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The direct sum of a couple of Maxwell-Chern-Simons gauge theories of opposite helicities�1 does not

lead to a Proca theory in D ¼ 2þ 1, although both theories share the same spectrum. However, it is

known that by adding an interference term between both helicities we can join the complementary pieces

together and obtain the physically expected result. A generalized soldering procedure can be defined to

generate the missing interference term. Here, we show that the same procedure can be applied to join

together �2 helicity states in a full off-shell manner. In particular, by using second-order (in derivatives)

self-dual models of helicities �2 (spin-2 analogues of Maxwell-Chern-Simmons models) the Fierz-Pauli

theory is obtained after soldering. Remarkably, if we replace the second-order models by third-order self-

dual models (linearized topologically massive gravity) of opposite helicities, after soldering, we end up

exactly with the new massive gravity theory of Bergshoeff, Hohm, and Townsend in its linearized

approximation.
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I. INTRODUCTION

The direct sum of two chiral fermions in D ¼ 1þ 1
gives rise to a full Dirac fermion; however, this is not true
for their bosonized versions as noticed in [1] (see also [2]).
Likewise, the fermionic determinant of a Dirac fermion
interacting with a vector gauge field in D ¼ 1þ 1 factor-
izes into the product of two chiral determinants, but the full
bosonic effective action is not the direct sum of the naive
chiral effective actions as discussed in [3]. In both cases, it
turns out that an interference term between the opposite
chirality bosonic actions is necessary to achieve the ex-
pected result. Such a term is provided by the so-called
soldering procedure.

The same procedure works in D ¼ 2þ 1, if we replace
chirality by helicity. In particular, the soldering of two
Maxwell-Chern-Simons (MCS) [4] theories of opposite
helicities �1 leads to the Proca theory; see [5]. More
generally, the �1 helicity modes may have different
masses, which leads after soldering to a Maxwell-Chern-
Simons-Proca theory. In this case, technical problems [5]
regarding a full off-shell soldering can be surmounted by
defining a generalized soldering procedure [6]. In Sec. III,
we show that such a procedure can be successfully applied
to fuse �2 helicity states of different masses m� with no
need of using equations of motion. After soldering, we
obtain the Fierz-Pauli [7] theory plus a first-order Chern-
Simons term whose coefficient is proportional to the
mass difference mþ �m�, thus generalizing a previous
result [8].

A specific feature of the generalized soldering is the
existence of a parameter � with a sign freedom, which
plays a role whenever interactions are present. In the

soldering of two chiral Schwinger models such sign ambi-
guity leads either to an axial (� ¼ �1) or to a vector (� ¼
þ1) Schwinger model which are dual do each other. In the
case of the two MCS theories, the two sign choices lead to
dual interaction terms. We can have either a derivative
coupling or a minimal coupling plus a Thirring term.
After integration over the soldering field, the dependence
on the sign of � disappears, which proves that they corre-
spond to dual forms of the same interacting theory. In
Sec. III, we couple the �2 helicity states with a rank-two
field J�� and show that the two signs for � lead after

soldering to dual interactions similar to the spin-1 case.
Once again, integration over the soldered field leads to
the same effective action LeffðJ��Þ independent of the

sign of �.
In D ¼ 2þ 1, parity singlets of helicities �1 can be

described by either the first-order self-dual model of [9] or
the second-order MCS theory of [4]. Both models have

their spin-2 counterparts, which we callLð1Þ
�2 andL

ð2Þ
�2; see

[10,11], respectively. However, in the spin-2 case there is

another third-order self-dual model (Lð3Þ
�2) with no spin-1

analogue. It is the quadratic truncation of the topologically

massive gravity of [4]. AlthoughLð3Þ
�2 is of third order, it is

ghost-free. This is a consequence of the nonpropagating
nature of the Einstein-Hilbert action in D ¼ 2þ 1, which
allows this term to be used as a mixing term in the master
approach without affecting the particle content of the

interpolated theories (Lð2Þ
�2 andL

ð3Þ
�2). For the same reason,

it is possible to jump from the second-order Fierz-Pauli
theory to a fourth-order ghost-free model, as shown in [12],
which implies the existence of a new unitary (at tree level1)
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1The residue at the massless pole generated by the Einstein-
Hilbert term vanishes [13] similarly to the massless pole, due to
the topological Chern-Simons term in the MCS theory.
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massive gravity theory which we call henceforth the
Bergshoeff, Hohm, and Townsend (BHT) theory. In

