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Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) diver-

gences requiring regularization and renormalization. Many different regularization techniques have been

developed over the years, but most regularizations require severe mutilation of the logical foundations of

the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not

damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking

regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall

quantify just ‘‘how much’’ Lorentz symmetry breaking is required to fully regulate the quantum theory

and render it finite. This scalar field theory provides a simple way of understanding many of the key

features of Hořava’s recent article [Phys. Rev. D 79, 084008 (2009)] on 3þ 1 dimensional quantum

gravity.
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I. INTRODUCTION

The ultraviolet divergences that typically infest pertur-
bative expansions of relativistic quantum field theories
have been a topic of interest (and sometimes heated debate)
for over 60 years [1]. As a practical matter, loop integrals in
Feynman diagrams often lead to ultraviolet divergences
requiring at the very least some form of regularization,
typically followed by renormalization [2–6]. Many differ-
ent regularization techniques have been developed over the
years. Most regularizations are designed primarily for
computational efficiency, and retain as many symmetries
as possible to simplify the algebra—even if this requires (at
least in intermediate stages of the computation) severe
mutilation of the logical foundations of the theory.

For example: Pauli-Villars regularizations violate uni-
tarity, so that probabilities are not necessarily positive at
intermediate steps of the calculation. Similarly Lorentz-
invariant higher-derivative regularizations also violate uni-
tarity, while dimensional regularization involves a ficti-
tious analytic extension to noninteger dimensions (and
when fermions are added, this must be coupled with an
equally fictitious analytic extension of the Dirac gamma
matrix algebra to noninteger dimensions). It seems that
retaining Lorentz invariance almost guarantees that the
regulator must break something even more fundamental
in the theory. (With the only possible exception being the
‘‘finite field theories’’ based on supersymmetry (SUSY)—
such as N ¼ 4 SUSY Yang-Mills [7], and N ¼ 8 super-
gravity [8,9], and their variants—though even there one
typically resorts to unphysical regulators at intermediate
stages of the calculation.)

In contrast, breaking Lorentz invariance, while it is
certainly a radical step, does not damage the logical foun-
dations of the theory. It is an experimental observation that
empirical reality obeys Lorentz symmetry to very high
accuracy, but it is not a logical necessity. Breaking

Lorentz invariance to keep the quantum field theory finite
may lead to complicated algebra, but at least it does not
undermine the logical and physical foundations of the
theory. It then becomes an empirical question as to whether
or not the theory is ultimately compatible (either for finite
cutoff, or in the limit as the cutoff is sent to infinity) with
the observed bounds on Lorentz symmetry violations [10–
17].
In this article I shall explore the features of a Lorentz

symmetry breaking regulator in a simple polynomial scalar
field theory, and discuss its implications. In particular, I
shall precisely quantify just ‘‘how much’’ Lorentz symme-
try breaking is required to fully regulate the scalar field
theory and render it finite. As an application, I shall then
show how this model provides a simple way of under-
standing many of the key features of Hořava’s recent article
[18] on 3þ 1 dimensional quantum gravity.

II. FREE LAGRANGIAN

In flat dþ 1 spacetime consider the action:

Sfree ¼
Z
f _�2 ��ð��Þz�gdtddx: (1)

Here � ¼ ~r2
is the spatial Laplacian, and z is some

positive integer. (Lorentz invariance corresponds to z ¼
1. This model explicitly preserves both parity and ordinary
spatial rotational invariance.) We have used the theorists’
prerogative to choose units such that the coefficient of the
time derivative term equals the coefficient of the spatial
derivative term—this is in contrast to the usual choice of
setting c ¼ 1. We shall certainly have c � 1 in the present
proposal, and have instead set the coefficent of �z to unity
to simplify the power counting. We also set @ ! 1.
[If one is worried about adopting this particular choice

of ‘‘theoretician’s units,’’ one can always go to the more
standard ‘‘physical units’’ (c ¼ 1); see Sec. V for details.
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Doing so will only serve to make the details somewhat
messier but will lead to no new physics.]

With this choice of units, consider the engineering di-
mensions (canonical dimensions) of space and time: We
immediately deduce

½@t� ¼ ½ ~r�z; ½dt� ¼ ½dx�z: (2)

But since we want the action to be dimensionless

½S� ¼ ½1�; (3)

we see that

½�� ¼ ½dx�ðz�dÞ=2: (4)

This immediately suggests that the case z ¼ d will play a
very special role in the discussion, since the field � is then
dimensionless.

