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We propose to use the second Hopf map for the reduction [via SUð2Þ group action] of the eight-

dimensionalN ¼ 8 supersymmetric mechanics to five-dimensional supersymmetric systems specified by

the presence of an SUð2Þ Yang monopole. For our purpose we develop the relevant reduction procedure.

The reduced system is characterized by its invariance under the N ¼ 5 or N ¼ 4 supersymmetry

generators (with or without an additional conserved Becchi-Rouet-Stora-Tyutin charge operator) which

commute with the suð2Þ generators.
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I INTRODUCTION

Recently, in a series of papers, new nonlinear one-
dimensional supermultiplets have been suggested [1–3].
They were used to construct new models of two- and
three-dimensional N ¼ 4 supersymmetric mechanics.
An important peculiarity of these models is the appearance
of external magnetic fields preserving the supersymmetry
of the system [2,4–6]. Those contain, as particular cases,
important systems like the N ¼ 4 supersymmetric
Landau model [2] and the N ¼ 4 supersymmetric multi-
center MICZ-Kepler systems, both conventional [5] and
spherical [6].1 Some unexpected phenomenon has been
observed: it was found that in the two-dimensional case
the nonlinear (chiral) supermultiplet provides a wide free-
dom in the construction of supersymmetric extensions of
given bosonic systems, parametrized by an arbitrary hol-
omorphic function [‘‘�ðzÞ-freedom’’] [9].

It was shown in [10,11] that all linear one-dimensional
N ¼ 4 multiplets are related and can be derived from the
so-called N ¼ 4 ‘‘root multiplet’’ or ‘‘minimal length
multiplet’’ (i.e. the multiplet possessing no bosonic auxil-
iary degrees of freedom). An important step in understand-
ing the nature of nonlinear multiplets has been done in
[12]. The nonlinear chiral multiplet used in the construc-
tion of two-dimensional supersymmetric mechanics pos-
sesses the (2, 4, 2) components content,2 while the three-
dimensional systems are built with a multiplet possessing
(3, 4, 1) components content. The minimal length multiplet
from which nonlinear multiplets are obtained possesses a

(4, 4, 0) fields content. Looking at the construction of [12],
one can observe that it is related with the reductions
associated with the first Hopf map S3=S1 ¼ S2 and with,
respectively, the Kustaanheimo-Stiefel transformation
[13]. The relation of the mentioned procedures with the
first Hopf map becomes especially transparent after their
reformulation in the Hamiltonian language [14]. It is there-
fore not surprising that the reduced three-dimensional
system is specified by the presence of a Dirac monopole
field, while the two-dimensional one is specified by the
presence of a constant electric field. We further notice that
the performed reductions do not change the number of
fermionic degrees of freedom, i.e. they are straightforward
extensions of the purely bosonic reduction procedures to
supersymmetric systems.
Different supersymmetric extensions (for various values

ofN ) admit unique minimal length linear multiplets with
a given number of bosonic and fermionic degrees of free-
dom. The relevant cases here are, for N ¼ 2, the (2, 2, 0)
root supermultiplet, forN ¼ 8 the (8, 8, 0) supermultiplet
[11]. There is no doubt that the first supermultiplet can be
related with the zeroth Hopf map S1=S0 ¼ S1, while the
latter is related with the second Hopf map S7=S3 ¼ S4.
Since S0 ¼ Z2, the reduction associated with the zeroth
Hopf map does not change the number of physical degrees
of freedom; at the classical level it corresponds to a plain
coordinate transformation even if, at the quantum-
mechanical level, it yields the presence of magnetic fluxes
generating spin 1=2 [15]. Looking at the number of com-
ponents of the (8, 8, 0) multiplet, one could naively expect
the existing (4, 8, 4) and (5, 8, 3) N ¼ 8 nonlinear
multiplets being obtained from (8, 8, 0) via a second
Hopf map reduction. It is likely that a second Hopf map
reduction applied to the system with (8, 8, 0) multiplet [the
Hamiltonian reduction is assumed via the action of the
S3 ¼ SUð2Þ group] would produce a five-dimensional
supersymmetric mechanics model with Yang monopole
and (upon a further fixation of the radius) a four-

1The MICZ-Kepler system is the generalization of the Kepler
system specified by the presence of a Dirac monopole and
inherits the hidden symmetry of the Kepler system. It was
invented independently by Zwanziger and by McIntosh and
Cisneros in Refs. [7,8].

2We follow the nowadays standard convention in the literature
of denoting with ðk; n; n� kÞ the supermultiplets with k physical
bosons, n physical fermions, and n� k auxiliary bosons.
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dimensional supersymmetric mechanics system with
Belavin-Polyakov-Schwartz-Tyupkin (BPST) instanton.
Indeed, when involving only the bosonic part of the sys-
tem, the SUð2Þ reduction produces a five-dimensional
model in the presence of a Yang monopole; in [16], such
reduction was used for constructing the five-dimensional
MICZ-Kepler system [SUð2Þ-Kepler system] from an
eight-dimensional system.

The construction of N > 4 supersymmetric extensions
of the systems with Yang monopole is clearly an important
task. As mentioned before, systems of this type are impor-
tant not only from a purely field-theoretical context, but
also in applications to condensed matter, e.g. in the theory
of the four-dimensional Hall effect (which is formulated on
the ground of a four-dimensional Landau problem, namely,
a particle on a four-dimensional sphere moving in the
presence of a BPST instanton field generated by the Yang
monopole located at the center of the sphere) [17].
Therefore, with the supersymmetric four-dimensional
Landau problem at hand, one can develop the theory of
the four-dimensional quantum Hall effect, in the spirit of
[18].

On the other hand, the systems produced by existing (4,
8, 4) and (5, 8, 3) N ¼ 8 linear multiplets do not contain
any external gauge field. However, the extension of the
reduction procedure of the (4, 4, 0) multiplet to the (8, 8, 0)
(which supposes the transition from the first Hopf map to
the second one) and the construction of the associated
nonlinear supermultiplets, is not a trivial task. In contrast
with the reduction of (4, 4, 0) by the Uð1Þ group action, the
(8, 8, 0) multiplet must be reduced by the non-Abelian
SUð2Þ group action. Such a reduction implies the ‘‘elimi-
nation’’ of the three external bosonic degrees of freedom
only in a limiting case [when the values of SUð2Þ gener-
ators are equal to zero]. In a general position, part of the
initial degrees of freedom result in internal degrees of
freedom of the isospin particle interacting with a Yang
monopole. In the ‘‘supermultiplet language’’ this means
that the auxiliary fields of the resulting nonlinear super-
multiplet should contain some ‘‘emergent dynamics’’; in-
deed, they are not ‘‘auxiliary’’ in a strong sense. Some
other points need to be clarified: performing the reduction
of the (4, 4, 0) multiplet to the nonlinear ones, the authors
of [12] added to the initial system, by hands, a Fayet-
Iliopoulos extra term. It has the two aims of providing
the final system with a nonlinearity property and with the
presence of an external magnetic field. Naively, it would
seem that the relation of the mentioned supermultiplets is
not so straightforward. From the above construction it is
not clear which sort of Fayet-Iliopoulos term should be
added to the system with (8, 8, 0) multiplet for producing a
lower-dimensional system with Yang monopole. Finally,
one can suppose, from group-theoretical considerations,
that it would not be possible to reduce all initial N ¼ 8
supersymmetries to low dimensions.

