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We consider a theory of gravity in which a symmetric two-index tensor in Minkowski spacetime

acquires a vacuum expectation value (vev) via a potential, thereby breaking Lorentz invariance sponta-

neously. When the vev breaks all the generators of the Lorentz group, six Goldstone modes emerge, two

linear combinations of which have properties that are identical to those of the graviton in general

relativity. Integrating out massive modes yields an infinite number of Lorentz-violating radiative-

correction terms in the low-energy effective Lagrangian. We examine a representative subset of these

terms and show that they modify the dispersion relation of the two propagating graviton modes such that

their phase velocity is direction dependent. If the phase velocity of the Goldstone gravitons is subluminal,

cosmic rays can emit gravi-Cherenkov radiation, and the detection of high-energy cosmic rays can be used

to constrain these radiative-correction terms. Test particles in the vicinity of the Goldstone gravitons

undergo longitudinal oscillations in addition to the usual transverse oscillations as predicted by general

relativity. Finally, we discuss the possibility of having vevs that do not break all six generators and

examine in detail one such theory.
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I. INTRODUCTION

The existence of massless particles is conventionally
explained by the requirement to preserve gauge symme-
tries. In the case of electromagnetism, the masslessness of
the photon is required so that local Uð1Þ gauge invariance
is maintained; in the case of general relativity, the mass-
lessness of the graviton has its origin in diffeomorphism
invariance.

In 1963, Bjorken proposed an alternative viewpoint: the
photon can be a Goldstone boson associated with the
spontaneous breaking of Lorentz invariance [1–5]. The
idea was subsequently generalized and applied to the
case of gravity by Phillips and others [6–10].

In ordinary Maxwell electrodynamics, gauge invariance
reduces the four components of the vector potential A�

down to the two propagating degrees of freedom of a
massless spin-1 particle. Gauge invariance forbids a poten-
tial VðA�Þ, which keeps the photon massless and prohibits

a longitudinal mode, and it also forbids kinetic terms such
as ð@�A�Þ2, which would allow a spin-0 mode to propa-

gate. In the Goldstone approach, there is no gauge invari-
ance, and the vector field acquires a vacuum expectation
value (vev) via a potential. Regardless of the form of the
vev, there are always three massless Goldstone excitations,
all of which would propagate for a generic choice of
kinetic term. To avoid the extra degree of freedom, we
can choose the Maxwell kinetic term, even though it is not
required by gauge invariance. Then two linear combina-
tions of the Goldstone modes have exactly the same prop-
erties as the photon in electromagnetism. The remaining
longitudinal mode is auxiliary, and does not propagate, so
that the theory is indistinguishable from electromagnetism

in the low-energy limit. (In the presence of Lorentz viola-
tion, Goldstone’s theorem no longer ensures one propagat-
ing mode for each broken-symmetry generator.) This
identification can be overturned by radiative corrections,
since there is no gauge invariance to protect the form of the
propagator.
The graviton case is similar, except that now it is a

symmetric two-index tensor that acquires a vev. A prop-
agating massless spin-2 particle has 2 degrees of freedom.
Because the Lorentz group has six generators, there are
sufficient degrees of freedom in the Goldstone bosons to
reproduce the graviton. However, we will see that this is
not automatic, as in the photon case; whether we get the
correct Goldstone modes to recover the transverse-
traceless oscillations of conventional gravitons will depend
on the choice of vev. The case where all six generators are
broken was examined by Kraus and Tomboulis in [8],
where they also discussed how such a modified theory of
gravity can possibly evade the cosmological constant
problem.
Recently, Kostelecky and Potting examined in detail the

scenario in which a symmetric two-index tensor acquires a
vev via a potential [11]. With a kinetic term quadratic in
derivatives and preserving diffeomorphism invariance,
they found that, just as in the photon case, two linear
combinations of the resulting six Goldstone bosons obey
the linearized Einstein’s equations in a special gauge
(which they termed the ‘‘cardinal’’ gauge), while the re-
maining four linear combinations do not propagate.
Together with four additional massive modes, they account
for the 10 degrees of freedom contained in the two-index
symmetric tensor. By requiring self-consistent coupling to
the energy-momentum tensor, they also demonstrated that
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the theory can be used to construct a nonlinear theory via a
bootstrap procedure (analogous to the way in which gen-
eral relativity is obtained from the linearized theory). We
expect the massive modes to be near the Planck scale,
outside the low-energy theory, so the nonlinear theory is
equivalent to general relativity with conventional coupling
to matter.

Kraus and Tomboulis [8] pointed out that these massive
modes nevertheless have a crucial effect: integrating them
out introduces an infinite number of radiative-correction
terms to the low-energy Lagrangian, which can change the
theory in important ways. Since these corrections are not
controlled by gauge invariance, in general they will modify
the dispersion relations of the Goldstone modes. At higher
order, therefore, the Goldstone bosons arising from
Lorentz violation can, in principle, be distinguished from
the graviton in linearized general relativity.

In this paper, we examine some of these correction terms
and study their effects on the properties of the Goldstone
bosons. (The terms we consider are those that are most
straightforward to analyze, but their impacts should be
generic.) We find that, for a general vev, these terms
modify the dispersion relations of the Goldstone modes
in such a way that their speed of propagation is anisotropic.
If the speed is subluminal in some directions, gravi-
Cherenkov radiation by cosmic rays becomes possible.
Observations of high-energy cosmic rays thus allow us to
constrain these higher-order radiative corrections. These
corrections also effect the polarization tensors of the con-
ventional gravitons, leading to longitudinal oscillations in
the motion of test particles, in addition to the conventional
transverseþ and� patterns predicted in general relativity.
This could lead to novel experimental tests of the theory,
although we do not know of any constraints on this phe-
nomenon from currently available data.

Another difference between Goldstone gravity and gen-
eral relativity is that the former predicts the existence of
other massless particles in addition to the two conventional
massless spin-2 polarizations. This is reminiscent of the
photon case, in which a longitudinal mode (in addition to
the two transverse modes) becomes dynamical in the pres-
ence of the radiative corrections induced by integrating out
the massive modes. Analogously, we expect that there
should be four longitudinal Goldstone bosons that can
become dynamical. The polarization tensors of these
modes can be written as a sum of eight symmetric tensors
constructed from k� and the vev. By imposing the four

cardinal gauge conditions, we can relate these eight coef-
ficients, leaving four independent parameters for the four
Goldstone modes.

In the next section, we briefly review the case of
Goldstone photons, including the effects of radiative cor-
rections as emphasized in [8]. We then carry out an analo-
gous analysis for gravitons, showing how radiative
corrections bring to live new massless modes. In Sec. IV

we concentrate on the two modes of the graviton, demon-
strating that they propagate anisotropically in the presence
of a generic vev and considering some experimental limits
on the corresponding parameters. In Sec. V we examine
models where the vev does not completely break the
Lorentz group, and gravitons are only partially constructed
from Goldstone bosons, or they originate from residual
diffeomorphism invariance. A series of Appendices de-
scribes the relationship between different patterns of sym-
metry breaking and the modes corresponding to gravitons.

II. GOLDSTONE ELECTROMAGNETISM

A. Photons as goldstone bosons

Before we delve into the graviton case, we first discuss
the scenario in which the photon arises as a Goldstone
boson of spontaneous Lorentz violation, commonly known
as the ‘‘Bumblebee’’ model [8,12]. We will see below that
the graviton case mirrors the vector case.
We consider the Lagrangian for a vector field A�,

L ¼ �1
4f��f

�� � Vð �A�; a�Þ; (1)

where A� ¼ �A� þ a� and f�� ¼ @�A� � @�A� ¼
@�a� � @�a� is the corresponding field-strength tensor.

