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Chaotic thermalization in Yang-Mills-Higgs theory on a spacial lattice
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We analyze the Hamiltonian time evolution of classical SU(2) Yang-Mills-Higgs theory with a
fundamental Higgs doublet on a spacial lattice. In particular, we study energy transfer and equilibration
processes among the gauge and Higgs sectors, calculate the maximal Lyapunov exponents under
randomized initial conditions in the weak-coupling regime, where one expects them to be related to

the high-temperature plasmon damping rate, and investigate their energy and coupling dependence. We
further examine finite-time and finite-size errors, study the impact of the Higgs fields on the instability of
constant non-Abelian magnetic fields, and comment on the implications of our results for the thermal-
ization properties of hot gauge fields in the presence of matter.
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I. INTRODUCTION

A variety of essential physical processes, ranging from
ultrarelativistic heavy-ion collisions [1] to the reheating
period and phase transitions in the early Universe [2],
proceed at least initially far from thermodynamic equilib-
rium and involve abundantly many nonperturbative de-
grees of freedom. The first-principle based theoretical
treatment of such phenomena, which require a quantum
field theoretic description but are inaccessible to Euclidean
lattice simulations, is as a rule beyond present capabilities.
Important exceptions to this rule arise, however, if the
underlying amplitudes receive dominant contributions
from classical fields. The latter may be provided, in par-
ticular, by bosonic long-wavelength modes at high tem-
perature 7 and with energies E << T since the Bose-
Einstein distribution supplies them with the large occupa-
tion numbers needed to ensure (semi-) classical behavior.
In non-Abelian gauge theories, observables governed by
such classical modes are typically of O(g?T) in the weak-
coupling regime (where g is the gauge coupling and g>T
sets an inverse classical length scale) and have a finite
classical limit. Prominent examples include the transport
coefficients which control magnetic screening [3] and
color diffusion [4], and, in particular, the static plasmon
damping rate [5]. The latter has direct impact on the local
energy and momentum equilibration processes among hot
gauge-field quanta, which were found to occur over sur-
prisingly short times of less than 1 fm/c in the excited
matter created by ultrarelativistic nuclear collisions at
RHIC [1,6].

Essentially classical nonequilibrium observables of the
above type may therefore be calculated by relating them to
real-time evolution properties of classical long-wavelength
gauge fields and by simulating those nonperturbatively on
a spacial lattice [7,8]. Along these lines, the plasmon
damping rate was argued to be proportional to the classical
gluon damping rate and, at least at weak coupling, further
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to the maximal Lyapunov exponent (MLE) which governs
the exponential separation rate between initially neighbor-
ing random gauge-field configurations [7,9]. The under-
lying reasoning is based on the expected ergodicity of the
classical field trajectories and on the relation between
exponential growth and damping rates provided by time
reversal symmetry [9]. In the weak-coupling region, fur-
thermore, these relations can be tested quantitatively by
comparison with results from partially resummed thermal
perturbation theory or alternatively from kinetic theory
[5,10].

Following up on the above arguments, the present paper
will deal with the real-time evolution of classical SU(2)
Yang-Mills-Higgs (YMH) theory on spacial lattices of
various sizes. A particular focus will be on the role of the
scalar and hence classically treatable matter fields, pro-
vided by the fundamental Higgs doublet, in the chaotic
dynamics. The center piece of the analysis is a systematic
survey of the energy and coupling dependence of a set of
maximal Lyapunov exponents designed to cover represen-
tative parts of the weakly coupled YMH phase space. Since
our theory corresponds to the electroweak sector of the
standard model with vanishing Weinberg angle, the result-
ing MLEs contain information which may be useful for
understanding cosmological nonequilibrium processes
during semiclassical evolution phases of the early
Universe, including topological structure formation, bar-
yogenesis [11], and potentially cosmic string evolution
[12].

Moreover, our results will be relevant for the analysis of
local equilibration processes in the highly excited matter
produced at the RHIC [1,6] and soon the CERN LHC [13].
Indeed, the chaoticity of the gauge dynamics provides a
natural mechanism for entropy production by soft fields
(and the accompanying particle production in the quantum
case), and its most unstable field modes contribute domi-
nantly to equilibration processes. In particular, our results
will give rise to new estimates for the energy and coupling
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dependence of the gauge-field damping rate in the presence
of scalar matter. Furthermore, the MLEs should receive
contributions from the non-Abelian plasma instabilities
which were recently argued to accelerate the isotropization
and thermalization processes in the aftermath of high-
energy nuclear collisions [14]. The underlying unstable
modes could in principle be isolated by numerical tech-
niques similar to ours. As in chaotic inflation scenarios,
furthermore, such instabilities typically generate nonper-
turbatively large occupation numbers, which may extend
the reliability of our classical treatment to larger couplings
and lower temperatures. Some of our qualitative results
may even be robust enough to provide guidance on the
impact of fundamental quark fields.

Although our main focus will be on the evolution of
random fields, we also study the impact of the Higgs fields
on the instability of a constant non-Abelian magnetic field.
The employed techniques may later be applied to more
complex coherent fields, including classical solutions of
YMH theory [15] and gauge-invariant coherent soft modes
[16]. Studies of this type could provide new insights into
the corresponding quantum theories. Applied to multimo-
nopole configurations of YMH theory with an adjoint
Higgs field, whose chaotic interactions we have recently
studied [17], they may, for example, help to clarify the role
of chaotic monopole ensembles in disordering the gauge-
theory vacuum.

The paper is organized as follows: in Sec. II, we sum-
marize the formulation of SU(2) YMH theory on a
Hamiltonian lattice, derive the corresponding field equa-
tions and discuss suitable distance measures on the space
of gauge and Higgs field configurations. Section III out-
lines the main ingredients of our numerical analysis, ex-
amines finite-time and finite-size effects, discusses the time
evolution of the energy transfer between the various field
sectors, and evaluates the rate of divergence between ini-
tially neighboring random field configurations at inter-
mediate times. On this basis, we generate in Sec. IV a
representative set of maximal Lyapunov exponents, discuss
their energy dependence and relation to the plasmon damp-
ing rate, then extend the analysis by calculating a set of
long-time Lyapunov histories, and finally evaluate the
impact of the Higgs fields on the Savvidy instability of
constant non-Abelian magnetic fields. Section V puts our
results into context by discussing related nonequlibrium
processes in the early Universe and in the aftermath of
high-energy nuclear collisions, and Sec. VI summarizes
our main findings and provides some conclusions.

II. YANG-MILLS-HIGGS DYNAMICS ON A
SPACIAL LATTICE

In order to identify and measure chaotic properties of a
dynamical system, one has to follow the evolution of its
dynamical variables over sufficiently long periods of time.
A numerical treatment of field theories further requires to
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approximate space by a discrete lattice. The analogous
handling of the time variable (as typically implemented
in Euclidean spacetime subject to periodic boundary con-
ditions) is unsuitable for chaos investigations, however,
since it would unacceptably restrict the accessible evolu-
tion times. Hence we resort to the Hamiltonian formulation
of lattice field theory [18] in Minkowski space where gauge
fields are restricted to temporal gauge and time remains an
unbounded and (in principle) continuous variable. A fur-
ther benefit of this formulation is that residual gauge
symmetries enforced by Gauss’ law can be accurately
preserved during time evolution. In the following subsec-
tions we briefly summarize this approach as it applies to
YMH theory and define the distance measures needed to
determine the Lyapunov exponents. (More details can be
found e.g. in Refs. [18,19].)

A. Hamiltonian lattice setup

In the following section we outline pertinent aspects of
the Hamiltonian formulation of 3 + 1 dimensional SU(2)
Yang-Mills-Higgs theory on a spacial cubic lattice subject
to periodic boundary conditions. Since the Higgs field ¢ is
taken to transform in the fundamental representation of the
gauge group, this theory is equivalent to the electroweak
sector of the standard model in the limit of vanishing
Weinberg angle. The gauge is fixed to Aj =0, i.e. to
Weyl gauge. The unbroken phase corresponding to a
gauge-matter plasma is selected by positive Higgs mass
and interaction terms, which allows for comparison of the
results with (hard-thermal-loop resummed) perturbative
results at high temperature below.

The corresponding YMH Hamiltonian can thus be writ-
ten as

4

1
= axz Ef:l )Cgl + —Z Z (1 - 5 tar,ij)
g X 1=i<j=3

a
+ a3Z§ tf((ﬁi ¢x) - GZ tr(q'):{ Uyibyri)

+ aZ% tr(¢l¢x)[6 + azxé tr(dﬂtdn)], (D

where g is the gauge coupling, « is the Higgs self-coupling,
a is the lattice spacing, and dots denote time derivatives.
The non-Abelian magnetic field is described by the spacial
plaquette

Ux,ij = Ux,iUx+i,jU

x+j,i

U, 15 exp(—zgazFx i+ 0(a?))
(2

(with i, j €{1,2,3} and i # j), i.e. by the ordered
minimal-circumference loop constructed from the link
variables

Ux,i = eXP(_igan,i)’ (3)

where A, ; = Af ;1 is the gauge field and o = 21 with
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a € {1, 2, 3} are the Pauli matrices. The U, ; are defined on
the link which connects the site x with its neighbor in the
positive i direction. Hence the spacial plaquettes contain
the non—Abelian magnetic field strength components
Fx ij = (Ax+lj Ax,j - Ax+j,i + Ax,i) - ?g[Ax,i’ Ax,j]
while thelr electric counterparts EY; = —A¢{; are indepen-
dent variables. The first term of the Hamiltonian (1) there-
fore describes the energy residing in the electric fields
while the second term,

tar, )
mag gza g 1<§<3< J
—(
- 32 @ F+ 0, @)

xt]

approaches the magnetic or potential energy of the gauge
field in the naive continuum limit.

For the numerical implementation of the SU(2) link
variables we have adopted the quaternion representation

0 e u® —iud,  —u? —iu!
U=u e (uz—iul, u + iu? ) )
(the indices x, i are suppressed) whose real components
ut = W i) € R, u €{0,1,2, 3} satisfy the constraint
detU = u®u® + u’u® = 1 and thereby ensure unitarity
UUt =1 as well. The u* are thus (four dimensional,
Cartesian) coordinates on the SU(2) group manifold $°.
The representation (5) leads to simple field equations
(cf. Sec. II B) and requires the minimal number of floating
point operations to calculate the product UV =
W — uv?® — ioc*(ulv® + v0u® + e*culvc)  of two
link variables. In order to state the initial conditions for
the time evolution of the gauge field, however, we prefer
the alternative representation of the link variable as a
rotation of angle wg around the direction A(¥, @), i.e.

U= exp(—igA“ %) = cos(wZG) in - a'sm< ) (6)

(suppressing again the indices). In terms of the polar angles
0= wg =2m, O<1‘}GS7T and 0 = ¢g = 27 one then
has gA? = wgh® with A% = (sindg cosgg, sindg singg,
cosdg) and u® = cos(wg/2), u® = i’sin(wg/2). The
Higgs field ¢, in the fundamental representation of the
gauge group is written in an analogous quaternion repre-
sentation,

b= — ifz G = Rl:cos(%) —in- &sin(%)],
(7)

where the polar decomposition again turns out to be more
suitable for stating the initial conditions (cf. Sec. IIT A). In
contrast to the unitary link variables U, however, the
(square) modulus
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of the Higgs field remains unconstrained.
Exploiting its (classical) scaling properties, the YMH
Hamiltonian (1) can be reexpressed in terms of the dimen-

sionless variables H = g*aH, E¢; = ga’E¢,, ¢, = gad,,
kR=rk/g* and f = t/a as
H= Z[SG,el(X) + €Gmag(X) T &pkin(¥)
+ 8H,pot(x) + 8G—H(x)] )
with the dimensionless energy densities
eGalx) = Z E¢E%, (10)

Eome®) =4 D ( 5 U, ,]) (11)

1=i<j=3

Le($l ), 12)

€H, km(x)

eg-n(x) =

=3 w(PIU i), (13)

eipo(x) = 3u(@fd) + Zlr(@f P (14
where the fields are now functions of 7 and dots represent
d/di. The above form of the Hamiltonian renders the
dependence on the total energy H and the Higgs self-
coupling k, i.e. the two physical parameters of the YMH
system, explicit (whereas the lattice spacing a and the
gauge coupling g are absorbed into the dimensionless
variables and fields).