It is convenient to define formal symbols � andm having
dimensions of momentum and energy

½�� ¼ 1=½dx�; ½m� ¼ 1=½dt�; (5)

since then

½m� ¼ ½��z; (6)

and

½�� ¼ ½��ðd�zÞ=2 ¼ ½m�ðd�zÞ=ð2zÞ: (7)

Note that for Lorentz invariance, z ¼ 1, we recover the

usual result ½�� ¼ ½m�ðd�1Þ=2, so that in particular � is
dimensionless in 1þ 1 dimensions, � has dimensions of

ðmassÞ1=2 in 2þ 1 dimensions, � has dimensions of mass
in 3þ 1 dimensions, and � has dimensions of ðmassÞ2 in
5þ 1 dimensions. These are the usual and expected
results.

Now add the various possible subleading terms to this
free Lagrangian

Sfree ¼
Z
f _�2 ��½m2 � c2�þ � � � þ ð��Þz��gdtddx:

(8)

Note that now

½c� ¼ ½dx=dt� ¼ ½dx�1�z ¼ ½��z�1 ¼ ½m�ðz�1Þ=z; (9)

which is why (given the other choices we have already
made above), we do not have the freedom to set c ! 1,
(unless of course z ¼ 1). Note that these subleading terms
all have positive momentum dimension (and positive en-
ergy dimension)—treated perturbatively, we shall soon see
that they correspond to superrenormalizable operators.

III. INTERACTIONS

Now add polynomial interactions:

Sinteraction ¼
Z

Pð�Þdtddx ¼
Z �XN

n¼1

gn�
n

�
dtddx: (10)

We shall refer to the resulting quantum field theory, defined
by S ¼ Sfree þ Sinteraction, as Pð�Þzdþ1. Each coupling con-

stant gn has engineering dimensions

½gn� ¼ ½��dþz�nðd�zÞ=2 ¼ ½m�½dþz�nðd�zÞ=2�=z: (11)

So the couplings have non-negative momentum dimension
(and so also have non-negative energy dimension) as long
as

dþ z� nðd� zÞ
2

� 0: (12)

Recalling that d, z, and n are by definition all positive
integers, this is equivalent to either

n � 2ðdþ zÞ
d� z

ðprovided z < dÞ; (13)

or

n � 1 ðprovided z � dÞ: (14)

This is enough to imply that the theory has the correct
‘‘power-counting’’ properties to be renormalizable.
Indeed, based on our intuition from studying Lorentz-
invariant theories [4–6], this very strongly suggests (and
appealing to the technical results of Anselmi and Halat [19]
we shall quickly verify) that the theory is renormalizable as
long as the highest power N occurring in the polynomial
Pð�Þ is either

N ¼ 2ðdþ zÞ
d� z

ðprovided z < dÞ; (15)

or

N ¼ 1 ðprovided z � dÞ: (16)

For Lorentz invariance, z ¼ 1, this reduces to

Nðz¼1Þ ¼ 2ðdþ 1Þ
ðd� 1Þ : (17)

This is completely compatible with the usual standard
results: �n is renormalizable for any positive integer n in
1þ 1 dimensions; �6 is renormalizable in 2þ 1 dimen-
sions, �4 is renormalizable in 3þ 1 dimensions, and �3 is
renormalizable in 5þ 1 dimensions. Note that there is
something (reasonably elementary) to verify regarding
this dimensional analysis argument—to check conver-
gence of the Feynman diagrams we need a minor general-
ization of the usual argument characterizing the
‘‘superficial degree of divergence.’’ It is at this stage that
we need to appeal to the technical results of Anselmi and
Halat [19].

IV. SUPERFICIAL DEGREE OF DIVERGENCE

Consider a generic Feynman diagram. As usual, for each
loop in the truncated Feynman diagram we pick up an
integral [4–6]
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Z
d!‘d

dk‘ � � � : (18)

In contrast, for each internal line we now pick up a propa-

gator Gð!; ~kÞ [4–6] that violates Lorentz invariance:
1

ð!‘ �!eÞ2 � fm2 þ c2ð ~k‘ � ~keÞ2 þ � � � þ ½ð ~k‘ � ~keÞ2�zg
:

(19)

Here!e and ~ke are some linear combination of the external

momenta, and !‘ and ~k‘ are the loop energy and loop
momentum, respectively. Let L be the number of loops,
and I the number of internal propagators. Then each loop
integral has dimension

Z
d!ddk ! ½d!�½dk�d ¼ ½��dþz; (20)

while each propagator has dimension

Gð!; ~kÞ ! ½���2z: (21)

Thus for the entire Feynman diagram the total contribution
to dimensionality coming from loop integrals and propa-
gators is

½��ðdþzÞL�2Iz; (22)

which is summarized by saying that in this Lorentz-
violating situation the superficial degree of divergence is

� ¼ ðdþ zÞL� 2Iz: (23)

If z ¼ 1, the Lorentz-invariant situation, this reproduces
the standard result � ¼ ðdþ 1ÞL� 2I. See, for example,
Ramond [4], page 139, Eq. (2.2), or Rivers [5], page 45,
Eq. (3.8). See also the articles by Anselmi and Halat [19]
for more details on the superficial degree of divergence for
Lorentz-violating theories.

