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We study the classical and absolute stability ofQ-balls in scalar field theories with flat potentials arising

in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in

gravity-mediated potentials can be stable against decay into their own free particles as long as the

coupling constant of the nonrenormalizable term is small, and that all of the possible three-dimensional

Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated

Q-balls can be absolutely stable in the thin-wall limit, but are completely unstable in the thick-wall limit.

DOI: 10.1103/PhysRevD.80.025016 PACS numbers: 11.27.+d

I. INTRODUCTION

Q-balls have recently attracted much attentions in cos-
mology [1] and astrophysics [2–4]. A Q-ball [5] is a non-
topological soliton [6] whose stability is ensured by the
existence of a continuous global chargeQ (for a review see
[7–11] and references therein), and a number of scalar field
theory models have been proposed to support the existence
of nontopological solitons. They include polynomial mod-
els [5], Sine-Gordon models [12], parabolic-type models
[13], confinement models [14–17], two-field models
[6,18], and flat models [1].

From a phenomenological point of view, the most inter-
esting examples are probably the supersymmetric Q-balls
arising within the framework of the minimal supersym-
metric standard model (MSSM), which naturally contains a
number of gauge invariant flat directions. Many of the flat
directions can carry baryon (B) or/and lepton (L) number,
which is/are essential for Affleck-Dine (AD) baryogenesis
[19]. Following the ADmechanism, a complex scalar (AD)
field acquires a large field value after a period of cosmic
inflation and tends to form a homogeneous condensate, the
AD condensate. In the presence of a negative pressure
[20,21], the condensate is unstable against spatial fluctua-
tions so that it develops into nonlinear inhomogeneous
lumps, namely Q-balls. The stationary properties and cos-
mological consequences of the Q-balls depend on how the
supersymmetry (SUSY) is broken in the hidden sector,
transmitting to the observable sector through so-called
messengers. In the gravity-mediated [22] or gauge-
mediated scenarios [1], the messengers correspond, respec-
tively, either to supergravity fields or to some heavy parti-
cles charged under the gauge group of the standard model.

Q-balls can exist in scalar field potentials where SUSY
is broken through effects in the supergravity hidden sector
[23]. These type of Q-balls can be unstable to decay into
baryons and the lightest supersymmetric particle dark mat-
ter, such as neutralinos [24], gravitinos [25,26], and axinos

[27]. Recently, McDonald has argued that enhancedQ-ball
decay in AD baryogenesis models can explain the observed
positron and electron excesses detected by PAMELA,
ATIC, and PPB-BETS [28]. By imposing an upper bound
on the reheating temperature of the Universe after inflation,
this mode of decay through Q-balls has been used to
explain why the observed baryonic (�b) and dark matter
(�DM) energy densities are so similar [29,30], i.e.
�DM=�b ¼ 5:65� 0:58 [31].
Scalar field potentials arising through gauge-mediated

SUSY breaking [22] tend to be extremely flat. Using one of
the MSSM flat directions, namely, the QdL direction
(where Q and d correspond to squark fields and L to a
slepton field), which has a nonzero value of B� L and
therefore does not spoil AD baryogenesis via the sphaleron
processes that violateBþ L [30], Shoemaker and Kusenko
recently explored the minimum energy configuration for
baryo-leptonic Q-balls, whose scalar field consists of both
squarks and sleptons [32]. It had been assumed to that point
that the lowest energy state of the scalar field corresponds
to being exactly the flat direction; however, in [32], the
authors showed that the lowest energy state lies slightly
away from the flat directions, and that the relic Q-balls,
which are stable against decay into both protons/neutrons
(baryons) and neutrinos/electrons (leptons) [33], may end
up contributing to the energy density of dark matter
[29,34]; thus, theQ-balls can provide the baryon-to-photon
ratio [34], i.e. nb=n� ’ ð4:7–6:5Þ � 10�10 [35], where nb
and n� are, respectively, the baryon and photon densities in

the Universe.
In this paper we examine analytically and numerically

the classical and absolute stability of Q-balls using flat
potentials in the two specific models mentioned above. In
order to study the possible existence of lower-dimensional
Q-balls embedded in 3þ 1 dimensions, we will work in
arbitrary spatial dimensionsD; although of course theD ¼
3 case is of more phenomenological interest. Previous
work [21,30,36] on the gravity-mediated potential has
used either a steplike or Gaussian ansatz to study the
analytical properties of the thin- and thick-wall Q-balls.
Introducing more physically motivated ansätze, we will
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show that the thin-wall Q-balls can be quantum mechani-
cally stable against decay into their own free particle
quanta, that both thin- and thick-wall Q-ball solutions
obtained are classically stable against linear fluctuations,
and confirm that a Gaussian ansatz is a physically reason-
able one for the thick-wall Q-ball. The one-dimensional
Q-balls in the thin-wall limit are excluded from our ana-
lytical framework. The literature on Q-balls with gauge-
mediated potentials has tended to use a test profile in
approximately flat potentials. We will present an exact
profile for a generalized gauge-mediated flat potential,
and show that we naturally recover results previously
published in [22,30,34].

The rest of this paper is organized as follows: In Sec. II,
we briefly review the importantQ-ball properties that were
established in [37]. Section III provides a detailed analyses
for gravity-mediated potentials, and in Sec. IV, we inves-
tigate the case of a generalized gauge-mediated potential.
We confirm the validity of our analytical approximations
with complete numerical Q-ball solutions in Sec. V before
summarizing in Sec. VI. Two appendices are included. In
Appendix A, we obtain an exact solution for the case of a
logarithmic potential, and in Appendix B, we confirm that
the adoption of a Gaussian ansatz is appropriate for the
thick-wall Q-ball found in the gravity-mediated potentials.

II. THE BASICS

Here, we review the basic properties of Q-balls as
described in [37] and introduce a powerful technique that
enables us to find the chargeQ and energy EQ of theQ-ball

as well as the condition for its stability, and characteristic
slope �ð!Þ � EQ=!Q, where ! is defined through the

Q-ball ansatz, which is given by decomposing a complex
scalar field� into� ¼ �ðrÞei!t.� is a real scalar field, r is
a radial coordinate, and therefore ! is a rotational fre-
quency in the U(1) internal space. By scaling the radius r of
the Q-ball ansatz, which minimizes EQ, we can find the

characteristic slopes in terms of the ratio between the
surface energy S and the potential energy U of the
Q-ball. When the characteristic slope � is independent of

!, we obtain the relation: EQ / Q1=�. In general the

charge, energy, and Euclidean action S! are given by

Q ¼ !
Z
VD

�2; S! ¼
Z
VD

�
1

2
�02 þU!

�
;

EQ ¼ !Qþ S!;

(1)

where our metric is ds2 ¼ �dt2 þ hijdx
idxj, the determi-

nant of the spherically symmetric spatial metric hij is

defined by h � detðhijÞ, and we have used the following

notation:
R
VD

� R
dDx

ffiffiffi
h

p ¼ �D�1

R1
0 drrD�1, �D�1 �

2�D=2

�ðD=2Þ ,�
0 � d�

dr , andD is the number of spatial dimensions.

Without loss of generality, we can take positive values of!
andQ. By defining the effective potentialU! of a potential

Uð�Þ
U! � U� 1

2!
2�2; (2)

the Q-ball equation is

�00 þD� 1

r
�0 ¼ dU!

d�
; (3)

where�ðrÞ is a monotonically decreasing function in terms
of r. Given a potential Uð�Þ, which has a global minimum
at� ¼ 0, it is possible to show thatQ-balls exist within the
restricted range of ! [5]:

!� � !<!þ; (4)

where we have defined the lower limit !2� � 2U
�2 j�þð!�Þ �

0, �þð!Þ is the nonzero value of �, where U!ð�þð!ÞÞ is
minimized (see Fig. 1), and the upper limit!2þ � d2U

d�2 j�¼0.

The existence condition Eq. (4) restricts the allowed form
of the potential U, which implies that the potential should
grow less quickly than the quadratic term (i.e. mass term)
for small values of �. The case !� ¼ 0 corresponds to
degenerate vacua potentials (DVPs), while !� � 0 has
nondegenerate vacua (NDVPs). In [37] we examined the
case of polynomial potentials and restricted ourselves to
the case of !2þ ¼ m2, where m is a bare mass in the
potentials. In this paper we extend our analysis allowing
us to investigate the case !2þ � m2, needed since the
potentials include one-loop corrections to the bare mass
m. Here, the potential, which we will consider in the
gravity-mediated models, is U ¼ Ugrav þUNR, where

UNR is a nonrenormalization term (to be discussed below),
and

Ugrav � 1

2
m2�2

�
1þ K ln

�
�2

M2

��
: (5)

Here, K is a constant factor arising from the one-loop
correction, and M is the renormalization scale. To proceed
with analytical arguments, we consider the two limiting
values of ! or �0 � �ðr ¼ 0Þ, which describe

� thin-wall Q-balls when ! ’ !� or equivalently

�0 	 �þð!Þ;
� thick-wall Q-balls when ! ’ !þ or equivalently

�0 ’ ��ð!Þ: (6)

Note, this limit doe not imply that a thick-wall Q-ball has
to have a large thickness that is comparable to the size of
the core size. For the extreme thin-wall limit ! ¼ !�,
thin-wall Q-balls satisfy

EQ

Q ¼ �ð!�Þ!�. In particular,

Coleman demonstrated that a steplike profile for Q-balls,
which generally exist for !� � 0, satisfies � ¼ 1, which
implies that the charge Q and energy EQ are proportional

to the volume, and he called this Q-matter [5]. For abso-
lutely stable Q-balls, the energy per unit charge is smaller
than the rest mass m for the field �,
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EQ

Q
<m: (7)

Thus, the Q-ball satisfying Eq. (7) is stable against free
particle decays because the Q-ball energy EQ is less than a

collection ofQ free particles of total energy Efree ¼ mQ. If
the Q-ball has decay channels into other fundamental
scalar particles that have the lowest mass mmin, we need
to replace m by mmin in the absolute stability condition
Eq. (7). In the opposite limit ! ’ !þ, the Q-ball energy
approaches the free particle energy EQ ! mQ. For later

convenience, we define two positive definite quantities, �!
and m! by

�! � �U!ð�þð!ÞÞ ¼ 1
2!

2�2þð!Þ �Uð�þð!ÞÞ;
’ 1

2ð!2 �!2�Þ�2þ; (8)

m2
! � m2 �!2; (9)

which can be infinitesimally small for either thin- or thick-
wall limits. By assuming �þð!Þ ’ �þð!�Þ � �þ in the
thin-wall limit, we immediately obtain the second line in
Eq. (8). Notice that this assumption was implicitly imposed
in our previous thin-wall analysis [37]. While this is fine
for the gravity-mediated case, with gauge-mediated poten-
tials, which are extremely flat, this implicit assumption
cannot hold because �þð!Þ does not exist. Therefore, we
will not use the variable �! for the case of the gauge-
mediated potentials. Notice that the variable m2

! cannot be

infinitesimally small when we consider the gravity-
mediated case: !2þ≁m2. A powerful tool we can make
use of when calculating some of the physical Q-ball pa-
rameters is the Legendre relation [37,38]. For example the
energy follows from

S! ! Q ¼ �dS!
d!