B. Field equations

The YMH Hamiltonian (9) generates the classical time
evolution of electric, magnetic, and Higgs fields. This
becomes explicit in the corresponding first-order
Hamilton equations which we derive with the help of the
Poisson brackets

0X oH
Gps 94,

of the dynamical variables X with the Hamiltonian H
(where ¢, p, are the canonically conjugate variables and
summation over s is implied). According to the canonical
formalism, the time dependence of X is then determined by
its Hamilton equation

. 90X aH
H

(15)

X = é{x, . (16)

Specializing Eq. (16) to the link variable U, ; and ab-
breviating [ = {x, i} leads with
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{Ea’ Um} = _ig2taUm61m (17)

to the equation of motion

. 1 L
U, :?{Uz, H} = iEU, (18)
where E;, = E“ t“. In the quaternion representation (5) this
equation reads

i1l = %E?u? uj = —%(E_?u? + € Ebus)  (19)
and maintains, in particular, the time independence of the
unitarity constraint, i.e.

wu? + agud = 0. (20)

Hamilton’s equation for the non-Abelian electric field
strengths E£¢ , which are the canonically conjugate mo-

.xl’

menta of the link variables, similarly becomes

E;z,i = {ExV }

OQ

i

_Ztr[o-a(le - Ux 11])] + % tr((iia-a X,l'(;)ﬁ’i)’
J

l\)

2D

where the sum goes over the four plaquettes which contain
the link {x, i}.

The Hamilton equations for the Higgs field, its canonical
momentum 77, and their Hermitian conjugates are analo-
gously found to be

LS - QR S S
b=l A =Sal =l uG) @)
st gt m=¢
ol = Slola = Cm, (23)

and

1 _
7'7-)6 = _2{7Txr H}
8

3¢ 6+ RU@L PN 2T Gl v i}
24)

1 _

=-2 tr{[6 + k(I b )]b, — 2ZU’“¢”‘}

(25

In order to prepare for an efficient numerical solution of
this system, we rewrite it in terms of two second-order
equations,
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d)x = _Rtr($I &x)&x - 6$x + ZZUx,i$x+ir (26)

¢l =—ru(@ld)pl — 64! +2Z¢ Ueii 27)

and then combine those, by adding the Hermitian conju-
gate of Eq. (27) to Eq. (26), into

Q?)x = _’_(tr(d_)jé- d_)x)q;x - 6d_)x + Z(Ux,id_)x+i

+ Ux_ ud)x—i)- (28)

Finally, we recall that the full YMH dynamics in tem-
poral gauge is only recovered after supplementing
Hamilton’s equations (19), (21), and (28) by Gauss’ law

3
ZI:E;‘! Y tr(Ux 04Uy - ta'b)E)bc i,i] = pg (29)
i=1

which acts as a constraint. Since its Poisson bracket with
the Hamiltonian (9) vanishes, Gauss’ law is preserved
under time evolution. Above, we have defined the dimen-
sionless non-Abelian charge density

pe=Lulim(! G 0 )] (30)

carried by the Higgs field.

C. Distance measures for gauge and Higgs field
configurations

The chaotic behavior of dynamical systems reveals itself
in an exponential sensitivity of their time evolution to
small changes in the initial conditions. The quantitative
characterization of this sensitivity requires a distance mea-
sure on the field configuration space (i.e. a metric). More
specifically, in the YMH system one has to monitor the
separation between a reference configuration (U;, ¢) and
its neighbor (U}, ¢') = (U, + 6U, ¢ + 8¢). We will use
individual distance measures in the gauge and Higgs sec-
tors for this purpose, in order to determine the distance
growth rate between two initially nearby gauge and Higgs
field configurations individually.

In the gauge sector, we adopt the gauge-invariant metric
(7]

dglu, Uj] = WZhrUp — U (31)
P p

(where N, = 3N? is the total number of plaquettes on a
lattice with N sites per spacial dimension) to measure the
distance between gauge-field configurations. In the contin-
uum limit the distance measured by the metric (31) be-
comes proportional to the difference between the potential
energies of reference and neighboring gauge fields. In the
Higgs sector we employ the metric [20]
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1
dul$, '] = 15 IR — (RY)’] 32)
X

which is gauge invariant as well.

Since the lattice gauge group, and consequently the
3(N? — 1)N? dimensional space of magnetic SU(N,)
gauge-field configurations on a lattice with N sites per
dimension, is compact and of nontrivial topology, more
and more field configurations approach the same distance
dg when N increases. For the same reason, the distance
(31) is bounded from above, and for fixed total energy an
analogous bound applies to the whole phase space. These
bounds lead to an eventual saturation of the distance
growth. Although this does not limit the principal effec-
tiveness of the measures dgy for determining the
Lyapunov exponents (see below), it adds to the typical
“finite-time”” uncertainties encountered in their numerical
analysis. Other sources of finite-time errors arise from the
need to extrapolate the numerical results to the  — oo limit
in which the MLEs are formally defined, and for N — o
from the exponentially growing distances between chaotic
trajectories which eventually overburden the floating point
number representation capacities of any computer.

The standard approach for keeping finite-time errors of
MLEs under control is to periodically rescale the distances
[21] after time intervals 7 and to extrapolate the numerical
results for Indg y(7)/1 to infinite times. This approach has
been used to calculate several MLEs in non-Abelian gauge
theories [20,22,25,26] and to determine the whole
Lyapunov spectrum on small lattices [22]. We have
adopted the same technique for the calculation of several
long-time trajectories to be discussed in Secs. IIIB and
IV C. In these cases, we found it advantageous to employ
the alternative distances measure

a _ _ _ _ 1/2
48[, iU} B] = {SIE - B + W, - up?)}
l

(33)

in the phase space of the gauge fields, which is a variant of
the measure used in Ref. [26], and

d(alt) 777 — c o ey I a 7 al\2 1/2
106, 31= {3 S 1@ - 67 + (de - g
x a=0

(34)

adopted from Ref. [26], in the Higgs sector. Of course, the
resulting Lyapunov exponents should not depend on the
choice of distance measure. We have checked this for
several examples and confirmed that the deviations be-
tween the MLE values obtained from the metrics (31)—
(34) indeed remain well below the one-percent level.
Nevertheless, even under rescaling the practically
achievable evolution times remain limited by the available
computer resources. In fact, even in pure SU(2) Yang-Mills
theory [25] systematic extrapolation errors turned out to
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become negligible only after evolution times of the order
of 10° lattice units. To make matters worse, we will find
below that the equilibration between gauge and Higgs
fields proceeds at a far slower pace than among the gauge
fields alone (cf. Sec. IIIB), and that as a consequence
substantially longer evolution times are required to sup-
press such extrapolation errors in YMH theory. Adherence
to one of our main goals, namely, to calculate a rather
exhaustive set of MLEs in the weak-coupling parameter
and phase space, will therefore require a compromise.
Indeed, to cover the relevant initial parameter space (on
lattices of several different sizes) requires the calculation
of 0(10%) trajectory pairs and thus forces us to limit the
individual evolution times.

Fortunately, size and systematics of finite-time errors
can be estimated on the basis of the long-time energy
balance (cf. Sec. IIIB) and a few long-time orbits
(cf. Sec. IVC). Since we are mainly interested in the
systematic energy-, coupling-, and lattice-size dependence
of the MLEs (rather than in their precise numerical values),
furthermore, the competing goals of error suppression and
calculability can be reconciled reasonably well. Our com-
promise will be to follow the majority of our distance
histories only until they have saturated (without rescaling),
which yields sufficiently accurate MLE estimates for most
of our purposes. Rescaling will be used, on the other hand,
for the long-time trajectories which we need to examine the
energy transfer and equilibration processes between the
gauge and Higgs field sectors in Sec. III B, and for the
analysis of the MLE’s finite-time errors and saturation
properties in Sec. IV C.

III. FIELD INITIALIZATION, ENERGY BALANCE,
AND DISTANCE EVOLUTION

In the following section we discuss in turn the initializa-
tion of the neighboring field configurations, the distribution
of the total energy over the different field sectors, and the
time evolution of the distance between initially adjacent
field configurations.

A. Initial conditions

Our first task will be to generate a representative set of
phase-space trajectories for pairs of specifically initialized
reference YMH fields (U}, ¢) and their neighboring con-
figurations (U/, ¢') = (U; + 8U, ¢ + S¢) at sufficiently
small distances dg[U;, Uj] and dy[ ¢, ¢']. The resulting
distance evolution histories will provide one of the foun-
dations for our subsequent analysis of the maximal
Lyapunov exponents. In the present subsection, we select
a set of 77 initial conditions for the reference trajectories
such that the weak-coupling region of the YMH phase
space is covered with sufficient resolution. In order to
allow for direct comparison with a previously calculated
MLE, we follow the initialization procedure of Ref. [26].
The resulting sample of field-pair trajectories will be con-
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siderably larger than that of preceding MLE calculations in
gauge theories and include results from substantially larger
lattice volumes (with up to 30° sites).

In order to satisfy Gauss’ law (29) initially (and con-
sequently over the whole time evolution), we set the non-
Abelian electric field and the time derivative of the Higgs
field at the initial time 7, = 0 equal to zero, i.e.

Ef:,t(o) = 0’ d)x(o) = Or (35)
which implies p%(0) = 0 [cf. Eq. (30)]. Hence the initial
kinetic energies of all fields vanish while the potential
energies are finite and ensure that the system starts far
from equilibrium. The link variables U, are initialized by
randomly choosing the isospin directions Jg, ¢g of the
gauge potential A = wg A (9g,, ¢g,) from their full
domains, while the initial value of the amplitude wg is
chosen randomly over the restricted domain wg, €
[0,2778] with 6 = 1. The value of the parameter § there-
fore controls the average gauge-field energy per plaquette,
E,(6), which grows as 82 for § < 1 and saturates in the
limit 6 — 1 at the value E, = 4 (cf. Fig. 1). The upper
bound on Ep arises from the fact that the magnetic part (4)
of the Hamiltonian (1) is uniformly bounded by the SU(2)
group volume, H,y = ag?Hy,e = 24N°. The Higgs field
(7), finally, is initialized by choosing its angular variables
wy, Uy, and ¢y randomly from their full domains while
keeping the dimensionless amplitude R, = gaR, fixed at
the same value R for all X. As a consequence, the initial
(potential) energy of the Higgs field is determined by the
amplitude R and the coupling &.

Al

0 0.2 0.4 0.6 0.8 1
5

FIG. 1. The average energy per plaquette Ep as a function of
the initialization parameter §.
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The above initialization scheme characterizes any
phase-space trajectory on a given lattice by three parame-
ters 8, R, and & which determine the average initial energy
of both the gauge and Higgs fields. In addition, we will
vary the lattice size, specified by the number N of sites per
dimension, so that each of our field-pair histories can be
uniquely labeled by a quadruple of values for 8, R, &, and
N. Our maximal lattice size with N = 30 is chosen to
substantially reduce potential finite-size effects of previous
studies [20,26,27] on considerably smaller lattices. The
main benefit of the random angle initialization is that it
equips the initial configurations with a specific average
energy density, or equivalently with a temperature 7 which
the fields will reach after equilibration. In our context, this
is important because the temperature dependence of the
MLEs is used to relate them to the static plasmon damping
rates. Moreover, the resulting MLE values will turn out to
be (within errors) independent of the random part of a
given starting configuration, which indicates that the auto-
correlation functions of the fields have decayed sufficiently
strongly before the MLESs are measured (see below).

In order to stay safely inside the validity range of the
semiclassical approximation, and to be able to relate our
findings to perturbative results, we will restrict our simu-
lations to the weak-coupling regime. As pointed out in
Ref. [26], this requires that the energy contributed by the
Higgs mass term dominates over the Higgs self-interaction
energy, i.e.

RR2 < 1, (36)

and that the magnetic gauge-field energy dominates over
the gauge-Higgs interaction energy (which implies a weak
gauge-Higgs coupling), or

R2< 6 37)

(for maximal field amplitudes). Both conditions also im-
prove the eventual equipartition of the electric, magnetic,
and Higgs field energies because they prevent the total
energy from strongly exceeding the bounded magnetic
energy. The lower bound (37) on & additionally limits
finite-size effects [cf. Eq. (41)]. Furthermore, & values
too close to 1 should be avoided in order to keep lattice-
spacing artefacts under control and to remain sufficiently
close to the continuum limit [cf. Eq. (40)].

