ��2n;m appears as the

tadpole contribution in the relation for ��2n�2;m and

��2n;m�2, and more generally

�� 2ðn�rÞ;m�2s � ��2n;m; (22)

for all r < n and 2s < m. This allows us to relate general
��2n;m to either ��2;1 for odd m and 2s ¼ m� 1, or ��2;2 for

even m and 2s ¼ m� 2. Thus we have

�� 2n;m �
�
��2;2 for m even
��2;1 for m odd

; (23)

and we conclude with (19) that

�� 2n;m � 0; 8 n;m 2 N; (24)

in general space-time dimension d. This constraint to-
gether with Eq. (20) will be important in what follows, as
it summarizes in a closed form the infinite number of
constraints from higher diagrams.

FIG. 3. Functional renormalization group equations for the gluon and ghost propagator. Filled circles denote dressed propagators,
and empty circles denote dressed vertex functions. Crosses indicate insertions of the infrared cutoff function. Only one possible
insertion of the infrared cutoff function per diagram is shown.
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B. Constraints from Dyson-Schwinger equations

The Dyson-Schwinger equations for the ghost and gluon
propagators are given diagrammatically in Fig. 4, whereas
the corresponding equations for the ghost-gluon vertex are
displayed in Fig. 5. For the ghost-gluon vertex we have two
DSEs which are derived from either the functional gluon
DSE or the functional ghost-DSE, see [8]. As already
mentioned, the potential cancellations necessary for the
classical terms are discussed at the end of our proof.

We have seen in the analysis of the FRGs that the
��2n;m-constraints boil down to simply counting the vertices

involved in a given diagram and summing up the corre-
sponding ��2n;m. The same would apply to the DSEs if we

only had dressed vertices in the DSE diagrams. However,
there is always one bare vertex which then counts as
��2n;m � �2n;m � ���2n;m. These differences are given by

��2n;m ¼ �d2nþm þ 1

2
ð2n�2;0 þm�0;2Þ: (25)

For example, we are thus led to ��2;1 � ��2;1 for the right-

hand side of the ghost propagator DSE, and zero on the
left-hand side similar to the ghost-FRG. This simple count-
ing applies to all the diagrams. For its chief importance in
the proof we introduce the abbreviation

�� � ��2;1: (26)

The constraints derived from the propagator DSEs dis-

played in Fig. 4 are then given by

0 ¼ minð ��2;1 � ��; ��0;3 ���0;3;���0;4; ��0;4

� ��0;4; 2 ��0;3 � ��0;4Þ; (27)

0 ¼ minð ��2;1 ���Þ: (28)

Certainly, these relations can be derived as well in the
pedestrian way of counting �2n;m on both sides of the

equations and converting them to ��2n;m. Note that in con-

tradistinction to the FRG equations the DSEs do depend on
�2;0 and �0;2 via the ��2n;m.

In the two different DSEs for the ghost-gluon vertex in
Fig. 5 we again apply the now familiar counting and obtain

�� 2;1 ¼ minð ��2;1 þ ��0;3 � ��; 2 ��2;1 ���; ��2;2 � ��Þ;
(29)

from the upper relation in Fig. 5 and

��2;1 ¼ minð2 ��2;1 � ��0;3; 2 ��2;1 � ��; ��2;2 ���0;3; ��4;0

� ��; two-loopÞ; (30)

from the lower relation in Fig. 5. These constraints will be
used in the next subsection. We emphasize that the above
relations are valid in arbitrary dimensions as the FRG-
relations derived in Sec. III A. In contradistinction to the
FRG-relations the DSE-relations depend on the dimension
via the ��2n;m.

FIG. 4. Dyson-Schwinger equations for the gluon and ghost propagator. Filled circles denote dressed propagators, and empty circles
denote dressed vertex functions.