The goal of the present paper is to clarify the listed
questions and, consequently, develop the necessary tools
for the reduction of the N ¼ 8 supersymmetric mechan-
ics with (8, 8, 0) to five(four)-dimensional mechanics in the
presence of Yang monopoles (BPST instantons) which
possess the extended supersymmetry.3

For this purpose we formulate at first the reduction
procedures associated with the first and second Hopf
maps. We show that there is no need to add the Fayet-
Iliopoulos-like term to the initial system: the full time-
derivative term arises naturally within a consistent reduc-
tion procedure. Also, we propose a geometric construction
of the transmutation of the ‘‘seemingly auxiliary’’ degrees
of freedom in isospin degrees of freedom. Let us mention
that we formulate the reduction associated with the second
Hopf map by using the quaternionic language. The simpler
case related with the first Hopf map can be easily recovered
by the obvious replacement of the quaternionic quantities
with complex numbers. An algebraic understanding of the
nature of the Hopf maps leaves to no surprise that impor-
tant differences are encountered between the first and the
second Hopf map. We consider the consequences of these
reductions for supersymmetric mechanics.
The first Hopf map induces, starting from an N ¼ 4

supersymmetric quantum mechanics with four (target) di-
mensions, N ¼ 4 supersymmetric quantum-mechanical
systems with either two or three target dimensions. The
reason lies in the fact that the initial N ¼ 4 superalgebra
commutes with the generator of the S1 ¼ Uð1Þ symmetry
(the defining bundle in the first Hopf map), by whose
action the reduction is performed. In the second Hopf
map, one must reduce the N ¼ 8 supersymmetric me-
chanics constructed with the (8, 8, 0) supermultiplet in
terms of the action of the SUð2Þ ¼ S3 group (the defining
bundle in the second Hopf map). These generators do not
commute with the whole set of N ¼ 8 supersymmetry
algebra, but at most with its N ¼ 5 subalgebra. The
reduced system, in the presence of a Yang monopole, is
fully characterized by its invariance under the N ¼ 5
SUð2Þ-invariant supersymmetry generators. It is even pos-
sible, under some condition on the initial eight-
dimensional system, to combine the fifth supersymmetry
generator with a conserved pseudosupersymmetry operator
and produce a reduced N ¼ 4 supersymmetric quantum-
mechanical model and an additional odd nilpotent [Becchi-
Rouet-Stora-Tyutin (BRST)-type] symmetry. We restrict

3To our knowledge no N > 4 supersymmetric mechanical
model with a non-Abelian gauge field has been realized. In a
context different from ours, we mention the recent paper [19]
where the authors derived the SUð2Þ supersymmetric Yang-Mills
quantum mechanics from dimensional reduction of d ¼
3; 4; 6; 10 superYang-Mills theories and related the Berry hol-
onomy with the Hopf maps. One of the main differences with our
approach is the fact that we are investigating the most general
supersymmetric quantum mechanics obtained from the minimal,
irreducible supermultiplets.
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ourselves to the presentation of the general procedure and
the listed statements, postponing a detailed analysis for
forthcoming publications.

The paper is arranged as follows.
In the Sec. II we present an explicit description of the

first and second Hopf maps in terms needed for our
purposes.

In the Sec. III we employ the Hopf maps to reduce the
four-/eight-dimensional bosonic systems to lower-
dimensional systems with magnetic/SU(2) monopoles.

In the Sec. IV we apply these reduction procedures to the
supersymmetric mechanics constructed in terms of, respec-
tively, the (4, 4, 0) and (8, 8, 0) minimal length super-
multiplets and discuss the associated resulting
supermultiplets of the reduced systems.

II. HOPF MAPS

The Hopf maps (or Hopf fibrations) are the fibrations of
the sphere over a sphere, S2p�1=Sp�1 ¼ Sp, p ¼ 1; 2; 4; 8.
These fibrations reflect the existence of real (p ¼ 1), com-
plex (p ¼ 2), quaternionic (p ¼ 4), and octonionic (p ¼
8) numbers.

We are interested in the so-called first and second Hopf
maps:

S3=S1 ¼ S2 ðfirst Hopf mapÞ;
S7=S3 ¼ S4 ðsecond Hopf mapÞ: (2.1)

Let us describe them in explicit terms. For this purpose, we
consider the functions xðu�; �u�Þ; , xpþ1ðu�; �u�Þ:

x ¼ 2 �u1u2; xpþ1 ¼ �u1u1 � �u2u2; (2.2)

where u1, u2 are complex numbers for the p ¼ 2 case (first
Hopf map) and quaternionic numbers for the p ¼ 4 case
(second Hopf map). One can consider them as coordinates
of the 2p-dimensional space IR2p (p ¼ 2 for u1;2 complex

numbers; p ¼ 4 for u1;2 quaternionic numbers). In all

cases xpþ1 is a real number while x is, respectively, a

complex number (p ¼ 2) or a quaternionic one (p ¼ 4),

x � xp þ
X

k¼1;...;p�1

ekxk; (2.3)

where ek ¼ i, i2 ¼ �1 for p ¼ 2, and ek ¼ ði; j;kÞ,
eiej ¼ ��ij þ "ijkek for p ¼ 4.

Hence, ðxpþ1;xÞ parametrize the (pþ 1)-dimensional

space IRpþ1.
The functions x, xpþ1 remain invariant under the trans-

formations

u � ! Gu�; where �GG ¼ 1 )
�
G ¼ �1 þ i�2 j�1j2 þ j�2j2 ¼ 1 for p ¼ 2
G ¼ �1 þ i�2 þ j�3 þ k�4 j�1j2 þ � � � þ j�4j2 ¼ 1 for p ¼ 4:

(2.4)

Therefore, G parametrizes the spheres Sp�1 of unit radius.
Taking into account the isomorphism between these
spheres and the groups, S1 ¼ Uð1Þ, S3 ¼ SUð2Þ, we get
that (2.2) is invariant under G-group transformations
[where G ¼ Uð1Þ for p ¼ 2, and G ¼ SUð2Þ for p ¼ 4],
and that it defines the fibrations

IR 4=S1 ¼ IR3; IR8=S3 ¼ IR5: (2.5)

One could immediately check that the following equation
holds:

r2 � �xxþ x2pþ1 ¼ ð �u1u1 þ �u2u2Þ2 � R4: (2.6)

Thus, defining the (2p� 1)-dimensional sphere in IR2p of
radius R, �u�u� ¼ R2, we will get the p-dimensional
sphere in IRpþ1 with radius r ¼ R2, i.e. we obtain the
Hopf maps (2.1).