Sec. III, we show that the soldering ofLð3Þ
þ2 withL

ð3Þ
�2 gives

rise exactly to the linearized version of the BHT theory,
which is, taking into account previous equivalences of
soldered theories, an indication of the existence of a local

dual map between the gauge invariant sectors of Lð3Þ
þ2 þ

Lð3Þ
�2 and LBHT. In the next section, as an introduction to

the forthcoming sections, we discuss the necessity of in-
terference terms between opposite helicity states according
to the type of self-dual model employed to describe helic-
ity eigenstates. In Sec. V, we draw some conclusions.

II. DECOMPOSITION OF PARITY DOUBLETS OF
SPINS 1 AND 2 IN D ¼ 2þ 1

Before we start the soldering of spin-2 gauge theories in
the next sections, it is convenient to recall the description
of spin-1 and spin-2 massive particles in D ¼ 2þ 1 by
means of nongauge theories. In this case, there will be no
need to add interference terms between opposite helicity
states (parity singlets) in order to build up a parity doublet
described by just one field. We start with the spin-1 case. It
is known that massive spin-1 particles are described in a
covariant way by the Proca theory:

L P ¼ � 1

4
F��F�� �m2

2
A�A�: (1)

Throughout this work, we use the signature ��� ¼
ð�;þ;þÞ. From the equations of motion of (1), one de-
rives the transverse condition @�A

� ¼ 0 and the Klein-

Gordon equation ðh�m2ÞA� ¼ 0. So we are left with 2
massive modes corresponding to the helicity statesþ1 and
�1, as one can easily check by rewriting the Proca theory
in a first-order form with the help of an auxiliary field B�,

L ð1Þ
P ¼ � 1

2
B�B� � ����B�@�A� �m2

2
A�A�: (2)

After the redefinition (B� ! mð ~B� þ ~A�Þ=
ffiffiffi
2

p
; A� !

ð ~A� � ~B�Þ=
ffiffiffi
2

p
), we have two decoupled parity singlets:

L ¼ �m2

2
~A�

~A� �m

2
���� ~A�@� ~A� �m2

2
~B�

~B�

þm

2
���� ~B�@� ~B�

¼ Lð1Þ
ðþ1Þ½ ~A� þLð1Þ

ð�1Þ½ ~B�: (3)

The first-order self-dual models Lð1Þ
ð�1Þ have first appeared

in [9] and describe massive eigenstates of the helicity

operator ðJ � P=
ffiffiffiffiffiffi
P2

p
Þ�� ¼ i����@

�=h with eigenvalues

�1. We conclude that the addition of two first-order self-
dual models leads to the parity invariant Proca theory in its
first-order form. There is no need to add to the nongauge

theory Lð1Þ
ðþ1Þ þLð1Þ

ð�1Þ an interference term between oppo-

site helicity states to arrive at the Proca theory, which has
no gauge symmetry as well. On the other hand, each first-
order self-dual model is equivalent [14] to a MCS theory
(second-order theory), so we expect LP , LMCSðþ1Þ þ
LMCSð�1Þ, but sinceLMCSð�1Þ are gauge theories, it is clear
that the direct sum LMCSðþ1Þ þLMCSð�1Þ will not lead to

the Proca theory. As explained in [5,6], a soldering action
(Ws) can be defined by the addition of an interference term
quadratic in Noether currents, namely, WS ¼ WMCSðþ1Þþ
WMCSð�1Þ þWJJ, in a such way that WS becomes exactly

the Proca theory. Or more generally, for helicity states of
different masses m�, the Maxwell-Chern-Simons-Proca
theory is obtained after soldering.
Now let us make a similar analysis of the spin-2 case.