FIG. 5. Dyson-Schwinger equations for the ghost-gluon vertex. Empty circles denote dressed vertex functions. All internal
propagators are dressed; the corresponding filled circles have been omitted for clarity of the figures. One-loop diagrams with the
same scaling behavior are only shown once. The ellipses denotes the other one- and two-loop diagrams which are not needed for our
analysis.
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C. Proof

We now proceed to show that

�� 2n;m ¼ 0 (31)

is the only scaling solution of infrared Yang-Mills theory in
Landau gauge. To this end we note that scaling in the
ghost-DSE (28) implies that

�� ¼ ��2;1 � 0; (32)

where we have used that the ghost-FRG entails ��2;1 � 0.
Furthermore we obtain the two constraints

�� 4;0 � ��; ��2;2 � ��; (33)

from the two DSEs for the ghost-gluon vertex, where we
use 0 � ��2;1 � ��2;2 � �� from (29), and 0 � ��2;1 �
��4;0 ��� from (30). However, the ghost-FRG led to the

constraint (20). Together with (32) and (33) this immedi-
ately leads to

�� ¼ 0; (34)

and therefore also ��2;1 ¼ 0 due to (32).

It remains to be shown that this implies that all of the
��2n;m need to be zero. To this end we resort to the FRG

equations. The FRG equations for all ��2n;m contain at least

one diagram that solely depends on N2n;m ghost-gluon

vertices. This implies

�� 2n;m � N2n;m ��2;1 ¼ 0: (35)

Together with (24) this leads to

�� 2n;m ¼ 0: (36)

Written in terms of our original anomalous dimensions
�2n;m, see (14), this implies that

�2n;m ¼ �d2nþm þ 1

2
ð2n�2;0 þm�0;2Þ; (37)

with

�d2nþm ¼ ð2� 2n�mÞ d� 4

4
; (38)

see (14) and (15) respectively. Equations (37) and (38)
represent the unique scaling solution of infrared Yang-
Mills theory.

However, we would like to emphasize that the values of
the anomalous scalings �2;0; �0;2 of the propagators cannot

be fixed by scaling arguments. They have to be computed
by solving the corresponding FRG and DSE equations, see
e.g. [5,6,10,19,20]. Instead, there is one final piece of
information which can be extracted from the scaling analy-
sis, namely, constraints on the values for �2;0, �0;2: From

(27) we deduce ��0;4 � 0. Using (25) we have ð4�
dÞ=2þ 2�0;2 � 0, and with (34) we then conclude that

[19,21]

�2;0 ¼ � 4� d

4
� 1

2
�0;2 � � 1

2

4� d

4
: (39)

Finally we discuss the fate of the classical terms with
�class
0;2 ¼ �class

2;0 ¼ 0. The propagator scaling stemming from

the quantum fluctuations is summarized qualitatively as

�2;0 � � 1

2

4� d

4
; �0;2 � � 4� d

4
: (40)

With �0;2 � �class
0;2 ¼ 0, the classical contribution does not

change the gluon scaling. In turn, for �2;0 > 0, the inverse
ghost propagator would be dominated by its classical part,
which has to be cancelled if scaling applies. This is the
adjustment of the horizon condition [3], see e.g. [5,10].
Note also that the bound (40) in principle also allows for
�2;0 < 0 for d < 4.
In practice, however, one finds �2;0 > 0, i.e. �2;0ðd ¼

3Þ ¼ 0:40, and �2;0ðd ¼ 2Þ ¼ 1=5 for a classical ghost-

gluon vertex [19] in accordance with the Kugo-Ojima [1]
and Gribov-Zwanziger [2,3] confinement scenarios and the
confinement criterion of [15]. For these values to drop
below zero, the full ghost-gluon vertex would have to
deviate drastically from the classical vertex. This is almost
excluded by lattice computations [22,23] and DSE self-
consistency checks [5,24].
Numerical solutions for the ghost and gluon DSE as well

as the corresponding FRGs in agreement with Eqs. (37)
and (38) have been given in [10,20,24–27]. In [28] a
truncation has been employed which effectively converts
the DSEs into equations with dressed vertices resembling
the structure of FRGs. This procedure allows for interest-
ing and accurate numerical solutions in the midmomentum
regime. However, the vertices used are neither consistent
with the (unique) infrared scaling laws Eq. (37) and (38),
nor with the standard RG-scaling. At its core this is due to
the fact that the system of FRG equation cannot be solved
by the IR as the gluonic vertices in [28] are too singular.
These comments complete our proof.

IV. KINEMATICS

We have derived the unique scaling solution (37) with
the assumption of conformal scaling. As already argued in
[8] and in the Introduction, possible conformal invariance
entails that no further constraint on �2;0 and �0;2 apart from

(40) can be derived from pure scaling arguments. Here we
shall make this formal argument more explicit, and also
discuss the question of existence of a specific scaling
solution including various kinematical limits.
This is also interesting for the following reason: From

our analysis in the previous section we know that the
classical purely gluonic vertices are subdominant, and
the ghost-gluon vertex has its classical global scaling.