For each of the initial reference configurations (U}, ¢)
created according to the above procedure, we also generate
a neighboring configuration (U/, ¢') separated from
(U, ¢) by distances dg(t =0) <5X 1077 and dy(t =
0) = 10~!7. This is achieved by randomly choosing slight
variations of all the reference configuration’s field angles in
the range Swg, 89, S¢g, Swy, 60y, Soy € [—¢, ],
where & = 107%. We then integrate the field equations of
Sec. IIB for each of these configuration pairs [28] by
means of a fourth-order Runge-Kutta algorithm, and de-
termine the time evolution of the distances dg and dy. The
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integration time step should be much shorter than the
lattice spacing a, and is additionally chosen small enough
to ensure energy conservation with an accuracy of more
than eight significant digits (after each step). The maximal
violation of the constraints detU; = 1 after a single time
step of length At = 10™*a is then about 10~ !? at each link.
In order to avoid the accumulation of these round-off
errors, we further rescale the link variables after each
step such that their determinant remains exactly unity
[and Eq. (20) exactly satisfied]. We convinced ourselves
that Gauss’ law (29) then remains satisfied to better than
five significant digits after each integration step.

B. Energy distribution over gauge and Higgs fields

We now turn to the energy transfer processes between
the electric, magnetic, and Higgs fields which contain
crucial information on the nonequilibrium dynamics and
quantitative thermalization properties of the YMH system.
In our context, this information will be particularly helpful
for understanding, qualitatively estimating and reducing
the finite-time errors which afflict the calculation of the
MLE:s, and for putting the relation between the MLEs and
the plasmon damping rates on a more solid footing. For
several long-time trajectories, we have therefore recorded
the evolution of the energies per degree of freedom stored
in the electric field, E, = H,/(6N?), in the magnetic
gauge field, Ey,y = Hpyag/(6N?), and in the Higgs field,
Ey = Hy/(4N?), over the unprecedentedly long time pe-
riods 0 = ¢ =20000a. In the following, we will often
express the total energy (per degree of freedom) Eg of
the gauge field in terms of the average energy per plaquette
E, as

EGg = Eg + Epge = 3E

. (38)

and frequently encounter the total YMH energy per degree
of freedom, E = (6Eg + 4Ey)/10, as well.

Typical results for the time evolution of the different
energies are plotted in Fig. 2 with § = 0.2, R = 0.2, k =
I, N =10 and in Fig. 3 with 6 = 1 and otherwise un-
changed initial values. They confirm and extend the ob-
servation of Ref. [26] that the energy equilibration between
the electric, magnetic, and Higgs field sectors of YMH
theory proceed over two drastically different time scales (at
least in the weak-coupling regime). Indeed, even when
initialized in highly nonequilibrium configurations, as se-
lected in Sec. IIT A, the electric and magnetic gauge sectors
can be seen to equilibrate very rapidly, namely, after only a
few lattice time units a. The Higgs field’s potential and
kinetic energies, which are not shown separately in Figs. 2
and 3, equilibrate over an approximately equal relaxation
time. (Generally the gauge and Higgs sectors reach differ-
ent temperatures, however, according to the amount of
energy stored in them by the initial conditions.) In contrast,
the mutual thermalization of gauge and Higgs sectors
typically requires 4 to 5 orders of magnitude more time.

PHYSICAL REVIEW D 80, 025021 (2009)

In fact, the energy transfer between the two sectors be-
comes appreciable only after a few hundred time units and
takes several thousand more to essentially complete for
6 =1, and many more for 6 = 0.2. Moreover, for the
maximal 6 = 1 moderate deviations from complete equi-
partition of the energy remain visible in Fig. 3 even after
10000 time units have elapsed. This may be a consequence
of lattice-spacing artefacts which are maximal at 6 = 1
(cf. Sec. IIT A). The huge discrepancy between the two
characteristic relaxation scales can be largely attributed
to the initial conditions of Sec. III A which keep the system
close to the weak-coupling and continuum limits.

The gauge-field energy (38) can be directly related to the
temperature 7" which the gauge fields reach after times ¢ >
A~ ! (where A is the MLE). At sufficiently weak coupling
(among the field oscillators) one has [29]

3
2(N2 - 1)

for the gauge group SU(N,) and thus Eg = T for N, = 2.
This relation will be relevant for the evaluation and inter-
pretation of the MLLEs which we extract in Sec. IVA from
the distance growth rates after the gauge fields became
members of a prethermal ensemble. As mentioned in the
introduction, I, = (g2T) ! = (g>Eg) ™! acts as a classical
length scale in hot quantum gauge-theory amplitudes
which depend (to leading order in thermal perturbation
theory) on g and T exclusively in the combination gT.
This observation suggests additional conditions for keep-
ing lattice artefacts in such amplitudes under control [25].
More specifically, in order to remain sufficiently close to
the continuum limit the lattice spacing a should be much
smaller than [, i.e.

T E

b (39)

EG = angG < 1, (40)

and in order to avoid finite-size effects the extent Na of the
cubic lattice has to be much larger than [, i.e.

NEg > 1. 41)

As expected, these conditions require N >> 1, and the
upper bound (40) on Eg furthermore ensures that the
underlying lattice structure cannot be resolved by the
gauge fields. (Of course, for a — 0 one will eventually
encounter UV singularities of Rayleigh-Jeans—type in
some amplitudes, signalling the onset of indispensable
quantum corrections to the classical field statistics.)

C. Divergence of neighboring field trajectories in phase
space

In the following section we analyze the time evolution of
the distances dg and dy between pairs of initially adjacent
random field configurations which were generated accord-
ing to the procedure of Sec. I A and followed until
saturation. The MLEs and their parameter and, in particu-
lar, energy dependence will then be extracted from the
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growth rate of the logarithmic distances in Sec. IVA. In
order to cover the relevant phase space, we select a repre-
sentative set of values for the parameters 8, R, ik, and N
which characterize any initial configuration. The initial,
homogeneous Higgs field amplitude is fixed at R = 0.2 for
all trajectory pairs, which allows for a quantitative com-
parison with a configuration studied in Ref. [26]. To stay
sufficiently close to the weak-coupling and continuum
limits then requires, according to Eq. (36), that the Higgs
self-coupling is bounded by k < 25, and as a consequence
of Eq. (37) that the initial magnetic (and total) gauge-field
energy is restricted by 6 > 0.04. As mentioned above, the
bound on § also helps to avoid significant finite-size arte-
facts [cf. Eq. (41)] and allows to extract the approximate
MLEs with reasonable accuracy even after rather small
evolution times (see below).

Guided by the above arguments, we generate trajectory
pairs for 11 values of 6§ € [0.05, 1]. For each of them, we
plot the resulting Indg(r) (black lines) and Indy () (grey
lines) in Fig. 4 at fixed Higgs self-coupling ¥ = 1 on
lattices of four different sizes corresponding to N = 6,
10, 20, and 30, and in Fig. 5 on a N = 20 lattice with the
Higgs coupling values k = 1, 8, 16, and 24. (The configu-
ration pair studied in Ref. [26] on a relatively small lattice
with N =10 and 6 = 0.2, R=0.2, & = 1 is therefore
included in our sample.) The corresponding logarithmic
distances Indgy(7) for the 11 & values are grouped into
three sets which are separately plotted in panels (a) — (c) of
Figs. 4 and 5: in panel (a) we display Indgy for the five
largest values 6 = 1.0, 0.5, 0.45, 0.4, 0.35, in panel (b) for
the values 6 = 0.3, 0.25, 0.2, 0.15, and in panel (c) for the
two smallest values 6 = 0.1, 0.05. All 6 values except for
the smallest (i.e. & = 0.05, which is most strongly affected
by finite-size artefacts) store more energy in the gauge than
in the Higgs sector.

The essential characteristic which all logarithmic dis-
tance histories of Figs. 4 and 5 share is that after a latency
period of varying length they start to rise at least approxi-
mately linearly with #/a before reaching a time-
independent saturation plateau (which lies somewhat out-
side the plotted 7 domain for 6 = 0.05) at the maximal
distance in the compact phase space. Distance saturation at
large 7 = /a is a consequence of the compactness of the
lattice gauge group and could be avoided by periodical
rescaling (cf. Sec. II C). The linear regions and the under-
lying exponential growth rates between initially almost
identical field configurations reveal an exponential sensi-
tivity of the distance evolution to the initial conditions, i.e.
the standard hallmark of temporal chaos. Not surprisingly,
the fields grow apart at a faster pace when their energy
increases, i.e. the slopes in Figs. 4 and 5 grow with 6. For
each field trajectory, furthermore, the linear regions of both
Indg(¢) and Indy(¢) have the same average slopes. This
result differs from a previous estimate for one trajectory
[27] and will be discussed further in Sec. IVA. Moreover,
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0.5
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FIG. 2. Time evolution of the energy (per degree of freedom)
stored in the gauge field Eg (uppermost initially horizontal line)
and in the Higgs field Ey (lowermost initially horizontal line)
and their sum, i.e. the (conserved) total energy E (horizontal
line). The initially oscillating line starting at zero is the electric
gauge-field energy E,, the one starting at the total initial gauge-
field energy is the magnetic (potential) gauge-field energy Ey,,,.
(The initial conditions for the underlying trajectory were &6 =
02,R=02,k=1,N=10,and At = 107%)

for 6 = 0.2 the latency period, which is hardly noticeable
for larger 6, expands and the linear growth becomes in-
creasingly modulated by oscillations whose frequency in-
creases with 8. This behavior was observed in YM theory
as well and can be traced to the impact of the next-to-
maximal Lyapunov exponents which grows when the
maximal exponent decreases [7]. Obviously, these oscilla-
tions reduce the accuracy with which the maximal
Lyapunov exponent can be determined from the slopes of
Indg (2) in the linear regions (see below).

Figures 4 and 5 further show that for all field trajectories
(except that with 8 = 0.05) Indy(z) stays below Indg(z).
This reflects the smaller amount of energy initially stored
in the Higgs sector for 6 > 0.05 (cf. Sec. III A) and will
change during the long-time evolution to be discussed in
Sec. IV C. In addition, the height of the saturation plateaus
of Indg(r) decreases slightly with 8 while that of Indy(z)
remains constant. This may indicate that the maximal
magnetic gauge-field distance (31) is reached only when
sufficient gauge-field energy is available. Apart from these
differences in the saturation behavior, however, even the
modulation patterns of Indg(#) and Indy(#) are very similar.
This suggests that, despite the small gauge-Higgs coupling
ensured by Eq. (37), the time dependence of the gauge and
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FIG. 3. Same as in Fig. 2, but for the trajectory subject to the
initial conditions § = 1, R=0.2, k = 1, and N = 10.

Higgs components of at least the most unstable mode has
already synchronized after a few lattice time units.

The qualitative dependence of the results on the lattice
size, i.e. on N € {6, 10, 20, 30} with the lattice UV cutoff
a~! kept fixed, can be judged by comparing the distance
histories in Fig. 4. Figure 4(a) contains the results for 1 =
6 = 0.35. Although the fields are randomly initialized, the
curves with identical 6 but different N clearly cluster, i.e.
in accord with the bound (41) essentially no finite-size
effects can be observed in the covered N and & regions
(while lattice-spacing effects should become noticeable for
o close to unity [cf. Eq. (40)]. Indications for a similar N
independence were found in pure YM theory [7]. This may
suggest that the most unstable modes, i.e. those which
dominantly drive the chaotic time evolution of initially
adjacent configurations, have for sufficiently large initial
magnetic field energy (corresponding to 6 = 0.35) typical
wavelengths which are small enough to be accommodated
by even the largest considered IR cutoff (corresponding to
N = 6), or in other words that these most chaotic modes
essentially fit inside a periodic (6a)? lattice volume. As
shown in Figs. 4(b) and 4(c), however, for smaller § < 0.2
finite-size corrections become visible in the average slopes
of the (increasingly oscillation modulated) linear regions
of Indgy(#) and cause them to differ more strongly. A
systematic trend in the N dependence of these slopes
cannot be discerned in our data, however, whereas in
pure YM theory the slope was found to increase on smaller
lattices [25].