The spin-2 analogue of the Proca theory is the Fierz-Pauli
model [7], written below in different forms for later con-
venience:

L FP ¼ 1

2
ð ffiffiffiffiffiffiffi�g
p

RÞhh þm2

2
ðh2 � h��h

��Þ; (4)

¼ 1

2

�
�@�h��@

�ðh�� þ h��Þ
2

þ @�h@
�h� 2@�h

��@�h

þ @�h
��@�h�� þ @�h��ð@�h�� þ @�h��Þ

2

þm2ðh2 � h��h
��Þ

�
; (5)

¼ 1

2
T��ðhÞT��ðhÞ � 1

4
T2ðhÞ þm2

2
ðh2 � h��h

��Þ; (6)

where T��ðhÞ ¼ ����@
�h�� , h ¼ ���h��, and ð ffiffiffiffiffiffiffi�g

p
RÞhh

stands for the Einstein-Hilbert action up to quadratic terms
in the dreibein fluctuations: e�� ¼ ��� þ h��. The field

h�� has no symmetry in its indices. In fact, in this work all

rank-two fields have no specific symmetry in their indices.
Symmetric and antisymmetric combinations will be de-
noted, respectively, by hð��Þ � ðh�� þ h��Þ=2 and

h½��� � ðh�� � h��Þ=2. From the equations of motion of

LFP, we derive the necessary constraints to describe a
massive spin-2 particle, i.e., h½��� ¼ 0, @�h�� ¼ 0 ¼
@�h��, h ¼ 0, and the Klein-Gordon equation ðh�
m2Þhð��Þ ¼ 0. The constraints imply that we effectively

have 9� 7 ¼ 2 massive modes which will correspond to
the �2 helicity states as follows: We rewrite the quadratic
truncation of the Einstein-Hilbert term in first-order form
by introducing an auxiliary tensor field W�� [10]:

Lð1Þ
FP ¼ m2

2
ðW2 �W��W

��Þ þmW������ @�h��

þm2

2
ðh2 � h��h

��Þ: (7)

Redefining W�� ! ð ~W�� � ~h��Þ=
ffiffiffi
2

p
and h�� ! ð~h�� þ

~W��Þ=
ffiffiffi
2

p
one obtains two decoupled first-order self-dual

models,
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Lð1Þ
FP ¼ m2

2
ð ~W2 � ~W��

~W��Þ þm

2
���� ~W��@� ~W�

�

þm2

2
ð~h2 � ~h��

~h��Þ �m

2
���� ~h��@� ~h

�
�

¼ Lð1Þ
þ2 þLð1Þ

�2: (8)

Each of the models Lð1Þ
�2, first found in [10], describes an

eigenstate of a spin-2 helicity operator with eigenvalues
�2; see e.g. [10,15]. Concluding, in both spin-1 and spin-2
cases a couple of first-order nongauge theories of opposite
helicities can be simply added up to yield a parity invariant
nongauge model containing two helicity modes. Once
again, there is no need to add any extra interference term
between the opposite helicity states. However, this is not
true for the second- and third-order gauge invariant actions
below, which also represent �2 helicity eigenstates:

Wð2Þ
�2 ¼

Z
d3x

�
1

2
T��ðAÞT��ðAÞ � 1

4
T2ðAÞ

�m

2
����A��@�A

�
�

�
; (9)

Wð3Þ
�2 ¼

Z
d3x

�
� 1

2
T��ðAÞT��ðAÞ þ 1

4
T2ðAÞ

� 1

2m
A��ðh	��E�� �h	��E��ÞA��

�
; (10)

where T��ðAÞ ¼ ��
� @�A
� and

E�� ¼ ����@
�; h	�� ¼ ���h� @�@�: (11)

The second-order model Wð2Þ
�2, which appeared before in

[10,11], is the spin-2 analogue of the MCS theory. It is
invariant under the local transformations 
A�� ¼ @���.

The quadratic truncation of the topologically massive grav-

ity of [4], Wð3Þ
�2, is invariant under the more general local

transformations 
A�� ¼ @��� þ �����
�. The Einstein-

Hilbert term appears with the correct sign in Wð2Þ
�2 in con-

trast to Wð3Þ
�2. Both models are unitary and can be deduced

from Wð1Þ
�2 ¼

R
d3xLð1Þ

�2 via master action [16]. There is a

local dual map connecting correlation functions in Wð1Þ
�2

with correlation functions of gauge invariant objects in

Wð2Þ
�2 andW

ð3Þ
�2 up to contact terms [16]. In the next section,

we solderWð2Þ
þ2 andW

ð2Þ
�2; the case ofW

ð3Þ
�2 will be treated in

Sec. IV.