We can rewrite the general (Lorentz-violating) result as

� ¼ ðd� zÞL� 2ðI � LÞz: (24)

But to get L loops one needs, at the very least, I propa-
gators. So for any Feynman diagram we certainly have

� � ðd� zÞL: (25)

It is a standard result that if the superficial degree of
divergence is negative, and the superficial degree of diver-
gence of every subgraph is negative, then the Feynman
diagram is convergent [4–6]. (See also Anselmi and Halat
[19].) Consequently, if one picks d ¼ z then for any
Feynman diagram

� � 0; (26)

and the worst divergence one can possibly encounter is
logarithmic. (Or a power of a logarithm if one has several
subgraphs with � ¼ 0.) Such a logarithmic divergence can
occur only for L ¼ I, that is for a ‘‘rosette’’ Feynman

diagram. This observation is enough to guarantee that

Pð�Þz¼d
dþ1 is power-counting renormalizable.

In fact considerably more can be said: Since rosette
Feynam diagrams can simply be eliminated by normal
ordering, it follows that the normal-ordered theory denoted

by :Pð�Þz¼d
dþ1: is power-counting ultraviolet finite.

Indeed, for d ¼ 1, and hence z ¼ 1, eliminating the
rosette Feynman diagrams via normal ordering is, as per
Simon’s book [20], the key technical ingredient to proving

the perturbative finiteness of the normal-ordered :Pð�Þz¼1
1þ1:

field theory. See also Glimm and Jaffe [21] for a similar
discussion.
Furthermore, if z > d then there are no superficially

divergent Feynman diagrams whatsoever, and the entire
theory is power-counting finite. That is, for z > d one does

not even need to bother normal ordering the Pð�Þz>d
dþ1 field

theory in order to get something power-counting ultraviolet
finite. Now combining these power-counting arguments
with the technical machinery developed by Anselmi and
Halat [19], I emphasize that the two central technical
results of the present article are as follows:

(i) With normal ordering, :Pð�Þz¼d
dþ1: is perturbatively

ultraviolet finite.
(ii) Even without normal ordering, Pð�Þz>d

dþ1 is perturba-
tively ultraviolet finite.

V. PHYSICAL (c ¼ 1) UNITS

Suppose we instead adopt the more usual physical units
where c ! 1; in that case we would write the propagator

Gð!; ~kÞ as
1

!2 � fm2 þ ð ~kÞ2 þ � � � þ �2�2z½ð ~kÞ2�zg ; (27)

where � is now a parameter with the physical units of
momentum that controls the scale of Lorentz symmetry
breaking, and in this section we now have

½�� ¼ ½�� ¼ ½m�:
Now introduce an explicit momentum cutoff� for the loop
integral. In these physical units the appropriate energy
cutoff is then � ¼ �1�z�z, and for each loop

Z
d!ddk ! ��d ¼ �1�z�dþz: (28)

This asymmetric cutoff in the loop integration is absolutely
essential; a condensed matter physicist would say that we
are considering a system subject to ‘‘anisotropic scaling.’’
Furthermore, for each propagator

Gð!; ~kÞ ! �2z�2��2z: (29)

Thus for the entire Feynman diagram the cutoff depen-
dence is

� ðz�1Þð2I�LÞ�ðdþzÞL�2Iz; (30)
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which is again summarized by saying that the superficial
degree of divergence is

� ¼ ðdþ zÞL� 2Iz: (31)

This is the same result as previously obtained using the
theoretician’s units of Secs. II, III, and IV, as of course it
must be. Some readers may prefer this point of view
(especially when trying to compare results between the
particle physics and condensed matter subdisciplines),
but the ultimate physics results cannot be affected by this
change of units.