The expressions (2.2) can be easily inverted by the use of

u � ¼ gr�; where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ xpþ1

2

s
;

r2 � rþ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðrþ xpþ1Þ

q ; �gg ¼ 1:
(2.7)

It follows from the last equation in (2.7) that g parametrizes
the (p� 1)-dimensional sphere of unit radius. Let us give

the description of first and second Hopf maps in internal
terms, using the decomposition IR2p ¼ IR1 � S2p�1,
IRpþ1 ¼ IR1 � Sp, and parametrizing Sp by inhomogene-
ous projective coordinates

z ¼ �u1u2

�u1u1

;) ju1j2 ¼ r

1þ �zz
: (2.8)

Hence, we get

u 1 ¼ g
ffiffiffi
r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �zz

p ; u2 ¼ u1z ¼ g
ffiffiffi
r

p
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �zz
p : (2.9)

For r ¼ const we get the description of S2p�1 in terms of
the coordinates of the base manifold Sp and of the fiber
coordinates g. The internal coordinate z of the sphere Sp is
related with the Cartesian coordinates of the ambient space
IRpþ1 (2.2) as follows:

x ¼ rhþ; xpþ1 ¼ rhpþ1;

hþ ¼ 2z

1þ �zz
; hpþ1 ¼ 1� �zz

1þ �zz
:

(2.10)

For S1 the group element and the corresponding left-
invariant one-form can be presented as follows:

S1: g ¼ ei’; �gdg ¼ id’; ’ 2 ½0; 2�Þ: (2.11)

Hence, the ambient coordinates of the S3 sphere of unit
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radius are related with the internal coordinates of S1 and S2

by (2.9), where we put r ¼ 1 and g ¼ ei’.
In quaternionic case we get the following expressions for

the SUð2Þ group element and its left-invariant form:

S3: g ¼ ei�
1þ jzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z�z

p ; �gdg ¼ �3iþ�þj;

�þ ¼ ð�2 þ i�1Þ;
(2.12)

where

�3 ¼ h3d�þ i

2

�zdz� zd�z

1þ z�z
�þ ¼ ihþd�þ d�z

1þ z�z

i; j; k ¼ 1; 2; 3: (2.13)

Here h3, h� are the Euclidean coordinates of the ambient
space IR3 given by (2.10): simultaneously they play the
role of Killing potentials of the Kähler structure on S2.

The vector fields dual to the above one-forms look as
follows:

V 3 ¼ @

@�
þ 2i

�
z
@

@z
� �z

@

@�z

�
;

Vþ ¼ @

@�z
þ z2

@

@z
� i

z

2

@

@�
; V� ¼ �Vþ:

(2.14)

�3ðV3Þ ¼ ��ðV�Þ ¼ 1;

��ðV�Þ ¼ ��ðV3Þ ¼ �3ðV�Þ ¼ 0:
(2.15)

Let us also write down the following expressions:

� ð �gdgÞ2 ¼ �i�i ¼
�
d�� i

2

�zdz� zd�z

1þ z�z

�
2 þ dzd�z

ð1þ z�zÞ2 :
(2.16)

We also need another SUð2Þ group element parametriz-
ing the sphere S3 and ‘‘commuting’’ with (2.12):

~g ¼ 1þ jzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z�z

p e�i�; �g �~gg~g ¼ 1: (2.17)

The corresponding left-invariant forms are given by the
expressions

�~gd~g ¼ ~�3iþ ~�þj; ~�þ ¼ ~�2 þ i~�1;

~�3 ¼ d�þ i

2

zd�z� �zdz

1þ z�z
~�þ ¼ e2i�d�z

1þ z�z
;

(2.18)

while the vector fields dual to these forms appear as
follows:

U3 ¼ � @

@�
; Uþ ¼ e�2i�

�
ð1þ z�zÞ @

@�z
þ iz

2

@

@�

�
;

U� ¼ �Uþ: (2.19)

~� 3ðU3Þ ¼ ~��ðU�Þ ¼ 1;

~��ðU�Þ ¼ ~��ðU3Þ ¼ ~�3ðU�Þ ¼ 0:
(2.20)

From the second expression in (2.18) follows the commu-
tativity of theVa andUa fields. This pair forms the soð4Þ ¼
soð3Þ � soð3Þ algebra of isometries of the S3 sphere:

½Vi;Vj� ¼ 2"ijkVk; ½Ui;Uj� ¼ 2"ijkUk;

½Vi;Uj� ¼ 0; i; j; k ¼ 1; 2; 3:
(2.21)

The commutativity of Vi and Ui plays a key role in our
further considerations. Notice also that we can pass from
the parametrization (2.18) to (2.12) via the z ! ~ze�2i~�,
� ¼ �~� transformation.
For our further considerations this is all we need to know

from the Hopf maps.

III. REDUCTION

Let us consider a free particle on the 2p-dimensional
space equipped with the G-invariant conformal flat metric.
Taking into account the expressions (2.7), we can represent
its Lagrangian as follows:

L2p ¼ gð �u � uÞ _�u� _u�

¼ gðr�; r1Þð _rþ _r� þ _r21 þ _r� �g _g rþ
� r� �g _g _rþ � rð �g _gÞ2Þ

¼ gð _rþ _r� þ _r21Þ � gr�iAi þ gr�i�i: (3.1)

Here and in the following �i are defined by (2.11) for p ¼
2, and by (2.13) for p ¼ 4, with the differentials replaced
by the time derivatives, while

Ai � _r�eirþ � r�ei _rþ
r

¼
_xeix� xei _x

2rðrþ xpþ1Þ : (3.2)

We have used the identity rþr� þ r21 ¼ r and the notations
r� ¼ �rþ, �u � u � �u� � u�.

One can see, for the p ¼ 2 case (the complex numbers),
that A defines a Dirac monopole potential

Ai ¼ AD ¼ x1 _x2 � x2 _x1
rðrþ x3Þ : (3.3)

In the p ¼ 4 case (the quaternionic numbers) Ai defines
the potential of the SUð2Þ Yang monopole. The explicit
formulas for Ai in terms of the real coordinates x1; . . . ; x5
(where x ¼ x4 þ eixi, x5) appear as follows:

Ai ¼ �i
abxa _xb

rðrþ x5Þ ; �i
ab ¼ �ia�4b � �4a�ib � "iab4;

where �i
ab is the t’Hooft symbol, and a; b ¼ 1; 2; 3; 4.

The Lagrangian (3.1) is manifestly invariant under the
G-group action.
In the p ¼ 2 case the generator of theG ¼ Uð1Þ group is

given by the vector field V ¼ @=@’: indeed, taking into
account (2.11), one can see that, for p ¼ 2, ’ is a cyclic
variable in (3.1).
In the p ¼ 4 case the generators of the G ¼ SUð2Þ

group are given by the vector fields Ui (2.19).
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By making use of the Noether constants of motion we
can decrease the dimensionality of the system.

In the p ¼ 2 case we have a single Noether constant of
motion defined by the vector field dual to the left-invariant
form� ¼ _’; this is precisely the momentum conjugated to
’, which appears in the Lagrangian (3.1) as a cyclic
variable. Hence, excluding this variable, we shall get, for
p ¼ 2, a three-dimensional system.