��������EQ

! EQ ¼ !Qþ S!: (10)

Assuming that � is not a function of!, we can compute the
advertised characteristic slope,

EQ

!Q
¼ � ! EQ / Q1=�; (11)

where we have used another Legendre relation! ¼ dEQ

dQ jS!
in which we have fixed S!. If a Q-ball is classically stable,
it satisfies

!

Q

dQ

d!
� 0 , d

d!

�
EQ

Q

�
¼ � S!

Q2

dQ

d!
� 0: (12)

These classical stability conditions are equivalent to the
fission condition, i.e. d!

dQ � 0 in [37] so that the charge Q

for classically stable Q-balls is a decreasing function in
terms of!. By scaling aQ-ball solution with respect to the
radius r, we also obtain the virial relation DU ¼ �ðD�
2ÞS þD!Q=2 and the characteristic slope �ð!Þ,

�ð!Þ ¼ 1þ
�
D� 2þD

U
S

��1
(13)
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FIG. 1 (color online). Parameters ��ð!Þ for a potential of the form Uð�Þ ¼ 1=2�2ð1� jKj ln�2Þ þ �2�6 (effective potential U! ¼
U� 1=2!2�2) with jKj ¼ 0:1. The left-hand figure corresponds to the case of a DVP with �2 ¼ jKje�1

4 expð� 2
jKjÞ 	 1:90� 10�11,

while the right-hand side is the NDVP with �2 ¼ jKje�1

4 	 9:20� 10�3, see Eq. (19). The colored lines in each plot correspond to

different values of !. The variable �þð!Þ is defined as the maximum of the inverse effective potential �U!, whereas ��ð!Þ
corresponds to �U!ð��ð!ÞÞ ¼ 0 for ��ð!Þ � 0. Recalling !� ¼ 0 in DVP, the DVP has degenerate vacua at �þð0Þ ¼
e1=4 expð 1

2jKjÞ 	 1:91� 102 (red-solid line), while the NDVP does not. The inverse effective potential �U! with !� ¼ 1 in NDVP

(green-dashed line), however, has degenerate vacua at �þð!�Þ ¼ e1=4 	 1:28, see the first relation in Eq. (18). For the lower limit
! ’ !� (green-dashed lines), we could see �þ ¼ e1=4, while the purple dotted-dashed lines show ��ð!Þ ! 0 near the thick wall-like
limit ! ¼ 3:0	!þ where !þ � 1.

Q-BALLS IN FLAT POTENTIALS PHYSICAL REVIEW D 80, 025016 (2009)

025016-3



once the ratio S=U is given where S � R
VD

1
2�

02 andU �R
VD

U are the surface and potential energies, respectively.

For D � 2, we can see �ð!Þ � 1 because S, U � 0,
which implies that S! is positive definite for D � 2, see
Eq. (1), while S! is positive for D ¼ 1 only whenU � S.
It implies that we have to be careful to use the second
relation of Eq. (12) for D ¼ 1 to evaluate the classical
stability condition as we saw in the case of using the
Gaussian ansatz, which is valid for D ¼ 1 for polynomial
potentials [37]. Our key results for D � 2 are

� ’
8<
:
1 for S 
 U;
ð2D� 1Þ=2ðD� 1Þ for S 	U;
ðD� 1Þ=ðD� 2Þ for S � U:

(14)

The first case in Eq. (14) corresponds to the extreme case of
thin- and thick-wall Q-balls. Furthermore, in [37], we saw
that for the extreme thin-wall Q-balls in DVPs, then there
was a virialization between S andU, which corresponds to
the second case in Eq. (14). At present it is not known what
kind of Q-ball potentials correspond to the third case;
therefore, we will not be considering that case in the rest
of our paper. Notice that in the case S � U forD ¼ 2, we
obtain the characteristic slope � � 1 from Eq. (13).
Similarly, forD ¼ 1, the characteristic slopes are obtained,
i.e. � ’ 1, � 1, ’ 0, respectively, for S 
 U, S 	U,
S � U. We will use these 1D analytic results to interpret
numerical results of one-dimensional Q-balls in the thin-
wall limit.

To end this section we note a nice duality that appears in
Eqs. (13) and (14) between the two cases S 	U and S �
U. In particular, for S 	U in D dimensions, the same
result for � is obtained (to leading order) in 2�D dimen-
sions when S � U.

III. GRAVITY-MEDIATED POTENTIALS

The MSSM consists of a number of flat directions where
SUSY is not broken. Those flat directions are, however,
lifted by gauge, gravity, and/or nonrenormalizable inter-
actions. In what follows the gravity interaction is included
perturbatively via the one-loop corrections for the bare
mass m in Eq. (5) and the nonrenormalizable interactions
(UNR), which are suppressed by high energy scales such as
the grand unified theory scale MU 	 1016 GeV or Planck
scale mpl 	 1018 GeV. Here,m is of order of SUSY break-

ing scale, which could be the gravitino mass 	m3=2, eval-

uated at the renormalization scale M [23]. We note that,
following the majority of work in this field, we will ignore
A-term contributions [U(1) violation terms], thermal ef-
fects [39,40], which come from the interactions between
the AD field and the decay products of the inflaton, and the
Hubble-induced terms which gives a negative mass-
squared contribution during inflation. It is possible that
their inclusion could well change the results of the follow-
ing analysis.

The scalar potential we are considering at present is
[21,23]

U ¼ Ugrav þUNR ¼ 1

2
m2�2

�
1þ K ln

�
�2

M2

��
þ j�j2

mn�4
pl

�n;

(15)

where we used Eq. (5), K is a factor for the gaugino
correction, which depends on the flat directions, and M is
the renormalization scale. Also, � is a dimensionless cou-

pling constant, and UNR � j�j2
mn�4

pl

�n, where n > 2. If the

MSSM flat directions include a large top quark, K can be
positive and then Q-balls do not exist. For flat directions
that do not have a large top quark component, we typical
find K ’ �½0:01–0:1� [21,41]. The power n of the non-
renormalizable term depends on the flat directions we are
choosing along which we maintain R parity. As examples
of the directions involving squarks, the ucdcdc direction
has n ¼ 6, while the ucucdcec direction requires n ¼ 10.
A complete list of the MSSM flat directions can be found in
Table 1 of [42]. Since the potential in Eq. (15) for K < 0
satisfies the Q-ball existence condition in Eq. (4), where
!þ � m, Q-balls naturally exist.
In the rest of this paper, wewill focus on potentials of the

form of Eq. (15) for general Dð� 1Þ and ! and nð>2Þ so
thatM and mpl have the same mass dimension, ðD� 1Þ=2,
as �. It means that the parameters M and mpl are only

physical for D ¼ 3. For several cases of n and D, the term
UNR can be renormalizable, but we will generally call it the
nonrenormalizable term for the future convenience. The
readers should note that the potential Eq. (15) has been
derived only withN ¼ 1 supergravity inD ¼ 3, therefore
the potential form could well be changed in other dimen-
sions. Furthermore, the logarithmic correction breaks
down for small � and the curvature of Eq. (15) at � ¼ 0
is finite due to the gaugino mass, which affects our thick-
wall analysis and their dynamics. However, we concentrate
our analysis on this potential form for arbitrary D, n and
any values of � for two main reasons. The first is that it
contains a number of general semiclassical features ex-
pected of all the potentials, and the second is that it offers
the opportunity to consider the lower-dimensional Q-balls
embedded in D ¼ 3.
In Appendix A, we obtain the exact solution of Eq. (3)

with the potential U ¼ Ugrav; however, exact solutions of

the general potential U in Eq. (15) are fully nonlinear and
can be obtained only numerically. Therefore, we will an-
alytically examine the approximate solutions in both the
thin- and thick-wall limits. Before doing so, we shall begin
by imposing a restriction on � in Eq. (15) in order to obtain
stable Q-matter in NDVPs. With the further restrictions on
� and jKj, we can proceed with our analytical arguments,
and we will finally obtain the asymptotic Q-ball profile for
large r, which will be used in the numerical section, Sec. V.
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A. The existence of absolutely stable Q-matter

As we have seen, the first restriction on the gravity-
mediated potential Eq. (15), which will allow for the ex-
istence of a Q-ball solution Eq. (4) is K < 0. However,
given values form,mpl,M, n, andK in Eq. (15), we need to

restrict the allowed values of the parameter, � in the
potential in order to ensure we obtain absolutely stable
Q-matter. Notice thatQ-matter exists in NDVPs, while the
extreme thin-wall Q-balls in DVPs, which will not be
Q-matter as it will turn out, may exist with the lowest limit
of �.

By using the definitions of !� and �þ, namely, !2� �
2U
�2 j�þ and

dU!�
d� j�þ ¼ 0, we shall find the range of values

of � for which absolutely stable Q-matter solutions exist.
Moreover, we will obtain the curvature �, which is pro-
portional to jKj, of the effective potential U! at �þ.

The effective potential for Eq. (15) can be rewritten in
terms of new dimensionless variables ~� ¼ �=M, ~! ¼
!=m, and

�2 ¼ j�j2Mn�2

mn�4
pl m2

> 0; (16)

as

U ~! ¼ 1

2
M2m2 ~�2ð1� ~!2 � 2jKj ln ~�Þ þM2m2�2 ~�n:

(17)

After some simple algebra and introducing ~!2� � 2U
~�2 j~�þ

and
dU ~!�
d ~� j~�þ ¼ 0, we obtain

~�þ ¼
� jKj
ðn� 2Þ�2

�
1=ðn�2Þ

;

~!2� ¼ 1

n� 2

�
n� 2þ 2jKj � 2jKj ln

� jKj
ðn� 2Þ�2

��
:

(18)

Notice that ~!2� ¼ 0 corresponds to DVPs where Q-matter
solutions do not exist [37], while the extreme thin-wall
Q-balls do exist and are absolutely stable as we will see. In
NDVPs, Q-matter solutions exist and are absolutely stable
when 0< ~!2� < 1, see Eq. (7). Combining these facts and
using the second relation in Eq. (18), we have the con-
straint on � for stable Q-matter solutions to exist, namely,

jKje�1

n� 2
exp

�
�n� 2

2jKj
�
<�2 <

jKje�1

n� 2
; (19)

, jKje�1

n� 2

mn�4
pl m2

Mn�2
exp

�
�n� 2

2jKj
�
< j�j2

<
jKje�1

n� 2

mn�4
pl m2

Mn�2
; (20)

where we have used Eq. (16) to go from Eq. (19) to
Eq. (20). Here, the lower limit of j�j2 corresponds to ~!2� ¼
0, while the upper limit corresponds to ~!2� ¼ 1. The

inequality in Eq. (20) implies that if the coupling constant
� of the non-renormalizable term in Eq. (15) is too small,
then it does not support the existence ofQ-balls, whereas a
large � coupling leads to unstable Q-matter. With the
following parameter set, m ¼ M ¼ 1, jKj ¼ 0:1, n ¼ 6
and the lower/upper limits of �2 in Eq. (19), Fig. 1 shows
the inverse potentials in Eq. (17) and their inverse effective
potentials �U! with various values of !. The lower limit,

�2 ¼ jKje�1

4 expð� 2
jKjÞ, corresponds to DVPs case with

!� ¼ 0, while in the upper limit, �2 ¼ jKje�1

4 , the poten-

tials do not have degenerate vacua with!� ¼ 1, hence are
called NDVPs. By substituting the values of �2 into
Eq. (18), we obtain the values of �þ indicated in Fig. 1.