Note however that a ghost-gluon vertex with ��ð2;1Þ ’
Sð2;1Þ requires the cancellation of the classical term in the
DSE and the initial condition in the FRG equations in some
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kinematical limits, i.e. vanishing ghost or antighost mo-
mentum. In these limits the diagrammatical scaling would
then be dominated by the classical part/initial condition.

As already discussed above, the FRG equations cannot
provide constraints on �2;0, �0;2, as the �’s drop out of the

FRG-scaling analysis after employing the parametrization
(4). The FRG diagrams then reduce to one-loop diagrams

with bare propagators and dressed vertices ��ð2n;mÞ with
only canonical global scaling due to (36). Here and in the
following we use the term ‘‘global scaling’’ when all
external momenta scale in contrast to ‘‘kinematical scal-
ing’’ when only some external momenta are involved.1

Note that the ��ð2n;mÞ carry kinematical singularities as is
well known from perturbation theory. In Landau gauge
these may be meliorated by transversality. Since we are
working in Landau gauge we are only interested in trans-
versal contributions to all vertices; in Landau gauge the set
of fully transversal vertices together with the ghost propa-
gator and transversal gluon propagator provide a closed set
of FRG and DSE equations. In turn, vertices with at least
one longitudinal gluon satisfy DSEs and FRGs that also
depend on the transversal vertices and only on the trans-
versal gluon propagator; see also [10].

For these reasons we concentrate on the purely transver-

sal part of the vertices, �?
ð2n;mÞ. For the treatment of

kinematical scaling we also extend our notation to

�?
ð2n;mÞð� ~p1;r; ~prþ1;2n; � ~p2nþ1;2nþs; ~p2nþsþ1;2nþmÞ

!�!0
�2ðdrþsþ�r;s

2n;m
Þ�?r;s

ð2n;mÞð ~pÞ; (41)

where �?r;s
ð2n;mÞ stands for the infrared leading term,

~pi;j ¼ ðpi; . . . ; pjÞ, and ~p is not exceptional by itself.

Here, s counts scaling gluon momenta, and r ¼ r1 þ r2
counts r1 scaling ghost momenta and r2 scaling antighost

momenta. Analogously to (12) the total scaling �2tr;s
2n;m of

the full vertex �2n;m reads

tr;s2n;m ¼ drþs þ �r;s
2n;m: (42)

The global scaling (37) is reproduced by

�r;s
2n;m ¼ �2n;m; 8 rþ s ¼ 2nþm� 1; (43)

due to momentum conservation.
In the following we shall show that a dressed ghost-

gluon vertex without kinematic singularities is a possible
solution of the DSE and FRG systems. In this case the

scaling relations for the ghost-gluon vertex �?
ð2;1Þ are

�1;0
2;1 ¼ �0;1

2;1 ¼ �2;1 ¼ 0: (44)

A ghost-gluon vertex with (44) reads

�?�;abc
ð2;1Þðp; qÞ ¼ �?

��ðpÞq�fðpþ q; qÞfabc (45)

where

�?
��ðpÞ ¼ ��� �

p�p�

p2
; (46)

and f is a nonsingular function of both momenta. Here p is
the gluon momentum, qþ p is the ghost momentum and q
is the antighost momentum, respectively. Ghost–antighost
symmetry is implicit with

�?
��ðpÞq� ¼ �?

��ðpÞðpþ qÞ�;
fðpþ q; qÞ ¼ fðq; pþ qÞ: (47)

Now we assume that the leading infrared parts of all
vertices are already provided by diagrams only depending
on ghost-gluon vertices. This entails that, with the excep-
tion of the ghost-gluon vertex, all ghost or antighost legs of
arbitrary vertices are proportional to linear powers of the
corresponding external momentum. The reason is that each
of these legs is attached to an internal transversal gluon.
With (47) we then can always rewrite this diagram as
proportional to linear powers of the external momenta.
With this fact in mind we can deduce the scaling from

the general form of the vertex-DSEs. Diagrammatically
they are depicted in Fig. 6. We begin our analysis with
vertices where one external gluon momentum is vanishing.
To this end we take the external momentum p ¼ pbare of
the bare vertex to zero by keeping the other momenta at
nonexceptional values. Extracting the linear momenta as-
signed to the internal ghost lines and projecting onto
transverse components we get