The potential V gives A� a vev �A� (with @� �A� ¼ 0),

thereby violating Lorentz invariance spontaneously. For a
thorough analysis of the case for which �A� is spacelike,

see [8].
We consider here the usual Maxwell kinetic term, which

by itself preserves gauge invariance, as our aim is to have a
theory that reproduces electromagnetism at lowest order.
The stability of theories with more generic kinetic terms
was considered in [13].
The Goldstone boson fields can be constructed from the

vev by the action of spacetime-dependent infinitesimal
Lorentz transformations,

a� ¼ ���
�ðxÞ �A�: (2)

Here, ��� is an antisymmetric tensor of the form

0 �1 �2 �3

��1 0 �3 ��2
��2 ��3 0 �1
��3 �2 ��1 0

0
BBB@

1
CCCA; (3)

where �i ¼ ��ie
ik�x

�
are the infinitesimal rapidities corre-

sponding to boosts, and �i ¼ ��eik�x
�
are the infinitesimal

angles corresponding to rotations. Note that the three
Goldstone modes a� are orthogonal to the vev �A�. The

remaining length-changing mode (parallel to �A�) is

massive.
We can consider vevs �A� that are timelike or spacelike.

When it is timelike, without loss of generality we can boost
to a frame in which only A0 � 0. This breaks the original
SOð3; 1Þ to SOð3Þ, preserving rotational invariance. From
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Eq. (2), the three Goldstone bosons come from the three
broken boost generators, and are given by

a� ¼ ���0 (4)

¼
0
�1

�2

�3

0
BBB@

1
CCCA: (5)

Each choice of the vev corresponds to a particular gauge
in electromagnetism. Having a timelike vev is equivalent to
the Coulomb gauge, in which we set the scalar potential to
zero (A0 ¼ 0). That is, the physics of the theory is com-
pletely equivalent to that of free Maxwell electrodynamics,
but with a particular gauge condition imposed. This gauge
choice is compatible with the transverse condition
(k�A

� ¼ 0) that we usually impose in electromagnetism.

Together these are consistent with the Lorenz gauge, mak-
ing a timelike vev a natural gauge choice to describe a free
photon. For example, if we want to describe a photon
moving in the xi direction, we can just set Ai to zero.

If instead �A� is spacelike, we can rotate axes such that

only �A3 � 0. This reduces the SOð3; 1Þ symmetry that we
begin with to SOð2; 1Þ, resulting in three Goldstone modes
(one boost and two rotations):

a� ¼ ���3 (6)

¼
�3

�2
��1
0

0
BBB@

1
CCCA: (7)

Having a spacelike vev is equivalent to imposing the
axial gauge ( ~s � ~a ¼ 0), where ~s is a unit spatial vector. In
order to describe a photon that propagates in a direction
orthogonal to �A�, a� is necessarily unbounded somewhere

at spatial infinity. There is thus a question whether the
Lorentz-violating theory, as an effective field theory, is
capable of describing a photon in the axial gauge. Since
the field value can be large, we should, in the spirit of
effective field theory, retain higher-order kinetic terms in
the Lagrangian. We will not pursue this issue in this paper.

B. Radiative corrections and dispersion relations of the
goldstone modes

As we have seen, the vev �A� always leads to three

Goldstone bosons, which can be classified into two trans-
verse modes and one longitudinal mode. The transverse
modes satisfy the condition k�a� ¼ 0. With the kinetic

term in (1), they satisfy the dispersion relation k�k� ¼ 0,

and thus propagate isotropically at the speed of light.
Hence, they have the right properties to be identified as
the photon.

The remaining longitudinal degree of freedom is or-
thogonal to the two transverse modes. This allows us to
specify its polarization as

�
ðlongitudinalÞ
� ¼ k� � ð �A�k�Þ

A�A�

�A�: (8)

At lowest order, this longitudinal mode does not propa-
gate, and corresponds to the pure-gauge mode in
electromagnetism.
As we will see later, this way of decomposing the

Goldstone modes into transverse and longitudinal degrees
of freedom will be highly similar in the graviton case.
Expressing the longitudinal mode in the basis k� and �A�

makes it automatically orthogonal to the transverse modes.
As was pointed out in [8], we expect that there would be

higher-order radiative-correction terms induced in the low-
energy effective Lagrangian as we integrate out the mas-
sive fluctuations of A�. These terms will in general modify

the dispersion relations of the Goldstone bosons. If we
restrict our attention to only two derivatives, there are
seven such terms, which are listed in [8] and which take
the form

f1ðA2Þ@�A�@
�A�

f2ðA2Þ@�A�@
�A�

f3ðA2ÞA�A�@�A�@�A
�

f4ðA2ÞA�A�@�A�@�A
�

f5ðA2ÞA�A�@�A�@
�A�

f6ðA2ÞA�A�A�@�@�A�

f7ðA2ÞA�A�A�A�@�A�@�A�;

(9)

where fiðA2Þ are scalar functions of A�A�. This list ex-

hausts all possible such terms, since A�A� is a constant.

The situation will be different in the two-index case, where
infinitely many such terms can be generated in the effective
Lagrangian, as we will discuss later.
If we assume that �A�a

� is small, the first three terms in

(9) dominate over the rest. They modify the dispersion
relations of the two transverse Goldstone bosons to

ð1þ d1Þk�k� þ d2ð �A�k�Þ2 ¼ 0; (10)

where d1 and d2 are undetermined coefficients and are
presumably small. The additional term implies that the
phase velocity of the two transverse modes is anisotropic.
Meanwhile, in the presence of these radiative correc-

tions, the longitudinal mode becomes dynamical and has
the dispersion relation

k�k� þ d3ð �A�k
�Þ2 ¼ 0; (11)

where d3 is an undetermined coefficient.
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III. GOLDSTONE GRAVITY

A. Gravitons as goldstone bosons

The analysis of spontaneous Lorentz violation via a
symmetric two-index tensor is in many ways similar to
the vector case that we previously discussed. In particular,
we will focus on a model called ‘‘cardinal gravity,’’ intro-
duced recently by Kostelecky and Potting [11]. They
showed that when a two-index symmetric tensor acquires
a vev which breaks all six generators of the Lorentz group
in Minkowski spacetime, two linear combinations of the
resulting Goldstone modes have properties that are identi-
cal to those of the graviton in a special (cardinal) gauge in
linearized general relativity. We have included our own
version of this argument in Appendix B.

As in the photon case, higher-order radiative-correction
terms resembling (9) will generically appear in the low-
energy effective Lagrangian as we integrate out the four
massive modes to extract their contribution to the low-
energy physics. In the two-index case, there are infinitely
many such terms. In this paper, we will focus on a repre-
sentative subset of these terms, and examine their resulting
Lorentz-violating effects on the Goldstone modes. For
example, in the presence of these higher-order terms, two
linear combinations of the six Goldstone modes that are to
be identified as the graviton will now propagate at different
phase velocities in different directions. In addition, the four
remaining linear combinations that are originally auxiliary
will now become dynamical, just like the longitudinal
mode in the vector case.

We begin with the Lagrangian

L ¼ 1
2½ð@� ~h��Þð@� ~hÞ � ð@� ~h��Þð@� ~h��Þ
þ 1

2	
��ð@� ~h��Þð@� ~h��Þ � 1

2	
��ð@� ~hÞð@� ~hÞ�

þ ðradiative correctionsÞ � Vð~h��
~h��Þ; (12)

where ~h�� is a symmetric two-index tensor field defined on
a spacetime with Minkowski metric 	��. In analogy to the

electromagnetic case, we have chosen the linearized
Einstein-Hilbert kinetic term, which by itself preserves

diffeomorphism invariance (~h�� ! ~h�� þ @ð�
�Þ, for

some vector 
�).