Finally, we can obtain the curvature, �2ð!Þ � d2U!

d�2 j�þð!Þ,
evaluated at !�, i.e.

�2 � �2ð!�Þ ¼ m2jKjðn� 2Þ / jKj; (21)

which implies that a small logarithmic correction jKj 

Oð1Þ in Eq. (15) gives an ‘‘extremely’’ flat effective po-
tential U! compared to the quadratic term m2 around � ¼
�þ for a given n	Oð100–1Þ.

B. Thin-wall Q-ball for �0 ’ �þ, RQ � �, 1=�, D � 2

For the extreme limit ! ¼ !�, Coleman demonstrated
that the steplike ansatz [5] is applicable to the case of
NDVPs because the surface effects of the thin-wall
Q-ball in this limit are not significant. There are situations
though where we would like to explore the region around
! ¼ !�, corresponding to �0 ’ �þð!Þ, and to do this we
need to include surface effects. In [37] we explained how to
do this under the assumptions: RQ=	, �RQ � 1, �ðRQÞ<
��ð!Þ, �þð!Þ ’ �þð!�Þ � �þ, and that the surface ten-
sion 
 ’ R�þ

0 d�
ffiffiffiffiffiffiffiffiffiffiffiffi
2U!�

p
does not depend ‘‘sensitively’’ on

!. Here, RQ, 	 are, respectively, the Q-ball core size and

the shell thickness. We note that in [43], Coleman assumed
U! ’ U!� in the shell region, and this is equivalent to

saying �ðRQÞ<��ð!Þ. In what follows we will be mak-

ing use of Coleman’s approach. By requiring this or
�ðRQÞ<��ð!Þ, we can guarantee real values of shell

thickness 	 and surface tension 
. The assumption, in
which 
 does not depend on !, is related to the assump-
tions �þð!Þ ’ �þ and U! ’ U!� is negligible in the shell

region.
Under these assumptions and for D � 2, we now apply

the previous thin-wall analysis in [37] to the present po-
tential Eq. (15). The ansatz is given by

�ðrÞ ¼
8<
:
�þ � sðrÞ for 0 � r < RQ;
��ðrÞ for RQ � r � RQ þ 	;
0 for RQ þ 	 < r;

(22)

where RQ, 	, the core profile sðrÞ, and the shell profile ��ðrÞ
will be obtained in terms of the underlying potential by
extremizing S! with respect to RQ. Each of the profile
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functions satisfies

s00 þD� 1

r
s0 ��s ¼ 0; (23)

�� 00 � dU!

d�

�������� ��
¼ 0: (24)

By recalling Eq. (8), we have previously found that [37]

RQ ’ ðD� 1Þ 


�!
; S! ’ 


D
@VD > 0;

Q ’ !�2þVD;

(25)

EQ

!Q
’ 2D� 1

2ðD� 1Þ �
!2�

2ðD� 1Þ!2
; (26)

!

Q

dQ

d!
’ 1� 2D!2

!2 �!2�
< 0; (27)

where we have taken the thin-wall limit! ’ !� in the last
inequality. Notice that our analytical work cannot apply for
the 1D thin-wall Q-ball, see Eq. (25).

NDVPs: This type of potential supports the existence of
Q-matter that corresponds to the regime U � S. The
Q-matter can be absolutely as well as classically stable
for the extreme limit ! ’ !�, when the coupling constant
� for the nonrenormalizable term in Eq. (15) satisfies
Eq. (20). The characteristic slope is given by the first
case of Eq. (14), and the charge and energy are propor-
tional to the volume VD.

DVPs: With the presence of degenerate minima in
Eq. (15), in [37] we obtained the ratio U=S 	 1, which
corresponds to the second case of Eq. (14). The charge and
energy are not proportional to the volume VD itself in this
case; hence, we cannot see the existence ofQ-matter in the
extreme limit ! ¼ !� ¼ 0. Instead, we can find the pro-
portional relation simply from Eq. (11) and (26), namely,

EQ / Q2ðD�1Þ=ð2D�1Þ.
Our main approximations are based on the assumptions

�0 ’ �þ, RQ � 	, 1=�, and U! ’ U!� in the shell re-

gion. In what follows we will see through numerical simu-
lations that our analytic results agree well with the
corresponding numerical results even in a ‘‘flat’’ potential
choice jKj ¼ 0:1, m ¼ M ¼ 1, n ¼ 6, which implies that
1=�	 1:58, see Eq. (21).

C. Thick-wall Q-balls for �2 & jKj & Oð1Þ
In [37] we studied thick-wall Q-balls in general poly-

nomial potentials, and extracted out the explicit ! depen-
dence from the integral in S! by reparameterizing terms in
the Euclidean action S! in terms of dimensionless quanti-
ties and by neglecting higher order terms. We then made
use of the technique Eq. (10) and obtained consistent
classical and absolute stability conditions, Eqs. (7) and
(12). For our present potential, Eq. (17), which satisfies

the condition, �2 & jKj & Oð1Þ, we will be able to ignore
the nonrenormalizable term by introducing ~� ¼ �=M and
�2 in Eq. (16). We can then obtain the stability conditions
using the same technique as before. Indeed for the limit
! * OðmÞ, we will see ~�ðrÞ 	Oð�Þ<Oð1Þ where � is a
small dimensionless constant [not �! in Eq. (8)], and see
~�0 � ~�ð0Þ � ~�ðrÞ for any r because ~�ðrÞ is a monotically
decreasing function in terms of r. Since the leading order
of the logarithmic term, ~�2 ln ~�, in Eq. (17) is of Oð�2Þ
using the L’Hôpital’s rules, we can ignore the nonrenor-
malizable term in Eq. (17) at the beginning of our analysis.
To confirm this, in Appendix B we will keep all terms in
Eq. (17) by introducing a Gaussian ansatz and show that
the results below [Eqs. (33) and (34)] can also be recovered
under the same assumption�2 & jKj & Oð1Þ. By adapting
the techniques introduced in [37], in this subsection wewill
show how to obtain the thick-wall solutions without in-
volving Gaussian ansatz.
First of all we introduce two characteristic limits: the

‘‘moderate limit’’ ! * OðmÞ and the ‘‘extreme’’ limit
! � m. We will see ~�0 ’ ~��ð!Þ ! 0þ, which leads to
~��ð!Þ 
 Oð1Þ in the ‘‘extreme limit,’’ and then even in
the moderate limit we will see that the contributions from
the nonrenormalizable term are negligible and that ~��ð!Þ
is a monotonically decreasing function in terms of !.
Under the conditions �2 & jKj & Oð1Þ in Eq. (17), we
obtain�

!

m

�
2 ¼ 1� 2jKj ln ~��ð!Þ þ 2�2 ~�n�2� ð!Þ

	 1� 2jKj log ~��ð!Þ; (28)

jKjm2

2!~��ð!Þ
d~��ð!Þ

d!
¼

�
�1þ 2ðn� 2Þ�

2 ~�n�2� ð!Þ
jKj

��1

	�1< 0; (29)

, ! * OðmÞ; ~��ð!Þ 	 exp

�
m2

!

2jKjm2

�
! 0; (30)

where we used U!ð~��ð!ÞÞ ¼ 0 to obtain Eq. (28). It
follows that ~��ð!Þ 
 Oð1Þ for the thick-wall limit ! �
m, and we can ignore the nonrenormalizable term. Since

Eq. (29) implies that d ~��ð!Þ
d! < 0 in the limit ~��ð!Þ<Oð1Þ,

~��ð!Þ is a monotonically decreasing function. Therefore,
we can ignore the contributions from the nonrenormaliz-
able term up to ! * OðmÞ, which we call the moderate
limit with the notion ‘‘	’’ as seen in the second relations of
Eqs. (28) and (29), instead of the extreme limit ! � m
with the notion ‘‘! .’’ Thus, we obtain the desired results
of the second relation in Eq. (30). From Eq. (28), the
logarithmic term may be of& Oð1Þ for jKj<Oð1Þ, �2 

Oð1Þ in the moderate limit, which implies that the moder-
ate limit is valid even when !	OðmÞ.
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Let us define �ðrÞ and ~r through ~�ðrÞ ¼ a�ðrÞ and r ¼
b~r where a and b will be obtained in terms of the under-
lying parameters. By substituting these reparamerized pa-
rameters�, ~r and neglecting the nonrenormalizable term in
Eq. (1) due to the L’Hôpital’s rules, we obtain

S! 	�D�1

Z
d~r~rD�1bD

�
1

2

�
aM

b

�
2
�
d�

d~r

�
2

� 1

2
m2a2M2

�
1�

�
!

m

�
2 � 2jKj lna

�
�2

þ 1

2
m2jKja2M2�2 ln�2

�
; (31)

¼ a2M2bD�2 ~Sð�Þ; (32)

where ~Sð�ð~r=bÞÞ ��D�1

R
d~r~rD�1f1=2ðd�d~rÞ2 � 1=2�2ð1�

ln�2Þg, which is independent of !. In going from Eq. (31)
to Eq. (32) we have set the coefficients of the three terms in
the brackets of Eq. (31) to be unity in order to explicitly
remove the ! dependence from the integral in S!. In other

words, we have set a ¼ e�1=2 exp½ m2
!

2jKjm2� 	 e�1=2 ~��ð!Þ,
b ¼ 1

m
ffiffiffiffiffi
jKj

p . From Eq. (10), we can differentiate Eq. (32)

with respect to ! to obtain Q and then use the Legendre
transformation to obtain EQ. Coupled with Eqs. (7) and

(12) we obtain both the classical and absolute stability
conditions. This is straightforward and yields

Q	 2!

m2jKj S!;
EQ

!Q
	 1þm2jKj

2!2
! 1; (33)

d

d!

�
EQ

Q

�
	 1�m2jKj

2!2
! 1> 0;

!

Q

dQ

d!
	 1� 2!2

m2jKj ! � 2!2

m2jKj< 0;

(34)

where we have taken the extreme limit! � m as indicated
by ! . Equation (33) implies that the characteristic slope
for the thick-wallQ-balls are tending toward the case S 

U in Eqs. (14) and (34) shows that the Q-balls are classi-
cally stable. These results are independent of D. In
Appendix B we will generalize the results of Eqs. (33) and
(34) by adopting an explicit Gaussian ansatz without ne-
glecting the nonrenormalizable term.