�?
��ðpÞ

Z
dqqd�1

Z
d�q

1

q2ð1þ�Þ
1

ðqþpÞ2ð1þ�Þ q�ðqþpÞ�
� q	I�	�1����m�1

ðp;q;p1 � � �p2nþm�1Þ; (48)

where
R
d�q stands for the angular integration stemming

from the q-integration, and � ¼ �m.
As an example we discuss the simplest possible diagram

for the case of no further external gluons, m ¼ 1, shown in
Fig. 7 with a similar momentum routing as in Eq. (48). In
this diagram each of the three ghost-gluon vertices gener-
ates one four-momentum. Because of the transversality of
the involved two gluon lines these can be converted into the
factor q�ðqþ pÞ�q	 also appearing in Eq. (48). For a

nonvanishing integral we need a further power in q, other-
wise the integral is proportional to p� and vanishes due to
projection with �?

��ðpÞ. Indeed an extra factor pi � q for

some i ¼ 1; . . . ; 2 is generated by the internal gluon. In the
general expression (48) this extra factor is provided by the
kernel I . Counting powers of the scaling momenta p and q
we find

�0;1
2n;1 ¼

d

2
� 2�; (49)

for m ¼ 1. From (48) we have d=2 from the integration,
�2 from the two denominators of the propagators, �2�

1This corresponds to ‘‘uniform’’ vs ‘‘collinear’’ singularities in
the terminology of [16].
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from the two ghost dressing functions in the propagators
andþ2 from the four powers of q. The other momenta, p1

and p2 do not scale. The meaning of Eq. (49) is the
following: we only obtain an infrared dominated, divergent
and therefore scaling integral for � > d=4, otherwise we
cannot say something definite from the scaling analysis.
Whether the integral is then vanishing or finite depends on
the details of the kernel I and the angular integration;
consequently the integral may or may not display kine-
matical scaling for vanishing gluon momentum in this
case.

On the other hand, in the general case where further
external gluons are present, i.e. m> 1, we have contrac-
tions of q�ðqþ pÞ�q	 with I�	�2����m

ðp; q; l2 � � � l2nþmÞ.
These contractions generate terms proportional to p�i

with

i ¼ 1; . . . ; ðm� 1Þ that do not vanish even when all exter-
nal gluon legs are transversally projected. Thus we can
have terms in the integrand proportional to q�p�q	. In

order to decide whether the integral produces kinematical
singularities or not we count powers in scaling loop mo-
menta, i.e. two factors of q, two ghost dressing functions,
two denominators and the integration. We arrive at the
condition

d� 2

2
� 2� < 0 ) � >

d� 2

4
: (50)

Thus kinematical singularities only occur for � > ðd�
2Þ=4. However, for the scaling of the vertex in terms of
the external gluon momentum we have to count all powers
of scaling momenta q and p and arrive at2

�0;1
2n;m ¼ d� 1

2
� 2�; (51)

for m> 1, in agreement with [16] for d ¼ 4.
From Eqs. (49) and (51) we observe that the kinematical

gluonic singularities are smaller or equal to the lowest

possible global singularity �� as long as � � ðd� 1Þ=2,
i.e.

�0;1
2n;m � �� ! � � d� 1

2
: (52)

Consequently the gluonic vertex dressing in the scattering
kernels in Fig. 6 does not lead to divergences for p ! 0 in
neither the gluonic nor the ghost-DSEs. In particular this
entails that

�1;0
2n;m � 0: (53)

We conclude our analysis with a brief discussion of
higher kinematical singularities, which is worked out in
more detail in Appendix B. There we derive the scaling
relation

tr;s2n;m ¼ tr;s þ
�� d�2

4 þ 1
2� r2 ¼ r1 þ 1;

minð��; 2�d
2 þ 2�Þ else

: (54)