Figure 5 reveals the qualitative dependence of the dis-
tance histories on the Higgs self-coupling k. In the range
k €{1,8, 16,24} (for N = 20) it bears several qualitative

PHYSICAL REVIEW D 80, 025021 (2009)

similarities with the NV dependence of Fig. 4. To begin with,
a k dependence is hardly noticeable for large 6 while the
slope of the linear regions becomes increasingly i depen-
dent towards smaller values of , although again without a
perceivable systematic trend. The, as a whole, only mild
sensitivity of the slopes to i is probably a consequence of
the fact that even Indy () is mainly determined by the most
unstable gauge-field fluctuations and hence relatively in-

-12.5

lOg d GH

-17.5

t/a

log d GH
S

-12.5

-17.5

0 50 100 150 200
t/a

IOg d GH
>

-12.5

-17.5

0 50 100 150 200 250 300 350

t/a

FIG. 4. The logarithmic distance evolution in the gauge (black)
and Higgs (grey) sectors at fixed Higgs self-coupling k = 1 is
plotted for four lattice volumina corresponding to N = 6, 10, 20,
and 30. The initial magnetic energy is parametrized by §. Panel
(a) corresponds to o = 1.0, 0.5, 045, 04, 0.35; panel
(b) corresponds to & =0.3, 0.25, 0.2, 0.15; and panel
(c) corresponds to the two smallest values 6 = 0.1, 0.05.
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0

IOg dG,H
S

-12.5

-17.5

lOg dG,H
S

-12.5

-17.5
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IOg dG,H
o

-12.5

-17.5
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t/a

FIG. 5. The logarithmic distance evolution in the gauge (black)
and Higgs (grey) sectors on a N = 20 lattice for four different
Higgs self-couplings k = 1, 8, 16, and 24. The distance trajec-
tories are grouped as in Fig. 4 according to their initial average
magnetic energy (parametrized by 6): panel (a) contains the
curves corresponding to 6 = 1.0, 0.5, 0.45, 0.4, 0.35; panel
(b) corresponds to &6 =0.3, 025, 0.2, 0.15; and panel
(c) corresponds to the two smallest values 6 = 0.1, 0.05.

sensitive to the self-interactions of the Higgs field. After
full equilibration between the gauge and Higgs sector has
taken place, the k dependence of the slopes may therefore
be systematically enhanced (if distance saturation is
avoided by periodical rescaling), as we will indeed find
in Sec. IVC. Since a more strongly self-coupled Higgs
sector would absorb energy from the gauge sector (in
which for 6 = 0.1 more initial energy is stored,
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cf. Sec. Il A) faster, it should similarly increase the &
dependence of the slopes.

To summarize, all members of the representative set of
distance histories (in the weakly coupled, symmetric YMH
phase) discussed above increase exponentially and thereby
exhibit chaotic behavior. For 6 = 0.3 the Indg 4(7) become
practically independent of the Higgs coupling k and (for
N = 6) of the lattice volume.

IV. LYAPUNOV EXPONENTS, SCALING
BEHAVIOR AND DAMPING RATES

In the following section we proceed to the quantitative
evaluation of the maximal Lyapunov exponents for
randomized and coherent initial conditions, and we discuss
their energy dependence and relation to the plasmon damp-
ing rates.

A. Maximal Lyapunov exponents of randomly
initialized fields

The analysis of the last section showed that all of our 77
randomly initialized field pairs belong to the chaotic part of
the YMH phase space. This suggests that in the unbroken
phase of YMH theory chaotic behavior is either universal
(i.e. exists for all energies) or at least prevalent in most of
the weakly coupled phase space [30]. In order to quantify
this behavior, we will now evaluate the classic measure for
the chaoticity of a dynamical system, i.e. the maximal
Lyapunov exponent A or equivalently the exponential
growth rate of the distance between initially neighboring
dynamical variables. We are going to extract the MLEs
from the numerical results of Sec. IIC by averaging the
time histories dg(E, &, N; ) and dy(E, &, N; 1) of the gauge
and Higgs field distance measures over the time interval A
during which they remain in the linear regime, i.e.

d1 dgu(E, &, N; t)>
L ERN0)

Aon(E & N) = (< -
anlE & N) <dt "dgn(E. & N:0)

(42)
Note that we have replaced the dependence on the initial-
ization parameter 6 with that on the total (dimensionless)
energy E of the YMH system, and that we suppressed the
dependence on the remaining initialization parameter, the
Higgs amplitude R, which is kept at the same value for all
our trajectories (cf. Sec. III A). We further recall that the
above method for obtaining the MLEs becomes increas-
ingly error prone towards lower energies where equilibra-
tion proceeds more slowly while the impact of the next-to-
maximal Lyapunov exponents grows and generates modu-
lations of Indgy(f) with decreasing frequency. Similar
problems were encountered in Ref. [7] and will be tamed
below by periodically rescaling the distance measures
(cf. Sec. IVC).

Our numerical results for the dimensionless MLEs
Au(E, & N) := argy(E, &, N), based on the 77 field-
pair evolution histories of Sec. IIIC, are collected in
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Table I. A first glance at the table confirms the qualitative
trends which we noticed in our discussion of Figs. 4 and 5
in Sec. III C. Besides the expected increase of the XG,H with
E (or 8), which we will analyze quantitatively in Sec. IV B,
the data show fluctuations in the statistically expected
range of about 10% for different Higgs self-couplings
and lattice sizes, but except for the smallest £ no obvious
systematic dependence on either k or N. At the considered
intermediate times (i.e. after separate preequilibration of
gauge and Higgs sectors but before their mutual thermal-
ization is complete) and at least at intermediate energies £
or Ep systematic finite-size and lattice-spacing effects are
therefore small. Furthermore, the above results indicate
that the Higgs sector plays a rather minor role in the
chaoticity of the full YMH system, at least at the weak
couplings which the initial conditions of Sec. Il A imple-
ment. The most unstable mode, which in large part drives
the chaotic behavior, should therefore be controlled mainly
by the gauge dynamics. As a consequence, reasonable
estimates for the MLEs can be extracted at the preequili-
bration stage and the MLE values of the SU(2) YMH
system should be similar to those of pure SU(2) YM theory
[7,25], which is confirmed by the results in Table 1.
While we find the Higgs sector to have only limited
impact on the chaotic YMH dynamics in the weakly
coupled symmetric phase, it may be useful to recall the
results of Refs. [33,34] in the homogeneous limit, i.e. for
wavelengths much larger than the inverse amplitudes

TABLE 1.

PHYSICAL REVIEW D 80, 025021 (2009)

|A|7Y, ||, which reveal a more dramatic role of the
Higgs field in the broken phase (even at nonzero Weinberg
angle). This is a consequence of the dynamically generated
gauge-field mass in the broken phase which is known to
damp (and beyond a critical value to fully suppress) cha-
otic behavior [20]. (We note in passing that chaos is not
only damped by gauge-field masses generated via sponta-
neous symmetry breaking, but also by those due to quan-
tum fluctuations according to the Coleman-Weinberg
mechanism [35], topological excitations, polarization of
the heat bath at finite temperature, and external charges
[8].) In Ref. [34] chaotic behavior was observed [36] only
beyond the threshold energy Ey, ~ 0.3 (showing that chaos
is not universal in the broken phase), and for the energy
E = 5.07 > E,, the MLE was found to be A =~ 0.25 [34],
i.e. an order of magnitude smaller than our value A = 2.75
in the unbroken phase [which we linearly extrapolate
(cf. Sec. IVB) from the values in Table I up to E =
5.07]. Since constant fields with their few degrees of free-
dom can exhibit stronger chaoticity and thus produce larger
MLEs than our randomized initial configurations, this
comparison gives a quantitative idea of how much the
chaotic YMH instability is damped by the Higgs mecha-
nism in the broken phase.

Another issue which can be addressed quantitatively on
the basis of the data in Table I is the relation between the
maximal Lyapunov exponents Ag and Ay, which are ob-
tained from the gauge and Higgs field distance measures

Maximal Lyapunov exponents Ag = aAg (upper entries) and Ay = ady (lower entries) as a function of total energy

E = g?Ea, Higgs self-coupling & and number N of lattice sites per dimension.

N=6k=1 N=10k=1 N=20k=1 N=30k=1 N=20k=8 N=20k=16 N=20k =24

E=0.04374 0.06507 0.074 45 0.06179
0.07521 0.07900 0.06799
E =0.10076 0.07394 0.058 38 0.05052
0.07343 0.05820 0.050 04
E =0.19028 0.09117 0.072 69 0.097 83
0.091 56 0.07320 0.098 33
E=0.30482 0.13357 0.13348 0.13017
0.13349 0.134 10 0.13075
E =0.43527 0.196 60 0.20009 0.209 85
0.198 44 0.201 26 0.21099
E=0.57202 0.28580 0.25783 0.295 50
0.28877 0.25994 0.29795
E =0.706 04 0.36801 0.39740 0.39422
0.37857 0.39802 0.39841
E=0.82974 0.461 59 0.46709 0.48083
0.464 87 0.47145 0.48596
E=0.93767 0.509 48 0.53934 0.53530
0.51818 0.538 85 0.536 56
E=1.02672 0.56526 0.56621 0.58570
0.56125 0.56722 0.58918
E=122634 0.63279 0.654 05 0.656 35
0.640 82 0.658 11 0.65997

0.045 63 0.06276 0.02922 0.048 62
0.04713 0.064 22 0.02517 0.04712
0.056 17 0.05246 0.059 81 0.03972
0.056 33 0.05270 0.060 28 0.03997
0.09281 0.08522 0.092 64 0.08767
0.09336 0.08561 0.09330 0.08849
0.13751 0.13876 0.136 65 0.13435
0.13803 0.138 88 0.136 55 0.13394
0.20906 022112 0.203 15 0.200 32
0.21011 0.221 64 0.203 13 0.19922
0.293 39 0.28875 0.28975 0.29050
0.29540 0.29021 0.29024 0.28895
0.39359 0.39232 0.37328 0.384 46
0.39638 0.39354 0.37355 0.38460
0.46971 0.47193 0.47730 0.48521
0.473 34 0.47344 0.478 00 0.486 30
0.54047 0.527 85 0.53862 0.54295
0.543 06 0.52760 0.53854 0.54123
0.58284 0.57729 0.586 13 0.57540
0.58643 0.57799 0.58700 0.576 36
0.65077 0.644 31 0.65041 0.649 15
0.655 50 0.645 88 0.65104 0.650 08
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(31) and (32), respectively. This relation was subject to
some debate, in particular, at strong coupling [26,27]. After
an exploratory study in Ref. [20], Ref. [27] provided a first
lattice estimate for YMH theory. The Ay extracted from the
growth rate of the Higgs field distance measure was found
to become smaller than Ag when the Higgs self-coupling &
increases. At & = 24 and for N = 10, in particular, Ay was
estimated in Ref. [27] to be about 15% smaller than )_lG.
Comparison with the static gauge and Higgs boson damp-
ing rate in (resummed) thermal perturbation theory then
cast doubt on their relation to the same Ag and led to the
speculation that the Higgs damping rate may instead be
related to Ay [27]. These ideas were later questioned in
Ref. [26] whose improved calculation found Ag and Ay to
agree, although only for one trajectory pair at fixed energy
and 8 =02,k =1,R=0.2,and N = 10.