Before finishing this subsection, let us comment on
possibilities to have absolutely stable thick-wall Q-balls
in the case, jKj<Oð1Þ, �2 
 Oð1Þ. The results present
above still hold even in the moderate limit !	OðmÞ for
the present case. Thus, the thick-wallQ-balls, if they exist,
can be absolutely stable when the following conditions
from Eqs. (7) and (33) are met:

!� <m;
!

m
<

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jKjp
2

;

jKj< 1

2
; �2 
 Oð1Þ:

(35)

It follows that for jKj � 1=2, the thick-wall Q-balls are
always absolutely unstable. If !� � m, we know !>!�
in both the moderate and extreme limits, hence the thick-
wall Q-ball is always absolutely unstable again, see
Eq. (7). Notice that the condition �2 & jKj implies !� &
OðmÞ, see Eq. (19), so the first condition in Eq. (35) can be
satisfied. This then leaves only a small window of the
parameter space for absolutely stable thick-wall Q-balls.
In the numerical section, Sec. V, we will confirm that the
thick-wall Q-ball can be absolutely stable against decay
into their own quanta by choosing suitable parameters, i.e.
!� ¼ 0, �2 	 1:90� 10�11, and jKj ¼ 0:1.

D. Asymptotic profile for large r and �2 & jKj & Oð1Þ
In order to obtain the full numerical profiles over all

values of !, we should analytically determine the asymp-
totic profile for large r in the potential Eq. (15), which
satisfies �2 & jKj & Oð1Þ as in the previous subsection.
As long as the value of r satisfies r > R!, where R! is
some large length scale and depends on !, we can assume
that the friction term in Eq. (3) and the nonrenormalizable
term in Eq. (15) are negligible for large r. Hence, the
Q-ball equation Eq. (3) reduces to the one-dimensional
and integrable form

�00 ¼ dU!

d�
; (36)

where U! ’ 1=2m2�2ð1� ð!mÞ2 � jKj logð�2

M2ÞÞ. Equa-

tion (36) implies that the profile has a symmetry under
the variation of r because Eq. (36) does not depend on r
explicitly. Multiplying both sides of Eq. (36) by d�

dr leads toZ �ðrÞ

�ðR!Þ
d�ffiffiffiffiffiffiffiffiffiffi
2U!

p ¼ R! � r; (37)

where we have used the boundary conditions �0ð1Þ ! 0,
U!ð�ð1Þ ! 0Þ ! 0, and �0ðrÞ< 0. After some elemen-
tary algebra, the final asymptotic profile becomes

�ðrÞ ¼ MeMm2
!=2m

2
exp

�
�m2jKjM

2
ðr� r!Þ2

�
; (38)

d

dr

�
��0

�

�
¼ m2jKjM; (39)

where r! � R! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

!

m2 � 2jKj
M logð�ðR!Þ

M Þ
q

=ðjKjmÞ. Equa-

tion (38) is a consequence of the symmetry in Eq. (36)
under the translation r ! r� r! from a Gaussian profile
as seen in Eq. (A1) of Appendix A. Furthermore, Eq. (39)
depends on the parameters m, M, jKj in Eq. (15). We will
later use the relation Eq. (39) as a criterion that must be
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satisfied in obtaining full numerical profiles for all values
of !.

We finish this section by recapping the key results we
have derived for the case of the gravity-mediated potential,
Eq. (15), in both the thin- and thick-wall limits. In the
thick-wall limit, we imposed the restrictions �2 & jKj &
Oð1Þ on the potential to ignore the nonrenormalizable
term. In both limits, we have derived the characteristic
slopes in Eqs. (26) and (33) and the classical stability
conditions in Eqs. (27) and (34) and shown that the
Q-balls are classically stable in both cases. The thin-wall
Q-balls in DVPs are always absolutely stable, and
Q-matter in NDVPs can be absolutely stable when the
coupling constant for the nonrenormalizable term satisfies
Eq. (20); while absolutely stable Q-balls in the thick-wall
limit may exist only for Eq. (35). Finally, we obtained the
general asymptotic profile, Eq. (38), for large r.

IV. GAUGE-MEDIATED POTENTIAL

The gauge-mediated scalar potential can be written in
quadratic form in the low energy regime for scales up to the
messenger scale MS, and carries a logarithmically (ex-
tremely) flat piece in the high energy regime [1,22]. This
extreme flatness means that the thin-wallQ-ball we used in
Eq. (22) cannot be applied to this situation, and so we now
turn our attention to Q-balls in extreme flat potentials. We
will generalize the results of [1] to an arbitrary number of
spatial dimensions and show that the knownQ-ball profiles
in [1,34] are naturally recovered by our more general
ansatz. Moreover, we will investigate both the classical
and absolute stability of these Q-balls. The gauge-
mediated potential, which we will use in this section, is
approximated by [44,45]

Uð�Þ ¼
�
1
2m

2�2 for �ðrÞ � �ðRÞ
U0 ¼ const for �ðRÞ<�ðrÞ ; (40)

whereU0 and R are free parameters that will be determined
by imposing a condition that leads to a smooth matching of
the profiles at �ðRÞ, U0 ¼ 1=2m2�2ðRÞ. Notice that
Q-balls exist within 0<!<m in Eq. (40), and the po-
tential does not have degenerate vacua although !� ’ 0.
Since Eq. (40) is not differentiable at �ðRÞ, we can ap-
proximate Eq. (40) by

Ugauge ¼ 1
2m

2�2ð1� e��2=�2Þ; (41)

which we will use in the numerical section. Note that � ¼
�ðRÞ corresponds to the scale below which SUSY is bro-
ken, so that U0 ¼ 1=2m2�2 in Eq. (40). The potential
Eq. (41) differs from the one used in [46], but is similar
to the potential used in [47]. Figure 2 shows the inverse
potential Eq. (41) and the inverse effective potentials for
various values of ! with m ¼ 1, �2 ¼ 2, which implies
U0 ¼ 1. The red-solid line shows the inverse potential of
Eq. (41) [�Ugauge], and the sky-blue dotted-dashed line

corresponds to the inverse quadratic potential of Eq. (40).
For sufficiently large and small �, the two potentials in
Eqs. (40) and (41) have similar behavior, but we can see the
difference in the intermediate region of � where 1 & � &
3. Hence, we can expect that profiles around the thick-wall
limit are different between the potentials since the thick-
wall profiles are constructed in the particular region, 1 &
� & 3; hence, it may lead to the different stationary prop-
erties and stability conditions.
Using Eq. (8), the Q-ball equation, Eq. (3), in the

linearized potential Eq. (40) becomes

�00
core þD� 1

r
�0

core þ!2�core ¼ 0; for 0 � r < R;

(42)

�00
shell þ

D� 1

r
�0

shell �m2
!�shell ¼ 0; for R � r; (43)

where the profiles should be imposed to satisfy the bound-
ary conditions, �0 < 0, �ð0Þ � �0 ¼ finite, �ð1Þ ¼
�0ð1Þ ¼ 0, �0ð0Þ ¼ 0. The solutions are

�coreðrÞ ¼ Ar1�D=2JD=2�1ð!rÞ for 0 � r < R;

�shellðrÞ ¼ Br1�D=2KD=2�1ðm!rÞ for R � r;
(44)

where J and K are Bessel and modified Bessel functions,
respectively, with constants A and B. By introducing �0,
and expanding JD=2�1ð!rÞ for small !r in �coreðrÞ, and by
using the condition U0 ¼ 1=2m2�2

shellðRÞ we obtain

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

0.0 5.0 10.0 15.0 20.0
σ

-U
ω

-U
-1/2 m2σ2

ω=0.1
ω=0.5
ω=0.9

FIG. 2 (color online). The inverse potential �Ugauge in
Eq. (41) (red-solid line) with m ¼ 1, �2 ¼ 2, which implies
U0 ¼ 1 and the inverse effective potentials �U! for different
values of !. In order to compare between Eqs. (40) and (41), we
plot the inverse quadratic potential with the skyblue dotted-
dashed line. The two potentials are asymptotically similar, but
they are different around the intermediate region of �, where
1 & � & 3.
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A ¼ �0�ðD=2Þ
�
2

!

�
D=2�1

;

U0 ¼ 1

2
m2B2R2�DK2

D=2�1ðm!RÞ:
(45)

Since the energy density is smooth and finite everywhere,
we have to impose a smooth continuity condition to the
profiles �coreðRÞ ¼ �shellðRÞ and �0

coreðRÞ ¼ �0
shellðRÞ,

which from Eq. (44) gives

A

B
¼ KD=2�1ðm!RÞ

JD=2�1ð!RÞ ¼ m!KD=2ðm!RÞ
!JD=2ð!RÞ : (46)

We will see that the particular value of �0 does not change
important features such as the stability condition and char-
acteristic slope of the Q-ball solutions. Using Eq. (46) we
obtain the following important identities, which we will
make use of later [48]:

!
JD=2ð!RÞ
JD=2�1ð!RÞ ¼ m!

KD=2ðm!RÞ
KD=2�1ðm!RÞ ; (47)

JD=2ð!RÞJD=2�2ð!RÞ
J2D=2�1ð!RÞ ¼ �

�
m!

!

�
2

� KD=2ðm!RÞKD=2�2ðm!RÞ
K2

D=2�1ðm!RÞ
;

(48)

where we used the recursion relations J��1ðzÞ þ
J�þ1ðzÞ ¼ 2�

z J�ðzÞ, K��1ðzÞ � K�þ1ðzÞ ¼ � 2�
z K�ðzÞ

for any real � and z. We can easily find Score! ¼
U0VDþð12�coreðRÞ�0

coreðRÞÞ@VD and Sshell! ¼
�ð1=2�shellðRÞ�0

shellðRÞÞ@VD, and then using S! ¼ Score! þ
Sshell! it follows that

S! ¼ U0VD; (49)

where we have again used the continuity relations
�coreðRÞ ¼ �shellðRÞ and �0

coreðRÞ ¼ �0
shellðRÞ. To find the

charge Q, we do not make use of the Legendre relation

Q ¼ � dS!
d! in Eq. (10), because R is a function of !, and is

determined by Eq. (47). However, we can obtain Q by
substituting Eq. (44) directly into Eq. (1):

Q ¼ DU0VD

!

�
KD=2ðm!RÞKD=2�2ðm!RÞ

K2
D=2�1ðm!RÞ

�
; (50)

where we have used Eqs. (45), (46), and (48), as well as the

relation
R
dyyZ2

�ðyÞ ¼ ½y22 ðZ2
�ðyÞ � Z��1ðyÞZ�þ1ðyÞÞ�,

[45,48]. Here, � is real, and Z can be either the Bessel
function J or the modified Bessel function K, and we have
used the following recursion relations to obtain the indefi-

nite integral: z
dJ�
dz ��J� ¼ �zJ��1, J��1 � J�þ1 ¼

2
dJ�
dz , z

dK�

dz ��K� ¼ �zK��1, K��1 þ K�þ1 ¼
�2

dK�

dz .

For future reference we obtain explicit expressions for R
for case with an odd number of spatial dimensions.
Equation (47) can be solved explicitly in terms of R to give

!R ¼ arctan

�
!

m!

�
; for D ¼ 1; (51)

!R ¼ �� arctan

�
!

m!