As in the vector case, the field ~h�� acquires a vev H��

via the potential V. The Goldstone modes that result are
given by acting spacetime-dependent infinitesimal Lorentz
transformations on this vev [12,14]:

h�� ¼ ���
�H�� ���

�H��; (13)

where ~h�� ¼ H�� þ h�� and ��� is as defined in (3).

Unless stated otherwise, from now on we assume that
H�� breaks all six generators of the Lorentz group, and

thus gives rise to six potential Goldstone bosons.
Note that in the form of (13), the Goldstone bosons

automatically fulfill four conditions, dubbed cardinal by
Kostelecky and Potting in [11]:

	����� ¼ 0 (14)

H����� ¼ 0 (15)

H�
�H

����� ¼ 0 (16)

H��H��H
����� ¼ 0; (17)

where h�� ¼ ���e
ik�x

�
. Since we could diagonalize H��

via an appropriate orthogonal transformation, there can be
at most four such independent constraints, one for each
eigenvalue. Contracting ��� with terms of higher order in

H�� (e.g. H��H��H
��H��) also yields zero, but the re-

sulting constraints are not independent.
The cardinal conditions are very similar to that ( �A�a

� ¼
0) in the vector case, but now there are four orthogonality
conditions instead of one. They can be viewed as ‘‘direc-
tions’’ along which the massive modes reside (just as the
length-changing mode of the vector is parallel to the vev).
There are thus in general four massive degrees of freedom
in the theory.
Kostelecky and Potting demonstrated that the cardinal

gauge is attainable for generic k� in general relativity. In
Appendix B we derive necessary and sufficient conditions
under which the cardinal gauge is a valid gauge choice.
Starting with the ten independent components in h��,

imposing the four cardinal gauge conditions reduces that to
six, which is exactly the right number to accommodate the
six Goldstone modes. The situation becomes more com-
plicated when the vev does not break all six generators. In
that case, there are fewer Goldstone bosons, as well as
fewer gauge conditions. However, there might also be
residual diffeomorphism invariance. The theory can con-
tain massless excitations that originate from spontaneous
Lorentz violation and/or diffeomorphism invariance.
As in the photon case, it is most convenient to decom-

pose the six Goldstone modes into two linear combinations
that are transverse, and four other orthogonal linear com-
binations. The two transverse modes obey the linearized
Einstein’s equations and have the dispersion relation

k�k� ¼ 0; (18)

corresponding to massless particles propagating isotropi-
cally at the speed of light. These can therefore be identified
as the graviton. The remaining four modes are auxiliary
and do not propagate. At this order, the theory is thus
equivalent to linearized general relativity in the cardinal
gauge, if we treat the massive modes as absent at low
energies.

B. Radiative corrections and dispersion relations

Corrections to the effective field theory arise from in-
tegrating out the massive modes. As in the photon case, the
resulting radiative-correction terms induce additional
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Lorentz-violating effects when ~h�� acquires a vev. As

before, we restrict our attention to only terms that are
quadratic in derivatives of h��. We will demonstrate that

these terms will modify the dispersion relations of the two
transverse linear combinations that correspond to the
graviton. We also argue that, just as the longitudinal
mode in the vector case, the four remaining Goldstone
modes become dynamical.

There are four types of kinetic terms that are indepen-
dent of H��. The terms and their corresponding contribu-

tions to the equation of motion are as follows:

@�h��@
�h�� ! 2hh�� (19)

@�h
��@�h ! @�@�hþ 	��@�@�h

�� (20)

@�h
��@�h

�
� ! 2@ð�j@�h�j�Þ (21)

@�h@
�h ! 2	��hh: (22)

Each of these terms already appears in the Lagrangian (12),
with specific numerical coefficients. The corrections will
change the value of these coefficients, generically leading
to violations of diffeomorphism invariance.

At linear order in H�� we have the following possible

kinetic terms, and their contributions to the equation of
motion:

H��@�h��@�h
�� ! 2H��@�@�h�� (23)

H��@�h��@
�h�� ! 2Hð�j

�@j�Þ@�h�� (24)

H��@�h��@�h
�� ! H��@

�@�h�� þH��@�@�h��

(25)

H�
�@�h��@

�h�� ! 2Hð�j
�hh�j�Þ (26)

H��@�h��@
�h ! H��hhþ ðH��hh��Þ	�� (27)

H��@�h��@�h
�� ! Hð�j

�@�@
�h�j�Þ þH��@ð�j@�h�j�Þ

(28)

H��@�h��@
�h ! Hð�j

�@�@j�Þhþ ðH��@�@�h��Þ	��

(29)

H��@�h@�h ! 2H��@�@�h	��: (30)

Unlike the photon case, there are infinitely many radiative-
correction terms that can be generated at higher orders in
the vev. Assuming thatH�� is in general small compared to

the background metric, we will focus only on those that
either do not depend on, or those linear in, H��. We will

later discuss a possible experimental test to constrain H��.

We first consider the four auxiliary modes. In the form of
(13), they obey the four cardinal gauge conditions (14).
They are also orthogonal to the two transverse degrees of
freedom that correspond to the graviton,

�ðauxÞ�� ���
ðtransÞ ¼ 0: (31)

Together, these are six conditions that reduce the ten

independent components of �ðauxÞ�� to 4 degrees of freedom.
In analogy to (8) in the photon case, we can express these
four modes in terms of the wave vector and the vev as

�ðauxÞ�� ¼ b1	�� þ b2H�� þ b3H�
�H��

þ b4H��H
��H�� þ b5k�k� þ b6Hð�j�k�kj�Þ

þ b7Hð�j�H��k�kj�Þ þ b8Hð�j�H��H��k
�kj�Þ;
(32)

where the eight coefficients bi are constrained by imposing
the four cardinal gauge conditions (14)–(17). This leaves
four independent coefficients for the four modes.

The basis polarization tensors �ðauxÞ�� are chosen so that
the conditions (31) are automatically satisfied. At lowest
order, these four modes do not propagate (as is demon-
strated in Appendix B). However, in the presence of the
radiative-correction terms, we expect that they become
dynamical, similar to the longitudinal mode in the vector
case. There will now be a contribution from (19), which
adds the term k�k� to their dispersion relation. We do not

pursue the calculation of the dispersion relations of these
auxiliary modes in this paper. The method to do so can be
found in [8], in which the dispersion of the longitudinal
mode in the photon case is computed.

IV. ANISOTROPIC PROPAGATION

Now we consider the effects of the radiative-correction
terms on the two transverse propagating linear combina-
tions, which will be the main focus of this paper. We will
not be considering all of the terms, however, as the task of
diagonalizing the resulting equations of motion is highly
nontrivial. Rather, we focus on a number of representative
terms and see what are some of the Lorentz-violating
effects typical in this theory. This will provide a guide on
how we can experimentally differentiate the theory from
general relativity, given that the two theories are identical
at lowest order.

A. Dispersion relations

Of the four terms (19)–(22), only the first term modifies
the dispersion relation, which becomes

ð1þ c1Þk�k� ¼ 0; (33)

where c1 is some undetermined constant. In the absence of
other terms in the dispersion relation, this correction is
immaterial. We can divide by 1þ c1 and obtain the usual
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k�k� ¼ 0, so excitations propagate isotropically along the

light cones.
If we also incorporate the radiative corrections that are

linear in H��, the equations of motion are still easily

diagonalizable except for Eqs. (26) and (28). We will
thus focus on the effects of the other six terms. The
polarization tensors of the transverse Goldstone modes
remain unchanged, but their dispersion relations are now
modified:

k�k
� � c2H

��k�k� ¼ 0; (34)

where c2 is some undetermined coefficient that is expected
to be small.