In our case, the Ag (upper entries) and Ay (lower entries)
values in Table I agree within errors (at the percent level) in
all of the covered YMH phase space, with the deviations
slightly decreasing for increasing E and k. Our results
therefore show that the finding of Ref. [26] was not an
accidental outcome of one specific initialization choice but
that indeed

Ag(E, & N) = Ay(E, &, N). (43)

Since the individual relaxation times 7 of the gauge and
Higgs sectors are set by the inverse MLEs, i.e. Ty = )‘E,IH’
Eq. (43) naturally explains the observation 7g ~ 7 in
Sec. III B, i.e. the fact that both gauge and Higgs sectors
(separately) self-thermalize over about the same relaxation
time. Equation (43) further squares with the general ex-
pectation that the maximally unstable field mode of a
dynamical system, i.e. the mode associated with the
MLE, dominates the exponential distance growth. Hence
the MLEs should be independent of the metric used to
extract them (modulo constant factors which depend on the
field powers involved in the definition of the metric). A
possible exception to this rule may arise, however, if the
distance measure is blind to the maximally unstable eigen-
mode. In Ref. [26] it was argued that such a situation
occurs in YMH theory at large coupling i, where the
quartic Higgs self-interaction dominates the potential
Higgs energy (14): the amplitude R, then remains practi-
cally unchanged during time evolution and decouples from
the maximally unstable gauge-field mode to which the
Higgs distance measure (32) consequently becomes insen-
sitive. At the still relatively weak coupling k = 24, and the
energy E ~ 0.8 of Ref. [27], where dy(?) is rather strongly
time dependent (cf. Fig. 5(a)), however, our results for XH
and A differ by only about 1%. This suggests that the 15%
deviation found in Ref. [27] should mainly be attributed to
numerical uncertainties.
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B. Energy dependence and relation to plasmon
damping rate

As already mentioned, the dependence of the MLEs on
the gauge-field energy per degree of freedom, Eg = E,/2
[cf. Eq. (38)], and on the total energy E of the YMH system
is a particularly important issue. In pure SU(2) [7,20] and
SU(3) [20,37] Yang-Mills theory (whose scaling properties
imply that the dimensionless Lyapunov exponent A = Aa
can only depend on Ep = gZaEp), the approximately linear
relation

/\Nc = CNcngP (44)

with ¢, =2 0.17 and ¢3 = 0.10 was established numerically
in the weak-coupling regime. (An improved SU(2) analysis
and a careful discussion of the involved errors [25], trig-
gered by questions raised in Ref. [38], later confirmed the
results of Refs. [7,20].) The empirical relation (44) helps to
clarify the physical role of the MLEs in hot quantum gauge
theory. Since the Lyapunov exponents were extracted at
times ¢ > 7g =~ A~!, i.e. after the gauge sector has pree-
quilibrated [39], the thermal gauge-field ensemble has,
according to Eq. (39), reached the temperature Tg =
E,/2 (at sufficiently large average plaquette energy E,).
Together with Eq. (44) this implies the linear relationship
Ay, = ¢éy.Tg, and comparison with the static plasmon
damping rate v,y _of hot quantum SU(N,) YM theory,
as calculated to leading order in hard-thermal-loop re-
summed perturbation theory [5], then revealed the at first
rather unexpected relation [7,20,37]

Ay, =2y, (45)

for N. = 2, 3. [The factor of 2 arises because the growth
rate of the distance (31) is twice that of the distance
between the gauge fields.] Subsequently, Eq. (45) has
been derived under a few heuristic assumptions (in par-
ticular on the ergodicity of the gauge-field evolution) in
Ref. [9].

On the basis of the rather exhaustive data set in Table I,
we are now able to address the analogous question of how
the MLEs are related to the average plaquette and total
energies in the weak-coupling regime of YMH theory. In
Fig. 6 we plot the MLEs for k = 1 on lattices with N &€
{6, 10, 20, 30} (corresponding to the first four columns of
Table I) in the full range of average plaquette energies 0 <
ag’E, = E, < 4. Figure 7 contains all remaining MLEs of
Table I, i.e. those for k = {1, 8, 16,24} at N = 20. The
straight lines also drawn in Figs. 6 and 7 are the best linear
fits to the data:

Agu(E,) =0.17ag%E, = E (46)

b
The figures show that the MLEs indeed depend within
errors linearly on the average energy E, per plaquette, as
in YM theory. In fact, the linearity of A(E,) seems to be a
nontrivial consequence of the non-Abelian nature of the
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FIG. 6. Values of the maximal Lyapunov exponents Ag (black
symbols) and Ay (grey symbols) as a function of the average
energy per plaquette Ep for k =1 and N = 6, 10, 20, 30.

gauge group. (The MLEs of scalar ¢* theory and Abelian
U(1) gauge theory, in contrast, were found to vanish in the
continuum limit a — 0 [20].) Remarkably, even the slope
of the linear relation (46) is almost identical to that in
SU(2) Yang-Mills theory [7,20,25]. (It is also consistent
with the value of the ratio A/ Ep which was extracted from
the trajectory with § = 0.2, k =1, R = 0.2, and N = 10
in Ref. [26].)

Equation (46) implies that for identical gauge-field en-
ergy the MLEs of YM and YMH theory are approximately
equal. This provides our main evidence for the maximally
unstable YMH mode to belong primarily to the gauge
sector, and suggests that the chaoticity and equilibration
properties of the Higgs sector are mediated by this gauge-
field mode as well (at least at weak coupling and if the
major part of the initial energy is stored in the gauge
sector). It also makes it more plausible that the MLEs of
YMH theory are related to the gauge-field damping rates
[20,26]. Furthermore, it is consistent with the approxi-
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FIG. 7. Values of the maximal Lyapunov exponents Ag (black
symbols) and Ay (grey symbols) as a function of the average
energy per plaquette Ep for N =20 and k = 1, 8, 16, 24.
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mately equal relaxation times 7g ~ 7y (cf. Sec. IIIB)
and exponential distance growth rates [cf. Eq. (43)] in
the gauge and Higgs sectors.

Nonetheless, the plaquette energy dependence of the
MLEs in Figs. 6 and 7 also shows small systematic devia-
tions from linearity which become most notable towards
the lowest Ep values. The same effect was observed in pure
Yang-Mills theory [25], and a glance at the criterion (41)
indicates that finite-size errors are responsible for the
systematic upward trend of the MLEs at the smallest Ep.
In fact, this is what one would intuitively expect since field
modes with longer average wavelengths are more strongly
deformed by the periodic boundary conditions. The slopes
of the logarithmic distance histories become most strongly
modulated towards smaller Ep (cf. Sec. IIT C), furthermore,
which introduces additional systematic errors. Together
with the finite-time errors to be discussed in Sec. IV C
they might cause additional deviations from a linear energy
dependence of the MLEs. Towards the maximal value
Ep = 4 of the average energy per plaquette, on the other
hand, lattice spacing [cf. Eq. (40)] and compact phase-
space artefacts are likely to affect the results [38,40].

Since the YMH system has a second characteristic en-
ergy scale besides E,, i.e. the total energy E which addi-
tionally includes both the energy stored in the Higgs field
and in the gauge-Higgs interactions (cf. Sec. III B) and is
strictly conserved at all times, it is natural to ask how the
MLEs depend on E. In order to answer this question, we
plot our MLEs in Figs. 8 and 9 as a function of E (for the
same k and N values as in Figs. 6 and 7) and find the
dependence on the total YMH energy to be approximately
linear as well:

Agu(E) = 0.55E. (47)

The above scaling behavior can be understood by recalling
that our MLEs were extracted during evolution times
t/a = 400 over which the distances generally saturate,

<&
A
O
O
0.

0 0.2 0.4 0.6 8 1 1.2

E
FIG. 8. Values of the maximal Lyapunov exponents Ag (black

symbols) and Ay (grey symbols) as a function of the total energy
E for k = 1 and N = 6, 10, 20, 30.
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FIG. 9. Values of the maximal Lyapunov exponents Ag (black

symbols) and Ay (grey symbols) as a function of the total energy
E for N=20and & = 1, 8, 16, 24.

but before the gauge and Higgs fields have started to
exchange appreciable amounts of energy. A glance at
Fig. 2 shows that after the gauge and Higgs sector have
separately preequilibrated (i.e. for t/a> A~"), Eg =
Ep /2 and Ey are practically time independent in this phase.
Moreover, as mentioned in Sec. III C, staying in the weak-
coupling regime requires initial conditions which (except
for the smallest 6 = 0.05) store considerably more energy
in the gauge than in the Higgs sector (cf. e.g. Fig. 2 which
corresponds to 6 = 0.2). In this situation one derives from

the definition of E in Sec. IIIB, which implies E, =
—4Ey/3 + 10E/3, and from Eq. (46) that

EH<<E 5E

AGu(E, Ey) = —3Ey +3E (48)

which explains the linear behavior and numerical slope of
Eq. (47). [Equation (48) also explains the numerical scal-
ing relation Ag(E) = 0.53E [24] for SU(2) YM theory
where Ey = 0.] We reemphasize that these results hold
for MLEs extracted in the time window A ™! < t/a = 400
during which E; and Ey < Eg remain practically
constant.

C. Long-time evolution of the Lyapunov histories

At later times the Higgs sector will pick up energy from
the gauge sector, i.e. E, will drop (for 8 > 0.05) while £
remains constant (cf. Figs. 2 and 3). In the t — oo limit the
MLEs must attain a constant value, as implied in their
formal definition, and so will Ep. This saturation is strongly
delayed, however, by the exceptionally long relaxation
times which govern the equilibration between the gauge
and Higgs fields. In the remainder of this section we will
analyze the quantitative impact of this saturation behavior
on the extracted MLE values. To this end, we compute the
“Lyapunov histories™

PHYSICAL REVIEW D 80, 025021 (2009)

d(E, &, N;1)

/\GH(EKN t) m

NIQ

i
Z Ins, = Agu(E & N)  (49)

[where 3813 are the rescaled distances (33) and (34), and
the s; are the rescaling factors obtained after the k-th
scaling step with rescaling period 7], which approach the
exact MLEs in the ¢ — oo limit, for eight long-time field-
pair trajectories in the time interval #/a € [0, 20000] on an
N = 10 lattice. (In order to improve numerical efficiency,
we increase the rescaling period 7 with increasing satura-
tion time, i.e. with decreasing &, as detailed in the figure
captions below.)

In Fig. 10 we show the Lyapunov histories Ag(f)/E
(black lines) and Ay(#)/E (grey lines), ‘““normalized” by
the total energy, for the four long-time field-pair histories
with & = 1 and initial magnetic energies specified by 6 =
0.2, 0.3, 0.45, and 0.6. (This corresponds to approximately
equally spaced Ep values, cf. Figure 1.) A first important
characteristic of all Lyapunov histories is their monotonic
decrease with time. Moreover, the saturation of Ag(z) for
large ¢ can be seen to proceed very slowly: especially for
smaller & it is not fully completed even at t = 2 X 10*a. In
all four cases, furthermore, Ag(f) starts out somewhat
larger than Ay(7) but becomes smaller when the gauge
and Higgs sectors start to exchange substantial amounts
of energy. The deviations between Ag(f) and Ay(f) remain
at the one-percent level during the initial time evolution (as
reflected in the Ag and Ay estimates of Table I) and
increase systematically up to 5% at t = 20000a. Hence
Ag(t) and Ay(7) remain approximately equal over the
whole time evolution until they turn into the MLEs for t —
0,

In Fig. 11 we display the Lyapunov histories Ag(t)/E
for an intermediate 0 = 0.3 and the four values k = 8, 16,

0.55

10000 15000

t/a

0 5000

20000

FIG. 10. Long-time evolution of the Lyapunov histories

Ag(t)/E (black lines) and Ay(f)/E (grey lines) for (8, 1) =

(0.6,25) (2nd largest initial values), (0.45, 30) (largest initial

values), (0.3, 55) (2nd lowest initial values), and (0.2, 110)

(lowest initial values) (with Az = 0.0005, k = 1, R = 0.2 and
= 10).
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FIG. 11. Long-time evolution of the Lyapunov histories

Ag()/E (black lines) and Ay(t)/E (grey lines) for k = 8, 16,
24 (from bottom to top) with Az = 0.001. The uppermost curve,
overlapping with its larger time-step counterpart, is for k = 24
with Ar = 0.0005. (All curves correspond to § = 0.3, 7 =55,
R =0.2,and N = 10).

24 of the Higgs self-coupling. The main tendencies ob-
served in Fig. 10 remain intact for larger &, although
increasing Higgs couplings further delay the saturation of
the Lyapunov histories. Indeed, already for k = 8 it is
more difficult to reliably extrapolate Agy(7) from the
simulation interval t/a € [0, 20000] to the MLE value at
t — 0. On the other hand, larger i values further reduce
the deviations between Ag(7) and Ay(¢) (which suggests
that the opposite tendency observed in Ref. [27] was due to
a numerical artefact), and they also reduce the long-time
variations of Agy(#)/E and hence the finite-time errors of
the MLEs.