�
; for D ¼ 3; (52)

where we have used J3=2ðxÞ ¼
ffiffiffiffiffi
2
�x

q
ðsinðxÞx � cosðxÞÞ,

J1=2ðxÞ ¼
ffiffiffiffiffi
2
�x

q
sinðxÞ, J�1=2ðxÞ ¼

ffiffiffiffiffi
2
�x

q
cosðxÞ, K3=2ðxÞ ¼ffiffiffiffi

�
2x

p
e�xð1þ 1

xÞ,K1=2ðxÞ ¼
ffiffiffiffi
�
2x

p
e�x ¼ K�1=2ðxÞ. We will dis-

cuss the classical stability for Q-balls in D ¼ 1, 3 in the
numerical section, in which we will show stability plots
arising from Eqs. (51) and (52).

A. Thin-wall-like limit for m!R, !R � Oð1Þ
We now discuss both the classical and absolute stability

of gauge-mediated Q-balls in arbitrary dimensions D, in
the limit m!R, !R � 1, which implies that the ‘‘core’’
size R is large compared to 1=m!, 1=!. As we will see in
the numerical section, Sec. V, the limit will turn out to be
equivalent to the thin-wall limit ! ’ !� ’ 0. Recall that
this potential does not have degenerate vacua. Using
Eqs. (49) and (50),

S! ’ !Q

D
f1þOððm!RÞ�1Þg; (53)

where we have used limjzj!1K�ðzÞ 	
ffiffiffiffi
�
2z

q
e�z½1þ 4�2�1

8z þ
Oðz�2Þ�. The characteristic slope follows

EQ

!Q
’ Dþ 1

D
(54)

from which we see immediately from Eq. (11) that we

recover the published results of [1,44], namely, E /
QD=ðDþ1Þ. From Eqs. (7) and (54), the thin-wall-like
Q-ball is absolutely stable since the present limits will
cover the thin-wall limit ! ’ !� ’ 0 as we stated.
We can also obtain an explicit expression for Rð!Þ and

dR
d! in the limits m!R � 1 and !R � j�2 � 1=4j, where
�ð	Oð1ÞÞ is the argument of the Bessel function

!R ¼
�
Dþ 1

4

�
�� arctan

�
!

m!

�
; (55)

dR

d!
¼ � R

!

�
1� 1

m!R

�
’ � R

!
: (56)

Notice that Eq. (55) forD ¼ 3 reproduces the given profile
in [1,34], and it coincides with the exact expression derived
in Eq. (52). Using Eqs. (50), (55), and (56), we obtain

Q ’ VDU0D

!
; (57)
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!

Q

dQ

d!
’ �D� 1< 0; (58)

which shows that the Q-ball in this limit is classically

stable. One can also check both Q ’ � dS!
d! ¼ DU0VD=!

from Eq. (56) and d
d! ðEQ

Q Þ ’ Dþ1
D > 0 from Eq. (54), which

are, respectively, consistent with Eq. (58) and with the
result in Eq. (12).

B. Thick-wall limit for D ¼ 1; 3; . . .

Having just discussed the thin-wall-like properties for
arbitrary D, we turn our attention now to the other limit
! ’ !þ. This is much more difficult to analytically ex-
plore because Eq. (48) can only give a closed form ex-
pression for R for the case where D is an odd number of
spatial dimensions. Therefore, we will concentrate here on
the cases, e.g. D ¼ 1, 3.

D ¼ 3 case: From Eq. (52) and recalling that in the
thick-wall limit, m! ! 0, ! ’ !þ ¼ m, we obtain R ’
�
2! ,

dR
d! ’ � R

! , and by substituting these into Eq. (50) we

find

!

Q

dQ

d!
’ �1þ !2

m2
!

! !2

m2
!

> 0; (59)

EQ

!Q
¼ 1þ �m!

6!
! 1; (60)

which shows that the three-dimensional thick-wall Q-ball
is classically unstable. This fact is consistent with the

relation that d
d! ðEQ

Q Þ ¼ 1� �!
6m!

! � �!
6m!

< 0, where we

have used Eq. (60). It also follows that the thick-wall
Q-ball is not absolutely stable, and the solution will decay
to free particles satisfying EQ ! mQ, which is the first

case of Eq. (14).
D ¼ 1 case:As in the caseD ¼ 3, Eq. (51) implies R !

0, dR
d! ’ � m2

m!!
3 in the thick-wall limit. Using the above

results, we obtain

!

Q

dQ

d!
’ �1�m2

!2
þ !2

m2
!

! !2

m2
!

> 0; (61)

EQ

!Q
¼ 1þ

�
1þ 1

m!R

��1 ! 1: (62)

Note that the approximate value in Eq. (61) is the same as
Eq. (59). Then the one-dimensional thick-wall Q-ball is
also classically unstable. This fact is again consistent with

the result that d
d! ðEQ

Q Þ ’ 1þm!R� m2

!2 � !2R
m!

! � !2R
m!

<

0. As in the three-dimensional case, the thick-wallQ-ball is
not absolutely stable, and the solution decays into its free
particles.

C. Asymptotic profile

The asymptotic profile for the large r regime in this
model can be described by the contribution from the qua-
dratic term in the potential Eq. (40), from which the profile
then becomes

�ðrÞ 	 E

ffiffiffiffiffiffiffiffiffiffi
�

2m!

s
r�ðD�1Þ=2e�m!r , ��0

�
	D� 1

2r
þm!;

(63)

where E is a constant [37]. Note that we have used the fact
that the modified Bessel function of the second kind has the

relationK�ðrÞ 	
ffiffiffiffi
�
2r

p
e�r for large r and any real�. We will

use the criterion in the second relation of Eq. (63) in the
following section.
Summarizing our most important results, the thin-wall-

like Q-ball is classically stable for a general D, while it is
absolutely stable as seen in Eqs. (54) and (58). On the other
hand, for thick-wall Q-balls in D ¼ 1, 3, the Q-balls are
both classically and absolutely unstable, as can be seen
from Eqs. (59)–(62). Finally, we obtained the general
asymptotic profile Eq. (63) for large r.

V. NUMERICAL RESULTS

In this section, we obtain exact numerical solutions for
Q-balls for both the gravity-mediated potential in Eq. (17)
and the gauge-mediated potential in Eq. (41) with dimen-
sionless parameters by setting m ¼ M ¼ 1 and �2 ¼ 2.
We adopt the 4th-order Runge-Kutta algorithm and usual
shooting methods to solve the second order differential
equations Eq. (3) (for full details see the numerical tech-
niques developed in [37]). The raw numerical data contains
errors for large r, thus we introduce the previously ob-
tained analytical asymptotic profiles to help control these
uncertainties. In particular, we use Eq. (39) for the gravity-
mediated potential and Eq. (63) for the gauge-mediated
case. Using these techniques, the numerical profiles match
smoothly and continuously onto the analytic ones. In order
to check the previously obtained analytic results, we cal-
culate Q-ball properties numerically over the whole pa-
rameter space ! except around the extreme thin-wall limit
! ¼ !�, because it is difficult to obtain reliable numerical
results in that limit.

A. Gravity-mediated potential

We shall investigate two choices of � in Eq. (15) for
jKj ¼ 0:1 and n ¼ 6, which can be seen as the red lines in
Fig. 1. The choice of the parameters, jKj and n, are simply
from phenomenological reasons. The DVP on the left

has !� ¼ 0 (�2 ¼ jKje�1

4 expð� 2
jKjÞ 	 1:90� 10�11 


Oð1Þ), and the NDVP on the right has !� ¼ 1 (�2 ¼
jKje�1

4 	 9:20� 10�3 
 Oð1Þ), recalling Eq. (19). Fig-

ure 1 also shows plots of the inverse effective potentials
�U! for various values of !. Because of numerical com-
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plications, we are unable to fully examine the properties in
the extreme thin-wall limit; however, by solving close to
this wall limit, our numerical results recover the expected
analytical results we derived in Eqs. (26) and (27). With the
above choice of parameters, the curvature � of U! at
�þð!�Þ � �þ in Eq. (21) is �2 	 0:4, which implies
that 1=�	 1:58. From the first relation in Eq. (18), we
have found �þ 	 1:28 in NDVP and �þ 	 1:91� 102 in
DVP. Since we have assumed RQ � 1=�, �0 ’ �þ in our

thin-wall analysis for the gravity-mediated potential, we
see that it breaks down when the core size RQ becomes the

same order as 1=� and/or �0≁�þ. Although the full
definition of the core size RQ is presented in [37], it is

very time-consuming to evaluate it properly in the simula-
tions; hence, in this analysis we have used a more naive

approach, in which we have estimated the value of r ¼ RQ

when the field profile drops quickly from its core value.
For the thick-wall limit, we required the condition �2 &
jKj & Oð1Þ, which is satisfied with the above chosen pa-
rameter set; hence, the analysis is valid for ! * Oð1Þ.
Because of the choice of jKj ¼ 0:1<Oð1Þ and !� ¼ 0
in NDVP, we will see our analysis holds even for !	
Oð1Þ.
Hybrid profile: The numerical profiles have errors for

large r, which correspond to either undershooting or over-
shooting cases; thus, to minimize the errors in the region of
large r we replace the numerical data by the predicted
asymptotic analytical profile using the criterion Eq. (39)
to obtain the solution for the whole range of r. We then
have the hybrid profile which can be written as

�ðrÞ ¼
�
�numðrÞ; for r < Rnum;
�numðRnumÞ expð� jKj

2 R2
num � �0

numðRnumÞ
�numðRnumÞRnumÞ expð� jKjr2

2 þ ðRnumjKj þ �0
numðRnumÞ

�numðRnumÞÞrÞ for Rnum � r � Rmax;

(64)

where �num is the numerical raw data, Rnum is determined
by jð��0

num=�numÞ0 � 1jr¼Rnum
< 0:001, and we have set

Rmax ¼ 60 throughout our numerical simulations in this
subsection. We have calculated the following numerical
properties using the above hybrid profile, Eq. (64), forD ¼
1, 2, 3:

Profile: In the top two panels of Fig. 3 (DVP on the left
and NDVP on the right), the red-solid and blue-dotted lines
show the numerical slopes��0=� for two typical values of
! in D ¼ 3. We smoothly continue them to the corre-
sponding analytic profiles by the methods just described
in the numerical techniques, see green-dashed and purple-
dotted-dashed lines. The linear lines correspond to the
Gaussian tails in Eq. (38) and for the cases of ! ¼ 0:14
(DVP) and ! ¼ 1:01 (NDVP) corresponding to the thin-
wall solution we see that it is shifted from the origin to r ’
21. The middle panels show the obtained hybrid profiles of
Eq. (64) for the various values of ! and D. The higher the
spatial dimension, the larger the core sizeQ-balls can have.
The energy density configurations �EðrÞ can be seen in the
bottom panels of Fig. 3. Outside of the cores of the DVP
profiles for !	!�, we can see the same features as we
saw in the polynomial potentials we investigated in [37],
namely, highly concentrated energy density spikes. In
NDVP, however, the spikes cannot be seen. The presence
of the spike contributes to the increase in the surface
energy S, which in turn leads to the different virialization
ratio for S=U, where U is the potential energy, as can be
seen in Eq. (14).

