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We consider a sterile neutrino to be an unparticle, namely, an unsterile neutrino, with anomalous

dimension � and study its mixing with a canonical active neutrino via a seesaw mass matrix. We show that

there is no unitary transformation that diagonalizes the mixed propagator and a field redefinition is

required. The propagating or ‘‘mass’’ states correspond to an unsterilelike and activelike mode. The

unsterile mode features a complex pole or resonance for 0 � �< 1=3 with an ‘‘invisible width’’ which is

the result of the decay of the unsterile mode into the active mode and the massless particles of the hidden

conformal sector. For � � 1=3, the complex pole disappears, merging with the unparticle threshold. The

active mode is described by a stable pole, but ‘‘inherits’’ a nonvanishing spectral density above the

unparticle threshold as a consequence of the mixing. We find that the radiative decay width of the

unsterile neutrino into the active neutrino (and a photon) via charged current loops, is suppressed by a

factor�½2sin2ð�0ÞM2

�2 ��=ð1��Þ, where �0 is the mixing angle for � ¼ 0,M is approximately the mass of the

unsterile neutrino, and � � M is the unparticle scale. The suppression of the radiative (visible) decay

width of the sterile neutrino weakens the bound on the mass and mixing angle from the x-ray or soft

gamma-ray background.
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I. INTRODUCTION

Neutrino masses and oscillations are now an established
phenomenon and an undisputable evidence of physics
beyond the standard model. Although the origin and scale
of masses remains a challenging question, the seesaw
mechanism provides a compelling explanation of small
active neutrino masses as the result of ratios of widely
different scales [1]. Among extensions of the standard
model, the addition of sterile neutrinos, namely, SU(2)
singlets with a mass in the few keV range, acquires par-
ticular importance as a potential warm dark matter candi-
date [2–14] and could provide possible solutions to a host
of astrophysical problems [6]. The radiative decay [15] of a
sterilelike neutrino mass eigenstate into an activelike mass
eigenstate and a photon leads to a decay line that could be
observable in the x-ray or soft gamma-ray background
[16]. The nonobservation of this line provides a constraint
on the mass and mixing angle of sterilelike neutrinos
[10,12,16–19].

More recently sterile neutrinos with mass in the GeV
range have been proposed as explanations of two seem-
ingly unrelated and unexpected phenomena: an excess of
air shower events at the SHALON gamma-ray telescope, in
a configuration where the expected number of events is
negligible [20], and as a potential explanation of the
MiniBoone anomaly [21], namely, the prominent peak of

electron-neutrino events above background for
300 MeV � E� � 475 MeV. Sterile neutrinos in a three-
active, two-sterile (3þ 2) oscillation scheme were pro-
posed in Ref. [22] as a possible explanation of the
MiniBooNE anomaly, and an alternative explanation in-
voking the radiative decay of a heavy sterile neutrino with
a small magnetic moment was proposed in Ref. [23].
In this article we study the possibility that sterile neu-

trinos are a manifestation of unparticles, which then mix
with the active neutrinos via a seesaw-type mass matrix.
In a recent series of articles, Georgi [24] suggested an

extension of the standard model in which particles couple
to a conformal sector with a nontrivial infrared fixed point
acquiring (large or nonperturbative) anomalous dimen-
sions with potentially relevant consequences, some of
which may be tested at the Large Hadron Collider (LHC)
[25–27]. Early work by Banks and Zaks [28] provides a
realization of a conformal sector emerging from a renor-
malization flow toward the infrared below an energy scale
� through dimensional transmutation, and supersymmetric
QCD may play a similar role [29]. Below this scale there
emerges an effective interpolating field, the unparticle
field, that features an anomalous scaling dimension [24].
Various studies recognized important phenomenological

[24,25,30–32], astrophysical [33–35], and cosmological
[36–43] consequences of unparticles, including Hawking
radiation into unparticles [44], aspects of CP violation
[45], flavor physics [46], and low energy parity violation
[47]. More recently, the consequences of mixing of un-
particle scalar fields and a Higgs field were studied in
Ref. [48] with implications for slow-roll inflation.
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A deconstruction program describes the unparticle as a
tower of a continuum of excitations [49]. However, this is
not the only interpretation of unparticles. As mentioned in
Ref. [48], anomalous scaling dimensions are ubiquitous in
critical phenomena near an infrared fixed point [50,51],
which is the main observation in Ref. [28]. There is also a
well-known phenomenon in QCD [52] where anomalous
dimensions emerge from the multiple emission and absorp-
tion of gluons as a result from the resummation of infrared
Sudakov logarithms. Similarly, in QED, the Bloch-
Nordsieck resummation of infrared divergences arising
from multiple emissions and absorptions of photons yield
threshold infrared divergences and lead to a renormalized
electron propagator that also features anomalous dimen-
sions [53,54]. The renormalization group resummation of
absorption and emission of massless quanta lead quite
generally to anomalous dimensions in the propagators [55].

A recent study [56] suggests a connection between un-
particles and the Miniboone anomaly, namely, that the
heaviest mass eigenstates corresponding to the mixed
�� � �e decays into the lightest eigenstate and a scalar

unparticle (see also [57]). Furthermore, unparticle contri-
butions to the neutrino-nucleon cross section and its influ-
ence on the neutrino flux expected in a neutrino telescope
such as IceCube have been reported in Ref. [58].

If heavy sterile neutrinos decaying into lighter active
neutrinos and massless particles of a hidden conformal
sector described by scalar unparticles are a plausible ex-
planation of the MiniBooNE anomaly, then the coupling of
the sterile neutrinos to this degree of freedom will neces-
sarily lead to the consideration of the sterile neutrino itself
being an unparticle.

This consideration emerges naturally from the ‘‘decon-
struction’’ argument [49], since the coupling of the sterile
neutrino to the scalar unparticle leads to a spectral repre-
sentation of the sterile neutrino propagator that features
anomalous scaling dimensions. Alternatively (but equiva-
lently), the emission and absorption of massless (confor-
mal) quanta lead to infrared threshold divergences akin to
Sudakov logarithms whose renormalization group (or
Bloch-Nordsieck [53]) resummation leads to anomalous
dimensions [52,55].

Massive fermionic unparticles with a soft conformal
breaking mass term had been introduced in Ref. [59] and
a very interesting proposal in which right-handed neutrinos
are fermionic unparticles was considered in Ref. [60].