To summarize: for � � ðd� 1Þ=2 we have obtained
kinematical divergencies that are small enough such that
they cannot invalidate the global scaling relation (37). Note
however that the bound for the existence of a Fourier
transform of the ghost propagator is � < ðd� 2Þ=2, see
also [5]. If � exceeds ðd� 2Þ=2, the ghost propagator in
position space cannot be understood anymore as a tem-
pered distribution which is a necessary condition for cor-
relation functions in a local quantum field theory. Hence
the above bound � � ðd� 1Þ=2 is not relevant for this
physically interesting case. We conclude that the relation
(54) for the kinematical scaling together with the global
scaling Eq. (37) is a possible solution of the tower of DSEs
and FRGs.
We do not want to further this discussion, in particular,

as the actual numerical—and physically sensible—solu-
tion satisfy all of the above bounds, that is �num < ðd�
2Þ=2. We merely would like to mention that even in the
case � > ðd� 1Þ=2 one cannot conclude that the system is

FIG. 6. General Dyson-Schwinger equations for �ð2n;mÞ. The straight legs denote either ghost or gluon lines with multiplicity given
below the diagram, respectively.

FIG. 7. Infrared leading diagram in the DSE for the ghost-
gluon vertex.

2Since we also count powers of p�i
this relation possibly

involves the tensor structure of the vertex �2n;m. The only case
where this is important and interesting is the special case of the
three-gluon vertex �0;3. It is easy to see that the tensor structure
of the bare three-gluon vertex cannot have kinematical singular-
ities and therefore cannot take part in kinematical scaling. Since
Eq. (51), however, involves an explicit scaling momentum with
external Lorentz-index it has to represent the kinematical scaling
of a different tensor structure of the three-gluon vertex.
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ill-defined. It only means that such an anomalous scaling
cannot be captured by the DSE tower of equations, where
the single diagrams do not entail the full RG-scaling, and
hence also do not have manifest scale invariance in the
scaling region. A consistent solution to such a system
necessarily requires nontrivial cancellations between dif-
ferent diagrams. In the ghost propagator DSE, where such
cancellations cannot occur, they are not necessary; the
ghost-DSE is well-defined even for � > ðd� 1Þ=2 in the
case of full kinematical scaling of the ghost-gluon vertex.

From our kinematical analysis we find that in the case of
� > ðd� 2Þ=2 all vertices have kinematic singularities. As
stated above the DSEs cannot be used anymore. The FRGs,
however, can straightaway be solved by ��r;s

2n;m ¼ 0. This is

also the reason why the above solution, Eq. (54), for
kinematical scaling is not unique in contradistinction to
the global scaling relation Eq. (37). These comments com-
plete our proof of existence.

V. SUMMARY

In this work we demonstrated that there is only one
unique global scaling solution of infrared Yang-Mills the-
ory in Landau gauge. To this end we introduced a parame-
trization of the one-particle irreducible Green functions of
the theory that splits off the renormalization group (RG)-
scaling and reduces the discussion to that of the scaling
properties of RG-invariant quantities. To our mind this
greatly simplifies the proof as compared to our previous
work, Ref. [8]. In addition we eliminated one important
presupposition that has been made in [8] but is no longer
necessary in the present version of our proof: in four
dimensions we explicitly showed by Eq. (40) that non-
trivial scaling implies that the anomalous dimension of the
inverse ghost dressing function is larger than zero, �2;0 >
0. We thus showed that the mere presence of nontrivial
infrared scaling implies Zwanziger’s horizon condition
[3,19]. We also wish to emphasize again, however, that
the exact values of the anomalous scalings �2;0, �0;2 of the

propagators cannot be fixed by scaling arguments. These
have to be calculated explicitly from the corresponding
FRG and DSE equations.

In addition to these simplifications and clarifications we
also demonstrated the existence of a specific scaling solu-
tion that includes ‘‘kinematical scaling’’ in various kine-
matical limits. While part of these results have been found
previously in [16], the generalization to higher n-point
functions and the analysis of higher kinematical singular-
ities are new. Here it is also important to note that in
contradistinction to the global scaling relation, kinematical
scaling is not unique.