As in (10), the effect of the additional term in the
dispersion relation is to make the phase velocity of the
transverse modes become anisotropic for a generic vev.
The phase velocity is given by the ratio of the frequency !
and magnitude of the momentum k,

v ¼ !

j ~kj ¼ 1� c2
2
n�H

��n�; (35)

where n� ¼ ð1; ~nÞ and ~n ¼ ~k=j ~kj.
Note that in the case where H�� can be written as t�t�,

where t� is timelike, we can always boost to a frame in
which the speed of the graviton is isotropic, and the dis-
persion relation has the form

!2 þ v2 ~k � ~k ¼ 0; (36)

where the propagation speed is different from the speed of
light. H�� ¼ t�t� thus defines a preferred rest frame, in

which t� ¼ ð1; 0; 0; 0Þ.

B. Motion of test particles

We now want to investigate how the modified dispersion
affects the motion of test particles in the presence of the
transverse Goldstone modes. Consider nearby particles
with separation vector S�. The geodesic deviation equation
of the test particles is

D2

d�2
S� ¼ R�

���U
�U�S�; (37)

where R���� is the Riemann tensor, � is the proper time,

and U� is the four velocity of the test particles. The
notation D

d� ¼ dx�

d� r� denotes the directional covariant

derivative.
To first order, we can set U� ¼ ð1; 0; 0; 0Þ. Likewise, we

can replace the Riemann tensor by its linearized version
and the proper time � by t. Equation (37) then becomes

@2

@t2
S� ¼ Rð1Þ�

00�S
�; (38)

where

Rð1Þ
���� ¼ 1

2ð@�@�h�� þ @�@�h�� � @�@�h�� � @�@�h��Þ:
(39)

For simplicity, we assume that the transverse modes
propagate in the z direction, so that k� ¼ ð!; 0; 0; kÞ.
Note that ! � k, since the dispersion is no longer k�k� ¼
0. As is shown in Appendix B (B14), the polarization
tensor of the two transverse modes is

p�� ¼
p00 p10 p20 �p00

p10 hþ h� �p10

p20 h� �hþ �p20

�p00 �p10 �p20 p00

0
BBB@

1
CCCA; (40)

where h�� ¼ p��e
ik�x

�
. The constants p00, p10, and p20

can be determined by imposing the cardinal gauge con-
ditions.1 Because we do not start from a diffeomorphism-
invariant formulation, we do not have the gauge freedom to
set these coefficients to zero.
In Fourier space, Eq. (38) becomes

!2S� ¼ 1
2ð!2p�

� þ k�k
�p00 þ k�!p�

0

þ!k�p0�ÞS�ð0Þ; (41)

where S�ðx�Þ ¼ S�ð0Þ þ S�ðx�Þ, and S�ð0Þ ¼ S�ðt ¼
0; ~x ¼ ~0Þ is the initial position of the test particle.
With h�� / eik�x

�
, the zeroth component of Eq. (41)

reads

!2S0 ¼ 1
2ð!2p0

� þ k�k
0p00 þ k�!p0

0 þ!k0p0�ÞS�ð0Þ
¼ 0; (42)

which is identically zero. There is no deflection in the time
direction, as expected.
For � ¼ 1, we have

!2S1 ¼ 1
2ð!2hþS1ð0Þ þ!2h�S2ð0Þ
þ ð�!2 þ k!Þp01S

3ð0ÞÞ: (43)

If the dispersion relation is simply k�k� ¼ 0, the last term

is zero. However, with the modification cH��k�k� in the

dispersion, ! � k, and

S1 ¼ 1

2

�
hþS1ð0Þ þ h�S2ð0Þ � c2

2
ðH33 þH00

þ 2H03Þp01S
3ð0Þ

�
: (44)

1In Appendix B, we give an explicit formula for p00, p10, and
p20 in terms of components ofH��. The constants as they appear
in (40) are of the form kð�
j�Þ. They are therefore just gauge
modes, so they are not physically observable if the theory is
diffeomorphism invariant (as in general relativity). In Goldstone
gravity, however, diffeomorphism invariance is broken, so the
cardinal gauge mode components p01 and p02 in (44) and (45)
can actually effect the motion of test particles, once radiative
corrections are included.
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Following the same procedure, the � ¼ 2 equation
reads

S2 ¼ 1

2

�
h�S1ð0Þ � hþS2ð0Þ

� c2
2
ðH33 þH00 þ 2H03Þp02S

3ð0Þ
�
: (45)

The first two terms in (44) and (45) correspond to the usual
þ and � polarizations. However, both S1 and S2 are
now also functions of the longitudinal separation S3ð0Þ.

Similar to Eq. (42), the � ¼ 3 equation is normally
identically zero. However, because of the modified disper-
sion, we have

S3 ¼ � c2
2
ðH00 þH33 þ 2H03Þðp01S

1ð0Þ þ p02S
2ð0ÞÞ:
(46)

Thus, the test particles will also undergo longitudinal
oscillations. Notice that the amplitude of the oscillation
is a function of the transverse position of the test particles.
Hence, the motion is not uniform along z.

Similar to the graviton in general relativity, the two
transverse modes have two polarizations (conveniently
labeled þ and � here). The novel feature is that now
both polarizations are accompanied by transverse oscilla-
tions that depend on longitudinal separation, and longitu-
dinal oscillations that depend on transverse separation.

C. Experimental constraints

If the speed of gravity vgraviton is less than the speed of

light, ultra-high-energy cosmic rays will be able to emit
‘‘gravi-Cherenkov radiation.’’ This is analogous to the way
in which a light source emits Cherenkov radiation in a
medium. The fact that we observe ultra-high-energy cos-
mic rays puts a limit on the effectiveness of gravi-
Cherenkov radiation, thereby placing a stringent lower
bound on the propagation speed of the Goldstone modes
(if they are to be interpreted as the graviton). We will use
this to constrain the magnitude of the correction term
c2H

��k�k� in the graviton dispersion relation (34).

In [15], it was found that, if gravi-Cherenkov radiation
occurs, the maximum traveling time of a cosmic ray is

tmax ¼ M2
Pl

ðn� 1Þ2p3
; (47)

where p is the final momentum (when detected on Earth)
and n ¼ vcosmic=vgraviton is the refractive index.

Using estimates in [15], this translates to

n� 1 � c2
2
n�H

��n� < 2� 10�15: (48)

The speed of the Goldstone graviton can thus only be very
slightly less than the speed of light.

D. Corrections to the energy-momentum tensor

The correction to the dispersion relation also has an
effect on the energy-momentum tensor of the transverse
Goldstone modes.
We define the energy-momentum tensor to be

t�� ¼ � 1

8�G

�
Rð2Þ
��½hð1Þ� � 1

2
	��Rð2Þ

��½hð1Þ�	��

�
; (49)

where RðiÞ
��½hðjÞ� is the parts of the expanded Ricci tensor

that are ith order in the metric perturbation, while hj is the

jth-order expansion of the field h��. Hence, R
ðiÞ
��½hðjÞ� is of

order hði�jÞ.
As t�� is not diffeomorphism invariant, we should av-

erage over several wavelengths to obtain a reasonable
measure of the energy momentum. Imposing the cardinal
conditions obeyed by the transverse Goldstone modes,
Eq. (49) simplifies to

tð0Þ�� ¼ 1

64�G
k�k��

ðtransÞ
�� ���ðtransÞ: (50)

With the modification to the dispersion relation of the
gravitons, k� changes as k� ! k� þ c2

2 H��k
� up to first

order. The energy-momentum tensor (49) becomes

t�� ¼ tð0Þ�� þ c2�

16G
ðh2þ þ h2�ÞH��k

�H��k
�: (51)

The flux of energy and momentum carried by the trans-
verse Goldstone modes are therefore anisotropic, depend-
ing on H��. This makes sense, as the modes propagate at

different phase velocities in different directions.
It has been estimated that the energy flux due to a typical

supernova explosion at cosmological distances is approxi-
mately 10�19 erg=cm2=s. Given the experimental con-
straint from gravi-Cherenkov radiation on the size of
c2H��, the corrections are undetectable with current

technologies.