On the other hand, in the p ¼ 4 case, thanks to the non-
Abelian nature of the G ¼ SUð2Þ group, only the � vari-
able is a cyclic one, even if z, �z appear in the Lagrangian
(3.1) without time derivatives too. It is therefore expected
that in this second case the reduction procedure would be
more complicated. In contrast with the Hamiltonian reduc-
tion procedure, the Lagrangian reduction is a less common,
or at least a less developed, procedure which deserves
being done with care.

For this reason, we shall describe the Lagrangian coun-
terparts of the Hamiltonian reduction procedures sepa-
rately for both the p ¼ 2 and the p ¼ 4 cases.

A. The Uð1Þ reduction
Let us consider the reduction of the four-dimensional

particle given by the Lagrangian (3.1) to a three-
dimensional system. Taking into account the expression
(2.11), we can rewrite the Lagrangian as follows:

L ¼ gð _rþ _r� þ _r21 � r _’AD þ r _’2Þ: (3.4)

Since ’ is a cyclic variable, its conjugated momentum is a
conserved quantity

p’ ¼ @L
@ _’

¼ �rgAD þ 2gr _’ , _’ ¼ 1

2

�
p’

gr
þAD

�
:

(3.5)

Naively one could expect that the reduction would require
fixing the value of the Noether constant and substituting a
corresponding expression for _’ in the Lagrangian (3.4).
However, acting in this way, we shall get a three-
dimensional Lagrangian without a linear term in the veloc-
ities, i.e. without a magnetic field (of the Dirac monopole).
This would be in obvious contradiction with the result of
the Hamiltonian reduction of the four-dimensional system
via the Uð1Þ group action. The correct reduction procedure
looks as follows. At first we have to replace the Lagrangian
(3.4) by the following, variationally equivalent, one (ob-
tained by performing the Legendre transformation for _’):

~L ¼ p’ _’� p’

2
AD � p2

’

4rg
� gr

4
A2
D þ gð _rþ _r� þ _r21Þ:

(3.6)

Indeed, varying the independent variable p’, we shall

arrive to the initial Lagrangian.

The isometry of the Lagrangian (3.6), corresponding to
the Uð1Þ-generator V ¼ @

@’ , is given by the same vector

field. It defines the Noether constant of motion p’.

Upon fixing the value of the Noether constant

p’ ¼ 2s; (3.7)

the first term of the new Lagrangian transforms as a full
time derivative and can therefore be ignored.
As a result, we shall get the following three-dimensional

Lagrangian:

L3 ¼ gð _rþ _r� þ _r21Þ � sAD � gr

4
A2

D � s2

rg

¼ ~g _x� _x�
2

� sAD � s2

2r2~g
;

~g � g

2r
: � ¼ 1; 2; 3: (3.8)

Clearly, it describes the motion of a particle moving in a
three-dimensional space equipped by the metric ~g�	 ¼
g
2r ��	 in the presence of a Dirac monopole generating a

magnetic field with strength

~B ¼ s ~x

~gx3
: (3.9)

Let us notice the appearance, in the reduced system, of
the specific centrifugal term s2=2r2~g. For spherically sym-
metric systems this term provides a minor modification of
the solutions of the initial system (without monopole) after
incorporating the Dirac monopole: at the classical level it
yields only the rotation of the orbital plane to the arccoss=J
angle [20] and, at the quantum level, the shift of the validity
range of the orbital momentum J from ½0;1Þ ½jsj;1Þ [21].
Schwinger [22] incorporated by hand, for the first time,
such a term in planar systems (~g ¼ 1) with Dirac
monopole.
The above construction corresponds to the bosonic part

of the reduction of the four-dimensional N ¼ 4 super-
symmetric mechanics to a three-dimensional N ¼ 4
supersymmetric mechanics considered in [12]. A further
reduction of the system to two dimensions corresponds to a
system with a nonlinear chiral multiplet (2, 4, 2), obtained
by fixing the ‘‘radius’’ r ¼ const. Since the Dirac mono-
pole potential AD does not depend on r, we shall get a
two-dimensional system moving in the same magnetic
field. It applies, in particular, to the particle on the sphere
moving in a constant magnetic field (the Dirac monopole is
located at the center of the sphere), i.e. the Landau problem
on sphere.
Let us also mention the series of papers [23], where the

Uð1Þ reduction procedure of the supersymmetric
Lagrangian mechanics has been performed by the use of
a specific ‘‘gauging’’ procedure, which seemingly could be
reduced, in the bosonic sector, to the above presented one.
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B. The SUð2Þ reduction
In the case of the second Hopf map we have to reduce

the Lagrangian (3.1) with p ¼ 4 via the action of the SUð2Þ
group expressed by the vector fields (2.19). Because of the
non-Abelian nature of the SUð2Þ group, the system will be
reduced to a five(or higher)-dimensional one.

For a correct reduction procedure we have to replace the
initial Lagrangian by one which is variationally equivalent,
extending the initial configuration space with new varia-
bles, �, ��, p�, playing the role of conjugate momenta to z,

�z, �. In other words, we will replace the sphere S3 (pa-
rametrized by z, �z, �) by its cotangent bundle T�S3 pa-
rametrized by the coordinate z, �z, �, �, ��, p�. Let us

further define, on T�S3, the Poisson brackets given by the
relations

f�; zg ¼ 1; f ��; �zg ¼ 1; fp�; �g ¼ 1: (3.10)

We introduce the Hamiltonian generators Pa correspond-
ing to the vector fields (2.14) (replacing the derivatives
entering the vector fields Va by half of the corresponding
momenta)

Pþ ¼ P2 � iP1

2
¼ �þ �z2 ��

2
� i�z

p�

4
; P� ¼ �Pþ;

P3 ¼
p�

2
� iðz�� �z ��Þ: (3.11)

In the same way we introduce the Hamiltonian generators
Ia corresponding to the vector fields (2.19):

I3 ¼ �p�

2
;

Iþ ¼ I2 � iI1
2

¼ ip�zþ 2 ��ð1þ z�zÞ
4

e�2i�; I� ¼ �Iþ:

(3.12)

These quantities define, with respect to the Poisson
bracket (3.10), the soð4Þ ¼ soð3Þ � soð3Þ algebra
fPi; Pjg ¼ "ijkPc; fIi; Ijg ¼ "ijkIk; fIi; Pjg ¼ 0:

(3.13)

The functions Pi, Ii obey the following equality, important
for our considerations:

IkIk ¼ PkPk: (3.14)

At this point we replace the initial Lagrangian (3.1) by the
following one, which is variationally equivalent:

Lint ¼ 2ðPþ�þ þ P��� þ P3�3Þ � PiAi � PiPi

gr

� grAiAi

4
þ gð _rþ _r� þ _r21Þ: (3.15)

The isometries of this modified Lagrangian corresponding
to (2.19) are defined by the vector fields

~U i � fIi; g; (3.16)

where Ii are given by (3.12) and the Poisson brackets are
given by (3.10). The quantities Ii entering (3.16) are the
Noether constants of motion of the modified Lagrangian
(3.15). This can be easily seen taking into account the
following equality:

2ðPþ�þ þ P��� þ P3�3Þ ¼ p� _�þ � _zþ �� _�z : (3.17)