In order to check whether the used integration time step
At =0.001 is small enough, we have also performed a
simulation with half of its value for k = 24. The corre-
sponding curve, also drawn in Fig. 11, is essentially iden-
tical to the one with the larger time step, which shows that
the latter has no relevant time discretization error. Finally,
we note that when the Lyapunov histories decrease during
equilibration, one may expect their sensitivity to the Higgs
sector to become larger. Figure 11 shows that their depen-
dence on the Higgs self-coupling & is negligible at smaller
evolution times (¢ = 2000a), as manifest in Table I, but
indeed becomes more pronounced for larger .

We now turn to the examination of the ratios Ag()/E,(t)
and )_tH(t)/Ep(t) which we plot in Figs. 12 and 13 for the
same parameter values as in Figs. 10 and 11. The closely
parallel movement of Ag(#) and Ay(¢), and the systematics
of their small deviations remain visible here as well. The
initial drop in A y(t)/ Ep(t) (in particular for 6 = 0.2) falls
into the time period during which E,(¢) is practically
constant, i.e. it is caused by the decrease of Ag(f). Later
on the gauge-field energy E, () starts to drop (cf. Fig. 2)
and overcompensates the continuing decrease of )_\G,H(t).
This causes the ratios Agy(r)/E,(7) to rise. For § = 0.2,
one furthermore finds from (slightly extrapolating) Fig. 2
that E,(r) = 2Eq(1) — 2E for t = 13000a, so that the
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FIG. 12. Long-time evolution of the Lyapunov histories
XG(I)/EP (black lines) and ):H(t)/Ep (grey lines) for 6 = 0.6
(largest starting values), 0.45, 0.3, and 0.2 (lowest starting
values) (with k = 1 and N = 10).

continuing, slight decrease of

)_‘G,H(t) t/a=13000,6=02 1 -
—

E (1) F Acu(t) (50)
p

for + = 13000a has again to be attributed solely to the
behavior of Agy(#). An important result, visible in both
Figs. 12 and 13, is that the ratios Agy(1)/E,() saturate
significantly earlier than Agy(#)/E even at larger values of
k. [Short-time fluctuations of the average plaquette energy
E,(1) cause the time evolution of Agy(1)/E,(t) to appear
more ragged.] This indicates that for large ¢, i.e. on the
approach to full equilibrium, the average gauge energy
E,(1)/2 decreases at the same rate as Ag (1)

As already alluded to, our long-time evolution results
allow for a quantitative assessment of the finite-time errors
in the MLE estimates of Table I, which were extracted at
rather short evolution times. Figure 10 indicates that for
& =1 the time variations of Ag(#) reach about 25% for
6 = 0.2 and about 30% for 6 = 0.6, while they remain
about 5% smaller for the corresponding Ay (7). These var-
iations may be considered as a (conservative) upper bound
on the systematic finite-time errors, in particular, for larger
6 and smaller k values, and on the corresponding over-

0.17 ~
o M
= 0.165 ]
s 0.16
<
0.155
0.15
0 5000 10000 15000 20000
t/a
FIG. 13. Long-time evolution of the Lyapunov histories

AG(t)/E, (black lines) and Ay(1)/E, (grey lines) for & =8,
16, 24 and At = 0.001 (from top to bottom) and & = 24 with
At = 0.0005 (6 = 0.3, 7=55,R=0.2, and N = 10).
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estimates of the XG’H in Table I. (The tendency to over-
estimate the MLEs when extracting them at shorter evolu-
tion times was also noted in Refs. [20,25].)

Finally, our long-time analysis allows us to clarify what
happens to the two scaling laws (46) and (47) on the
approach to total equilibrium in the # — oo limit where
the Lyapunov histories saturate. In fact, a rather reliable
extrapolation to this limit (in particular for larger energies)
can be achieved by taking advantage of empirical evidence
for the asymptotic evolution-time dependence ~7~'/2 with
which the Lyapunov histories approach the MLEs [25].
(This finite evolution-time behavior is analogous to the
finite-size behavior ~(Na)~'/2 [25,24] which results
from sampling ergodic states [23]. On similar grounds,
the width of Gaussian fluctuations around the mean value
of the average Lyapunov exponent was argued to decay as
7~1/2 [23].) Hence the new functions Agy(7~'/?) can ap-
proximately be fitted by straight lines (with a potential
systematic bias) and the MLEs determined as the intersec-
tions with the 7~ /2 = 0 axis [25]. Extrapolating the curves
in Figs. 10 and 11 in this way to infinite evolution time
yields our best estimates for the MLEs which we plot in
Fig. 14 as a function of E, (upper panel) and E (lower

0.4
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0.3
0.25
0.2
0.15 .
0.1 / EX

075 1 125 15 175 2 225

[ ]

AGH

0.4
0.35
0.3
0.25
0.2
0.15 .

AG.H

FIG. 14. Lyapunov histories Ag(#) (black dots) and Ay(r) (grey
dots), extrapolated to infinite evolution times, as a function of £,

[panel (a)] and E [panel (b)]. The straight lines are the best linear
fits. (For 6 = 0.6, 0.45, 0.3, and 0.2, with k = 1 and N = 10.)
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panel). These figures show that both dependencies remain
to good accuracy linear. The best linear fits (also shown in
the figures) are

AG(Ey) =0.149E,,  Au(E,) =0.163E,  (51)

and

AG(E) = 0.308E, Au(E) =~ 0.338E. (52)

Equations (51) show that to an accuracy of at least about
10% the scaling law (46) found before full equilibration,
with the same coefficient as in pure YM theory, indeed
remains intact asymptotically. (First indications for this
behavior were observed in Ref. [26] on the basis of a
trajectory for + = 12000a.) Qualitatively, this is also re-
flected in Fig. 12 where the ratios Agy(t)/ E, (1) start at
around 1/6 and asymptotically return to it for very large ¢
(while in the meantime deviating by maximally (i.e. for the
largest 6) about 20%, mainly when most of the energy is
exchanged between the gauge and Higgs fields).

The Egs. (51) also explain the E dependence of the
asymptotic Lyapunov histories exhibited by the fits (52).
Indeed, after full equilibration at t— oo with Eg =
E,/2 = Ey = E one expects from Agyu(E,) = aguk, =
E,/6 that

)_\G,H(E_‘) = 2“G,HE = %E_‘ (53)

which is within errors identical to Egs. (52). Hence in
equilibrium the linear dependence of the MLEs on EP
implies a linear dependence on E with twice the slope
[as realized to good accuracy in the fits (51) and (52)].
This fact went probably unnoticed in Ref. [26] which
argued against linear scaling of the XG,H with E on the
basis of field evolution trajectories over maximally several
thousand lattice time units, i.e. likely too short to bring the
system close enough to equilibrium. (In addition, our
above observation supports the diagnosis of Ref. [24]
which attributes the logarithmic energy dependence found
numerically for several SU(2)-YM MLEs after very long
evolution times to finite-size artefacts of the monodromy-
matrix method.) More generally, linear scaling of )IG,H with
Ep implies a linear dependence on E in any time window
during which E,, o E. This condition seems to be satisfied
only when the gauge and Higgs sectors do not exchange
relevant amounts of energy, however, i.e. only in the pre-
equilibration phase and after mutual equilibration is essen-
tially achieved. Nevertheless, the slopes of the E
dependence in these two time intervals are different (5/9
and 1/3, respectively).

The above evidence for the linear dependence (46) of the
MLEs on the average magnetic energy E, to prevail for
t — o0 appears consistent with our previous indications for
the maximally chaotic mode to reside mainly in the gauge
sector, with our finding that the scaling behavior (46) sets
in way before the gauge fields have full access to the
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energy stored in the Higgs sector, and with the result that
the ratios Agy(7)/E,(t) saturate significantly faster than
the Agp(7) themselves.

D. Maximal Lyapunov exponents of initially
homogeneous magnetic fields

In this section we digress from our main subject and
apply some of the numerical techniques developed above
to the time evolution of spacially constant, non-Abelian
magnetic fields. In the pioneering days of QCD such
homogeneous magnetic fields were perturbatively estab-
lished to be unstable in pure YM theory [41]. This so-
called Savvidy instability was later explored in the non-
perturbative domain by numerical methods similar to ours
[7,42]. It provided early indications for the complexity of
the Yang-Mills vacuum and has triggered the development
of stochastic and chaotic concepts for vacuum structure
and quark confinement [8,17,43]. In the following we are
going to study the impact of the matter (i.e. Higgs) fields on
the Savvidy instability.

As a benchmark for comparison with the YMH case, we
first reproduce the nonperturbative time evolution of the
distance (31) between initially adjacent, homogeneous
magnetic fields in pure YM theory on an N = 10 lattice.
The non-Abelian magnetic field is defined as B, =
arccos tr(U,), and the fields are initialized with total energy
E =057 by setting E%(0)=0, B,»(0)=0.899,
B, 13(0) =0.791, and B,,3(0) = 1.453 for all x. In
Fig. 15 we compare their logarithmic distance evolution
to that of an initially randomized gauge field (cf. Sec. Il A)
with the same energy. The constant magnetic field pair
turns out to have about twice the average slope of Indg(z) in
the linear region, i.e. the homogeneous magnetic field is
substantially less stable than the random field. This result
corroborates similar findings in Ref. [7].

We now turn to the analogous time evolution of initially
constant magnetic fields in YMH theory, again on a lattice
with N = 10 sites per dimension. As in all previous sec-
tions, the Higgs field is initialized at the spacially constant
value R (0) = R = 0.2, and the initial values ¢(0) = 0,
E¢ ;(0) = 0 are imposed in order to satisfy Gauss’ law (29).
The B field is initialized at the values B, 1,(0) = 2.319,
B, 13(0) = 2.152 and B, ,3(0) = 1.428 for all x. We further
choose 6 = 0.3 and k = 1 in order to inject the same total
energy E = 0.57 as in the YM case above. The logarithmic
distance evolution under these conditions is displayed in
Fig. 16 for the gauge and Higgs field metrics (31) and (32),
again together with its counterpart for a corresponding
random field. As in the YM case, the homogeneous mag-
netic field produces about twice the slope in the linear
region. Hence the presence of the matter fields seems
neither to dampen nor to enhance the increased instability
of the homogeneous magnetic field configurations relative
to a random configuration of the same total energy. This
seems to be consistent with our above evidence for the
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FIG. 15. Logarithmic distance evolution for initially neighbor-
ing, homogeneous, non-Abelian magnetic fields (ragged curve)
and for initially neighboring randomized gauge-field configura-
tions (smooth curve) in YM theory (with N =10 and E =
0.572023).
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FIG. 16. Evolution of the logarithmic distances (31) (black
lines) and (32) (grey lines) for two initially neighboring, homo-
geneous, non-Abelian magnetic fields (ragged curves with larger
slopes in the linear region) and for two initially neighboring
random gauge-field configurations in YMH theory (with 6 =
0.3, R=02, k=1, N =10, E = 0.572023).
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chaoticity of YMH theory to be dominated by the gauge
sector.

The slopes of Indg(z) for both constant magnetic and
random fields, however, are (in the linear region) about
twice as large in the YMH example of Fig. 16 than in YM
theory (Fig. 15). Probably this result depends rather
strongly on the initial conditions, and especially on how
they distribute the initial energy over the gauge and Higgs
field sectors. Our above initial conditions were chosen to
provide a demonstrative example for the presence of matter
fields to strongly enhance the Savvidy instability. This
massive impact raises the possibility that simulation results
for those gauge-field instabilities which drive isotropiza-
tion and thermalization in the aftermath of high-energy
nuclear collisions could be significantly modified in the
presence of quark fields as well (although they have
smaller occupation numbers).

V. RELATED EQUILIBRATION PROCESSES IN
COSMOLOGY AND NUCLEAR COLLISIONS

In the following section we are going to discuss several
aspects of nonequilibrium processes in the early Universe
and in the aftermath of high-energy nuclear collisions
which are pertinent in our context. We comment on the
impact of the chaotic thermalization properties calculated
above and on results of classical gauge-theory simulations
related to ours. We also suggest a few promising extensions
of our work which would help to clarify the role of chaotic
thermalization processes after nuclear collisions and the
nature of the ‘“‘apparent” or ‘“‘pre-” equilibrium at the
beginning of the subsequent hydrodynamic evolution
phase.