If unparticle physics proves to be an experimentally
relevant extension of the standard model, it is natural to
consider sterile neutrinos, namely, SU(2) singlets, as being
unparticles, and we refer to them as unsterile neutrinos.

Unsterile neutrinos are assumed to couple to a ‘‘hidden’’
conformal sector beyond the standard model and acquire a
(possibly large) anomalous scaling dimension below a
scale � of dimensional transmutation at which the infrared
fixed point of the conformal sector dominates the low
energy dynamics.

In this article we consider such a possibility and study
the consequences of unsterile neutrinos mixing with active
neutrinos via a typical seesaw mass matrix. We consider
the simplest scenario of one unsterile and one active Dirac
neutrino to establish the general consequences of their
mixing. Our objectives in this article are twofold:
(i) Because unsterile neutrinos feature noncanonical

kinetic terms, novel aspects of mixing phenomena
emerge. We explore the fundamental aspects of mix-
ing between these unsterile and the usual active
neutrinos via a seesaw-type mass matrix.

(ii) We also focus on potential cosmological consequen-
ces, in particular, if and how the unparticle nature of
a sterile neutrino modifies its radiative decay into an
activelike neutrino. This decay rate is an important
ingredient to establish bounds on masses and mix-
ing angles from the cosmological x-ray or soft-
gamma background in the case when the mass of
the sterilelike neutrino is in the keV range, which is
of interest when considering it as a dark matter
candidate.

Our results can be summarized as the following:
(i) The spinor nature of the unparticle field introduces

novel aspects of mixing, in which there is no unitary
transformation purely in flavor space that diagonal-
izes the full propagator. The diagonalization requires
a nonunitary transformation and field redefinition
followed by a momentum-dependent transformation
that is unitary below the unparticle threshold but
nonunitary above. The resulting mixing angles de-
pend on the four-momentum.1

(ii) For a seesaw-type mass matrix that mixes the un-
sterile and active neutrino, we find an unsterilelike
mode with an ‘‘invisible’’ decay width. A renormal-
ization group inspired ‘‘resummation’’ argument
suggests that this width is a result of the decay of
the unsterilelike mode into the activelike mode and
particles in the ‘‘hidden sector.’’ A complex pole for
the unsterile mode exists only for 0<� � 1=3,
where � is the unparticle anomalous dimension.
As � ! 1=3� the real part of the pole approaches
the unparticle threshold from above and the width
becomes large. For �> 1=3 the spectral density for
the unsterile mode does not feature a complex pole,
but is described by a broad continuum with a large
enhancement at the unparticle threshold.
The activelike mode features a stable isolated pole
below the unparticle threshold, but ‘‘inherits’’ a
nontrivial spectral density above it as a consequence
of the mixing, even in the absence of standard model
interactions. The nonvanishing spectral density may

1Reference [61] speculated that a fermionic unparticle coupled
to an active neutrino might give rise to energy-dependent
mixing.

D. BOYANOVSKY, R. HOLMAN, AND JIMMYA. HUTASOIT PHYSICAL REVIEW D 80, 025012 (2009)

025012-2



open up new kinematic channels for weak
interactions.

(iii) We obtain the radiative decay width of the unster-
ilelike mode into the activelike mode and a photon
via a charged current loop. For large anomalous
dimension (but �< 1=3) we find a substantial
suppression of the radiative decay width suggesting
a concomitant weakening of the bounds on the
mass and mixing angle from the x-ray or soft
gamma-ray background.

II. UNSTERILE-ACTIVE MIXING

In order to study the fundamental aspects of unsterile-
active neutrino mixing and the potential cosmological
consequences, we consider the simplest case with one
unsterile and one active Dirac neutrino. The case of
Majorana neutrinos and a triplet of unsterile neutrinos as
envisaged in extensions beyond the standard model [10]
will be studied in detail elsewhere.

For an unsterile Dirac fermion the Lagrangian density in
momentum space is [29,59]

L ¼ �c Uð�pÞðp6 �MÞFðpÞc UðpÞ; (2.1)

where

FðpÞ ¼
��p2 þM2 � i�

�2

���
; 0 � �< 1: (2.2)

� is the scale below which the low energy dynamics is
dominated by the infrared fixed point of the conformal
sector. Below this scale the unparticle is described by an
interpolating field whose two point correlation function
scales with an anomalous dimension [24]. Consistency of
the unparticle interpretation requires that

M<�: (2.3)

We consider the mixing with an ‘‘active’’ massless Dirac
neutrino c a of the form

L m ¼ �c Umc a þ H:c: (2.4)

A seesaw mechanism consistent with the unparticle nature
of the sterile neutrino, namely, an interpolating effective
field below a scale � entails the following hierarchy of
scales:

m � M<�: (2.5)

In what follows we will explicitly invoke this hierarchy in
the analysis.

It is convenient to introduce the ‘‘flavor doublet’’

�
c a

c U

� �
; (2.6)

and write the Lagrangian density for the unsterile and
active fermions as

L ¼ ��ð�pÞ½p6 F�M��ðpÞ; (2.7)

where

F ¼ 1 0
0 FðpÞ

� �
; (2.8)

and

M ¼ 0 m
m MFðpÞ

� �
: (2.9)

The equation of motion is

½p6 F�M��ðpÞ ¼ 0: (2.10)

It is convenient to introduce the spinor � so that

�ðpÞ ¼ ½p6 Iþ F�1M��ðpÞ; (2.11)

which obeys the following equation of motion:

½p2F�MF�1M��ðpÞ ¼ 0; (2.12)

where

M F�1M ¼
m2

FðpÞ mM

mM m2 þM2FðpÞ

 !
: (2.13)

The matrix in (2.12) can be written as follows:

½p2F�MF�1M� ¼ �ðpÞI� �ðpÞ �CðpÞ SðpÞ
SðpÞ CðpÞ

� �
:

(2.14)

Introducing the shorthand

Q ¼ p2 � m2

FðpÞ ; (2.15)

we obtain

�ðpÞ ¼ 1
2½Qþ FðpÞðQ�M2Þ�; (2.16)

�ðpÞ ¼ 1
2½½Q� FðpÞðQ�M2Þ�2 þ 4m2M2�1=2; (2.17)

and

C ðpÞ ¼ ½Q� FðpÞðQ�M2Þ�
2�ðpÞ ; (2.18)