In general, the method presented here is also applicable
to other theories. In particular the simplifications of the
counting scheme introduced here enables one to readily
access also theories with a larger number of vertices than
Landau gauge Yang-Mills theory. As an example we

shortly discussed its applicability to scalar quantum field
theories in the Introduction; in [8] we discussed scaling in
the gauge-Higgs theory. These applications may also be
extended to Yang-Mills theories in other gauges.
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APPENDIX A: INTEGRATED FLOW EQUATION

The standard form in the flow equation is depicted in
Fig. 8, where t ¼ lnk is the logarithmic infrared scale and
the cross denotes the regulator insertion @tR. If Rk is
chosen as a mode cutoff and simply removes one momen-
tummode from the theory, the loop integrations in the FRG
equations for vertices are reduced to a single loop momen-
tum q2 ’ k2 and we can explicitly apply the infrared power
counting. This has been done in [8]. For the sake of the
comparison with the DSE is also convenient to rewrite the
FRG as follows [17]:

@t�½�� ¼ 1

2
Tr

�
1

�ð2Þ½�� þ R
@tR

�

¼ 1

2
Tr@t lnð�ð2Þ½�� þ RÞ

� 1

2
Tr

�
1

�ð2Þ½�� þ R
@t�

ð2Þ
�
: (A1)

Upon integration from an initial momentum scale k ¼ �
to k ¼ 0 this yields

�½�� ¼ S�½�� þ
�
1

2
Tr ln�ð2Þ½�� þ ren

�
� 1

2

�
Z 0

�

dk0

k0
Tr

�
1

�ð2Þ½�� þ R0 @t0�
ð2Þ
�
þ ren; (A2)

where S� ¼ ð�� � Tr lnð�ð2Þ½�� þ RÞ� � renÞ entails the
initial condition at k ¼ � and the integral term on the
right-hand side of (A2) is an RG-improvement term. If
we perform a momentum rescaling as in (8) including that
of �: � ! ��, the last term shows at most the same
scaling as the first one. This entails up to renormalization,
that

FIG. 8. Functional renormalization group equation for the
effective action. Filled circles denote fully dressed field depen-
dent propagators. Crosses denote the regulator insertion @tR.
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lim
�!0

�½�� ’ 1

2
Tr ln�ð2Þ½��; (A3)

as far as infrared scaling is concerned. Taking a gluon or
ghost derivative of (A3) leads to the diagrammatical rep-
resentation of the infrared asymptotics of the flow in Fig. 1.

APPENDIX B: VERTICES WITH TWO OR MORE
EXTERNAL SCALING LEGS

In this appendix we investigate the kinematical scaling
for vertices �2n;m with s soft gluon lines, r1 soft ghost lines
and r2 soft antighost lines with r ¼ r1 þ r2. Because of
ghost-antighost symmetry we can always choose r2 � r1.
We will explore some general situations and discuss ex-
ceptions at the end of this section.

First we discuss diagrams with isolated external legs
with vanishing momenta, i.e. diagrams where these legs
are not neighboring. These are simple. In the case of
isolated external ghost lines no divergences are encoun-
tered due to Eq. (53). Diagrams with isolated external
gluon lines scale like the corresponding diagrams with
one vanishing momentum, i.e. Eq. (49) if no hard external
gluon lines are present and Eq. (51) otherwise. This can be
easily verified by going through some explicit examples. In
case some of the external gluonic momenta are parallel we
always find Eq. (51); the argument is similar to that given
below Eq. (51). Having said this, we concentrate on verti-
ces with only neighboring legs with vanishing momenta for
the remainder of this section.

In the following argument we concentrate on the FRG
diagrams which are only one loop. A part of the related
diagrams decay into three classes depicted in Fig. 9. The
other diagrams involve vertices with soft and hard parts
that cannot be separated in the above way. We will evaluate
these diagrams at the end of our discussion. The first two
classes of diagrams in Fig. 9 summarize possible diagrams
of neighboring vanishing legs for r2 ¼ r1 or r2 ¼ r1 þ 2.
The third class summarizes those with r2 ¼ r1 þ 1.

The total scaling of a vertex with r1 ghosts and r2
antighosts with r ¼ r1 þ r2 and s gluons is given by

tr;s ¼ drþs þ 1

2
ðr�2;0 þ s�0;2Þ; (B1)

where we have extended the scaling for ghost-gluon verti-
ces with r1 ¼ r2 to nonexisting vertices with r1 � r2. We
are now in the position to deduce the scaling of vertices
�2n;m with sþ r1 þ r2 vanishing external momenta for
gluonsþ ghostsþ antighosts respectively, by relating it
to the global scaling (B1) of a vertex with only vanishing

external momenta: we simply remove the hard parts of the
diagrams and close the remaining open lines with some
combinations of soft vertices and propagators, the scaling
of which we then subtract. What is left is the scaling tr;s2n;m
of the diagrams in Fig. 9. Since this procedure is insensitive
to the specific combination of vertices added, we simply
take a minimal number of additional soft vertices for the
explicit computations, without loss of generality.
In the first diagram in Fig. 9 we substitute the hard part

of the diagram by a soft full three-gluon vertex, hence
adding a further vanishing gluon momentum. From the
resulting global scaling of tr;sþ1 we have to subtract the

global scaling t0;3 of the three-gluon vertex leading to

tr;s2n;m � tr;sþ1 � t0;3 ¼ tr;s þ 2� d

2
þ 2�: (B2)