A. Early Universe

According to the inflation paradigm, the vacuum energy
of one or more classical, scalar inflaton fields dominated
the very early Universe. This energy caused a typically
exponentially accelerated expansion period which very
efficiently diluted particles and fluctuations [44]. It left
the Universe in a supercooled, highly nonthermal state
which was practically devoid of matter, radiation, and
entropy. Hundreds of models for the phenomenologically
very successful inflationary scenario were proposed [2]. A
compelling “microscopic” theory, however, which is able
to explain, e.g., the nature of the inflaton(s) and the very
specific properties of their dynamics, has not yet been
established, partly because it involves unknown physics
beyond the standard model.

For the post-inflationary reheating period, during which
the Universe thermalized at a still very large ‘“‘reheating
temperature,” the theoretical situation is similar: there
exist many scenarios and model calculations for specific
processes whereas the underlying dynamics as a whole is
not yet settled. During reheating a huge amount of entropy
was released. All the matter and radiation of the present
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Universe was created and the energy density of the inflaton
(s) was transformed into a hot and ultrarelativistic plasma.
(Afterwards the Universe expanded essentially in the
Friedman-Robertson-Walker geometry and cooled almost
isoentropically according to the “hot big bang” scenario.)
In the following we will be particularly interested in the
(semi-) classical phases during the reheating period, when
the large occupation numbers of the participating field
modes made contributions from chaotic thermalization
relevant.

The probably most important of these phases, referred to
as preheating, is suggested to have taken place immedi-
ately after inflation [45]. During this very short period,
which lasted about 10~33 secs, particle production became
explosive. Preheating can be induced either by a tachyonic
instability of the inhomogeneous modes which accompany
electroweak symmetry breaking [46], or by the stimulated
decay of an almost homogeneous inflaton which coher-
ently oscillates with an initial amplitude of the order of the
Planck mass. In the latter case, the accelerated decay is the
consequence of a parametric resonance with condensates
composed of the produced particles [45]. A detailed under-
standing of the preheating process is particularly crucial
because the bulk of the initial conditions for the subsequent
thermal history of the Universe are settled at its end. Since
the homogeneous energy density of the inflaton transfers
exponentially rapidly into highly occupied, inhomogene-
ous out-of-equilibrium modes, furthermore, the violently
nonperturbative and nonequilibrium processes underlying
preheating are amenable to classical lattice simulations
[47].

After preheating, a variety of crucial thermalization
processes began to drive the Universe towards equilibrium.
Classical lattice simulations of such processes indicate,
furthermore, that the infrared modes excited during pre-
heating evolve towards a saturated occupation number
distribution long before thermalization completes [48].
Such effects have been interpreted as signs of ““pretherm-
alization,” characterized by an energy-pressure relation
approximating an equation of state [48,49]. Later on, the
distributions move towards complete saturation by cascad-
ing towards ultraviolet and infrared modes (as in
Kolmogorov wave turbulence). During the last and longest
stage of equilibration, finally, the particle distributions
become fully thermal [50]. Simultaneously, the occupation
numbers drop until quantum physics eventually dominates
and classical simulations become ineffective.

Among the many important nonequilibrium processes
which shape the reheating period are backreactions on the
inflaton field which eventually stop particle production,
violent and still nonperturbative particle rescattering
events which very efficiently generate entropy, the non-
thermal production of heavy particles as well as phase
transitions. Further reheating processes which left crucial
imprints in our present Universe are primordial magnetic
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field generation [51], topological and large-scale structure
formation as well as baryogenesis [11], which created the
observed abundance of baryons over antibaryons. In our
context, baryogenesis is particularly interesting since it can
efficiently proceed only far from equilibrium. As already
mentioned, lattice simulations of classical real-time field
evolution are a method of choice for the analysis of such
processes. In fact, they turned out to be particularly useful
for shedding light on the preheating phase whose immense
particle production rate and condensate formation require a
fully nonperturbative treatment while the generated, large
(boson) occupation numbers ensure a classical field evo-
lution [52].

In the following, we will focus on classical lattice simu-
lations of cosmological pre- and reheating processes which
were based on dynamics including the gauge-scalar sector
of the standard model [53], i.e. the SU(2) YMH theory with
a fundamental Higgs doublet (1) [54]. This theory has been
used, notably, to explore the electroweak symmetry break-
ing transition [55]. It underlies our own work, furthermore,
and thus allows for some partial and qualitative compari-
sons—although the initial conditions (and the additional
field content including, e.g., an inflaton) required to de-
scribe cosmological situations differ considerably from the
random ones which we have adopted above.

The analysis of electroweak baryogenesis at energies of
the order of 100 GeV is, as already alluded to, an especially
interesting application of the YMH model (1) and its
extensions [11,56]. Such studies are mainly motivated by
the question whether ““minimal extensions™ of the electro-
weak standard model, which implement e.g. additional
neutral scalar inflaton field(s) or CP violating couplings,
are able to explain the observed baryon asymmetry of the
present Universe. As a step towards clarifying this issue,
the baryon (and lepton) number and CP violating spha-
leron transition rate and the Chern-Simons number diffu-
sion in the unbroken phase were studied in Refs. [15,57—
59]. In a hybrid inflation scenario [60], based on an addi-
tional singlet inflaton which couples to the Higgs field to
accelerate particle production (compared to only gravita-
tional coupling), the nonequilibrium preheating dynamics
was found to generate Chern-Simons number, a prerequi-
site for electroweak baryogenesis, locally and stochasti-
cally [61]. (For some cautionary remarks on the reliability
of classical lattice results in this preheating scenario for
baryogenesis see Ref. [62].) In the same dynamical frame-
work, primordial magnetic fields are produced with suffi-
cient magnitude and correlations to act as seeds for the
magnetic fields observed in galaxies and galaxy clusters
today [51]. Electroweak baryogenesis during a cold elec-
troweak transition with tachyonic preheating (induced by a
spinodal Higgs field instability) and additional CP viola-
tion generated by a coupling of the Higgs field to the
topological charge density of the gauge field, has been
investigated in Ref. [63]. The particle distribution func-
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tions of the Higgs and gauge fields (on which kinetic theory
is based) were extracted in Ref. [64] from the correlators of
the simulated classical fields, with the electroweak phase
transition modeled by a quench.

Our main goal in the present paper was to study generic
chaotic thermalization properties of YMH theory on the
basis of random initial conditions. In this respect, our work
differs from the more specialized simulations discussed
above (which partly also include additional dynamics).
Although this prevents a quantitative comparison of the
results, we believe that the chaotic thermalization pro-
cesses which we have analyzed should be relevant for
most of the mentioned post-inflationary pre- and reheating
processes as well. By adapting the initial conditions to
cosmological situations, in particular, one could directly
investigate the contributions of deterministic chaos, as
measured by the Lyapunov exponents, to specific nonequi-
librium processes. It would, for example, be interesting to
follow the sphaleron transition and magnetic field produc-
tion rates during the different stages of chaotic thermaliza-
tion. It would also be useful to study the impact of the
lattice spacing on the chaotic thermalization rates [62] and
to include physics beyond the standard model, e.g., an
inflaton field, into the analysis.

B. Nuclear collisions

Thermalization properties of excited quark-gluon mat-
ter, as produced at the SPS, RHIC, LHC, and (future) FAIR
colliders, have been intensely studied in various ap-
proaches of increasing sophistication [65] (see Refs. [68]
for recent reviews). The detailed local equilibration mecha-
nisms are of central importance for the heavy-ion programs
since they determine whether a new, deconfined state of
matter—the quark-gluon plasma—can be locally thermal-
ized in the aftermath of high-energy nuclear collisions, i.e.
whether the produced system equilibrates fast enough for
thermodynamic concepts to apply before it disintegrates.

The thermalization issue became even more intriguing
when RHIC results showed that the produced matter starts
to behave collectively after times of less than 1 fm/c and is
subsequently described by essentially ideal Bjorken hydro-
dynamics with almost maximal elliptic flow [69]. These
findings are generally interpreted as a surprisingly fast
apparent thermalization of the system, which minimally
requires the isotropization of the long-wavelength modes
participating in the hydrodynamic behavior [70] and per-
haps the onset of prethermalization [49]. In any case, the
very short (pre-) equilibration time cannot be explained by
weakly coupled parton-parton collisions alone [68,71].

The time evolution of a typical RHIC reaction (which is
sometimes referred to as a “little bang” to emphasize
similarities with the big bang of the Universe) begins
with very hard initial interactions between the high-
momentum partons of the colliding nuclei. These generate
the highest-momentum particles in the final state.
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Afterwards, at about r ~ 0.2 fm/c, most of the soft parti-
cles in the final state are coherently produced and form a
nonequilibrium system (sometimes called a “glasma”
[72]) of high-energy density. The “bottom-up” thermal-
ization scenario [73] assumes that the initial properties of
this system are determined by the QCD saturation mecha-
nism [74], i.e. that they are dominated by coherent small-x
gluons of a very high density. These gluons originate from
the low-x part of the nuclear wave functions (x = p/./s
where s is the total energy) and carry transverse momenta
p; of the order of the saturation scale Q.. Since for RHIC
collisions Qg ~ 1 GeV > Acp, this initial state should
be amenable to weak-coupling techniques [76]. In the color
glass condensate (CGC) model [78], for example, the
highly populated small-x gluon states are treated as the
soft modes of classical Yang-Mills fields with typically
large amplitudes while the hard field modes are repre-
sented by static sources.

More generally, as long as the gluon mode occupation
numbers stay large enough to suppress quantum effects,
their evolution can be described in terms of classical gauge
fields which may be simulated fully nonperturbatively on a
spacial lattice. Over the last years, an increasing amount of
such numerical simulations was performed for the gauge
groups SU(2) and SU(3) in one, two, and three spacial
dimensions. The dynamical settings included the CGC
model [79,80], hot-thermal-loop (HTL) effective theories
(equivalent to a collisionless Vlasov equation) [71,81,82]
and equations of Wong-Yang-Mills—type [83-85], subject
to minijet or bottom-up initial conditions. Among the
calculated observables were, e.g., energy densities and
gluon multiplicity distributions.

Numerical simulations confirmed, in particular, that
sufficiently anisotropic parton momentum distributions,
as typically produced in heavy-ion collisions, can induce
the onset of a very fast, collective isotropization and (pre-)
thermalization [86] driven by non-Abelian filamentation
instabilities [83]. These Weibel-type plasma instabilities
generate an initially exponential growth of the soft-mode
occupation numbers even at relatively weak couplings
[14,68,87]. The expansion of the system can strongly
reduce this growth, however, and the non-Abelian self-
interactions appear to rapidly limit it (in three spacial
dimensions) to at most linear growth [82]. This happens
when the (magnetic) energy deposited in the soft fields
returns sufficiently fast to the hard fields, either by plasmon
excitation effects similar to Kolmogorov wave turbulence
[82,88] or via a rapid avalanche [84]. Applications of the
CGC and HTL effective theories are limited to the weak-
coupling and small-amplitude regimes, however, which
ensure a sufficient scale separation between the hard parton
and soft gauge-field momenta [89]. This technical limita-
tion can be avoided by describing the whole system as a
classical statistical Yang-Mills ensemble with an UV lat-
tice cutoff to substitute for the quantum mechanical sup-
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pression of thermal short-distance effects. Hard and soft
modes are thus originating from the same gauge field and
treated on the same footing, which allows for nonperturba-
tively large amplitudes.

The numerical simulations described in the present pa-
per are based on the same interpretation of the classical
lattice fields. Although we focused on the thermalization of
gauge-Higgs matter by chaotic instabilities, which at first
seems to be a rather different mechanism, there are several
commonalities with equilibration via mean-field plasma
instabilities. In fact, both are collective processes which
shape the momentum distribution of the classical gauge
fields, and both lead to substantially faster gluon equilibra-
tion rates than collisional thermalization. This becomes
explicit in relaxation times 7 ~ A~! ~ 0.5 fm/c at typical
RHIC energies. (The chaotic relaxation time tends to be-
come even smaller for SU(3) gauge fields [37]). As pointed
out in Ref. [23], incidentally, relaxation times of this order
imply that fluctuations around the mean transverse mo-
mentum produced in nuclear collisions are very small [90]
[of order 1072, i.e. at the percent level, for typical reaction
volumes (5 fm)? and times (0.5 fm) at RHIC], as indeed
observed in event-by-event fluctuations.