S ðpÞ ¼ mM

�ðpÞ : (2.19)

These functions obey

C 2ðpÞ þ S2ðpÞ ¼ 1: (2.20)

It becomes clear that the dispersions relations for the
propagating modes correspond to
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det½p2F�MF�1M� ¼ �2ðpÞ � �2ðpÞ ¼ 0

) QðQ�M2Þ �m2M2

FðpÞ ¼ 0;

(2.21)

which then leads to a self-consistent equation for the
dispersion relation of the propagating modes

p2� ¼ m2

Fðp�Þ þ
M2

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

M2Fðp�Þ

s �
: (2.22)

The Klein-Gordon operator (2.14), which we obtained
from squaring the Dirac operator, can be diagonalized
using the transformation

U ðpÞ ¼ cðpÞ sðpÞ
�sðpÞ cðpÞ

� �
; (2.23)

where

cðpÞ ¼ 1ffiffiffi
2

p ½1þ CðpÞ�1=2; sðpÞ ¼ 1ffiffiffi
2

p ½1� CðpÞ�1=2:
(2.24)

The resulting spinor is given by

~�ðpÞ ¼ U�1ðpÞ�ðpÞ; (2.25)

and in this basis, the Klein-Gordon matrix (2.14) becomes

U�1ðpÞ½p2F�MF�1M�UðpÞ

	 �ðpÞ þ �ðpÞ 0
0 �ðpÞ � �ðpÞ

� �
: (2.26)

An alternative manner to understand the solutions to the
equations of motion is by going to the chiral representa-
tion. We do this by expressing the spinor � in terms of its
right and left components, each a flavor doublet

� ¼ �R

�L

� �
: (2.27)

We can then expand the right and left components in the
helicity basis

�R;L ¼ X
h¼�1

vhð ~pÞ 
 �h
R;L; (2.28)

where

~	 � ~p
j ~pj vhð ~pÞ ¼ hvhð ~pÞ; h ¼ �1; (2.29)

and �h
R;L are flavor doublets. We find that

ðp0 � hj ~pjÞF�h
R þM�h

L ¼ 0; (2.30)

ðp0 þ hj ~pjÞF�h
L þM�h

R ¼ 0: (2.31)

Using (2.31), we can expres �h
L in terms of �h

R and obtain

½p2F�MF�1M��h
R ¼ 0; �h

L ¼ � F�1M

ðp0 þ hj ~pjÞ�
h
R:

(2.32)

Alternatively, we can express �h
R in terms of �h

L using
(2.30), and obtain

½p2F�MF�1M��h
L ¼ 0; �h

R ¼ � F�1M

ðp0 � hj ~pjÞ�
h
L:

(2.33)

Introducing the ‘‘mass eigenstates’’


h
R;LU

�1ðpÞ�h
R;L; (2.34)

it follows that

�ðpÞ þ �ðpÞ 0
0 �ðpÞ � �ðpÞ

� �

h
R ¼ 0;


h
L ¼ �U�1ðpÞðF�1MÞUðpÞ

ðp0 þ hj ~pjÞ 
h
R;

(2.35)

or

�ðpÞ þ �ðpÞ 0
0 �ðpÞ � �ðpÞ

� �

h
L ¼ 0;


h
R ¼ �U�1ðpÞðF�1MÞUðpÞ

ðp0 � hj ~pjÞ 
h
L:

(2.36)

It is clear that although the transformation U diagonal-
izes the Klein-Gordon operator, for F � 1, it does not
diagonalize the flavor matrix F�1M in (2.35) and (2.36).
The dispersion relations of the propagating eigenstates

correspond to the solutions of �ðpÞ ¼ ��ðpÞ, which are
determined by the self-consistent equation (2.22). The
roots p� correspond to �ðp�Þ ¼ ��ðp�Þ, respectively.
The propagator for the flavor doublet �, denoted by S,

obeys

½p6 F�M�SðpÞ ¼ I; (2.37)

where I is the identity in both flavor and Dirac space.
Premultiplying (2.37) by ½p6 IþMF�1�, we obtain

½p2F�MF�1M�SðpÞ ¼ ½p6 IþMF�1�: (2.38)

In the new basis ~�ðpÞ ¼ U�1ðpÞ�ðpÞ, the propagator is
expressed by

U�1ðpÞSðpÞUðpÞ

¼
1

�ðpÞþ�ðpÞ 0

0 1
�ðpÞ��ðpÞ

0
@

1
A½p6 IþU�1ðpÞðMF�1ÞUðpÞ�:

(2.39)

Only for F ¼ 1 is the matrix inside the bracket on the right-
hand side of (2.39) diagonal. For F � 1, there is no unitary
transformation that diagonalizes both the matrices propor-
tional to p6 and MF�1.
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If FðpÞ is real, CðpÞ, SðpÞ introduced in (2.14), (2.18),
and (2.19) can be identified as cosine and sine of (twice) of
the mixing angle, namely,

C ðpÞ ¼ cosð2�mðpÞÞ; SðpÞ ¼ sinð2�mðpÞÞ; (2.40)

and similarly cðpÞ, sðpÞ in (3.8) and (2.24),

cðpÞ cosð�mðpÞÞ; sðpÞ ¼ sinð�mðpÞÞ: (2.41)

Therefore, if FðpÞ is real, the transformation UðpÞ is
unitary and �mðpÞ is identified as the mixing angle.
However, FðpÞ becomes complex above threshold p2 >
M2 reflecting the multiparticle nature of the unparticle
interpolating field c U. Thus, C, S, c, and s cannot be
interpreted as cosine and sine of (twice) the mixing angle.

For FðpÞ ¼ 1, the unparticle field is just an ordinary
Dirac spinor field with canonical kinetic term. In this case,
C, S, c, and s become independent of p, and they are given
by

C ¼ cosð2�0Þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4m2

p ;

S ¼ sinð2�0Þ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4m2

p ;

(2.42)

and

c cosð�0Þ; s ¼ sinð�0Þ: (2.43)

Here, the angle �0 is the usual mixing angle for the seesaw
mass matrix.