V. VEVS THAT DO NOT BREAK ALL SIX
GENERATORS

A. Gravitons are not necessarily goldstone

For vector fields, an expectation value along with the
Maxwell kinetic term naturally leads to photonlike
Goldstone modes, regardless of the form of the vev. We
start out with 4 degrees of freedom in the vector A�. The

direction parallel to the vev is a massive mode, while the
three orthogonal directions are the massless Goldstone
excitations. We can further form two linear combinations
of the Goldstone modes, such that they are transverse and
obey the dispersion relation k�k� ¼ 0. The longitudinal

mode does not propagate.
A similar story holds in the graviton case, as long as all

six generators of the Lorentz group are broken, giving rise
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to six Goldstone bosons. (See Table I for a comparison with
the photon case.) In this case, diffeomorphism invariance is
also completely broken, and the counting proceeds analo-
gously. We start with 10 degrees of freedom in h��. The

four cardinal gauge conditions define four directions along
which the massive modes live. This leaves 6 degrees of
freedom for the six Goldstone bosons. Imposing the four
transverse conditions k�h�� ¼ 0 leaves us with two linear

combinations that obey the dispersion relation k�k� ¼ 0.

The remaining four longitudinal modes are auxiliary and
do not propagate.

This particularly straightforward case is the one that we
have been focusing on so far. In this section, we will
explore what happens when not all six generators are
broken by the vev. In this case, there can be residual
diffeomorphism invariance in the theory. The Lorentz-
violating theory might still contain two massless modes
to be interpreted as the graviton, which now originate from
diffeomorphism invariance rather than Lorentz violation
(so they are more like the gravitons in general relativity).
This can never happen in the photon case, because the vev
always completely breaks gauge invariance.

B. An example: Three goldstone bosons only

We now wish to examine in detail a theory whose vev
gives rise to three Goldstone modes only. Consider the
Lagrangian

L ¼ 1
2½ð@� ~h��Þð@� ~hÞ � ð@� ~h��Þð@� ~h��Þ
þ 1

2	
��ð@� ~h��Þð@� ~h��Þ � 1

2	
��ð@� ~hÞð@� ~hÞ�

þ �ð~h�� ~h�� �m2Þ; (52)

where, for simplicity, we choose the potential to be a
Lagrange multiplier instead of a smooth potential. This

fixes the length of ~h�� ¼ H�� þ h��. The corresponding

equations of motion are

Q����G
�� ¼ 0; (53)

where

G�� ¼ 1
2ð@�@�h�� þ @�@�h

�
� � @�@�h�hh��

� 	��@�@�h
�� þ 	��hhÞ (54)

is the usual linearized Einstein tensor, and Q���� ¼
	��	�� � 1

m2 H��H�� is a projection operator. Thus,

(53) is essentially Einstein’s equations projected onto the
hypersurface orthogonal to H��. Note that we do not
consider radiative corrections in this section.
Since the equations are linear, it is more convenient to

switch to Fourier space (@� ! ik�), turning the differen-

tial equations into algebraic ones, which can then be writ-
ten as a 9� 9matrix equation. Assume thatm2 > 0 in (52),
one possible vev that minimizes the potential is

H�� ¼
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA; (55)

which leads to three Goldstone modes (three boosts):

hðGoldstoneÞ�� ¼
0 ��1 ��2 ��3

��1 0 0 0
��2 0 0 0
��3 0 0 0

0
BBB@

1
CCCA: (56)

As we demonstrate in Appendix B (where we give the
most general polarization tensor of a graviton propagating
in the z direction), it is impossible for a graviton to have all
vanishing spatial components. Thus, no linear combina-
tions of these three Goldstone modes in (56) can possibly
behave like the graviton.
Nonetheless, the theory does contain two massless de-

grees of freedom, as we now demonstrate by directly
solving the equations of motion. The first-order fixed-
norm constraint H��h

�� ¼ 0 (essentially the second car-

dinal gauge condition) implies that h00 ¼ 0. The linearized
equations of motion in momentum space are then

TABLE I. Comparison between Goldstone photons and gravitons.

Photon Graviton

Number of Goldstone modes 3 6

Equivalent gauge conditions Temporal or axial Cardinal

Number of gauge conditions/massive modes 1 4

Number of transverse modes 2 2

Number of longitudinal modes 1 4

Kinetic term Maxwell Einstein-Hilbert
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k22 þ k23 �k1k2 �k1k3 0 k0k2 k0k3 �2k0k1 0 �2k0k1

�k1k2 k21 þ k23 �k2k3 �2k0k2 k0k1 0 0 k0k3 �2k0k2

�k1k3 �k2k3 k21 þ k22 �2k0k3 0 k0k1 �2k0k3 k0k2 0

0 �2k0k2 �2k0k3 0 0 0 2ð�k20 þ k23Þ �2k2k3 2ð�k20 þ k22Þ
k0k2 k0k1 0 0 k20 � k23 k2k3 0 k1k3 �2k1k2

k0k3 0 k0k1 0 k2k3 k20 � k21 �2k1k3 k1k2 0

�2k0k1 0 �2k0k3 2ð�k20 þ k23Þ 0 �2k1k3 0 0 2ð�k20 þ k21Þ
0 k0k3 k0k2 �2k2k3 k1k3 k1k2 0 k20 � k21 0

�2k0k1 �2k0k2 0 2ð�k20 þ k22Þ �2k1k2 0 2ð�k20 þ k21Þ 0 0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

h01

h02

h03

h11=2

h12

h13

h22=2

h23

h33=2

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

¼ 0:

(57)

Without loss of generality (since rotational invariance is
preserved), we align axes such that k� ¼ ð!; 0; 0; kÞ. The
equations of motion (57) have three zero eigenvalues,
which is consistent with the fact that there are three resid-
ual gauge degrees of freedom. Meanwhile, there are two
eigenvalues !2 � k2, and setting them to zero yields the
dispersion relation �!2 þ k2 ¼ k�k� ¼ 0. The corre-
sponding eigenvectors have polarization tensors

p�� ¼
0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

0
BBB@

1
CCCA; (58)

and

p�� ¼
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

0
BBB@

1
CCCA: (59)

These are exactly the þ and � polarizations of a graviton
propagating in the z direction in general relativity. Thus,
the theory does contain two massless gravitons, but they do
not arise as Goldstone bosons of spontaneous Lorentz
violation.

The origin of these massless excitations is more appro-
priately associated with residual diffeomorphism invari-
ance. With the chosen ground state (55), the Lagrangian
remains invariant under the transformation h�� ! h�� þ
@�
� þ @�
� for three independent functions 
i (corre-

sponding to the three zero eigenvalues of the equations of
motion). This guarantees the lack of mass terms for the
components hþ and h� in the Lagrangian.

Furthermore, the simple vev (55) gives only two, rather
than four, cardinal gauge conditions. There are thus fewer
massive directions in spacetime. Of the four conditions in
(14), only two are independent. Since H�� / H��H

�
� /

H��H
��H��, the last two gauge conditions in (14) are

equivalent to the second. There are thus two, rather than
four, massive modes.