III. SOLDERING OF W ð2Þ
þ2 AND W ð2Þ

�2

We start with the second-order opposite helicity models:

Wð2Þ
þ2½A� ¼

Z
d3x

�
1

2
T��ðAÞT��ðAÞ � 1

4
T2ðAÞ

þmþ
2

����A��@�A
�
� þ �þ����J��@�A

�
�

�
;

(12)

Wð2Þ
�2½B� ¼

Z
d3x

�
1

2
T��ðBÞT��ðBÞ � 1

4
T2ðBÞ

�m�
2

����B��@�B
�
� þ ������J��@�B

�
�

�
:

(13)

The massesm� can take arbitrary positive values. As in the
spin-1 case, we have added linear couplings with a rank-
two tensor J��. The interaction terms are such that the

global shifts (
A�� ¼ !��; 
B�� ¼ ~!��) and the local

transformations (
A�� ¼ @���; 
B�� ¼ @� ~��), which

are symmetries of the first two terms of (12) and (13),
are preserved. Furthermore, those are the natural interac-

tion terms when Wð2Þ
�2 are deduced from Wð1Þ

�2 via master

action [16]. The coupling constants �� are in principle
arbitrary, but special cases will be treated later on. Both

Wð2Þ
�2 are also invariant under 

J�� ¼ @�
�.

The basic idea of the soldering procedure is to lift the
global shift symmetry to a local symmetry and tie the fields
A�� and B�� together by assuring that their transforma-

tions are proportional to each other:


A�� ¼ !��; 
B�� ¼ �!��; (14)

where � is so far an arbitrary constant. From (12) and (13)
we derive


ðWð2Þ
þ2½A� þWð2Þ

�2½B�Þ ¼
Z

d3xJ���@�!��; (15)

with

J��� ¼ C
���
���@

�g�� þ ���� f��; (16)

and

C
���
��� ¼ � 1

2
�������� þ ���� �

�
��; (17)

g�� ¼ A�� þ �B��; (18)

f�� ¼ mþA�� � �m�B�� þ ð�þ þ ���ÞJ��: (19)

In a first step Noether procedure we cancel the variation
(15) introducing auxiliary fields H��� such that


H��� ¼ �@�!��: (20)

Therefore




�
Wð2Þ

þ2½A� þWð2Þ
�2½B� þ

Z
d3xJ���H���

�

¼
Z

d3x
J���H���: (21)

Since 
J��� ¼ ð1þ �2ÞC���
���@

�!�� þ ����ðmþ �
�2m�Þ!�

� , if we choose
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� ¼ �
ffiffiffiffiffiffiffiffi
mþ
m�

s
; (22)

then we have


J��� ¼ ð1þ �2ÞC���
���@

�!��; (23)

¼ �ð1þ �2ÞC���
���
H

���: (24)

From (21) and (24) we deduce 
Wð2Þ
S ¼ 0 where the sol-

dered action is given by

Wð2Þ
S ¼ Wð2Þ

þ2½A� þWð2Þ
�2½B� þ

Z
d3x

�
J���H���

þ ð1þ �2Þ
2

C���
���H

���H���

�
: (25)

After the elimination of the auxiliary fields through their
algebraic equations of motion, we end up with

Wð2Þ
S ¼ Wð2Þ

þ2½A� þWð2Þ
�2½B� �

Z
d3x

½J���J
��� � ðJ�Þ2�

8ð1þ �2Þ ;

(26)

where J� ¼ ���J��� with

J��� ¼ ���� J��� ¼ 2T��ðgÞ � ���TðgÞ � 2f��: (27)

The reader can check that (26) is invariant under (14) by
using (15) and (23) where � is given in (22). After some

algebra, we can rewrite Wð2Þ
S in a more explicit form:

Wð2Þ
S ¼ 1

2ð1þ �2Þ
Z

d3x½ ffiffiffiffiffiffiffi�g
p

Rjhh
þ ðmþ �m�Þ����h��@�h

�
�

þmþm�ð~h2 � ~h��
~h��Þ

þ ð��þ � ��Þ����J��@�h
�
��: (28)

We have introduced the combinations

h�� ¼ �A�� � B��; (29)

~h �� ¼ h�� þ ð�þ þ ���Þ
�m�

J��: (30)