Although the transformation U (3.8) diagonalizes the
Klein-Gordon operator in the equations of motion (2.26), it
does not diagonalize the propagator or the Lagrangian in
terms of the mass eigenstates. Furthermore, the solutions of
the equations of motion in the transformed basis, namely,
the spinor 
 (2.35) and (2.36), still has mixing between
them. This is because U�1ðpÞðF�1MÞUðpÞ is not diago-
nal. It follows that there is no unitary transformation that
diagonalizes the propagator. The problem in the diagonal-
ization can be traced to the spinor nature of the unparticle
field, where there are two independent structures in the
effective action, the mass matrix term and the kinetic term
p6 multiplied by F. There simply is no unitary transforma-
tion that diagonalizes simultaneously both the mass term
M and the kinetic term F. An alternative explanation using
Lorentz invariance argument is presented in the Appendix.

III. NONUNITARY TRANSFORMATION: FIELD
REDEFINITION

As pointed out in the previous section, because of the
spinor nature of the field and the fact that the matrix
coefficients of the kinetic term p6 and the mass matrix do
not commute, there is no unitary transformation that diag-
onalizes the full propagator, even for real FðpÞ. However,
the equation for the propagator (2.37) suggests that the
following set of transformations will lead to a diagonaliza-

tion of the propagator. Let us introduce

~S ¼ ffiffiffi
F

p
S

ffiffiffi
F

p
: (3.1)

By multiplying the equation (2.37) on the right by
ffiffiffi
F

p
and

on the left by 1=
ffiffiffi
F

p
, one finds the following equation for ~S:

½p2 � ~M2�~S ¼ p6 þ ~M; (3.2)

where

~M ¼ 1ffiffiffi
F

p M
1ffiffiffi
F

p 0 m
FðpÞ

m
FðpÞ M

 !
: (3.3)

The mass matrix ~M can be written as

~M ¼ M

2
IþM

2

�
1þ 4m2

M2FðpÞ
�
1=2 �~CðpÞ ~SðpÞ

~SðpÞ ~CðpÞ
 !

;

(3.4)

where

~CðpÞ ¼
�
1þ 4m2

M2FðpÞ
��ð1=2Þ

; (3.5)

~SðpÞ ¼ 2m

M
ffiffiffiffiffiffiffiffiffiffi
FðpÞp

�
1þ 4m2

M2FðpÞ
��ð1=2Þ

: (3.6)

When FðpÞ is real
~CðpÞ ¼ cosð2’ðpÞÞ; ~SðpÞ sinð2’ðpÞÞ; (3.7)

where ’ðpÞ is a mixing angle that depends on p2.
It is clear that now the propagator can be diagonalized

by the matrix

UðpÞ ¼ ~cðpÞ ~sðpÞ
�~sðpÞ ~cðpÞ

� �
; (3.8)

where

~cðpÞ ¼ 1ffiffiffi
2

p ½1þ ~CðpÞ�1=2; ~sðpÞ ¼ 1ffiffiffi
2

p ½1� ~CðpÞ�1=2:
(3.9)

The mass matrix is now diagonal

U�1ðpÞ ~MUðpÞ ¼ ~Md ¼ M1ðpÞ 0
0 M2ðpÞ

� �
; (3.10)

with

M1ðpÞ ¼ M

2

�
1�

�
1þ 4m2

M2FðpÞ
�
1=2
�
; (3.11)

M2ðpÞ ¼ M

2

�
1þ

�
1þ 4m2

M2FðpÞ
�
1=2
�
: (3.12)

If FðpÞ is real, it follows that
~cðpÞ ¼ cosð’ðpÞÞ; ~sðpÞ ¼ sinð’ðpÞÞ: (3.13)

The transformed propagator
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~S mU
�1ðpÞ~SUðpÞ (3.14)

is given by

~S m ¼
p6 þM1ðpÞ
p2�M2

1
ðpÞ 0

0 p6 þM2ðpÞ
p2�M2

2
ðpÞ

0
@

1
A: (3.15)

The transformation (3.1) has a natural interpretation in
terms of a field redefinition. This can be inferred from the
form of the kinetic term for the unparticle field
�c Up6 FðpÞc U, which suggests that FðpÞ can be interpreted
as a momentum-dependent wave function renormalization.
Let us define the rescaled field as

�U ¼
ffiffiffiffiffiffiffiffiffiffi
FðpÞ

q
c U; (3.16)

which along with

�a � c a; (3.17)

forms the flavor doublet

� ¼ �a

�U

� �
: (3.18)

With this field redefinition, the Lagrangian density be-
comes

L ¼ ��½p6 I� ~M��: (3.19)

No physics has been lost with this field redefinition as the
correlation functions of the original unparticle field c U

may be obtained as follows. Let us introduce Grassman
sources J U coupled to the unparticle field in the
Lagrangian density, namely,

L ! Lþ �c UJ þ H:c: (3.20)

Upon field redefinition (3.16), the source terms become

��UJ =
ffiffiffiffiffiffiffiffiffiffi
FðpÞp

, etc. Furthermore, at the level of the path
integral, the field redefinition multiplies the measure by
an overall field independent constant which cancels in all
correlation functions.

The necessity of a field redefinition to rescale to unity
the coefficient of p6 has been also recognized in Ref. [62]
within the context of radiative corrections in the quark
sector of the standard model.

The full Lagrangian density can now be diagonalized by
introducing the ‘‘mass basis’’ �1, �2 as

�a

�U

� �
¼ UðpÞ �1

�2

� �
; (3.21)

where UðpÞ is given by Eq. (3.8).
The dispersion relations are obtained from the respective

Dirac equations for the mass eigenstates,

½p6 �Mi��i ¼ 0; i ¼ 1; 2 (3.22)

leading to the self-consistent equations

p2
1 ¼ M2

1ðp1Þ m2

Fðp1Þ þ
M2

2

�
1�

�
1þ 4m2

M2Fðp1Þ
�
1=2
�
;

(3.23)

p2
2 ¼ M2

2ðp2Þ m2

Fðp2Þ þ
M2

2

�
1þ

�
1þ 4m2

M2Fðp2Þ
�
1=2
�
:

(3.24)

These dispersion relations are exactly the same as
Eq. (2.22) with p1;2 ¼ p�;þ, respectively. The reason for

this is that the determinant (2.21), which determines the
dispersion relation, is simply rescaled, namely,

det½p2F�MF�1M� det½ ffiffiffi
F

p ðp2I� ~M2Þ ffiffiffi
F

p �FðpÞ
	 det½p2I� ~M2�: (3.25)