Criterion for the existence of a thin-wall Q-ball:
Figure 4 shows the numerical results for �0ð!Þ against !
for both types of potentials—DVP (left) and NDVP (right).
Our main analytical approximation relies on �0ð!Þ ’
�þð!Þ 	 �þ � �þð!�Þ, where we have found �þ 	

1:28	Oð1Þ in NDVP and �þ 	 1:91� 102 � Oð1Þ in
DVP. The 3D thin-wall Q-ball (green-crossed dots) ap-
pears for a wider range of ! than the 2D Q-ball (red-plus
signs) in DVP as well as NDVP. For each case, the ap-
proximation can be valid, respectively, up to !	 0:24 or
!	 1:04 with about 10% errors for the 3D case. Near the
thick-wall limit ! ’ !þ for both potentials, we see �0 ’
�� ! 0. The one-dimensional values (skyblue-circled
dots) always lie on ��. Note that in the 3D region ! *
0:53 for DVP, we can see �0ð!Þ & Oð102Þ, which implies
that the contribution from the nonrenormalizable term in
Eqs. (28) and (B9), i.e. �2 ~�4 & Oð10�3Þ 
 Oð1Þ,OðjKjÞ,
is negligible compared to other terms in Eqs. (28) and (B9).
Hence, our analytic solution still holds in the limit !	
Oð1Þ as discussed in Sec. III C.
Virialization and characteristic slope: Figure 5 shows

the Q-ball properties plotted against the ratio of S=U,
where S and U are the surface and potential energies
(top panels), and the characteristic slope EQ=!Q (bottom

panels). For the DVP case where the thin-wall Q-ball
satisfies �0 	 �þ it appears to be heading toward S=U	
1 as ! ! !� ¼ 0 [see Eq. (14)], in all three cases. Also
we predict that the thin-wall Q-ball in NDVP has S=U	
0 [see Eq. (14)] and that it is consistent with what can be
seen in the top-right panel around ! ¼ !� ¼ 1. The bot-
tom panels show analytically and numerically the charac-
teristic slopes EQ=!Q in both the thin- and thick-wall

limits. The analytic thin-wall lines (purple-dotted line for
2D and blue-dotted line for 3D) based on Eq. (26) are well
fitted for the NDVP case with the corresponding numerical
dots (red plus-dots for 2D and green crossed-dots for 3D)
as long as �0 ’ �þ, see the criteria in Fig. 4. For the DVP
case, our numerical data is seen to be heading in the right
direction. The numerical solutions for both cases in the
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thick-wall region are well fitted by the analytic solution in
general D given by the orange-dotted-dashed lines, in the
second relation of Eq. (33) or Eq. (B13). From the virial

relation Eq. (13) for D ¼ 1, we can only predict the
extreme values of the 1D characteristic slope, �, in either
the DVP or NDVP case once we know what S=U is. To
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FIG. 3 (color online). The top two panels show the three-dimensional numerical slopes ��0=� for two typical values of ! for both
DVP (left) and NDVP (right). The raw numerical data (red-solid and blue-dotted lines) matches continuously onto the analytical
asymptotic profiles for large r (green-dashed and purple-dotted-dashed lines). The linear lines correspond to the Gaussian tails in
Eq. (38), where we can see the large shifts in the thin-wall limits of !. The middle and bottom panels show, respectively, the hybrid
profiles Eq. (64) and the energy density configurations for the various values of ! and D. The spikes of the energy density
configurations exist in the DVP case but not in the NDVP case.
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FIG. 5 (color online). The top panels show the ratio S=U where S and U are the surface and potential energies, and the bottom
panels show the numerically obtained characteristic slope EQ=!Q, in 1D (skyblue circled-dots), 2D (red plus-dots) and 3D (green

crossed-dots). For comparison, in the bottom panels, the thin-wall analytic lines obtained using Eq. (26) are also shown (purple-dotted
line for 2D and blue-dotted line for 3D) as are the thick-wall analytic lines obtained from Eqs. (33) and (B13) (orange-dotted-dashed
for all D). The analytic lines match well with the numeric data in the appropriate limits, especially for the NDVP case.
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obtain that we rely on the numerical simulations and from
the top two panels in Fig. 5, we see that for the DVP case
with D ¼ 1, S=U appears to be heading toward unity,
implying � � 1 in Eq. (13), whereas for the NDVP case
S=U 
 1, implying � ! 1 in Eq. (13). Comparing these
with the bottom two panels we see the behavior for �
appears to follow these predictions.

Q-ball stability: Figure 6 shows plots for both the clas-
sical (top panels) and absolute stability (bottom panels)
with the stability threshold lines (black-dashed) for the
cases of DVP (left) and NDVP (right). Let us consider
the classical stability case first. For the thin-wall regime in

DVP, notice that the numerical data of !Q
dQ
d! (red-dot-circles

for 2D and green-dot-crosses for 3D) are heading toward
the analytic lines of Eq. (27). For the thick-wall case, on
the other hand, the analytical lines of Eq. (34) (orange-
dotted-dashed) fit excellently with the numerical data in all
dimensions, because Eq. (34) is independent of D.

Furthermore, theQ-ball is classically stable over all values
of ! except for the 1D thin-wall case where our analytical
work cannot be applied. We saw this feature of unstable 1D
thin-wall Q-balls for the case of polynomial models in
[37]. For the absolute stability in the bottom panels, the
analytical lines using Eqs. (26), (33), and (B13) are
matched with the numerical dots for both the thin- and
thick-wall limits. Here, we note how well the three-
dimensional Q-ball (and also the higher dimensional
ones as predicted in [37]) can be described simply by our
thin- and thick-wall Q-balls. As our parameter set satisfies
Eq. (35), we can see that absolutely stable Q-balls exist in
DVP near the thick-wall limit. Because of the choice of
!� ¼ 1, the Q-ball in the NDVP case, however, is always
absolutely unstable and most of the features are similar in
terms of D. The analytical lines (top-right panel) in NDVP
agree with the corresponding numerical data qualitatively
better than the lines for DVP.
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FIG. 6 (color online). Classical stability for the top panels and absolute stability for the bottom panels for both DVP (left) and NDVP
(right). The black-dashed lines indicate the stability thresholds for both classical and absolute stability in all panels. Q-balls found
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addition, the analytical lines for EQ=mQ using Eqs. (26) and (B13) match the numerical lines for both the thin and thick-wall limits.
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To sum up our discussion of the gravity-mediated model,
our analytical estimates of the characteristic slope and
other properties of the Q-balls are well checked against
the corresponding numerical results, even though we set a
‘‘flatter’’ potential with jKj ¼ 0:1<Oð1Þ.

B. Gauge-mediated potential

This subsection presents numerical results showing the
properties of gauge-mediated Q-balls with m ¼ 1, �2 ¼ 2
in Eq. (41). Although we have obtained analytical results
for the potential, Eq. (40), the potential is neither analytic

nor smooth for all �. Therefore, we shall use the approxi-
mate potential, Eq. (41), see Fig. 2 and we expect that
Eq. (41) is a suitable approximation especially for the thin-
wall limit ! and large D. We will also see and explain the
expected discrepancies that exist between the numerical
and analytic results.
Hybrid profile: As we saw in earlier examples the nu-

merical profiles we have obtained have errors for large r,
which correspond to either undershooting or overshooting;
thus, we replace the numerical data in that regime by the
exact asymptotic analytic solutions we obtained using the
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FIG. 7 (color online). The top panel shows the three-dimensional numerical slopes ��0=� for two values of !. The raw numerical
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and purple-dashed lines). Both the left and right-bottom panels show, respectively, the hybrid profiles Eq. (65) and the energy density
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Q-BALLS IN FLAT POTENTIALS PHYSICAL REVIEW D 80, 025016 (2009)

025016-15



second relation of Eq. (63) to smoothly continue the numerical solutions to the corresponding analytical ones. The hybrid
profile in this model is

�ðrÞ ¼
�
�numðrÞ for r < Rnum;
�numðRnumÞðRnum

r ÞðD�1Þ=2e�m!ðr�RnumÞ for Rnum � r � Rmax;
(65)

where �num is the numerical raw data, Rnum is determined
by j D�1

2r þm! þ ð�0
num=�numÞj< 0:001, and we have

again set Rmax ¼ 60. We have calculated the following
numerical properties using the above hybrid profile,
Eq. (65), up to D ¼ 3.

Profile and energy density configuration: Figure 7 shows
the three-dimensional numerical slopes ��0=� for two
values of ! (top), hybrid profiles (left-bottom) as in
Eq. (65), and the configurations for energy density (right-
bottom). In the top panel, the raw numerical data (red-solid
and blue-dotted lines) is matched smoothly onto the con-
tinuous asymptotic profiles Eq. (65) for large r (green-
dotted and purple-dashed lines). By fixing the numerical
raw data using the technique Eq. (65), we show the profiles
for various values of ! and D, see the left-bottom panel.
Also the peaks of the energy density cannot be observed in
the whole range of !, see the right-bottom panel.
Characteristic slope: In Fig. 8, we plot both the numeric

and analytic characteristic slopes EQ=!Q (orange-dashed

line for 1D and blue-dotted line for 3D). By substituting
Eqs. (51) and (52) into Eqs. (1) and (50), we have obtained
the analytic slopes covering the whole range of !. The 3D
analytic line agrees well with the numerical data except
near the thick-wall limit. Similarly, the 1D analytic line
agrees well only in the thin-wall limit. The origin of the
discrepancies in the analytic versus numerical fits are the
differences between the potentials themselves [Eq. (40) in
the analytical section (Sec. IV) and Eq. (41)]. These dif-
ferences are largest between 1 & � & 3, which in turn
affects the region around 0:9 & !< 1:0, see Figs. 2 and 8.
Q-ball stability: Figure 9 illustrates the stability of

Q-balls: classical stability in the left panel and absolute
stability in the right panel. The black-dashed lines in both
panels indicate their respective stability thresholds where
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Q-balls under the lines are stable. We calculate the analytic
lines for D ¼ 1, 3 by substituting Eqs. (51) and (52) into
Eq. (50) and differentiating it with respect to !. The 3D
numerical data can be matched with the analytic lines in
both the thin- and thick-wall limits. As in Eq. (59), the
three-dimensional Q-ball in the thick-wall limit is classi-
cally unstable. The numerical thick-wall Q-ball in 1D is
classically stable, which differs from the prediction in
Eq. (61). In the right panel, the analytic line for D ¼ 3
agrees with the numerical data except in the thick-wall
limit where the analytical lines for both 1D and 3D do not
match the corresponding numerical data. Furthermore, the
thick-wall Q-ball in 1D is absolutely unstable as predicted
analytically in Eq. (62), but this fact cannot be observed
numerically. The reasons for this discrepancy are as before
a problemwith our choice of potentials. We can see that the
thin-wall Q-balls for any D are both classically and abso-
lutely stable.

To recap, our numerical results in the gauge-mediated
case are generally well fitted by our analytical estimations.
Observed discrepancies between the analytical predictions
and numerical data arise from the artifact of our approxi-
mated smooth potential Eq. (41) for the generalized gauge-
mediated potential Eq. (40). We have confirmed that the
thin-wall Q-balls for any D are both absolutely and clas-
sically stable.