The invariance under (14) has forced the action Wð2Þ
S to

depend only upon the combination h�� ¼ �A�� � B��,

invariant under (14), which is called the soldering field. In
particular, if mþ ¼ m�, then the soldered action corre-
sponds exactly to the Fierz-Pauli theory [7], which is
known to describe massive spin-2 particles in arbitrary
D-dimensional spaces. It is remarkable that the nontrivial
Fierz-Pauli mass term has been generated out of mass

terms of Chern-Simons–type appearing in Wð2Þ
�2. If we

drop the interactions (J�� ¼ 0) and set h ¼ 0 ¼ h½���,
which certainly hold on shell, at action level we recover

the soldered action of [8] obtained for mþ ¼ m�. The
mass split mþ �m� � 0 is responsible for the parity
breaking Chern-Simons term in (28) analogously to the
spin-1 case [6].
Regarding the interactions, besides the derivative cou-

pling [last term in (28)] already present in Wð2Þ
�2 before

soldering, there appears now a linear coupling through

the combination ~h�� such that the symmetry 

J�� ¼
@�
� of Wð2Þ

�2 is maintained, if we transform the soldering

field accordingly. Namely, 

W
ð2Þ
S ¼ 0 under



J�� ¼ @�
�; 

h�� ¼ �ð�þ þ ���Þ
�m�

@�
�:

(31)

The soldered action Wð2Þ
S depends explicitly on its inter-

action terms on the sign choice of � defined in (22). In
order to check if we do really have any physical conse-
quence of the sign freedom, we proceed as in [6] and
integrate over the soldering field h�� in the path integral

and derive an effective action Leff½J���. Although the

integral is Gaussian, the fact that h�� has no symmetry

in its indices makes its propagator quite complicated. Our
final result contains even and odd parity terms:

ð�2ÞLeff½J��� ¼ J��

�
hðPð2Þ

evenÞ
���

�
�2þ

h�m2þ
þ �2�
h�m2�

�

þ ffiffiffiffiffi
h

p ðPð2Þ
oddÞ
���

�
mþ�2þ
h�m2þ

� m��2�
h�m2�

�

þ
�
�2þ
m2þ

þ �2�
m2�

�
h	��	


�

2

þ
�
�2þ
mþ

� �2�
m�

��
	��E

�
� @�@
�

h
E

�

��
J
�:

(32)

The spin-2 projection operators are given by

ðPð2Þ
evenÞ
��� ¼ 1

2
ð	
�	�� þ 	��	



� � 	��	


�Þ; (33)

ðPð2Þ
oddÞ
��� ¼ 1

4
ffiffiffiffiffi
h

p ðE

�	

�
� þ E�

�	


� þ E�

�	


� þ E


�	
�
�Þ:
(34)

A detailed comparison with the spin-1 case (see the second
reference of [6]) reveals that the first two terms of (32) are
remarkably similar to their spin-1 counterparts that have a
Maxwell-Chern-Simons structure. Namely, the differential
operator which appears in the Chern-Simons term is the
square root of the differential operator in the Maxwell term

(E��E
�� ¼ h	��), which is similar to ðPð2Þ

oddÞ
���ðPð2Þ
oddÞ��
� ¼

ðPð2Þ
evenÞ����.

D. DALMAZI AND ELIAS L. MENDONÇA PHYSICAL REVIEW D 80, 025017 (2009)

025017-4



As expected, the effective action is invariant under the

original symmetry 

J�� ¼ @�
� of Wð2Þ
�2, since

E�
�@�
 ¼ 	��@�
. Moreover, in the special case where

the couplings satisfy

�2þ ¼ mþ
m�

�2� ¼ �2�2�; (35)

the effective theory depends only upon Jð��Þ, and conse-

quently it is invariant under any antisymmetric local shift

�J�� ¼ �����

�. Indeed, we have checked that if �þ ¼
���� it follows that 
�W

ð2Þ
S ¼ 0 under, respectively,


�J�� ¼ �����
�; (36)


�h�� ¼ � ��
m�

�
ð1� 1Þ�����

� þmþ �m�
mþm�

@���

�
:

(37)

We also have the discrete symmetry ðmþ; m�; �þ; ��Þ !
ð�m�;�mþ; ��; �þÞ in Leff½J�, which amounts, before

soldering, to interchange Wð2Þ
�2 Ð Wð2Þ

�2.