We have now to perform the reduction via the action of the
SUð2Þ group given by the vector fields (3.16). For this
purpose we have to fix the Noether constants of motion
(3.12), setting

Ik ¼ const; IkIk � s2:

Since the constants of motion Ik do not depend on the r�,
r5 coordinates we can perform an orthogonal rotation so
that only the third component of this set, I3, assumes a
value different from zero. Equating Iþ and I� with zero we
obtain

� I3 ¼
p�

2
¼ s; ��¼ is

z

1þ z�z
; �¼�is

�z

1þ z�z
:

(3.18)

Hence,

Pþ ¼�is
�z

1þ z�z
; P� ¼ is

z

1þ z�z
; P3 ¼�s

1� z�z

1þ z�z
:

(3.19)

Therefore Pk coincide with the Killing potentials of the S2

sphere. This is by no means an occasional coincidence.
Taking in mind the equality (3.17), we can conclude that

the third term entering (3.15) can be ignored because it is a
full time derivative. Besides that, taking into account
(3.14), we can rewrite the Lagrangian as follows:

Lred ¼
~g _x� _x�

2
� is

�z _z�z _�z

1þ z�z
� shkðz; �zÞAk � s2

2r2~g
;

~g � g

2r
; � ¼ 1; . . . ; 5; (3.20)

where we have used the identity

� 1

4
grAiAi þ gð _rþ _r� þ _r21Þ ¼ g

_x� _x�

4r
:

The second term in the above reduced Hamiltonian is the
one-form defining the symplectic (and Kähler) structure on
S2, while hk given in (2.10) are the Killing potentials
defining the isometries of the Kähler structure. We have
in this way obtained the Lagrangian describing the motion
of a five-dimensional isospin particle in the field of an
SUð2Þ Yang monopole. The metric of the configuration
space is defined by the expressions ~g�	 ¼ g

2r ��	. For a

detailed description of the dynamics of the isospin particle,
we refer to [24].
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Similarly to the Uð1Þ case, the reduced system is speci-
fied by the presence of a centrifugal potential s2=2~gr2,
which essentially cancels the impact of the monopole in
the classical and quantum solutions of the system.
Particularly, for spherically symmetric systems (including
those with extra potential terms), the impact of the Yang
monopole on the spectrum implies a change in the validity
range of the orbital momentum [21]. In supersymmetric
systems, on the other hand, the presence of a monopole can
change essentially the supersymmetric properties.

It therefore follows that the Noether constants of motion
do not allow us to exclude the z, �z variables. However, their
time derivatives appear in the Lagrangian in a linear way
only and define the internal degrees of freedom of the five-
dimensional isospin particle interacting with a Yang mono-
pole. As a consequence, the dimensionality of the phase
space of the reduced system is 2 � 5þ 2 ¼ 12. Only for the
particular case s ¼ 0, corresponding to the absence of the
Yang monopole, we obtain a five-dimensional system. This
means that locally the Lagrangian of the system can be
formulated in a six-dimensional space. Such a representa-
tion seems, however, useless, in contrast with the one
presented here.

The further reduction of the constructed (5þ � � �)-
dimensional system to a (4þ � � �)-dimensional one would
be completely similar to the Uð1Þ case: it requires fixing
the radial variable r. The resulted system describes the
isospin particle moving in a four-dimensional space and
interacting with the BPST instanton.

In this section we have considered the Lagrangian re-
duction procedures, restricting ourselves to
2p-dimensional systems with conformal flat metrics only.
From our considerations it is however clear that similar
reductions can be performed also for particles moving on
other G-invariant 2p-dimensional spaces (not necessarily
conformally flat), in the presence of a G-invariant poten-
tial. The modifications do not yield any qualitative differ-
ence with the proposed reduction procedures and will be
reflected in more complicated forms of the resulting
Lagrangians. The possibility of adding to the initial system
G-invariant potentials is obvious.

IV. SUPERSYMMETRY

We discuss now the supersymmetric extensions, both for
p ¼ 2 and p ¼ 4, of the bosonic constructions we have
dealt with so far. For our purposes we have to ensure the
compatibility of the supersymmetry transformations acting
on the ‘‘root’’ or ‘‘minimal length’’ supermultiplets
ð2p; 2p; 0Þ, with the bilinear transformations

x� ¼ uT��u; (4.1)

where, for p ¼ 2, � ¼ 1; 2; 3 and the ��’s are the gener-

ators of the Euclidean Clifford algebra Clð3; 0Þ while, for

p ¼ 4, � ¼ 1; 2; 3; 4; 5, the ��’s are the generators of the

Euclidean Clifford algebra Clð5; 0Þ.
In the p ¼ 2 case we can choose

�1 ¼ 12 	 
1; �2 ¼ 12 	 
2; �3 ¼ 
A 	 
A; (4.2)

where


1 ¼ 0 1
1 0

� �
; 
2 ¼ 1 0

0 �1

� �
;


A ¼ 0 1
�1 0

� �
12 ¼ 1 0

0 1

� �
:

(4.3)

Because of the Schur’s lemma [25], the three gamma
matrices in (4.2) commute with a single matrix

�3 ¼ 
A 	 12 (4.4)

(�2
3 ¼ 14) which defines the complex structure in Clð3; 0Þ.
For the p ¼ 5 case the � matrices appear as follows:

�1 ¼ 
A 	 
1 	 
A; �2 ¼ 
A 	 
2 	 
A;

�3 ¼ 
A 	 
A 	 12; �4 ¼ 
1 	 12 	 12;

�5 ¼ 
2 	 12 	 12;

(4.5)

where the matrices 
1, 
2, 
A are defined in (4.3).
The real coordinates ua, a ¼ 1; . . . 2p, are related with

the complex/quaternionic coordinates u�, �u� considered
in the previous sections, by the expressions

u 1¼u4þeiui; u2¼u8þeiu4þi; i¼1;2;3: (4.6)

The V ¼ @’ vector field defining, in the p ¼ 2 case, the
Uð1Þ isometry, therefore appears as

V ¼ uT�3

@

@u
: (4.7)

In the p ¼ 4 case, the Ui vector fields defining the SUð2Þ
isometries are given by the expressions

U i ¼ u�i

@

@u
; �1 ¼ 12 	 
A 	 
1;

�2 ¼ 12 	 
A 	 
2; �3 ¼ 12 	 12 	 
A:

(4.8)

It is easily proven that the suð2Þ matrix generators �i

commute with the Gamma matrices �� (½�i;��� ¼ 0).