VI. CONCLUSION AND DISCUSSION

We have explored stationary properties ofQ-balls in two
kinds of flat potentials, which are the gravity-mediated
potential, Eq. (15), and the generalized gauge-mediated
potential, Eq. (40). Generally, the gauge-mediated poten-
tial is extremely flat compared to the gravity one; therefore,
we cannot apply our thin-wall ansatz Eq. (22) to the gauge-
mediated case. By linearizing the gauge-mediated poten-
tial, we obtained the analytical properties instead. For both
potential types, we both analytically and numerically ex-
amined characteristic slopes as well as the stability of the
Q-balls in the thin- and thick-wall limits. Our main ana-
lytical results are summarized in Fig. 1.

This present paper is of course related to our previous
work [37]. The key differences are that in the present work
on thin-wall Q-balls we are assuming the value of �þð!Þ
for the thin-wall limit ! ’ !� depends weakly on ! and
we have replaced the assumption �ðRQÞ<��ð!Þ by the

equivalent assumption (made by Coleman) U! ’ U!� in

theQ-ball shell region [43]. These in turn are related to the
previous requirement that the surface tension 
 depends
weakly on !, which can be translated into the main as-
sumptions: RQ � 	, 1=�, �0 ’ �þ, and U! ’ U!� in the

shell region. Furthermore, our analytic work agrees well
with the numerical results for small curvature � with
jKj ¼ 0:1; however, it is not clear that our analytic frame-
work still holds even in the case of jKj 
 Oð1Þ, which

corresponds to a case where the potential is extremely flat,
see Eq. (21).
Q-balls in gravity-mediated potentials: It is possible to

obtain absolutely stable Q-matter with a small coupling
constant, Eq. (20), for the nonrenormalizable term in
Eq. (15). For jKj 6
Oð1Þ, a gravity-mediated potential
can not be really considered as flat, which allows us to
apply our previous results, Eqs. (26) and (27), in [37] to
describe the thin-wall Q-ball where �0 ’ �þ. In the thick-
wall limit by reparametrizing parameters in S! and ne-
glecting the nonrenormalizable term under the conditions
�2 & jKj & Oð1Þ, we have obtained the stationary prop-
erties of the Q-ball. We showed that the thick-wall Q-ball
is classically stable, and demonstrated that under certain
conditions Eq. (35) it can be absolutely stable. Although
this analysis is much simpler than the analysis associated
with imposing a Gaussian ansatz developed in Appendix B,
the former analysis assumed that the nonrenormalizable
term is negligible at the beginning of the analysis. In the
latter analysis, we have kept all terms in Eq. (17) and
shown that the nonrenormalizable term is indeed negligible
in the limit ! * OðmÞ. Our results, Eqs. (34) and (B13),
for the thick-wall Q-ball have recovered the previous
results obtained in [30,49] without any contradictions for
classical stability conditions as opposed to the case of
using a Gaussian ansatz in a general polynomial potential
in which we showed that the ansatz led to a contradiction
and corrected it by introducing a physically motivated
ansatz [37]. This is because the Gaussian ansatz,
Eq. (B1), becomes the exact solution, Eq. (A1), in the
gravity-mediated potential in the limit ! * OðmÞ, where
the nonrenormalizable term is negligible. In Figs. 5 and 6
the analytical lines agree well with the corresponding
numerical plots in both the thin-wall and thick-wall limits.
Under our numerical parameter sets, the Q-balls in DVP
are both classically and absolutely stable up to ! & m,
while all of the Q-balls in NDVP are absolutely unstable
because of our choice, !� ¼ m. We believe that an abso-
lutely stableQ-matter exists in NDVP when we take!� <
m. Since the Q-balls in both potential types are always
classically stable, as can be seen in the top two panels of
Fig. 6 except for the case of 1D Q-balls in the thin-wall
limit to which our analytical work cannot be applied since
it holds only forD � 2. We have also found the asymptotic
profile Eq. (38) for all possible values of!, see the top two
panels in Fig. 3.

Our analytical estimations on the value of !
Q

dQ
d! do not

agree well with the numerical results, because �0≁�þ.
Nevertheless, the other analytical properties are well fitted
especially in NDVP, see bottom panels in Figs. 5 and 6. The
DVP in Eq. (15) for small jKj is extremely flat as the
gauge-mediated potential in Eq. (40), where both of the
potentials have !� ’ 0. Notice that the asymptotic profile
for the former case has a Gaussian tail, while the latter
profile is determined by the usual quadratic mass term, see
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Eqs. (38) and (63). By assuming that the shell effects are
much smaller than the core effects in the thin-wall limit,
the difference of the tails can be negligible. Indeed, we can
see the thin-wall numerical lines for both the classical
stability and the characteristic slope look qualitatively
and quantitatively similar to each other, as can be seen in
both the top/bottom left panels of Fig. 6 and the panels of
Fig. 9. Notice that the spikes of energy density in the
gauge-mediated potential cannot be seen even though
!� ’ 0, see Fig. 7.

Furthermore, we know that the potential Ugrav can be

approximated by 1=2m2M2jKj�2�2jKj for small jKj 

Oð1Þ, then the potential in Eq. (15) looks similar to the
confinement model in [15,16]. By neglecting the nonre-
normalizable terms in the thick-wall limit, we can easily

obtain the characteristic slope, � ¼ 2þjKjðD�1Þ
2þjKjðD�2Þ ’ 1, [9] by

following the same technique as in Eq. (10), which does
not depend on ! but does depend on D and jKj. It follows
that EQ / Q1=� from Eq. (11). This result is obviously

worse than our main results in Eqs. (33) and (B13), see
bottom two panels in Fig. 5, because we know that the
Gaussian ansatz Eq. (B1) can be the exact solution
Eq. (A1) for U ¼ Ugrav; thus, it is not so powerful to

approximate Ugrav by 1=2m2M2jKj�2�2jKj for small jKj.
Q-balls in gauge-mediated potentials: For the gauge-

mediated potential in Eq. (40), we obtained the full ana-
lytic results in D ¼ 1, 3 over the whole range of ! using
Eqs. (51) and (52), see Figs. 8 and 9. In the thin-wall limit
for m!R, !R � Oð1Þ, we reproduced the previously ob-
tained results, Eq. (54), in [1,44,45] and showed that they
are both classically and absolutely stable in Eqs. (54) and
(58). The one- and three- dimensional thick-wall Q-balls,
on the other hand, are neither classically nor absolutely
stable, see Eqs. (61) and (62) or Eqs. (59) and (60),
respectively. Since the potential, Eq. (40), is not differ-
entiable everywhere, we have used the approximate poten-
tial, Eq. (41), instead in the numerical section. Figures 8
and 9 show that the numerical results agree with the
analytical results in the thin-wall limit. The numerical
data near the thick-wall limit and/or in the 1D case differ
from the analytic lines since the profiles are computed in
the region where the two potentials between Eq. (40) and
(41) are different, see Fig. 2. This differences come from
the artifact of our approximated smooth potential Eq. (41)
against the generalized gauge-mediated potential Eq. (40).

The 3DQ-balls: Although we have shown Q-ball results
for an arbitrary number of spatial dimensions D, only
three-dimensional cases are phenomenologically interest-
ing. Q-balls in flat potentials give the proportional relation

EQ / Q1=�, where � generally depends on D. The actual

values of 1=� for three-dimensional thin-wall Q-balls are
4=5, 1, and 3=4 in DVP, NDVP of gravity-mediated poten-
tials and in gauge-mediated potentials, respectively. It
implies that the gauge-mediated Q-balls would be formed

in the most energetically compact state for a large charge
Q, so it is likely that such formed Q-balls would have
survived any possible decay processes and thermal evapo-
ration until the present day, and possibly become a dark
matter candidate [29].
Dynamics and cosmological applications: The dynam-

ics of a pair of one-dimensional Q-balls has been recently
analyzed using momentum flux [50]. For a large separation
between the Q-balls, the profiles develop the usual expo-
nential tail, e�m!r, in general polynomial potentials and in
[50] the authors showed that there was a solitonic force
between them. Profiles in the gravity-mediated models and
other confinement models, however, have different asymp-
totic tails, which may affect the detailed dynamics and the
Q-ball formation [51–54].
In a cosmological setting (thermal background), SUSY

Q-balls are generally unstable via evaporation, diffusion,
dissociation, and/or decay into todays baryons and lowest
mass supersymmetric particles, if the AD field couples to
the thermal plasma, which are decay products from infla-
ton, and/or if the field possesses a lepton number for the
MSSM flat directions [21,30]. Following our detailed ana-
lytical and numerical analyses of both gravity-mediated
and gauge-mediatedQ-balls, it is clear that this whole area
of dynamics and cosmological implications of these
Q-balls deserves further analyses.
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APPENDIX A: AN EXACT SOLUTION

In this appendix we will show that a Gaussian profile is
an exact solution of theQ-ball equation Eq. (3) with U! ¼
Ugrav � 1=2!2�2 in Eq. (15). Notice that the potential

Ugrav becomes negative for e1=2jKjM<�; hence, the sys-

tem is not bounded from below. The additional contribu-
tion from the nonrenormalizable term UNR compensates
the negative term and supports the existence of Q-balls in
the system. Although the Gaussian exact solution is no
longer a solution for the full potential Ugrav þUNR in

Eq. (15), the solution we will obtain here provides hints
in suggesting a reasonable ansatz for the thick-wall Q-ball
as we will see later.
Let us consider the following Gaussian profile:

�solðrÞ ¼ �! exp

�
� jKjm2r2

2

�
; (A1)

where we will see that m, M, and jKj are the same pa-
rameters as in Eq. (15) and �! will be shortly determined
in terms of the underlying parameters. By substituting
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Eq. (A1) into the left-hand side of Eq. (3) it leads to

Ugrav ¼ m2

2
�2

�
1� jKj ln

�
�

M

�
2
�

(A2)

and

�! ¼ M exp

�
D� 1

2
þ m2

!

2jKjm2

�
; (A3)

where we set an integration constant as zero. Recall m2
! �

m2 �!2. Note that the constant M has the same mass
dimension, ðD� 1Þ=2, as � so that the only physical
case is D ¼ 3. The profile Eq. (A1) is an exact solution

for Ugrav with the core radius RQ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=m2jKjp

[30], which

is very large compared with m�1 for small jKj 
 Oð1Þ,
and satisfies the boundary conditions for Q-balls, namely,
�0ð0Þ ¼ 0 ¼ �ð1Þ ¼ �0ð1Þ [37]. In the extreme limit
! � m we obtain �! ! 0 for jKj & Oð1Þ, which implies
�0 � �ð0Þ ! 0. For large �, the potential becomes
asymptotically flat, tending toward an infinite negative
value. By adding the nonrenormalizable term UNR, the
potential Ugrav is lifted for large � in Eq. (15), then the

full potential Ugrav þUNR is bounded from below, see

Sec. III A. We can see the ansatz given in [30] corresponds
to the case where �! ’ M, which is valid only for jKj 

Oð1Þ and ! ’ m, see in Eq. (A3).