The original unsterile and active fields are related to the
mass eigenstates �1;2 as

c a ¼ ½~cðpÞ�1 þ ~sðpÞ�2�; (3.26)

c U ¼ 1ffiffiffiffiffiffiffiffiffiffi
FðpÞp ½~cðpÞ�2 � ~sðpÞ�1�: (3.27)

Therefore, arbitrary correlation functions of the unsterile
field c U can be obtained from the propagators of the mass
eigenstates �1, �2. Furthermore, since the unsterile field
does not couple to any other field of the standard model,
only the unsterilelike mass eigenstate �2 can participate in
weak interaction processes via the relation (3.26) and this
field does not directly involve the field redefinition (3.16).
For p2 <M2,FðpÞ is real and the transformationUðpÞ is

unitary. UðpÞ is determined by the mixing angles defined
by (3.5), (3.6), and (3.7). However, above the unparticle
threshold p2 >M2, FðpÞ is complex and the matrix UðpÞ
is not unitary. This is a consequence of the coupling to a
continuum of states. A similar situation emerges in the
theory of neutral meson mixing, where the absorptive part
of theWigner-Weisskopf Hamiltonian, which describes the
quantum mechanics of neutral meson mixing, prevents a
diagonalization of the Hamiltonian via a unitary transfor-
mation. This situation has been analyzed in detail in
Refs. [63,64]. In particular, Ref. [63] discusses the recip-
rocal basis that corresponds to fields that are transformed
by a nonunitary transformation. A similar discussion ap-
propriate to the quark sector of the standard model is given
in Ref. [62] and a nonunitary transformation concerning
time-reversal violation in the neutral kaon system can be
found in Ref. [65]. The reader is referred to these refer-
ences for a detailed discussion of the reciprocal (or dual or
in-out) basis within the theory of neutral meson mixing.
The same analysis in terms of the reciprocal (or dual)

basis applies to the case under consideration for p2 >M2

when FðpÞ becomes complex.
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A. Complex poles and spectral densities
for the activelike mode

The dispersion relations of the propagating modes are
obtained from the complex poles of the propagator corre-
sponding to p2

1;2 ¼ M2
1;2. Self-consistent solutions of the

equations (3.23) and (3.24) are in general difficult to obtain
analytically; however progress can be made in the relevant
case m � M and assuming self-consistently that
m2=M2Fðp1;2Þ � 1.

With this approximation we find

M2
1ðpÞ ¼ M2

�
m4

M4F2ðpÞ þ � � �
�
; (3.28)

therefore the self-consistent equation (3.23) for p2
1 be-

comes

p2
1 ¼ M2

�
m4

M4F2ðp1Þ
þ � � �

�
: (3.29)

Anticipating self-consistently that p2
1 � M2, we write

Fðp1Þ ¼
�
M2

�2

���
�
1� p2

1

M2

���
; (3.30)

leading, to lowest order in the ratio m2=M2F, to the solu-
tion

p2
1 ¼

m4

M2

�
M2

�2

�
2� � M2

1; (3.31)

namely, an isolated pole below the multiparticle threshold

at p2 ¼ M2. Near this pole we find

1

p2 �M2
1ðpÞ

 Z1

p2 �M2
1

; (3.32)

where

Z�1
1  1þ 2�

M2
1

M2
: (3.33)

For FðpÞ ¼ 1 (� ¼ 0), M1 ¼ m2=M is recognized as
the smallest eigenvalue of the seesaw mass matrix, namely,
the mass of the lightest neutrino. This pole lies on the real
p2 axis and describes a stable activelike propagating mode.
The activelike propagator also features a discontinuity

across the real axis in the complex p2 plane for p2 >M2,
since

p2 �M2
1ðpÞ ¼ p2 � m4

M2

��p2 þM2 � i�

�2

�
2�
: (3.34)

It is convenient to introduce the dimensionless variables

x ¼ p2 �M2

M2
; � ¼ 2

m2

M2

�
M2

�2

�
�
; (3.35)

and use these to define the dimensionless spectral density

�1ðxÞ ¼ M2

2�i
Disc

�
1

p2 �M2
1ðpÞ

�
; (3.36)

where the discontinuity is nonvanishing for x > 0. We find
that

�1ðxÞ ¼ �ðxÞ
�

�2

4 x2� sinð2��Þ
½xþ 1� �2

4 x2� cosð2��Þ�2 þ ½�2

4 x2� sinð2��Þ�2 : (3.37)

This spectral density vanishes at threshold p2 ¼ M2 (x ¼
0), increases rapidly reaching a broad maximum, and
diminishes for increasing x (Fig. 1).

It is remarkable that in the absence of other interactions,
the propagator of the activelike (lightest) mass eigenstate

features a nonvanishing spectral density away from its
mass shell for p2 >M2 >M2

1. This mode inherits a cou-
pling to the continuum hidden sector as a consequence of
the mixing with the unparticle. The nonvanishing spectral
density above the unparticle threshold at p2 ¼ M2 may
lead to opening new kinematic channels when the active-
like neutrino is coupled to the standard model fields.

B. Complex poles and spectral densities for the
unsterilelike mode

For m � M, the self-consistent equation (3.24) for the
unsterilelike mode becomes

p2
2 �M2 ¼ 2m2

��p2
2 þM2 � i�

�2

�
� þ � � � : (3.38)

In terms of the dimensionless variables (3.35) this equation
becomes

x ¼ �½�x� i���: (3.39)

We find that there is a solution only forFIG. 1 (color online). Spectral density for the activelike mode.
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Re ðxÞ> 0; 0 � �< 1=3;

and it is given by

p2
2 ¼ M2

�
1þ �1=ð1��Þ

�
cos

�
��

1� �

�
� i sin

�
��

1� �

���
:

(3.40)

This solution describes a pole in the complex plane (a
resonance) and near this pole we find

1

p2 �M2
2ðpÞ

 Z2

p2 �M2
2 þ iM2�

; (3.41)

where

M2
2 ¼ M2

�
1þ �1=ð1��Þ cos

�
��

1� �

��
; (3.42)

� ¼ M2

M2

�1=ð1��Þ sin
�

��

1� �

�
; (3.43)

and2

Z2 ¼ 1

1� �
: (3.44)

The imaginary part is a consequence of the fact that the
real part of the pole is above the unparticle continuum
determined by the multiparticle threshold at p2 ¼ M2.
For FðpÞ ¼ 1 (� ¼ 0), the largest eigenvalue of the seesaw
mass matrix is at Mþm2=M >M. After mixing, the new
pole is in the unparticle continuum, moving off the real
axis into a second (or higher) Riemann sheet in the com-
plex p2 plane. The imaginary part describes the decay of
the unsterilelike mode into the activelike mode and parti-
cles in the hidden conformal sector. A similar phenomenon
was observed in the bosonic case in Ref. [48]. We refer to �
as the ‘‘invisible width’’ of the unsterilelike neutrino since
it describes its decay into an activelike and conformal
massless particles in the hidden sector. A more detailed
discussion and interpretation of this result, based on a
renormalization group [52,54,55] resummation, is pre-
sented in Sec. III C.