Let us compare this theory with the one that we have
been considering in earlier sections. Before, the vev broke
both Lorentz invariance and diffeomorphism completely.
There are four cardinal gauge conditions, which implies
that there are four massive modes. The remaining 6 degrees
of freedom correspond to the six broken generators of the
Lorentz group. Two linear combinations of the six propa-
gate, while the remaining four are auxiliary. Together, they
add up to the 10 degrees of freedom in h��.

In contrast, the theory that we consider in this section
has a vev that breaks diffeomorphism invariance only
partially. There are three remaining pure-gauge modes.
Because the vev preserves rotational invariance, only the
three boost generators are broken, resulting in three
Goldstone modes; none of them propagates, however.
There are also only two massive modes, as the vev gives
rise to only two independent cardinal gauge conditions.
Together with the remaining two massless excitations that
are identical to the graviton in general relativity, they
account for the 10 degrees of freedom that we started
with in h��.

The possibilities are thus far richer in the graviton case
than the photon case. In the former, there are three possi-
bilities: the vev can break three, five, or six generators of
the Lorentz group. (We only discuss the first and the last
case in this paper.) When there are fewer than six
Goldstone bosons, it is possible that the theory has residual
diffeomorphism invariance, which can also result in mass-
less excitations with the right properties to be interpreted as
the graviton.

VI. CONCLUSIONS

Recently, Kostelecky and Potting [11] examined in de-
tail a scenario in which a symmetric two-index tensor
acquires a vev via a potential. Two linear combinations
of the six resulting Goldstone modes are dynamical and
have properties identical to those of the graviton in general
relativity. Because they originate in spontaneous symmetry
breaking, this would provide a natural explanation for why

LORENTZ VIOLATION IN GOLDSTONE GRAVITY PHYSICAL REVIEW D 80, 025020 (2009)

025020-9



the graviton is massless, without the need to invoke gauge
invariance.

It was pointed out in [8] that, if we view the theory as an
effective field theory, we should integrate out the massive
modes, which would generate an infinite number of
radiative-correction terms in the low-energy effective
Lagrangian. These terms are covariant in form, but involve
the vevH��, thereby inducing additional Lorentz-violating

effects. In this paper, we examined the phenomenological
properties of a subset of these radiative-correction terms.
In particular, we showed that they modify the dispersion
relation of the two dynamical degrees of freedom, which
becomes

k�k
� � c2H

��k�k� ¼ 0: (60)

This implies that the phase velocity of the dynamical
modes is in general anisotropic. Another interesting con-
sequence of the modified dispersion (60) is that test parti-
cles in their vicinity would be deflected differently from
those near the graviton in general relativity. They would
undergo both transverse and longitudinal oscillations that
depend on the longitudinal and transverse separation,
respectively.

We also investigated the relationship between different
forms of the vev H�� and the corresponding Goldstone

modes. Unlike in the photon case, for gravity there exist
vevs for which there are not enough Goldstone modes to
construct the conventional graviton—the gravitons may
exist, but not as broken-symmetry generators acting on
the vev.

Our analysis of the radiative-correction terms is by no
means complete. For one thing, we have left out their
effects on the four remaining Goldstone modes that be-
come dynamical when they are present. Also, we only
discussed terms that are linear in H�� and ignored

higher-order corrections, which we believe to be subdomi-
nant, since Lorentz invariance has been verified to great
accuracy at low energies. However, it is conceivable that
the higher-order corrections would lead to interesting ef-
fects in addition to those that are discussed in this paper, so
they certainly merit further investigation. Finally, it would
also be worthwhile to check whether the presence of the
radiative corrections destabilize the theory.
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APPENDIX A: POLARIZATIONS OF GOLDSTONE
MODES

We enumerate here the Goldstone modes that arise when
a symmetric two-index tensor acquires various forms of
vacuum expectation values. Linearity implies that the
Goldstone mode corresponding to a general vev is a super-
position of these modes.

1. Time-time: �� ¼ 00

Let us first consider the case where only the 00 compo-
nent of H�� does not vanish. In that case, the three boost

generators are broken, and we therefore have three
Goldstone modes:

H�� ¼
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA ! h��

¼
0 ��1 ��2 ��3

��1 0 0 0
��2 0 0 0
��3 0 0 0

0
BBB@

1
CCCA: (A1)

Obviously, this choice of the vacuum expectation value
preserves rotational invariance. Hence, none of the �
modes is excited.

2. Time-space: �� ¼ 0i or i0

Now consider the case where one of the 0i components
is nonzero. This breaks all three boosts, but only two of the
three rotation generators. There are thus five Goldstone
modes:

H�� ¼
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA ! h��

¼
�2�1 0 �3 ��2
0 �2�1 ��2 ��3

�3 ��2 0 0
��2 ��3 0 0

0
BBB@

1
CCCA: (A2)

H�� ¼
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0
BBB@

1
CCCA ! h��

¼
�2�2 ��3 0 �1
��3 0 ��1 0
0 ��1 �2�2 ��3

�1 0 ��3 0

0
BBB@

1
CCCA: (A3)
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H�� ¼
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0
BBB@

1
CCCA ! h��

¼
�2�3 �2 ��1 0
�2 0 0 ��1

��1 0 0 ��2

0 ��1 ��2 �2�3

0
BBB@

1
CCCA: (A4)

3. Diagonal space-space: �� ¼ ii

Now consider the case where one of the diagonal spatial
elements does not vanish. This breaks one of the three
boosts, and two of the rotations:

H�� ¼
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA ! h��

¼
0 ��1 0 0

��1 0 �3 ��2
0 �3 0 0
0 ��2 0 0

0
BBB@

1
CCCA: (A5)

H�� ¼
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0
BBB@

1
CCCA ! h��

¼
0 0 ��2 0
0 0 ��3 0

��2 ��3 0 �1
0 0 �1 0

0
BBB@

1
CCCA: (A6)

H�� ¼
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0
BBB@

1
CCCA ! h��

¼
0 0 0 ��3

0 0 0 �2
0 0 0 ��1

��3 �2 ��1 0

0
BBB@

1
CCCA: (A7)

4. Off-diagonal space-space: �� ¼ ij

Finally, we consider the case in which one of the off-
diagonal spatial components is nonzero. This breaks two
boosts and all rotations:

H�� ¼
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

0
BBB@

1
CCCA ! h��

¼
0 ��2 ��1 0

��2 �2�3 0 �1
��1 0 2�3 ��2
0 �1 ��2 0

0
BBB@

1
CCCA: (A8)

H�� ¼
0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

0
BBB@

1
CCCA ! h��

¼
0 ��3 0 ��1

��3 2�2 ��1 0
0 ��1 0 �3

��1 0 �3 �2�2

0
BBB@

1
CCCA: (A9)

H�� ¼
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

0
BBB@

1
CCCA ! h��

¼
0 0 ��3 ��2

0 0 �2 ��3
��3 �2 �2�1 0
��2 ��3 0 2�1

0
BBB@

1
CCCA: (A10)

Notice that not all ten modes are independent. We can,
for example, perform a rotation to diagonalize the three
modes in (A4), so that they become a linear combination of
the modes in (A3).