APPENDIX B: THICK-WALL Q-BALLWITH A
GAUSSIAN ANSATZ

In this appendix, we will investigate the thick-wall
Q-ball in gravity-mediated models by introducing a
Gaussian ansatz and keeping all terms in Eq. (17) as
opposed to the analysis in Sec. III C. By using this profile
we can perform the Gaussian integrations, and will obtain
the generalized results of Eqs. (33) and (34) in Sec. III C.
The test profile for the case,! * OðmÞ, coincides with the
solution �sol in Eq. (A1), which implies that the nonrenor-
malizable term UNR in Eq. (15) is negligible.

To recap, the notation we have adopted in Eq. (17) is
~� ¼ �=M, ~! ¼ !=m, �2 is defined in Eq. (16) and we are
considering the case of n > 2. To begin with we introduce a

Gaussian ansatz inspired by Eq. (A1) for the potential
Eq. (17)

~�ðrÞ ¼ �! expð�
2
!r

2=2Þ; (B1)

where ~�0 � ~�ð0Þ ¼ �! ¼ finite, and �!, 
! will be func-
tions of ! implicitly. �! should not be confused with the
coupling constant � in Eq. (15). Both �! and 
! can be
determined by extremizing the Euclidean action S!; hence,
the actual free parameter here will be only!. It is crucial to
note that �! cannot be infinite in the thick-wall limit since
we know that �! is finite and tending to 0. If the non-
renormalizable term UNR is negligible, we can expect
�! 	 �!=M	 ~��ð!Þ and 
2

! 	 jKjm2 due to Eq. (A1),
which implies that the core radius RQ of the thick-wall

Q-ball is RQ 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=m2jKjp

. For the extreme thick-wall limit

! � m, we shall also confirm �! ! 0, which means
~�0 ! 0.
By substituting Eq. (B1) into Eq. (1) with the potential

Eq. (17), we obtainQ and S! using the following Gaussian

integrations: �D�1

R1
0 drrD�1e�kr2 ¼ ð�kÞD=2 for real k

where �D�1 � 2�D=2

�ðD=2Þ . Thus,

Q ¼ M2�D=2!�2
!


�D
! ; (B2)

S! ¼ M2�D=2
�D
! ½Að
!; �!Þ þ Bð!;�!Þ þ Cð�!Þ�;

(B3)

where

Að
!; �!Þ � D�2
!

4
ð
2

! þ jKjm2Þ; (B4)

Bð!;�!Þ � m2�2
!

2

�
1�!2

m2
� 2jKj ln�!

�
;

Cð�!Þ ¼ m2�2�n
!

�
2

n

�
D=2

:

(B5)

Notice that Að
!; �!Þ comes from the gradient term and
the logarithmic term in S! and depends on both 
! and �!.
Similarly, Bð!;�!Þ is given by the quadratic term in the
potential Eq. (17) and depends both on �! and explicitly on
!, where as Cð�!Þ arises simply from the nonrenormaliz-

TABLE I. Key analytical results. Recall that the !-independent characteristic slope � � EQ=!Q leads to the proportionality
relation EQ / Q1=�. The symbols, 
, �, 4, indicate that Q-balls are stable, unstable, or can be stable with conditions, respectively.

The symbol, m, means that we may need the condition jKj 6
Oð1Þ.
Model Gravity mediated Gauge mediated

Q-ball type Thin wall Thick wall Thin wall Thick wall

Conditions m �2 & jKj & Oð1Þ None D ¼ 1; 3; . . .
Assumptions RQ � 	, 1=�; �0 ’ �þ and U! ’ U!� in shell None R � 1=m!, 1=! None

Potential type DVPs NDVPs Both NDVPs

1=� 2D�1
2ðD�1Þ 1 1 D

Dþ1 1

Absolute stability 
 4 4 
 �
Classical stability 
 
 4 
 �
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able term in the potential. An alternative (but in this case
more complicated) approach to obtain Q would be the use
of Legendre transformations in Eq. (10).

By extremizing S! in terms of the two free parameters

!, �!:

@S!
@
!

¼ 0;
@S!
@�!

¼ 0; (B6)

we obtain

Aþ Bþ C ¼ �2
!


2
!

2
; Aþ Bþ nC

2
¼ m2�2

!jKj
2

;

(B7)

which implies that


2
!

m2
¼ jKj � ðn� 2Þ�2�n�2

!

�
2

n

�
D=2 � 0; (B8)

where we have eliminated the Aþ B terms in the two
expressions of Eq. (B7). Using Eq. (B8) and the second
expression of Eq. (B7), we obtain the relations between !
and �!

!2

m2
¼ 1þ jKjðD� 1� 2 ln�!Þ

þ 2ðnþDÞ � nD

2
�2�n�2

!

�
2

n

�
D=2

; (B9)

	
�
1þ jKjðD� 1� 2 ln�!Þ for jKj 	Oð1Þ
1� 2jKj ln�! for jKj<Oð1Þ ; (B10)

d�!

d!
¼ � �!!

jKjm2F
	� �!!

jKjm2
< 0; (B11)

where we have differentiated Eq. (B9) with respect to
! to obtain Eq. (B1) and have defined F as F � 1�
ðn � 2Þ 2ðnþDÞ�nD

4
�2

jKj �
n�2
! ð2nÞD=2 ¼ 1 þ 2ðnþDÞ�nD

4jKjm2 ð
2
!�

m2jKjÞ. Equations (B8) and (B9) imply that both 
! and
�! are functions of !; however, these are not solvable in
closed forms unless the particular limits, which were in-
troduced in Sec. III C, are taken, as we will now show.
Comparing Eqs. (B9) and (B11) with Eqs. (28) and (29),
we can see an extra contribution of OðjKjÞ in Eq. (B9),
which is not present in Eq. (28). This difference of ðD�
1ÞjKj arises because in calculating Eq. (B9) we have used
�! whereas we have used ~��ð!Þ in obtaining Eq. (28), and
although related they are not precisely the same. In the
extreme thick-wall limit ! � m, and from Eq. (B9) this
implies �! ! 0þ [recall from Eq. (B1) that �! has to
remain finite]. Considering the nonrenormalizable term
in Eq. (B9), the fact that �2 & jKj & Oð1Þ and �! ! 0þ
with n > 2, implies that this term is subdominant and can
be ignored. As long as �! <Oð1Þ, then F	 1 and the
second relation of Eq. (B11) follows, which implies that
�! is a monotically decreasing function in terms of!. The
limit �! 	Oð1Þ corresponds to ! * OðmÞ, see Eq. (B9).

We will call this the moderate limit and represent it by
‘‘	’’. The other case, ! � m (or equivalently �! 

Oð1Þ), we shall call the extreme limit and represent it by
! . Depending on the logarithmic strength of jKj, we can
obtain Eq. (B10), which leads to the approximated expres-
sions for �! and can also obtain 
! from Eq. (B8)

�! 	
�
�!=M for jKj 	Oð1Þ
~��ð!Þ for jKj<Oð1Þ ! 0;


2
!

m2
	 jKj ! jKj for jKj & Oð1Þ;

(B12)

where 
! is independent of ! in both the moderate and
extreme limits.
Using Eqs. (B2), (B3), and (B7), we obtain the charac-

teristic slope in both the moderate and extreme limits,

EQ

!Q
¼ 1þ 
2

!

2!2
	 1þm2jKj

2!2
! 1: (B13)

In order to show their classical stability, we shall differ-
entiate Q with respect to ! using Eqs. (B8), (B9), and
(B11):

!

Q

dQ

d!
¼ 1� 2!2

m2jKjF
�
1�Dðn� 2Þ

4
2
!

ð
2
! �m2jKjÞ

�

	 1� 2!2

m2jKj ! � 2!2

m2jKj< 0; (B14)

d

d!

�
EQ

Q

�
¼ 1� 1

2!2

�

2
! þ ðn� 2Þ!2

m2jKjF ð
2
! �m2jKjÞ

�

	 1�m2jKj
2!2

! 1> 0; (B15)

where we have taken the moderate limit and extreme

limit and used 
2
! 	m2jKj, F ¼ 1þ 2ðnþDÞ�nD

4jKjm2 �
ð
2

! �m2jKjÞ 	 1. The classical stability condition
Eq. (B14) is consistent with Eq. (B15), and is consistent
with Eq. (12). This is different from the result we obtained
for the polynomial potentials [37] (see Eq. (74) in [37]),
because in that case the Gaussian ansatz does not give the
exact solution unlike here in Eq. (B1) where it does be-
come the exact solution Eq. (A1) in both limits. The results
Eqs. (B13)–(B15) in both the moderate and extreme limits
recover the key results, Eqs. (33) and (34), and are inde-
pendent of D; hence, the thick-wall Q-balls for all D have
similar properties. We can also see the small additional
effects arising from the nonrenormalizable term in
Eqs. (B14) and (B15).
Let us summarize the important results we found in this

appendix. By introducing a Gaussian test profile Eq. (B1)
inspired by the exact solution Eq. (A1) for Ugrav, we

computed the Euclidean action S! and the charge Q using
Gaussian integrations. Then we extremized S! in terms of
�! and 
! in Eq. (B6), which gave the relations of both �!

and 
! as a function of!. By introducing two limits called
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moderate limit and extreme limit, we confirmed that the
ansatz, Eq. (B1), approaches Eq. (A1) in the moderate
limit. We established that the results Eqs. (B13)–(B15)
recovered the previous results in Eqs. (33) and (34), which
are obtained simply by reparametrizing in S! and extract-
ing the explicit ! dependence from the integral in S! with
U ¼ Ugrav where the nonrenormalizable term was ne-

glected at the beginning of the analysis by applying
L’Hôpital rules.

In addition, we would like to emphasize the main dif-
ferences between our work and other earlier analyses in the
literature [30,49]. The analytical framework adopted in
[49] is valid only for jKj ¼ 1, D ¼ 3, n ¼ 4. Our work
has shown that this can be generalized to arbitrary integer
values of D and nð>2Þ under the conditions �2 & jKj &
Oð1Þ, and that the thick-wall Q-ball can be classically
stable. In Sec. III C, we also found that the thick-wall

Q-ball may be absolutely stable under certain additional
conditions, Eq. (35). Furthermore, Enqvist and McDonald
in [30] analytically obtained the same core size of thick-
wall Q-balls, although they obtained a slightly different
value for EQ=Q [see their Eq. (112)]. The reason for this is

because their ansatz assumed �! ’ 1 in Eq. (B1) by simply
neglecting the nonrenormalizable term, which implies that
the third term of Bð!;�!Þ and term Cð�!Þ in Eq. (B5) are
absent. Hence, their analysis is valid for jKj 
 Oð1Þ and
! ’ m, see Eq. (A3). We, however, have kept all the terms
in Eq. (17) and used a more general ansatz, which can be
applied for jKj & Oð1Þ and ! * OðmÞ with the restricted
coupling constant of the nonrenormalizable term �2 &
jKj. In summary, in this appendix we have extensively
investigated analytically both the absolute and classical
stability of Q-balls in Eqs. (B13) and (B14).
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