The spectral density is obtained from the discontinuity
across the real axis in the complex p2 plane [see Eq. (3.36)]

�2ðxÞ ¼ �ðxÞ
�

�x� sinð��Þ
½x��x� cosð��Þ�2 þ ½�x� sinð��Þ�2 ;

(3.45)

which is displayed in Fig. 2. For 0 � �< 1=3, there is a
resonance with a maximum confirmed to be given by

xp ¼ �1=ð1��Þ cos
�

��

1� �

�
; (3.46)

as obtained in Eq. (3.42).
For � � 1 the real part of the unsterilelike pole is very

near the threshold at p2 ¼ M2 and therefore the dimen-
sionless ratio

�

M2 �M
’ 2 tanð ��1��Þ
½1þ�1=ð1��Þ cosð ��1��Þ�1=2

(3.47)

determines if the resonance is broad or narrow as compared
to the distance between threshold and the resonance.
For � � 1 (FðpÞ ! 1), the width becomes very small

and the resonance is sharp, centered at the mass of the
sterile neutrino Mþm2=M. As � ! 1=3 from below, the
real part of the pole approaches threshold (xp ! 0) while

the width remains constant. The resonance broadens enor-
mously since the ratio (3.47) diverges as � ! 1=3�, and
merges with the threshold at � ¼ 1=3. There are no solu-
tions of the self-consistency condition (3.38) for a complex
pole for �> 1=3.

C. Resummation interpretation of the decay width

Consider the unparticle to be a single Dirac fermion
(neutrino) interacting with massless particles of the con-
formal hidden sector, described by a conformal field A.
Let us assume such interaction to be of the form

L int ¼ g ��A�; (3.48)

where g is a small dimensionless coupling. In perturbation
theory, the self-energy of the ‘‘unparticle field’’ � is
depicted in Fig. 3

FIG. 2 (color online). �2ðxÞ vs x for � ¼ 0:3 and several
values of �. xp is the real part of the complex pole (3.42) and

(3.46).

2We note that the unparticle field is not canonical, therefore
the residue at the unparticlelike ‘‘pole’’ is not restricted by
canonical commutation relations to obey 0< Z2 � 1.
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To lowest order in g, the self-energy, which is once
subtracted to vanish at p6 ¼ M, is given near the mass shell
by

�ðpÞ ¼ ��ðp6 �MÞ ln
��p2 þM2 � i�

�2

�
; (3.49)

where � is a renormalization scale,

� ¼ cg2; (3.50)

and c is a constant that depends on the nature of the
conformal field A (gauge or scalar massless particle).

Integrating out the conformal field A leads to the
following effective action for �:

Leff ¼ ��ðp6 �MÞ
�
1� � ln

��p2 þM2 � i�

�2

��
�

 ��ðp6 �MÞ
��p2 þM2 � i�

�2

���
�; (3.51)

where in the last line we have invoked a renormalization

group resummation [52,54,55] of the infrared threshold
divergences. The infrared logarithmic divergence at p2 ¼
M2 and the imaginary part for p2 >M2 is the result of the
emission and absorption of massless quanta, an ubiquitous
phenomenon in gauge theories (for a discussion within
QCD, see [52]).
Now consider coupling the heavy neutrino� to a mass-

less (active) neutrino c a via the coupling

L m ¼ ��mc a þ H:c:; (3.52)

leading to a seesaw mass matrix of the same form as in
Eq. (2.9) for FðpÞ ¼ 1 with m � M. The seesaw mass
matrix can be diagonalized by a unitary transformation
with the mixing angle �0, given by the relations (2.42).
The fields that describe the mass eigenstates are

c 1 ¼ cosð�0Þc a þ sinð�0Þ�; (3.53)

c 2 ¼ cosð�0Þ�� sinð�0Þc a; (3.54)

where the masses corresponding to the fields c 1;2 areM1;2

respectively, with

M1  m2

M
; M2  Mþm2

M
: (3.55)

To lowest order in the seesaw ratio m=M, it follows from
(2.42) that

sinð�0Þ ¼ m

M
: (3.56)

The �� c a mixing leads to the following interaction
vertex between the fields associated with the mass eigen-
states and the conformal field A:

Lint ¼ gðcosð�0Þ �c 2 � sinð�0Þ �c 1Þ
	Aðcosð�0Þc 2 � sinð�0Þc 1Þ: (3.57)

The self-energy for the c 2 field now includes the diagram
depicted in Fig. 4.
The cut discontinuity across the intermediate state re-

lates the absorptive (imaginary) part of the self-energy on
the mass shell of the external fermion to its decay rate. This
relation is depicted in Fig. 5.

FIG. 3. � self-energy to lowest order in g.A is the conformal
field.

FIG. 4. Self-energy for mass eigenstate c 2.

FIG. 5. Cutkosky cut for the self-energy for mass eigenstate c 2. The imaginary part of the self-energy determines the width � in the
pole of the propagator.
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A standard, straightforward calculation of the decay rate
for the process c 2 ! Ac 1, taking A, c 1 to be a mass-
less scalar and Dirac fermion, respectively, yields

�c 2!Ac 1
¼ 2��M2ðsinð�0Þ cosð�0ÞÞ2 � ��

2m2

M
;

(3.58)

where � is given by Eq. (3.50) and we have used the
approximations M2  M, sinð�0Þ  m=M to lowest order
in the seesaw ratio m=M � 1.