VI. 3þ 1 DIMENSIONS

In the specific case of 3þ 1 dimensions it is sufficient to
consider z ¼ 3, and so up to six spatial derivatives. That is,
in theoreticians’ units, take Sfree to be

Z
:f _�2��½m2�c2�þ�2�2þð��Þ3��g:dtd3x; (32)

and take Sinteraction to be

Z
:Pð�Þ:dtd3x ¼

Z �X1
n¼1

gn:�
n:

�
dtd3x: (33)

Then

½�� ¼ ½1�; ½gn� ¼ ½m2� ¼ ½�6�; (34)

and so the scalar propagators Gð!; ~kÞ are sixth-order poly-
nomials in spatial momentum, of the form

1

!2 � fm2 þ c2ð ~kÞ2 þ�2½ð ~kÞ2�2 þ ½ð ~kÞ2�3g ; (35)

or more formally

1

!2 � fm2 þ c2k2 þ�2k4 þ k6g : (36)

The key point here is that the field � is dimensionless. By
our general argument, this quantum field theory is by
construction perturbatively ultraviolet finite.

VII. WHY NOW?

Why has this not been done before? There is a mixture of
reasons: A key point is that when breaking Lorentz invari-
ance explicit loop calculations become computationally
difficult. This feature has to be balanced against the fact
that one is adopting a regulator that is ‘‘physical’’—in the
sense that the regulated theory makes perfectly good sense
as a quantum field theory in its own right. One does not
have to perform any delicate limiting procedure to recover
a logically consistent quantum field theory.

Historically, Lorentz symmetry violations have typically
been viewed as either nonexistent, or as renormalizable
perturbative additions to an otherwise Lorentz symmetric
theory [22]. For early work suggesting a breakdown of
Lorentz symmetry at high energies, see [23]. For some
recent work on quantum field theories exhibiting Lorentz
symmetry breaking, see [19]. Note that Anselmi and

Halat’s notion of ‘‘weighted power counting’’ [19] is es-
sentially identical to the Lorentz-violating extension of the
usual notion of superficial degree of divergence discussed
previously.
In those situations one has to worry about the question of

whether or not Lorentz-violating terms that naively seem to
dominate only at high energies might somehow, through
loop diagrams, contaminate the low-energy physics and
lead to significant fine-tuning problems [24]. There are
contrasting opinions to the effect that in many situations
low-energy Lorentz symmetry is a fixed point of the renor-
malization group, which might to some extent ameliorate
detectable manifestations of Lorentz symmetry breaking
[25].
These issues are less of a concern in the current ap-

proach: Since the regularized normal-ordered Lorentz-
violating quantum field theory is actually finite (the few
remaining logarithmic divergences being cured by the
normal ordering), we can safely use the tree-level action
as a reasonable approximation to the full effective action.
In the low-momentium limit, the lowest-momentum terms
will dominate and the propagators are effectively of the
form

Gð!; ~kÞ ! 1

ð!‘ �!eÞ2 � fm2 þ c2ð ~k‘ � ~keÞ2g
; (37)

which is a Lorentz-invariant dispersion relation, thereby
indicating the low-momentum recovery of Lorentz invari-
ance as an accidental symmetry. At one level this can be
related to the observation by Nielsen et al. [25], that
Lorentz symmetry breaking terms are often suppressed in
the low-momentum limit, but there is a more instructive
observation that one can draw from condensed matter and
atomic/molecular/optical physics: There are many physi-
cal systems in which the perturbations/quasiparticles are
described by the Bogoliubov dispersion relation [26],
which in its most general form is described by

!ð ~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2sð ~kÞ2 þ�2½ð ~kÞ2�2

q
; (38)

or more schematically by

!ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2sk

2 þ�2k4
q

: (39)

If m ¼ 0 then at low momenta the c2sk
2 term dominates,

and one obtains phonons traveling at the speed of sound cs.
At high momenta, the �2k4 term dominates and one re-
covers a nonrelativistic spectrum for the quasiparticles. In
the language of anisotropic scaling working with the
Bogoliubov dispersion relation corresponds to working at
a z ¼ 2 ‘‘Lifshitz point.’’ Indeed, in various explicit com-
putations related to the ‘‘analog spacetime’’ program [27],
computations in which we were concerned with the re-
sponse of otherwise-free quasiparticle quantum field theo-
ries when subjected to external constraints [28], we have
encountered situations where the �2k4 term in the
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Bogoliubov spectrum partially regulates the models we
consider, often rendering some of the computed quantities
finite [28]. It is now clear from the discussion above that to
fully regulate this class of models we should in general
consider sixth-order ‘‘trans-Bogoliubov’’ dispersion rela-
tions

!ð ~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2sð ~kÞ2 þ�2½ð ~kÞ2�2 þ ½ð ~kÞ2�3

q
; (40)

or more schematically

!ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2sk

2 þ�2k4 þ k6
q

: (41)

From the point of view of condensed matter and atomic/
molecular/optical systems, such a trans-Bogoliubov dis-
persion relation would merely be an artificial regulator;
however in the context of this article one might perhaps
prefer to view the k6 term as fundamental physics.