This is in agreement with the fact that Ui define the
isometries of the eight-dimensional Lagrangian (3.1).
The relation pointed out in [11] between Clifford algebra

and the associated supersymmetric root multiplets has a
consequence that the Schur’s lemma induces real, com-
plex, or quaternionic structures, see [26,27], on the mini-
mal length multiplets.
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For p ¼ 2, the (4, 4, 0) root multiplet is an N ¼ 4
quaternionic multiplet, since the supersymmetry algebra

QaQbþQbQa ¼ �ab1@t; QaH �HQa ¼ 0;

H � 1@t; a; b ¼ 1; . . . ;N ¼ 4 (4.9)

is realized through the supermatrices acting on the
ðu1; u2; u3; u4; c 1; c 2; c 3; c 4Þ multiplet, given by

Q4 ¼ 0 14
14@t 0

� �
; Qi ¼ 0 �̂i

��̂i@t 0

� �
; i¼ 1;2;3;

(4.10)

where

�̂ 1 ¼ 
A	
1; �̂2 ¼ 
A	
2; �̂3 ¼ 12	 
A (4.11)

andQi,Q4 all commute with the three matrices ~�j ¼ �j 	
�j, j ¼ 1; 2; 3 [�1 ¼ 
1 	 
A, �2 ¼ 
2 	 
A, while �3 is

given by (4.4)]. Notice that ~�1,
~�2 (contrary to ~�3) do not

leave invariant the coordinates x1, x2, x3 entering, for p ¼
2, (4.1).

For p ¼ 4 the situation is as follows. According to the
supersymmetric extension of the Schur’s lemma [27,28],
there are at most N ¼ 5 supersymmetry generators com-

muting with the suð2Þ generators ~�j [now
~�j ¼ �j 
�j,

with �j given in (4.8)] and acting on the (8, 8, 0) root

multiplet.4

The N ¼ 8 supersymmetry transformations acting on
the root multiplet with fields ðua; c bÞ, ða; b ¼ 1; 2; . . . ; 8Þ
are given by

Qk¼ 0 �k

��k �H 0

� �
; Q8¼ 0 18

18 �H 0

� �
; k¼1;2; . . . ;7;

(4.12)

where

�1 ¼ 
1 	 
A 	 12; �2 ¼ 
2 	 
A 	 12;

�3 ¼ 
A 	 12 	 
1; �4 ¼ 
A 	 12 	 
2;

�5 ¼ 12 	 
1 	 
A; �6 ¼ 12 	 
2 	 
A;

�7 ¼ 
A 	 
A 	 
A:

(4.13)

The subset of N ¼ 5 supersymmetry transformations

commuting with the above specified suð2Þ generators ~�j,

½QI;
~�j� ¼ 0; (4.14)

is explicitly given by Q1, Q2, Q5, Q6, Q8.
In accordance with the above results, the reduced

Lagrangians, invariant under the extended supersymmetry
algebra and compatible with the G-group action, where

G ¼ Uð1Þ for p ¼ 2 and G ¼ SUð2Þ for p ¼ 4, can be
recast in a complex and, respectively, quaternionic formal-
ism. We will discuss them separately in the next
subsections.

A. The Uð1Þ reduction
We discuss the reduction of theN ¼ 4 supersymmetric

systems with a (4, 4, 0) supermultiplet.
The three Uð1Þ-invariant fields x1, x2, x3 constructed in

(4.1), for p ¼ 2, as bilinear combinations of the four ui
fields, transform underN ¼ 4 supersymmetry with trans-
formations induced by (4.10). It is easily verified that the
induced supersymmetry closes linearly and the resulting
supermultiplet corresponds to the N ¼ 4 (3, 4, 1) fields
content where, in addition to the three x�, we have four

fermions and an auxiliary bosonic field. All the fields
belonging to this multiplet are Uð1Þ-invariant and given
by bilinear combinations of the ui and c i fields entering
the original (4, 4, 0) supermultiplet.
The commutativity of the N ¼ 4 supersymmetry alge-

bra with the Uð1Þ generator makes it possible to use an
alternative description, more suitable in describing the
N ¼ 4 supersymmetric quantum-mechanical system in
the presence of a monopole. It makes use of the complex
coordinates (bosonic and, respectively, fermionic) u�, c �

and the ‘‘chiral supercharge’’ generators Q�
k ¼Qk� {Qkþ2

(k¼1;2). The supersymmetry transformations can there-
fore be reexpressed as

Qþ
1 u� ¼ c �; Qþ

1 c � ¼ _u�; Q�
1 �u� ¼ �c �;

Q�
1
�c � ¼ _�u�; Qþ

2 u� ¼ ���c �; Qþ
2 c � ¼ ��� _u�;

Q�
2 �u� ¼ ��� �c �; Q�

2
�c � ¼ ��� _�u�;

Qþ
k �u� ¼ 0; Qþ

k
�c � ¼ 0: (4.15)

The Uð1Þ group acts on the complex variables ðu�; c �Þ as
follows:

u � ! e{
u�; �u� ! e�{
 �u�;

c � ! e{
c �; �c � ! e�{
 �c �;
(4.16)

where 
 is arbitrary real parameter.
By reducing the N ¼ 4 (4, 4, 0) supersymmetric sys-

tem above via the Uð1Þ group action, we obtain a system
still possessing the N ¼ 4 supersymmetry. This is
reached by choosing, in complete analogy with the bosonic
case, besides the three Uð1Þ-invariant bosonic coordinates
(4.1), four Uð1Þ invariant fermionic coordinates �� given
below and an extra-bosonic field 2’ ¼ { logu1= �u1. The
whole set of coordinates of the reduced system are [1]

x ¼ 2 �u1u2; x3 ¼ �u1u1 � �u2u2;

�� ¼ e�{�c �; ��� ¼ e{� �c �:
(4.17)4An extra pseudosupersymmetry operator, ~Q, such that ~Q2 ¼

�H, is allowed.
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The generalN ¼ 4 Lagrangian constructed with the (4, 4,
0) supermultiplet is given by (see, e.g., [12]).5

LSUSY
4 ¼ L4 þ {gðu; �uÞ

2
ð �c �Dtc �Dt

�c � c Þ
�Rðc � �c Þðc � �c Þ;

Dtc � _c þ �c _u; (4.18)

whereDc is defined by the connection of the metric ds2 ¼
gdu � d �u, R is the curvature of this connection, and L4 is
the bosonic Lagrangian given in (3.1). Therefore, for a
Uð1Þ invariant metric, the supersymmetric Lagrangian
also possesses an Uð1Þ invariance.

When rewriting the initial system in terms of r�, r1, ��,
���, ’, we recover that ’ is a cyclic variable. Excluding it,
in analogy with the bosonic case, we obtain an N ¼ 4
supersymmetric system with three 3 bosonic dimensions.
The presence of the fermionic degrees of freedom does not
yield qualitative changes in the reduction procedure. The
bosonic reduction procedure discussed in Sec. III A is
consistently implemented in the supersymmetric case as
well.

B. The SUð2Þ reduction
We discuss now the reductions of the (8, 8, 0) super-

symmetric multiplet via the SUð2Þ group action. In contrast
with the previous case, the suð2Þ algebra does not commute
with the whole set of the N ¼ 8 supersymmetry gener-
ators (4.12). For that reason the reduced system cannot
inherit the whole N ¼ 8 supersymmetry, but only its
N ¼ 5 subalgebra [we recall that an explicit presentation
of the supersymmetry transformations is given by Q1, Q2,
Q5, Q6, Q8 entering (4.12)].