This result coincides to lowest order in � andm=M with
the nonperturbative imaginary part of the unparticlelike
pole given by Eq. (3.43).

This simple analysis confirms that the imaginary part �
in the propagator of the unparticlelike mode (3.41) de-
scribes the decay of the unparticlelike mode into the active-
like mode and particles in the hidden conformal sector.
This analysis also validates the interpretation of the width
of the unsterile mode (resonance) � given by (3.43) as an
invisible width as opposed to the radiative decay width that
arises via weak interactions described below.

IV. COSMOLOGICAL CONSEQUENCES:
RADIATIVE DECAY OF THE UNSTERILELIKE
NEUTRINO AND THE X-RAY BACKGROUND

Although sterile neutrinos only couple to active neutri-
nos via an off diagonal mass matrix, the diagonalization of
this mass matrix results in effective couplings between the
sterilelike neutrino mass eigenstate and standard model
particles, namely, active neutrinos and charged leptons.
Consider the simple case of (canonical) sterile neutrinos
coupled to active neutrinos via a seesaw mass matrix of the
form (2.9) with F ¼ 1, diagonalized by the usual unitary
transformation. In this case,

�a ¼ cosð�0Þ�1 þ sinð�0Þ�2; (4.1)

�s ¼ cosð�0Þ�2 � sinð�0Þ�1; (4.2)

where as usual �1, �2 are the light (activelike) and heavy
(sterilelike) neutrino mass eigenstates, with masses M1 
m2=M, M2  Mþm2=M � M1, respectively. The mix-
ing angle is determined by Eqs. (3.5), (3.6), and (3.7) with
F ¼ 1.

The charged current interaction yields an interaction
between the sterilelike neutrino and the charged lepton

L CC ¼ g ��aL W6 lL ¼ gðcosð�0Þ ��1L þ sinð�0Þ ��2LÞ W6 lL:
(4.3)

This interaction vertex leads to the radiative decay of the
sterilelike neutrino �2 ! �1 [15]. The diagrams that
describe this process in unitary gauge are shown in
Fig. 6. For M2 � M1, the radiative decay width is given
by [15]

��2!�1  �em

2

�
3GF

32�2

�
2
M5

2

�
ml

MW

�
4
sin2ð�0Þcos2ð�0Þ;

(4.4)

where ml is the mass of the charged lepton in the loop in
Fig. 6.
If sterile neutrinos are suitable dark matter candidates,

with M2 of the order of a few keV [6–11,13,14], the
radiative decay of the sterilelike neutrino yields a contri-
bution to the x-ray or soft gamma-ray background, from
which stringent bounds on the mass and mixing angle of
the sterilelike neutrino are obtained [4,6,10,12,16,18,19].
The calculation leading to the radiative decay width

(4.4) uses the standard assumptions, namely, that the
propagator of �2 is that of a free particle featuring a single
particle pole, that the mixing angles are independent of
momentum, and that the in and out states are in their
(single particle) mass shells. All of these assumptions
must be revised in view of the results obtained in the
previous sections. We will proceed to obtain an estimate
of the unparticle effects upon the radiative decay width by
modifying the calculation leading to (4.4) by including the
following unparticle effects:
(i) We will consider the mass eigenstate �2 to be de-

scribed by the propagator (3.41) but neglecting the
invisible width �. This is similar to the situation in
calculating the decay of a vector boson by consider-
ing it to be an asymptotic state with a propagator
featuring a single particle pole. This assumption
restricts the validity of our estimate to 0 �
�< 1=3 since for �> 1=3, the spectral density of
�2 is a broad continuum above threshold.
Furthermore, since the residue at the pole p2 �M2

2

is a finite wave function renormalization Z2, the total
transition probability will be multiplied by Z2 ¼
1=ð1� �Þ. Similarly, the mass eigenstate �1 is de-
scribed by the propagator (3.32), which does feature
an isolated single particle pole at p2 ¼ M2

1 but with
residue Z1 ¼ 1=ð1þ ��2=2Þ. Therefore, the transi-
tion probability must also be multiplied by the wave
function renormalization Z1.

FIG. 6. Contributions to radiative decay of a sterilelike neu-
trino in unitary gauge.
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(ii) The mixing angles cosð�0Þ ! ~cðpÞ, sinð�0Þ ! ~sðpÞ
are given by Eqs. (3.5), (3.6), and (3.9), which
depend on the momentum. The radiative decay
rate corresponds to setting both the decaying and
the product particles on their mass shells. Therefore,
~cðpÞ, which is the amplitude of �1 in �a, must be
evaluated on the mass shell of the activelike mode,
namely, p2 ¼ M2

1, while ~sðpÞ, which is the ampli-
tude of �2 in �a, must be evaluated at the mass shell
of the unsterilelike mode, p2 ¼ M2

2. Because M
2
1 is

below threshold, it follows that ~cðpÞ is real; how-
ever, since M2

2 is above threshold, ~sðpÞ is complex.
Being a probability, the decay rate involves the
modulus squared of these quantities, namely, in
the expression (4.4), we must replace

cos 2ð�0Þ ! ~c2ðpÞ ¼ 1
2½1þ ~CðpÞ�p2¼M2

1
; (4.5)

sin 2ð�0Þ ! j~s2ðpÞj ¼ 1
2j1� ~CðpÞjp2¼M2

2
: (4.6)

For � ¼ 0 (FðpÞ ¼ 1) and m � M, it follows that
cosð�0Þ  1, sinð�0Þ  m=M. In the same limit, we

find that for FðpÞ � 1, ~cðp2 ¼ M2
1Þ  1, ~sðp2 ¼

M2
2Þ  m=M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðp2 ¼ M2

2Þ
q

[see Eqs. (3.5) and

(3.6)]. The overall change then corresponds to

cos 2ð�0Þsin2ð�0Þ ! 1

jFðpÞj cos
2ð�0Þsin2ð�0Þ;

(4.7)

where p2 ¼ p2
2 is given by (3.40).