VIII. IMPLICATIONS FOR QUANTUM GRAVITY

While the background physics underlying this article is
firmly based in fundamental quantum field theory [2–6],
and ideas from the analog spacetime program [27], a key
stimulus to writing up these observations was the recent
article by Hořava [18], outlining the development of a
quantum field theory for 3þ 1 dimensional gravity—a
theory that is based on a fundamental violation of
Lorentz invariance. In that model, Lorentz invariance,
and Einstein-Hilbert gravity, is recovered only in the
low-momentum (low-spatial-curvature) limit.

To quickly get to the essence of the argument, I will
adopt a ‘‘synchronous gauge’’ (N ¼ 1, Ni ¼ 0), wherein
the lapse and shift are trivial and all the physics of the
gravitational field is encoded in the spatial metric.
Technically the key step is to consider a model for gravity
that is second order in the time derivatives of the spatial
metric, and that is ð2zÞth order in the spatial derivatives.
The reason this works is that ultimately the spatial
Riemann tensor can be written as an infinite-order pertur-
bative expansion around flat 3-space. Schematically (sup-
pressing all spatial tensor indices), we may write

Riemann ðgij ¼ �ij þ hijÞ �
X1
n¼0

hnðr2hþrh � rhÞ:

(42)

But then ‘‘potential’’ terms, such as ðRiemannÞz, contain
exactly 2z spatial derivatives and arbitrary powers of h,
while the ‘‘kinetic’’ term, depending on the square of
extrinsic curvature K, is

K2 � _h2: (43)

Thus an action which is geometrically of the form

S�
Z
fK2 þ ðRiemannÞz þ � � �gdtdx; (44)

is, from a perturbative point of view, of the form

S�
Z
f _h2 þ Pðr2z; hÞgdtdx; (45)

where Pðr2z; hÞ is now an infinite-order polynomial in h,
which contains up to 2z spatial derivatives. Viewed as a
flat-space quantum field theory, this is thus qualitatively
very similar to what I have called Pð�Þzdþ1.

By the dimensional analysis arguments in Sec. III, we
see that for d ¼ z the field h is dimensionless, and by
power counting the resulting quantum field theory is then
expected to be finite—where this means finite in the sense
of being both physically well defined and finite as long as
one does not let the Lorentz violation scale go to infinity.
Keeping the Lorentz violation scale finite is now a per-
fectly sensible thing to do because the regularization has
not undermined the internal logical consistency of the
quantum field theory. (Of course, for gravity a more careful
analysis would need to keep track of all the tensor indices.
Furthermore in a general gauge one is dealing with not
only the spatial metric, but also the shift vector and lapse
function, so that some technical details of the argument
will be rather different. Nevertheless, the above argument
is the key to understanding why Hořava’s model has any
hope of being a finite model for quantum gravity.)
Note that Hořava specifically worked in 3þ 1 dimen-

sions with a potential that contained up to six spatial
derivatives [18], as in Sec. VI above. (Hořava’s potential
was also constrained by what he called a ‘‘detailed bal-
ance’’ symmetry [18].) From a power-counting perspec-
tive, as outlined above, it appears likely that Hořava’s ideas
can be generalized to dþ 1 dimensional gravity, possibly
without any need for his detailed balance condition.

IX. DISCUSSION AND CONCLUSIONS

In summary, in this article I have described, in I hope a
simple and transparent manner, the use of Lorentz symme-
try breaking as an ultraviolet regulator for scalar quantum
field theories. Combining power-counting arguments with
technical results in Lorentz-violating quantum field theo-
ries [19], two key technical results are as follows:

(i) With normal ordering, :Pð�Þz¼d
dþ1: is perturbatively

ultraviolet finite.
(ii) Even without normal ordering, Pð�Þz>d

dþ1 is perturba-
tively ultraviolet finite.

While Lorentz breaking regulators are computationally
difficult to work with, they have the very powerful advan-
tage that they do not damage the physical foundations and
internal logical consistency of the underlying theory. This
may have applications with regard to developing a trac-
table quantum field theory whose low-energy limit is
Einstein-Hilbert gravity.
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