On the other hand, there are remarkable differences
between chaotic and plasma instabilities. The maximally
chaotic modes are very efficient in generating entropy
directly, for instance, while the filament instabilities lead
to a reversible isotropization (at the mean-field level)
which just creates more efficient conditions for the subse-
quent entropy production. Hence Weibel-type plasma in-
stabilities per se seem hardly to affect the MLE values,
although they could indirectly contribute to our chaotic
thermalization if the random initial conditions generate a
sufficiently anisotropic momentum distribution of the
gauge fields. It is tempting to speculate, then, that even
under RHIC initial conditions the maximally chaotic
modes may lead to faster thermalization than plasma in-
stabilities because they generate entropy in a probably
more efficient one-step process. Moreover, the maximal
chaotic instabilities select at any time the most unstable
direction in phase space and thus remain optimally fast
during the entire (classical) thermalization process,
whereas the filament instabilities are damped by the gauge
field’s non-Abelian self-interactions [91].

As mentioned above, a long-term perspective of our
work is to understand the role of chaotic thermalization
mechanisms during the classical evolution phases in the
aftermath of nuclear collisions. The focus of the present
paper was more limited and preparatory, however, namely,
to map out generic chaotic thermalization properties of
non-Abelian gauge systems in the presence of scalar mat-
ter. (Classical Higgs fields were included because of their
role in the early Universe and because they can be treated
on the same footing as the gauge fields. Quarks, on the
other hand, would have to be implemented either as parti-
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cles or as solutions of the Dirac equation in the background
of the classical fields, as, e.g., in soliton models for baryons
[92].) For this reason, we have chosen random initial
conditions instead of the more specialized ones required
to describe the physical situation after a nuclear collision
(or during the reheating phase of the early Universe). Our
program could naturally be extended by adapting it to those
initial conditions with a strongly anisotropic momentum
distribution which characterize the hot system created by a
high-energy nuclear collision. The chaotic properties of
plasma-instability-, collision- and cascade-driven thermal-
ization processes could then be quantified in terms of the
corresponding maximal Lyapunov exponents, thereby re-
lating the chaotic thermalization and entropy production
rates to the time scales of more conventional equilibration
processes. (The large difference between the Lyapunov
exponents of randomly and coherently initialized fields
(cf. Secs. IVA and IV D) show that they can depend
strongly on the initial conditions.)

In addition, one may extract a more detailed picture of
the chaotic equilibration processes by following, e.g., the
evolution of the field modes’ momentum distributions and
their anisotropy, as well as the evolution of pressure,
entropy, etc. simultaneously with the Lyapunov histories.
For specific comparisons with the effective CGC and HTL
dynamics, it would also be interesting to follow the growth
rate of the gauge field’s Fourier coefficients. This would
further clarify how far chaotic evolution is consistent with
the bottom-up thermalization scenario, according to which
the copiously produced soft gluons (which initially carry
only a small fraction of the total energy) draw energy from
the hard gluons and thermalize very efficiently. The decay
of the remaining hard gluons then reheats the soft gluonic
background until it enters the hydrodynamic evolution
stage. In fact, in reductions of the Yang-Mills dynamics
to a few degrees of freedom, chaotic thermalization was
found to start (under suitable initial conditions) among the
softer modes as well [93]. Moreover, the chaotic behavior
of the soft modes turns out to be driven by the soft-hard
mode coupling, which provides an efficient mechanism for
energy transfer from high frequency modes to a low-energy
multiparticle final state. (Related findings for the scattering
of two classical SU(2) YM and YMH wave packets [94]
were reported in Ref. [95].)

IV. SUMMARY AND CONCLUSIONS

We have investigated chaotic instability and thermaliza-
tion properties of classical gauge and matter fields in the
unbroken phase of SU(2) Yang-Mills-Higgs theory on a
spacial lattice. Since equilibration proceeds mainly
through the most unstable field modes, we have focused
on a quantitative survey of the most chaotic time evolution
patterns in terms of maximal Lyapunov exponents (which
measure the logarithmic distance growth rates between
initially neighboring gauge and Higgs fields).
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A main goal of our investigation was to explore the
impact of the fundamental doublet of scalar matter fields
on the chaotic behavior of the gauge dynamics. Towards
this end, we first confirmed and extended previous evi-
dence for the Yang-Mills-Higgs system to equilibrate over
two drastically different time scales: individually, the
rather weakly coupled gauge and Higgs sectors reach a
preequilibrium phase after only a few lattice time units,
whereas their mutual equilibration is substantially delayed
by the matter fields and takes far longer than 10* units to
complete. Accordingly, we have generated two sets of
maximal Lyapunov exponents for initially random fields:
a larger one extracted from the field separation rates at the
preequilibration stage, and a smaller one obtained from
long-time trajectories extrapolated to infinite evolution
time and thus to full equilibrium.

The first set was designed to cover a representative part
of the weakly coupled phase space and contains about 80
Lyapunov exponents. In view of its non-negligible finite-
time errors, this set was mainly used to study general
characteristics of the exponents including their energy,
coupling-parameter, and lattice-size dependence. We
found the signs of the whole set to be positive (in contrast
to results in the broken phase), which implies that chaos is
at least approximately universal in the symmetric phase.
(Possible exceptions may include small nonergodic niches
as previously encountered in the Yang-Mills phase space.)
Yang-Mills-Higgs theories with gauge groups containing
SU(2) as a subgroup are therefore chaotic as well. In the
energy and coupling ranges where both finite-size and
lattice-spacing errors should be under control, our
Lyapunov exponents on lattices with between 10° and
307 sites were indeed found to be within statistical uncer-
tainties identical. In addition, we found the maximal
Lyapunov exponents extracted during the preequilibrium
phase to be almost independent of the Higgs self-coupling.
This indicates that the nonlinear interactions in the Higgs
sector provide a relatively minor contribution to the cha-
oticity of the system.

In order to survey the important and previously unex-
plored asymptotic regions of the Yang-Mills-Higgs phase
space, we have additionally followed several field evolu-
tion trajectories over the exceptionally long periods re-
quired to approach total equilibrium. In particular, we
have investigated the long-time behavior of eight
Lyapunov histories, i.e. logarithmic separation rates be-
tween initially neighboring fields, over 20 000 lattice units.
After extrapolation to infinite evolution times they provide
our best estimates for the maximal Lyapunov exponents.
All Lyapunov histories turn out to decrease monotonically
with time and saturate relatively slowly even after the
energy has attained almost complete equipartition. At
larger values of the Higgs self-coupling the Lyapunov
histories vary less strongly during time evolution while
their saturation is further delayed. Moreover, the
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Lyapunov histories divided by the average plaquette en-
ergy saturate faster than the Lyapunov histories them-
selves. This foreshadows an early onset of their linear
scaling relation in the equilibrated system (see below).
The long-time behavior of the Lyapunov histories provides
reliable estimates for the finite-time errors of the Lyapunov
exponents, furthermore, and quantifies, in particular, how
much they are overestimated in the preequilibrium phase.

The physical interest in Lyapunov exponents of gauge
fields originates partly from evidence for their linear rela-
tion to the plasmon damping rates at weak coupling. This
relation relies on the empirically identified linear depen-
dence of the maximal Lyapunov exponents on the average
magnetic gauge-field energy. We have therefore systemati-
cally scrutinized the accuracy and validity range of this
scaling relation on the basis of our full data set. Both
during the rather long preequilibrium period, i.e. before
gauge and Higgs sectors have exchanged substantial
amounts of energy, and after full thermalization we have
indeed found the Lyapunov histories to scale within errors
linearly with the average gauge-field energy. More specifi-
cally, both during preequilibrium and after complete
equilibration our results establish the relation XG,H =
Ep /6 between the maximal Lyapunov exponents and the
average plaquette energy. This relation was previously
encountered in pure Yang-Mills theory and seems to be a
rather exclusive property of non-Abelian gauge theories. It
implies that the Lyapunov exponents for any given gauge-
field energy, extracted either from the gauge or Higgs field
separation rates, remain within errors independent of the
presence of the Higgs field. This lends additional credence
to the suggested equality between the Lyapunov exponents
and twice the static plasmon damping rates of quantum
Yang-Mills-Higgs theory at high temperatures and weak
coupling. In addition, we have established that both during
the preequilibrium stage and after full thermalization the
maximal Lyapunov exponents also scale linearly with the
total energy. This is in contrast to previous expectations
and turns out to be a consequence of the proportionality
between gauge and total energy during both phases.

We have furthermore studied how interactions with the
Higgs field affect the Savvidy instability of constant non-
Abelian magnetic fields. As a benchmark, we have first
obtained the maximal Lyapunov exponent for an initially
constant magnetic field in pure Yang-Mills theory and
found it about twice as large as that of a randomly initial-
ized field under otherwise equal conditions. We have then
computed the analogous Lyapunov exponent in Yang-
Mills-Higgs theory for initially homogeneous magnetic
and Higgs fields at the same total energy and found it still
to be about 2 times larger than for randomized fields.
Hence the additional matter fields seem neither to dampen
nor to enhance the Savvidy instability relative to that of
random fields of the same energy. Depending on the initial
energy distribution between gauge and Higgs fields, how-
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ever, the presence of matter fields can have a strong impact
on the absolute magnitude of the magnetic field’s instabil-
ity. In order to demonstrate this, we have provided an
example in which the matter fields approximately double
the maximal Lyapunov exponent of the gauge field.

In all simulations described above, we found the
Lyapunov histories to be within errors of at most a few
percent independent of the underlying distance measure
and of whether they were obtained in the gauge or Higgs
field’s phase space. This independence turns out to hold
both during the preequilibration phase and towards full
equilibrium, and both for initially homogeneous and ran-
dom fields. Hence it confirms the general expectation that
the divergence rates of the most unstable modes should be
equally measurable by any reasonable metric in field space.
The behavior of the Lyapunov histories depends somewhat
on the stage of the thermalization process, however. Before
gauge and Higgs fields have exchanged substantial
amounts of energy, the divergence rate in the gauge sector
turns out to be slightly larger than in the Higgs sector,
while it becomes marginally smaller during later phases of
equilibration. A previous estimate of an about 15% smaller
logarithmic Higgs field separation rate, based on a single
trajectory, was therefore probably contaminated by nu-
merical uncertainties.

Our above results strengthen the evidence for the gauge
dynamics to provide the main source of chaotic instability
in the Yang-Mills-Higgs system. The matter fields, in con-
trast, seem to play a subordinate role (similar to the quark
fields shortly after a nuclear collision). The evidence in-
cludes the fast preequilibration of the gauge sector, the
observation that the Higgs sector seems to have little
impact on the ratio between the constant magnetic and
random field Lyapunov exponents, the linear dependence
of the maximal Lyapunov exponents on the average gauge-
field energy alone, the finding that this scaling behavior
sets in way before the gauge fields have full access to the
energy stored in the Higgs sector, and, in particular, the fact
that the values of the maximal Lyapunov exponents for a
given plaquette energy turn out to be within errors identical
to those in pure Yang-Mills theory. Moreover, the non-
linear Higgs dynamics seems not to contribute substan-
tially to the maximally unstable mode, at least not in the
range of relatively weak couplings where lattice artefacts
are under control. Indeed, at the preequilibration stage the
Lyapunov histories turn out to be practically independent
of the Higgs self-coupling, and even afterwards the cou-
pling dependence remains moderate.

Nevertheless, we found the scalar matter fields to have a
major impact on the thermalization of the gauge system.
As we have shown, their presence can strongly enhance the
absolute divergence rate between neighboring gauge fields,
both homogeneous and random. Moreover, the maximally
chaotic mode has an almost immediate effect on the Higgs
sector, as witnessed by the fact that its separation rate can
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be monitored equally well by following the distance evo-
lution between neighboring Higgs fields. Finally, the pres-
ence of the Higgs fields massively prolongs the
equilibration of the system as a whole, at least at weak
coupling. This qualitative effect may be robust enough to
prevail in the case of fermionic matter, and hence be
relevant for understanding the equilibration properties of
the highly excited quark-gluon matter produced in ultra-
relativistic nuclear collisions.
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