As in the previous soldering cases [6], the dependence
on the sign of � disappears completely after integration
over the soldering field h��. In particular,2 if �� ¼
��þ � � and mþ ¼ m�, the two choices � ¼ �1
lead to L�¼þ1

S ðjÞ ¼ LSð0Þ � 2�J������@
�h��

and L�¼�1
S ðjÞ ¼LSð0Þþ 4m�ðJh� J��h

��Þþ 4�2ðJ2 �
J��J

��Þ. Thus, the sign freedom of � gives rise to dual

theories as in the spin-1 case in D ¼ 2þ 1 and in the
soldering of two Chiral-Schwinger models in D ¼ 1þ 1.

Finally, we mention that in the second part of [16] the
equivalence of (28) and the gauge invariant sector of

Wð2Þ
þ2 þWð2Þ

�2 has been proved at quantum level; see also

[17,18]. So, the soldering procedure has led once more to a
physically equivalent (dual) theory.

IV. SOLDERING OF Wð3Þ
þ2 AND W ð3Þ

�2

For sake of simplicity, we drop interactions in this
section and begin with the following third-order self-dual
models of helicities �2, which correspond to quadratic
truncations of topologically massive gravity [see (10)]:

Wð3Þ
þ2½A� ¼

Z
d3x

�
� 1

2
T��ðAÞT��ðAÞ þ 1

4
T2ðAÞ

� 1

2mþ
A��ðh	��E�� �h	��E��ÞA��

�
;

(38)

Wð3Þ
�2½B� ¼

Z
d3x

�
� 1

2
T��ðBÞT��ðBÞ þ 1

4
T2ðBÞ

þ 1

2m�
B��ðh	��E�� �h	��E��ÞB��

�
:

(39)

Now, we follow basically the same steps which have led us
from (12) and (13) to (26). We require the soldered theory
to be invariant under 
A�� ¼ !��; 
B�� ¼ ~�!�� with ~�

a constant to be determined. So we derive


ðWð3Þ
þ2½A� þWð3Þ

�2½B�Þ ¼
Z

d3xJ���@�!��; (40)

where now, compare with (16), the Noether current con-
tains first and second derivatives terms, i.e.,

J��� ¼ �C���
���@

�~g�� � 1

2
D����� ~f��; (41)

where C
���
��� is defined as in (17) while

~g �� ¼ A�� þ ~�B��; (42)

~f �� ¼ A��

mþ
� ~�

B��

m�
; (43)

D����� ¼ ����ð2E�
�E

�� � E
�
�E

�� �h	���
�
�Þ: (44)

Introducing auxiliary fields which transform as 
H��� ¼
�@�!��, we deduce




�
Wð3Þ

þ2½A� þWð3Þ
�2½B� þ

Z
d3xJ���H���

�

¼
Z

d3x
J���H���: (45)

However, we have now


J��� ¼ ð1þ ~�2ÞC���
���@

�!��

� 1

2
D�����

�
1

mþ
� ~�2

m�

�
!��: (46)

As in the last section, we suppress the last term above by
fixing ~� up to a sign

~� ¼ �
ffiffiffiffiffiffiffiffi
m�
mþ

s
: (47)

Consequently,


J��� ¼ �ð1þ ~�2ÞC���
���@

�!��; (48)

¼ ð1þ ~�2ÞC���
���
H

���: (49)

2The case where opposite helicity states have opposite deriva-
tive couplings (�þ ¼ ���) naturally appears when we obtain
Wð2Þ

�2 from Wð1Þ
�2 via master action [16].
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Note the sign difference to (23) and (24). This is due to the
‘‘wrong’’ sign of the Einstein-Hilbert term in (38) and (39).
Thus, after elimination of the auxiliary fields we have,
compare with (26),

Wð4Þ
S ¼ Wð3Þ

þ2½A� þWð3Þ
�2½B� þ

Z
d3x

½J���J
��� � ðJ�Þ2�

8ð1þ ~�2Þ ;

(50)

where now

J��� ¼ ���� J��� ¼ 2T��ð~gÞ � ���Tð~gÞ � V��; (51)

with

V�� ¼ � 1

2
����D����
 ~f�
; (52)

¼ ð2E��E
� þ E��E�
 �h���	�
Þ~f�
: (53)

Rewriting the fields in term of the soldering invariant
combination h�� ¼ ~�A�� � B��,

~f �� ¼ A��

mþ
� ~�

B��

m�
¼ ~�

m�
h��; (54)

g�� ¼ A�� þ ~�B�� ¼ ~�A�� � h��: (55)