In (B2) we have used that drþsþ1 � d3 ¼ drþs � 1. As
already pointed out above, e.g. substituting the hard part
of the diagram with two ghost-gluon vertices and one
connecting ghost propagator leads to the same result. The
same is true for any other combination of vertices in the
hard part of the diagram. The � in Eq. (B2) expresses the
fact that there are cases where the kinematical situation of
the same vertex may be represented by the first or second
diagram of Fig. 9 and either one may carry the leading
kinematical singularity.
To analyze the second diagram we have to distinguish

two cases. For r1 ¼ r2 we substitute the hard part by a soft
full ghost-gluon vertex, hence adding a further vanishing
ghost momentum. Apart from subtracting its global scaling
t2;1 ¼ 1=2, we also have to take care of the kinematical

intricacies of ghost lines. The hard part of the second class
of diagrams in Fig. 9 also carries a momentum dependence
that is linear in the momenta of the soft ghost legs. This has
to be added separately, and we arrive at

tr;s2n;m � tr;sþ1 þ 1� t2;1 ¼ tr;s � �; (B3)

where we have used that drþsþ1 ¼ drþs � ðd� 2Þ=4. If
r1 ¼ r2 � 2 the two connecting lines between the soft and
the hard part of the diagram are two antighosts, and we
have to at least substitute the hard part of the diagram with
two ghost-gluon vertices and one connecting gluon propa-
gator. In our counting we again have to add two linear
powers of momenta due to the two connecting ghost legs.
The net result is the same as for the case r1 ¼ r2. Therefore
the result Eq. (B3) with r ¼ r1 þ r2 summarizes both
cases.

FIG. 9. Diagram classes with kinematical scaling of only part of the vertices.
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In the third diagram we substitute the hard part of the
diagram by a soft full ghost-gluon vertex, hence adding a
further vanishing ghost momentum. Apart from subtract-
ing its global scaling t2;1 ¼ 1=2, the hard part of the third

class of diagrams in Fig. 9 also carries a momentum
dependence that is linear in the momentum of the soft
ghost leg which has to be added separately. We are led to

tr;s2n;m ¼ trþ1;s þ 1

2
� t2;1 ¼ tr;s � d� 2

4
þ 1

2
�: (B4)

Note that tr;s2n;m ¼ trþ1;s with rþ 1 ¼ 2n.

We summarize the results of this section with the scaling
relation

tr;s2n;m ¼ tr;s þ
�� d�2

4 þ 1
2� r2 ¼ r1 þ 1;

minð��; 2�d
2 þ 2�Þ else

(B5)

where we have used (B2)–(B4). Note that one can swap
between the different classes of diagrams by isolating one
or two soft ghost or antighost vertices within the hard part
of the diagrams. This effectively removes these vertices
from the counting. However, since the scaling relations are
different for the three classes it could pay off in a more
singular behavior. It is easy to check that this is not the

case, and hence (B5) represents the full maximal scaling of
the diagram classes depicted in Fig. 9.
We close with a discussion of the remaining diagram

classes. A interesting specific case is depicted in Fig. 10.
This seems to entail that one can have neighboring ghost
vertices or antighost vertices. However, one can show that
this only is possible at the expense of additional loops as is
present in Fig. 10. At its core this relates to the fact that the
ghost number of vertices �2n;m vanishes. The scaling of the
related subdiagram is always positive: in the present case it
is 1=2. Restricting ourselves again to the case r1 � r2, we
deduce that for r2 > r1 þ 2 we are effectively reduced to
the soft scaling of a diagram with r1 ghost and r1 þ 2
antighost legs and hence Eq. (B5) applies. Because of
ghost-antighost symmetry this covers the general case.
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