Including all of these modifications we obtain the ratio
of the radiative decays for the unsterile, and the (canonical)
sterile neutrino as

�U
�2!�1

��2!�1

��=ð1��Þ½M2

�2��
ð1� �Þð1þ � �2

2 Þ
: (4.8)

For a seesaw mass matrix with m � M, we recognize that

�  2sin2ð�0Þ
�
M2

�2

�
�
; (4.9)

where �0 is the mixing angle for � ¼ 0 (namely, the case
of canonical sterile neutrinos mixing with active ones).
Therefore, we can write the ratio (4.8) as

�U
�2!�1

��2!�1

� ½2sin2ð�0ÞM2

�2��=ð1��Þ

ð1� �Þð1þ � �2

2 Þ
: (4.10)

Taking sin� � 1 and M<�, consistent with a large
seesaw and with the unparticle interpretation of the sterile
neutrino below a scale �, respectively, we see that the
unparticle nature of the sterile neutrino can lead to a
substantial suppression of the radiative decay rate. Even
for � � 1, the current bounds on the mixing angles and
masses for sterile neutrinos from the observations of the

x-ray or soft gamma-ray background can be weakened
considerably. As an example, taking sinð�0Þ � 10�5, M�
keV, and �� TeV, which are within the range of expec-
tation for physics beyond the standard model, and taking
�� 0:1 as an example inspired by results in QCD [52],3

we find that the ratio (4.10) & Oð10�3Þ.
This is one of the main cosmological consequences of

the unparticle nature of the sterile neutrino.

V. CONCLUSIONS AND FURTHER QUESTIONS

In this article we considered the possibility that the
SU(2) singlet sterile neutrino might be an unparticle, an
interpolating field that describes a multiparticle continuum
as a consequence of coupling to a hidden conformal sector
and whose correlation functions feature an anomalous
scaling dimension �. We studied the consequences of its
mixing with an active neutrino via a seesaw mass matrix.
We focused on the simplest setting of one unsterile and one
active Dirac neutrino, postponing a more detailed study of
Majorana neutrinos and several flavors to further study.
Our goals here are twofold:
(1) To study the consequences of the mixing between

the noncanonical unsterile with a canonical active
neutrino, along with the corresponding dispersion
relations and propagating states.

(2) To explore cosmological consequences, in particu-
lar, the radiative decay width of the unsterilelike
neutrino into the activelike and a photon, via
charged current loops, and to establish how the
unparticle nature of the sterile neutrino modifies
the radiative linewidth, which is an important tool
to constrain the mass and mixing angles of cosmo-
logically relevant sterile neutrinos.

We found that the mixing between a noncanonical and a
canonical fermion field exhibits several unexpected subtle-
ties. There is no unitary transformation that diagonalizes
the full propagator due to the noncanonical nature of the
unsterile neutrino. This forces us to make a field redefini-
tion for its complete diagonalization.
The unsterilelike propagating mode is described by a

complex pole above the unparticle threshold for 0 � �<
1=3, featuring an invisible width. A perturbative analysis
and a renormalization group inspired resummation suggest
that this width results from the decay of the unsterilelike
mode into an activelike mode and particles in the confor-
mal sector. As � ! 1=3�, the complex pole merges with
the unparticle threshold and disappears, while the spectral
density of the unsterile neutrino features a broad contin-
uum above threshold with a threshold enhancement. The
activelike mode corresponds to a stable particle, whose

3The value of � for QCD obtained in Ref. [52], �� 0:5 is
larger than 1=3 which limits the validity of our result assuming a
sharp resonance for �2. We have taken �� 0:1 as a representa-
tive value of the range for large anomalous dimensions in QCD.
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propagator features an isolated real pole below the unpar-
ticle threshold. This mode inherits a nonvanishing spectral
density above this threshold, even in the absence of stan-
dard model interactions. This novel feature may potentially
have relevant consequences since the nonvanishing spec-
tral density may open new kinematic channels for standard
model processes even to lowest order in weak interactions,
a possibility that will be studied in detail elsewhere.

Considering an unsterile neutrino as a dark matter can-
didate, we studied the influence of the unparticle nature of
the sterile neutrino on the radiative decay width into an
active neutrino and a photon via charged current loops. We
find the ratio of decay widths between the unparticle case
and the canonical case to be

�U
�2!�1

��2!�1

 ½2sin2ð�0ÞM2

�2��=ð1��Þ

ð1� �Þð1þ � �2

2 Þ
; (5.1)

where �0 is the mixing angle for � ¼ 0, M is approxi-
mately the mass of the unsterilelike neutrino, and � � M
is the unparticle scale. This ratio suggests a substantial
suppression of the radiative decay linewidth for M� keV
and �� TeV, even for � & 0:1. This results in a weaken-
ing of the bounds on the mass and the mixing angle from
the x-ray and soft gamma-ray backgrounds.

Of course, a detailed assessment of the suppression of
the radiative decay width hinges on the (unknown) values
of � and �, which may emerge from the experimental
program at LHC in the exploration of physics beyond the
standard model.

To further explore the possibility of an unsterile neutrino
as a dark matter candidate, understanding its production
process is necessary. Since an unsterile neutrino only in-
teracts directly with the active one, the most effective dark
matter production mechanism in this scenario is via
unsterile-active neutrino oscillations. It would be interest-
ing to study the implications of our results in Sec. III in the
dark matter production mechanism along the line of
Ref. [2].
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APPENDIX: AN ALTERNATIVE EXPLANATION
FOR THE NONUNITARY TRANSFORMATION

In the helicity basis of Eq. (2.28), the Lagrangian density
in momentum space is given by

L ¼X
h

ð�hy
R ð�pÞ�hy

L ð�pÞÞ

	 ðp0 � hj ~pjÞF M
M ðp0 þ hj ~pjÞF

� �
�h
RðpÞ

�h
LðpÞ

� �
: (A1)

Lorentz invariance does not allow us to mix the (2, 1)-
representation of the Lorentz group with the (1, 2)-
representation. Therefore, to diagonalize the action, the
allowed transformation is �h

R;L ! UR;L�
h
R;L, such that all

the following matrices:

UR½ðp0 � hj ~pjÞF�U�1
R ; UL½ðp0 þ hj ~pjÞF�U�1

L ;

URMU�1
L and ULMU�1

R (A2)

are all diagonal. Since F is diagonal, and yet not propor-
tional to the identity, the only possible unitary transforma-
tions that diagonalize the first two are

U R;L ¼ 1 0
0 �1

� �
or

�1 0
0 1

� �
: (A3)

However, none of the combinations of these possibilities
diagonalize the last two matrices in (A2). Therefore, there
is no unitary transformation that diagonalizes the full
propagator.
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