It turns out thatWð4Þ
S depends only on h��. In particular, all

the fourth-order terms in Wð4Þ
S stem from the combination:

Z d3x

8ð1þ ~�2Þ ðV��V
�� � V2Þ

¼
Z d3x

4ð1þ ~�2Þhð��Þ
�
2	��	�
 � 	��	�


mþm�

�
h2hð�
Þ:

(56)

In deriving (56) from (53) we have used integration by
parts, the identities E��E

�
� ¼ h	��, E��	

�� ¼ E�
�,

	��	
�� ¼ 	��, Eq. (54), and ð~�=m�Þ2 ¼ 1=mþm�. After

collecting all terms in (50) we can write the corresponding

soldered Lagrangian density Lð4Þ
S as

L ð4Þ
S ¼ 1

2ð1þ ~�2Þhð��Þ
�
E��E�


þ 4ðmþ �m�Þ
mþm�

E�
h	�


þ ð2	��	�
 � 	��	�
Þh2

2mþm�

�
hð�
Þ: (57)

Thus, as in the last section, the requirement of invariance
under local shifts proportional to each other effectively
solders the fields A�� and B�� into one combination h�� ¼
~�A�� � B��. By using ~� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�=mþ
p

, it is easy to

check that each of the terms of (57) is invariant under the
discrete symmetry ðmþ; m�; �þ; ��Þ ! ð�m�;�mþ;
��; �þÞ which interchanges Wð3Þ

�2 Ð Wð3Þ
�2. Furthermore,

the action (57) is invariant under the local symmetries


h�� ¼ @��� þ �����
� inherited from Wð3Þ

� . The three

terms in (57) correspond exactly to the quadratic truncation
of the new massive gravity of [12] up to an overall con-
stant:

2ð1þ ~�2ÞLð4Þ
S ¼

�
� ffiffiffiffiffiffiffi�g
p

Rþmþ �m�
mþm�

������
��@��

�
��

þ
ffiffiffiffiffiffiffi�g

p
mþm�

�
R��R

�� � 3

8
R2

��
hh
: (58)

In identifying (57) with (58) we have used g�� ¼ ��� þ
2hð��Þ (or e�� ¼ ��� þ h��). The second term in (58)

is the quadratic truncation of the the third order
Chern-Simons term of [4]: LCS3 ¼ ������

��½@���
�� þ

ð2=3Þ��
�
�



���.

V. CONCLUSION

In both cases of spin-1 and spin-2 theories inD ¼ 2þ 1,
we have shown that the simple addition of two first-order
self-dual models (parity singlets) of opposite helicities
leads us to a parity invariant theory (for equal masses),
which describes a parity doublet by means of a single field.
Those are the well-known Proca and Fierz-Pauli theories,
respectively. On the other hand, the addition of self-dual
models with gauge symmetry demands extra interference
terms between the opposite helicity states in order to
produce the desired result. We have shown here that the
generalized soldering furnishes those required terms in a
systematic way also for spin-2 particles in a complete off-
shell procedure. In particular, the Fierz-Pauli theory with
its nontrivial mass term is automatically produced, Sec. III,
out of two second-order self-dual models of opposite hel-
icities which are the spin-2 analogues of the Maxwell-
Chern-Simon theories.
In Sec. III, we have shown that if we start with two spin-

2 self-dual models of third order (quadratic truncation of
topologically massive gravity), we end up, after soldering,
exactly with the new massive gravity theory of [12]. Since
in previous examples [6] the theories related via soldering
turn out to be equivalent (up to contact terms in the
correlation functions), our results suggest that there might
be a local dual map between the gauge invariant sectors of

Wð3Þ
þ2 þWð3Þ

�2 and the new massive gravity theory [12] at the

linearized level. In particular, both theories have the same
m ! 1 limit (pure Einstein-Hilbert) contrary to the Fierz-
Pauli theory (see discussion in [19]).
Extensions of the soldering formalism beyond the linear

level in D ¼ 2þ 1 as well as the introduction of interac-
tions in the soldering of the third-order self-dual models
are currently under investigation in both in the soldering
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and master action approaches. Moreover, it would be
interesting to investigate (see also [20,21]) higher spin
(s � 3) generalizations of the soldering procedure in D ¼
2þ 1 and their possible relationships with massless higher
spin theories in D ¼ 3þ 1.
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