It is worth mentioning that there are N ¼ 6 supersym-
metry generators commuting with the Uð1Þ group action

defined, e.g., by ~�3 (the extra supersymmetry generator
closingN ¼ 6 corresponds toQ7). As a consequence, the
Uð1Þ reduction of the (8, 8) supermultiplet produces an
N ¼ 6 supersymmetric mechanics on CP3 in the pres-
ence of a constant magnetic field. The reduction by the
whole SUð2Þ group yields further restrictions on the num-
ber of supersymmetries since at most N ¼ 5 supersym-
metry generators commute with the suð2Þ generators which
define the quaternionic structure.

In order to exploit the quaternionic properties, it is
convenient to redefine the (8, 8) variables as follows:

u1 ! v0; u2 ! v2; u3 ! v3; u4 ! v1;

u5 ! �v0; u6 ! �v2; u7 ! �v3; u8 ! �v1

c 1 ! ��0; c 2 ! ��2; c 3 ! ��3; c 4 ! ��1;

c 5 ! �0; c 6 ! �2; c 7 ! �3; c 8 ! �1:

(4.19)

After this redefinition the N ¼ 5 supersymmetry trans-
formations take the following form. The Qi (i ¼ 1, 2, 3)
transformations are (�123 ¼ 1)

Qiv0 ¼ �i; Qivj ¼ �ð�ij�0 þ �ijk�kÞ;
Qi �v0 ¼ � ��i; Qi �vj ¼ �ij

��0 þ �ijk ��k;

Qi�0 ¼ � _vi; Qi�j ¼ �ij _v0 þ �ijk _vk;Qi
��0 ¼ _�vi;

Qi
��j ¼ �ð�ij

_�v0 þ �ijk _�vkÞ: (4.20)

The Q4 transformation is

Q4v0 ¼ �0; Q4vj ¼ �j; Q4 �v0 ¼ ��0;

Q4 �vj ¼ ��j; Q4�0 ¼ _v0; Q4�j ¼ _vj;

Q4
��0 ¼ _�v0; Q4

��j ¼ _�vj:

(4.21)

The Q5 transformation is

Q5v0 ¼ ��0; Q5vj ¼ ��j; Q5 �v0 ¼ ��0;

Q5 �vj ¼ ��j; Q5�0 ¼ � _�v0; Q5�j ¼ � _�vj;

Q5
��0 ¼ _v0; Q5

��j ¼ _vj: (4.22)

The ~Q pseudosupersymmetry operator ( ~Q2 ¼ �H) which
commutes with the suð2Þ generators is given by

~Qv0 ¼ ��0; ~Qvj ¼ ��j; ~Q �v0 ¼ �0;

~Q �vj ¼ �j; ~Q�0 ¼ � _�v0; ~Q�j ¼ � _�vj;

~Q ��0 ¼ � _v0; ~Q ��j ¼ � _vj: (4.23)

Notice that the pseudosupersymmetry operator ~Q, together
withQ5, can be used to define a BRST-type transformation

QBRST (Q2
BRST ¼ 0) given by QBRST ¼ 1

2 ðQ5 þ ~QÞ, such
that

QBRSTv0 ¼ ��0; QBRSTvj ¼ ��j;QBRST �v0 ¼ 0;

QBRST �vj ¼ 0; QBRST�0 ¼ � _�v0;

QBRST�j ¼ � _�vj; QBRST
��0 ¼ 0; QBRST

��j ¼ 0:

(4.24)

5A supersymmetric Hamiltonian in the presence of an Uð1Þ
monopole was first constructed in [29] based on the construction
[30] of supersymmetric quantum-mechanical systems from di-
mensional reduction of higher dimensional superfield theories.
In [29] the reduction of the chiral supersymmetric QED was
considered. The lowest order effective action produces a super-
symmetric sigma model with constant metric while, when the
Born-Oppenheimer corrections become large, a nontrivial metric
is recovered [31].
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The BRST-operator QBRST commutes with the suð2Þ gen-
erators and anticommutes with the remaining N ¼ 4
suð2Þ-invariant supercharges.

The most general suð2Þ-invariant N ¼ 4; 5 actions for
the (8, 8) multiplet can be computed with the construction
of [27] (further developed in [32]). A manifestly N ¼ 4
invariant action is obtained from the Lagrangian

L ¼ Q1Q2Q3Q4fðv; �vÞ; (4.25)

where the supercharges Q1; . . . ; Q4 are given by (4.20) and
(4.21), and f is an unconstrained function of the bosonic
coordinates v0, v1, v2, v3, �v0, �v1, �v2, �v3. The explicit
expression for L, obtained with the help of a package for
Maple 11 and written in terms of the quaternionic structure
constants, is reported for completeness in the Appendix.

The N ¼ 5 invariance is obtained by a constraint,
induced by the fifth suð2Þ-invariant supersymmetry trans-
formation Q5, which requires Q5L be a total time deriva-
tive. The N ¼ 5 requirement implies that f must satisfy
the equation

�8f � f�� þ f �� �� ¼ 0; (4.26)

where � ¼ 0; 1; 2; 3 and f� � @f=@v�, f �� � @f=@ �v�.

An alternative constraint is obtained by requiring both
the N ¼ 4 invariance and the QBRST invariance. In this
case f must satisfy

�4f � f�� ¼ 0: (4.27)

In order to have an suð2Þ-invariant action, an
suð2Þ-invariant constraint has to be imposed on f. This
constraint can be explicitly solved by expressing f not
directly in terms of v�, �v� (or u1; . . . ; u8), but through

the suð2Þ-invariant ‘‘bilinear coordinates’’ x� (now � ¼
1; 2; 3; 4; 5) entering (4.1). We obtain as a result an
suð2Þ-invariant, N ¼ 5 supersymmetric Lagrangian for
a five-dimensional system (given by the x� coordinates).

In analogy with the case discussed in the previous sub-
section, we can compute the supermultiplet generated by
the five suð2Þ-invariant bilinear fields x�. Its fields content
is given [28] by (5, 11, 10, 5, 1). This supermultiplet
corresponds to a ð1; 5; 10; 10; 5; 1Þ ! ð0; 5; 11; 10; 5; 1Þ
dressing of the N ¼ 5 ‘‘enveloping multiplet’’ (see
[27]), whose fields content is given by Newton’s binomials.
All fields entering (5, 11, 10, 5, 1) are suð2Þ invariant and
given by bilinear combinations of the original ui, c i fields.
This multiplet contains twice as many fields entering a
minimal (irreducible, in physicists’ language) N ¼ 5
multiplet. It is a reducible, but indecomposable, multiplet
which can be better described in the basis of the irreducible
(5, 8, 3, 0, 0) and (0, 3, 5, 5, 1) (see [27]) supermultiplets.