APPENDIX B: PROOF THAT GRAVITONS CAN BE
GOLDSTONE BOSONS

We present here a proof that when all six generators are
broken, two linear combinations of the resulting six
Goldstone bosons have properties that agree with those
of the graviton at lowest order.2 The propagating
Goldstone modes obey the dispersion relation k�k� ¼ 0,

the transverse conditions k�h�� ¼ 0, and the four cardinal

gauge conditions.
First consider the most general vacuum expectation

value

H�� ¼
d e f g
e a h i
f h b j
g i j c

0
BBB@

1
CCCA; (B1)

2During the preparation of this manuscript, we became aware
of the recent work by Kostelecky and Potting [11], in which they
gave a proof that a version of this Lorentz-violating theory of
gravity is identical to linearized gravity in the cardinal gauge.
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where the ten constants a, b, c, d, e, f, g, h, i, and j are
presumably determined by the potential V in (12). This
choice of the vev might seem unnecessarily complicated
(as it can be simplified by boosts and rotations). However,
as will be shown below, Eq. (B1) will simplify our analysis
later on.

This vacuum expectation value gives the following
Goldstone excitations (see Appendix A):

h00 ¼ �2e�1 � 2f�2 � 2g�3 (B2)

h01 ¼ �ðaþ dÞ�1 � h�2 � i�3 þ g�2 � f�3 (B3)

h02 ¼ �h�1 � ðbþ dÞ�2 � j�3 � g�1 þ e�3 (B4)

h03 ¼ �i�1 � j�2 � ðcþ dÞ�3 þ f�1 � e�2 (B5)

h11 ¼ �2e�1 þ 2i�2 � 2h�3 (B6)

h22 ¼ �2f�2 � 2j�1 þ 2h�3 (B7)

h33 ¼ �2g�3 þ 2j�1 � 2i�2 (B8)

h12 ¼ �f�1 � e�2 � i�1 þ j�2 þ ða� bÞ�3 (B9)

h13 ¼ �g�1 � e�3 þ h�1 þ ðc� aÞ�2 � j�3 (B10)

h23 ¼ �g�2 � f�3 þ ðb� cÞ�1 � h�2 þ i�3: (B11)

We would now like to demonstrate that it is possible for
the Goldstone modes resulting from a completely general
vev to have a polarization tensor that agrees with that of a
graviton [in general relativity (GR)] propagating in the z
direction in some gauge. In general relativity, we have the
freedom to add to any solution of the linearized Einstein’s
equations the pure-gauge mode kð�j
j�Þ. Therefore, the
familiar þ and � polarizations in the transverse-traceless
gauge,

hTT�� ¼
0 0 0 0
0 hþ h� 0
0 h� �hþ 0
0 0 0 0

0
BBB@

1
CCCAeik�x� ; (B12)

are not the most general form that the graviton in general
relativity can take.
For a graviton propagating in the z direction, we

have k� ¼ ð!; 0; 0; !Þ. If we set 
� ¼ 1
! ð�p00;�p01;

�p02;�p03Þ, the polarization pðgaugeÞ
�� of the most general

gauge mode hðgaugeÞ�� ¼ pðgaugeÞ
�� eik�x

�
can be written as

pðgaugeÞ
�� ¼

p00 p01 p02 ðp03 � p00Þ=2
p01 0 0 �p01

p02 0 0 �p02

ðp03 � p00Þ=2 �p01 �p02 �p03

0
BBB@

1
CCCA; (B13)

where p00, p01, p02, and p03 are constants. Thus, the most
general form that the graviton can assume in GR is the sum
of (B12) and (B13):3

h
ðgeneralÞ
�� ¼

p00 p01 p02 �p00

p01 hþ h� �p01

p02 h� �hþ �p02

�p00 �p01 �p02 p00

0
BBB@

1
CCCAeik�x� :

(B14)

Note that because the Goldstone modes are all traceless,
we have also set p00 ¼ �p03 above. We now want to see if
the polarizations of the Goldstone bosons resulting from
the most general vev (B1) can be matched onto (B14).

To match (B1) onto (B14), we have to satisfy the follow-
ing conditions:

h00 ¼ �h03 h01 ¼ �h31

h02 ¼ �h32 h00 ¼ h33:
(B15)

These four conditions leave in the six Goldstone modes 2
degrees of freedom, exactly the right number to describe
the graviton, which has two polarizations.
At this point, it is convenient to define new fields by

linearly combining the Goldstone modes:

M1 ¼ �ðh00 þ h33Þ
¼ ð2eþ iÞ�1 þ ð2fþ jÞ�2 þ ð2gþ cþ dÞ�3

� f�1 þ e�2 (B16)

M2 ¼ �ðh01 þ h31Þ
¼ ðaþ dþ gÞ�1 þ h�2 þ ðiþ eÞ�3 � h�1

� ðgþ c� aÞ�2 þ ðfþ jÞ�3 (B17)

3Here, we are restricting ourselves to graviton solutions of the
form eik�x

�
. If we relax this assumption, it is conceivable that

there are other possible functional forms. This is analogous to
electromagnetism in the axial gauge, in which A� / zeik�x

�
is

needed to describe a plane-wave photon in the z direction. Thus,
the field becomes unbounded at spatial infinity, and it is ques-
tionable whether our effective theory is valid.
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M3 ¼ �ðh02 þ h32Þ
¼ h�1 þ ðbþ dþ gÞ�2 þ ðjþ fÞ�3

þ ðgþ c� bÞ�1 þ h�2 � ðeþ iÞ�3 (B18)

M4 ¼ �h00 þ h33 ¼ 2e�1 þ 2f�2 þ 2j�1 � 2i�2
(B19)

M5 ¼ h11 � hþ ¼ �2e�1 þ 2i�2 � 2h�3 (B20)

M6 ¼ h12 � h�

¼ �f�1 � e�2 � i�1 þ j�2 þ ða� bÞ�3: (B21)

In this new basis, the physical degrees of freedom are made
very transparent: M5 and M6 are the usual þ and �
gravitons. The four conditions (B15) now become M1 ¼
M2 ¼ M3 ¼ M4 ¼ 0.

These six linear equations relating the two bases can be
written as a matrix equation,

A ~� ¼ ~M; (B22)

where ~� ¼ ð�1; �2; �3; �1; �2; �3Þ and ~M ¼ ðM1;M2;
M3;M4;M5;M6Þ are the Goldstone modes in the original
basis and new basis, respectively. This gives immediately
the constraint detðAÞ � 0, since otherwise the matrix A is

singular and the new basis spanned by ~M is incomplete.

To express h�� in the new basis spanned by ~M, we first

invert Eq. (B22) to solve for ~� ¼ A�1 ~M, which can then be
substituted into Eqs. (B2)–(B11).

1. The two transverse linear combinations of the six
goldstone modes

We now proceed to show that two linear combinations of
the Goldstone modes (M5 and M6) obey the dispersion
relation k�k� ¼ 0 and are transverse to the momentum

(k�h�� ¼ 0).

Setting all Mi ¼ 0 except for M5, all the conditions in
(B15) would be satisfied, and we have

hð5Þ�� ¼
c500 c501 c502 �c500
c501 1 0 �c501
c502 0 �1 �c502
�c500 �c501 �c502 c500

0
BBB@

1
CCCAM5; (B23)

which has exactly the form of (B14) if h� ¼ 0. M5 there-
fore corresponds to theþ polarization of the graviton. The
constants c5ij are computed straightforwardly using

Eqs. (B2)–(B11).
Similarly, if we turn off all the Mi’s except M6, all the

conditions (B15) are satisfied, and the polarization tensor
of the Goldstone mode M6 becomes

hð6Þ�� ¼
c600 c601 c602 �c600
c601 0 1 �c601
c602 1 0 �c602
�c600 �c601 �c602 c600

0
BBB@

1
CCCAM6; (B24)

which agrees with (B14) if hþ ¼ 0, and therefore repre-
sents the � polarization. As before, the constants c6ij are

computed using Eqs. (B2)–(B11). Note that because M5

andM6 are nonzero, it is in general impossible to set all c5ij
and c6ij ¼ 0. That is, no choice of H�� corresponds to the

transverse-traceless gauge conventionally used to describe
the graviton.
Because the kinetic terms in the Lagrangian of our

theory are those in the Einstein-Hilbert action, the equa-
tions of motion of these Goldstone modes (valid for all six
modes M1!6) to leading order are simply given by the
linearized Einstein equation in vacuum:

@�@�h
�
� þ @�@�h

�
� �hh�� � 	��@�@�h

�� ¼ 0:

(B25)

Substituting the þ mode, Eq. (B23), into Eq. (B25) and
setting the four-momentum to k� ¼ ð!; 0; 0; kÞ gives

2G00 ¼ 0 (B26)

2G01 ¼ c501kð!� kÞ ¼ 0 (B27)

2G02 ¼ c502kð!� kÞ ¼ 0 (B28)

2G03 ¼ 0 (B29)

2G11 ¼ ð!2 � k2Þ � ð!� kÞ2c500 ¼ 0 (B30)

2G12 ¼ 0 (B31)

2G13 ¼ c512!ðk�!Þ ¼ 0 (B32)

2G22 ¼ �ð!2 � k2Þ � ð!� kÞ2c500 ¼ 0 (B33)

2G23 ¼ c523!ðk�!Þ ¼ 0 (B34)

2G33 ¼ 0: (B35)

In general, c5ij do not vanish and Eqs. (B26)–(B35) imply

that! ¼ k. That is, hð5Þ�� propagates along the z direction at
the speed of light, as expected.
If instead we substitute the � mode [Eq. (B24)] into

Eq. (B25) and again set the four-momentum k� ¼
ð!; 0; 0; kÞ, we obtain the same equations, except that now

2G11 ¼ �ð!� kÞ2c600 ¼ 0 (B36)

2G12 ¼ ð!2 � k2Þ ¼ 0 (B37)
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2G22 ¼ �ð!� kÞ2c600 ¼ 0; (B38)

and c5ij ! c6ij in (B26)–(B35). Clearly, the solution is still

! ¼ k. Thus, h6�� also propagates along z at the speed of

light.
Finally, the fact that these modes are transverse can be

shown by direct computation:

k�hðgeneralÞ�� ¼ k�ðhTT�� þ pgauge
�� eik�x

�Þ
¼ 1

2k
�ðk�
� þ k�
�Þ

¼ 1
2ðk2
� þ k�k

�
�Þ ¼ 0; (B39)

since the graviton obeys k2 ¼ 0 and the gauge modes are
traceless (i.e. k�


� ¼ 0).

In summary, we have shown that there are two special
linear combinations (M5 and M6) of the six Goldstone
modes that have a polarization tensor identical to that of
a graviton in general relativity; obey the normal dispersion
relation k2 ¼ 0; and are transverse to the momentum k�.

2. The remaining four linear combinations

In this section, we demonstrate that the remaining four
linear combinations do not propagate upon imposing the
equations of motion. The four remaining modes (M1 to
M4) are given, respectively, by

hð1Þ�� ¼
c100 c101 c102 c103
c101 0 0 �c101
c102 0 0 �c102
c103 �c101 �c102 c100

0
BBB@

1
CCCAM1 (B40)

hð2Þ�� ¼
c200 c201 c202 �c200
c201 0 0 c213
c202 0 0 �c202
�c200 c213 �c202 c200

0
BBB@

1
CCCAM2 (B41)

hð3Þ�� ¼
c300 c301 c302 �c300
c301 0 0 �c301
c302 0 0 c323
�c300 �c301 c323 c300

0
BBB@

1
CCCAM3 (B42)

hð4Þ�� ¼
c400 c401 c402 c403
c401 0 0 �c413
c402 0 1 c423
c403 c413 c423 c400 � c433

0
BBB@

1
CCCAM4; (B43)

where c1ij, c
2
ij, c

3
ij, and c4ij are constants determined by

Eqs. (B2)–(B11).

Again, using the linearized Einstein’s equations, the
mode M1 (B40) has the following equations of motion:

2G00 ¼ �ðc100!2 þ 2kc103!þ c100k
2Þ ¼ 0 (B44)

2G01 ¼ c101kð!� kÞ ¼ 0 (B45)

2G02 ¼ c202kð!� kÞ ¼ 0 (B46)

2G03 ¼ 0 (B47)

2G11 ¼ c100!
2 þ 2kc103!þ c100k

2 ¼ 0 (B48)

2G12 ¼ 0 (B49)

2G13 ¼ c101!ðk�!Þ ¼ 0 (B50)

2G22 ¼ c100!
2 þ 2kc103!þ c100k

2 ¼ 0 (B51)

2G23 ¼ c102!ðk�!Þ ¼ 0 (B52)

2G33 ¼ 0: (B53)

In general, the constants c1ij do not vanish and the only way

to satisfy all these conditions is to set ! ¼ k ¼ 0. This
mode therefore does not propagate. It is straightforward to
repeat the analysis for the other three modes, and it can be
shown that their equations of motion lead to ! ¼ k ¼ 0.
This analysis is thus in agreement with that by

Kostelecky and Potting [11]: in this Lorentz-violating the-
ory, only two linear combinations of the six Goldstone
modes propagate and obey the dispersion relation k�k

� ¼
0 and the transverse condition k��

�� ¼ 0. Also, because

of the form (13) of the Goldstone modes, the cardinal
gauge conditions are all satisfied. The four remaining
linear combinations do not propagate. Thus, at lowest
order, the theory contains two propagating modes with
properties identical to the graviton in linearized general
relativity.

APPENDIX C: PROOF OF THE NECESSITY OF
BREAKING ALL SIX GENERATORS TO GET

GOLDSTONE GRAVITONS

We now discuss a systematic way of determining the
number of Goldstone modes that result for a given vev. We
construct a 10� 6 matrix N where each row corresponds
to one of the ten components of h��, and each column

corresponds to one of the six generators of the Lorentz
group (�i and �i, i 2 1, 2, 3):
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N ¼

�2H01 �2H02 �2H03 0 0 0
�ðH00 þ h11Þ �H12 �H13 0 H03 �H02

�H12 �ðH00 þH22Þ �H23 �H03 0 H01

�H13 �H23 �ðH00 þH33Þ H02 �H01 0
�2H01 0 0 0 2H13 �2H12

�H02 �H01 0 �H13 H23 H11 �H22

�H03 0 �2H01 H12 H33 �H11 �H23

0 �2H02 0 �2H23 0 2H12

0 �H03 �H02 H22 �H33 �H12 H13

0 0 �2H03 2H23 �2H13 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: (C1)

The entriesN are the coefficients of the �i and �i in the ten
components of h��. The rank of this matrix is the number
of Goldstone modes. The possible ranks of this matrix are
three, five, and six. This is different in the vector case, in
which the rank of the corresponding 4� 6matrix is always
three, consistent with the fact that there are always three
Goldstone modes.

We found in Appendix B that a necessary and sufficient
condition for the theory to contain two linear combinations
of the Goldstone modes is

detðAÞ � 0; (C2)

which is equivalent to RankðAÞ ¼ 6. Since the rows of A
are just linear combinations of those of N, the rank of the
former is necessarily less than or equal to the latter. Thus,

for vevs that do not break all six generators, the number of
Goldstone modes <6, implying that

Rank ðNÞ< 6 (C3)

) RankðAÞ< 6 (C4)

, detðAÞ ¼ 0; (C5)

violating the condition (C2). This implies the lack of two
linear combinations of the Goldstone modes that behave
like the graviton in general relativity. However, as was
discussed, it is still possible that the theory contains mass-
less excitations that behave like the graviton; they are just
not Goldstone in origin.
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