Just as in the previous case, the N ¼ 5 supersymmetry is
realized linearly on (5, 11, 10, 5, 1). It is worth pointing out
that, of course, we are not in the presence of a doubling of
the degrees of freedom. The (5, 11, 10, 5, 1) multiplet
consists of composite fields (bilinear combinations of the
original fields). It has been observed before [see e.g. in [27]
the discussion of the tensor product of theN ¼ 4 (1, 4, 3)
multiplet] the existence of composite multiplets whose
number of component fields is twice as many as the num-
ber of the generating fields expressing its composite fields.
No contradiction arises. (5, 11, 10, 5, 1) carries a linear
representation. Its component fields, however, can be ex-
pressed as composite fields of a ‘‘smaller’’ multiplet.
An important comment has to be made. In [32] it has

been explicitly proven that requiring the N ¼ 5 invari-
ance for an off-shell action based on the (2, 8, 6) multiplet,
automatically induces a full N ¼ 8 invariance. Similarly,
the N ¼ 5 invariance constraint (4.26) for the (8, 8, 0)
multiplet automatically guarantees an N ¼ 8 invariance.
This is in agreement with the result of the first paper in [3],
where the same constraint was derived by requiring the
wholeN ¼ 8 invariance, and with [33], where the general
superfield and component actions of this multiplet were
explicitly given. It was also proven there that the eight-
dimensional harmonicity condition for the Lagrangian is a
necessary and sufficient condition to have an N ¼ 8
supersymmetry. Therefore, combining (4.26) and the
SUð2Þ constraint [expressed by the fact that f is function
of the five bilinear coordinates entering (4.1)] produces an
N ¼ 8 SUð2Þ-invariant system. On the other hand, the
three extra supersymmetry generators [the ones which do
not commute with the suð2Þ algebra generators] are not
essential to derive the symmetries of the action. They also
close on a much larger multiplet than (5, 11, 10, 5, 1),
containing fields which are not SUð2Þ invariant. We recall
that the SUð2Þ group acts on the fields entering (5, 11, 10,
5, 1) as the identity operator. Furthermore, a quaternionic
structure is only available for the N ¼ 5 subalgebra.
The supersymmetry transformations (4.20), (4.21), and

(4.22) preserve the quaternionic structure. We can there-
fore express the N ¼ 5 (8, 8, 0) component fields in a
quaternionic framework, in such a way that the SUð2Þ
group action is expressed through

u� ! Gu�; �� ! G��; where G �G ¼ 1;

G;u�;�� 2 IHI; � ¼ 1; 2: (4.28)

In this language the five bilinear coordinates x� and eight

SUð2Þ-invariant fermions can be expressed as follows:

x ¼ 2 �u1u2; x5 ¼ �u1u1 � �u2u2; �� ¼ �g��:

(4.29)
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These positions mimic, in the SUð2Þ reduction case,
what happens in the Uð1Þ case. They suggest the existence
of a supersymmetric description of a five-dimensional
system with a Yang monopole realizing theN ¼ 5 super-
symmetry nonlinearly on a (5, 8, 3) field content. The main
difference with respect to the Uð1Þ case is the fact that the
supersymmetric SUð2Þ-invariant multiplet realized with
bilinear combinations of the (8, 8, 0) fields contains twice
as many fields as the ones entering (5, 8, 3). A possible
strategy consists in extracting the linear (5, 8, 3) multiplet
entering (5, 11, 10, 5, 1) by setting equal to zero the
fields entering its (0, 3, 7, 5, 1) submultiplet. A nonlinear
transformation allows one to reexpress the (5, 8, 3) fields
entering the bilinear basis with the (5, 8, 3) fields entering
(4.29). This issue will be detailed in a forthcoming
publication.

V. SUMMARYAND DISCUSSION

Let us briefly summarize our results. We investigated the
properties of the supersymmetric mechanics associated
with the second Hopf map. We found that the reduction
via the SUð2Þ group action of the (8, 8, 0) multiplet gen-
erates a five-dimensional supersymmetric multiplet in-
duced by the N ¼ 5 supersymmetry generators acting
on (8, 8, 0) and commuting with the suð2Þ algebra gener-
ators. The resulting supermultiplet is a reducible, but in-
decomposable length-5 multiplet with fields content (5, 11,
10, 5, 1). The SUð2Þ action on this field coincides with the
identity operator. The resulting invariant action has been
explicitly computed. We proved that it admits both SUð2Þ
invariance and an N ¼ 8 invariance. The invariance
under the three extra supersymmetry operators is less
important for two reasons. The first one is that it is auto-
matically induced by the invariance under the N ¼ 5
SUð2Þ-invariant operators. The second one is that the N ¼
8 action closes on a much larger multiplet than (5, 11, 10,
5, 1) and the extra fields are inessential to derive the
invariant action.

We further pointed out that an extra, BRST-like, sym-
metry can be imposed on the reduced system. Constraining
the five SUð2Þ-invariant coordinates living on the surface
of the S4 � IR5 sphere produces an N ¼ 5 nonlinear
multiplet generated by the four angular coordinates of
the sphere. The description of a system in presence of an
SUð2Þ Yang monopole/BPST instanton requires further
work. At first the (5, 11, 10, 5, 1) linear multiplet should
be decomposed into its two basic irreducible constituents
(5, 8, 3, 0, 0) and (0, 3, 5, 7, 1) (the latter is a length-4N ¼
5 multiplet first described in [27]); next the fields entering
the (0, 3, 5, 7, 1) multiplet should be consistently set to
zero. As we discussed in the previous section, the ‘‘dou-
bling’’ of the fields entering the (5, 11, 10, 5, 1) multiplet is
a reflection of the composite nature of its component fields.
The fields entering (5, 8, 3, 0, 0) can now be equated,

through nonlinear transformations, with the (5, 8, 3)
SUð2Þ-invariant fields describing the Yang monopole and
introduced in (4.29). Because of the nonlinearity of the
transformation, the N ¼ 5 supersymmetry is realized
nonlinearly in this new basis. This procedure corresponds
to its simpler Uð1Þ counterpart concerning the reduction of
N ¼ 4 (4, 4, 0) intoN ¼ 4 (3, 4, 1). It is worth pointing
out that, in contrast with the Uð1Þ reduction case, for the
non-Abelian SUð2Þ reduction the auxiliary fields cannot be
completely removed from the Lagrangian. Indeed, they
‘‘partially’’ transmute into isospin degrees of freedom.
This difference between the two reduction procedures
was expected from the beginning, since it has a purely
bosonic origin. Much less expected are the subtle issues
concerning the supersymmetric reductions. For the Uð1Þ
reduction, the whole set ofN ¼ 4 extended supersymme-
tries is Uð1Þ invariant while, for SUð2Þ, only N ¼ 4 or
N ¼ 5 of the originalN ¼ 8 supersymmetries are SUð2Þ
invariant.
As remarked in the previous section, by making the

reduction with respect to the Uð1Þ group for the N ¼ 8
(8, 8) supermultiplet we obtain a supersymmetric quantum
mechanics on CP3 in the presence of a constant magnetic
field and with N ¼ 6 supercharges commuting with the
uð1Þ algebra generator.
In this work we prepared the ground for further develop-

ments, clarifying the general features of the supersymmet-
ric reductions and postponing to forthcoming papers the
detailed descriptions.
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APPENDIX

For completeness we are reporting the N ¼ 4
suð2Þ-invariant Lagrangian L for the (8, 8) multiplet, ex-
pressed in terms of the quaternionic structure constants.

After setting �123 ¼ þ1, � ¼ f00 þ f11 þ f22 þ f33, �� ¼
f00 þ f11 þ f22 þ f33 (f� � @f=@v�, f �� � @f=@ �v� for

� ¼ 0; 1; 2; 3), L is explicitly given by
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