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We present a Lagrangian for a massive, charged spin 3=2 field in a constant external electromagnetic

background, which correctly propagates only physical degrees of freedom inside the light cone. The Velo-

Zwanziger acausality and other pathologies such as loss of hyperbolicity or the appearance of unphysical

degrees of freedom are avoided by a judicious choice of nonminimal couplings. No additional fields or

equations besides the spin 3=2 ones are needed to solve the problem.
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While completely explicit actions of free massive fields
of spin arbitrarily larger than one—which propagate within
the light cone the correct number of physical degrees of
freedom—have been known since the 1970s [1], consistent
actions for interacting fields have been much harder to
construct. Indeed, even the conceptually simpler problem
of describing high-spin particles in fixed external field
backgrounds has proved itself fraught with difficulties.
As already noticed by Fierz and Pauli 70 years ago [2], a
Lagrangian formulation of interacting high-spin fields is
essential even at the classical level, to avoid algebraic
inconsistencies in the equations of motion. However,
when the high-spin field is coupled to either external or
dynamical fields, a Lagrangian formulation guarantees
neither that no unphysical degrees of freedom start prop-
agating nor that the physical ones propagate only causally.

This pathology is particularly vexing for the seemingly
simple case of charged, massive particles of spin 3=2. Their
well-known free action was found in 1941 in [3], but it took
many years before realizing that minimal coupling to
external electromagnetic fields resulted in equations of
motion which exhibited faster-than-light propagation of
signals [4] (see also [5]). This lack of causality also shows
up in higher spin fields, such as spin 2 [6].1

Massive, electrically charged states of spin 3=2 or higher
do exist in QCD as resonances. Moreover, open string
theory contains (infinitely) many charged, massive parti-
cles of spin higher than one.2 Both string theory and QCD
are to the best of our understanding consistent and causal,
especially in the dynamical regime describing particles in
fixed external electromagnetic fields. So, a natural question
to ask is how the Velo-Zwanziger acausality problem is
resolved, first of all in the simplest setting of them all: spin
3=2.

I. POSSIBLE SOLUTIONS

Various scenarios exist for rescuing causality.

A. Adding new degrees of freedom

One is that a single charged spin 3=2 field is inconsistent
or noncausal when considered in isolation. It could happen
that causality forces upon us the existence of other fields
besides the spin 3=2 one. After all, we do know an example
of consistently propagating charged spin 3=2 fields: N ¼
2 extended ‘‘gauged’’ supergravity [9]. InN ¼ 2 theories,
the gravitino can be charged under a Uð1Þ field (the grav-
iphoton). Supersymmetry can be broken without introduc-
ing a cosmological constant [10,11], resulting in a massive
spin 3=2 field propagating in flat space. Causality in this
case is due to gravitational backreaction.
More specifically, as shown in [12], superluminal propa-

gation of the massm, charge e gravitino would occur in flat
space when, in some Lorentz frame, the magnetic field B

attains the critical value jBj ¼ ffiffiffi
3

p
m2=e. In that frame, the

energy density T00 ¼ 1
2 ðE2 þB2Þ is always larger than

3
2m

4=e2. Since in this theory gravity is dynamical, the

gravitational backreaction induces a curvature in space-
time, characterized by a length scale L�2 ¼
Oð3m4=2M2

Ple
2Þ. But in N ¼ 2 theories, the graviphoton

charge of the gravitino and the Planck massMPl are related
by e ¼ m=MPl; therefore, space-time is significantly
curved already at the Compton wavelength scale of the
gravitino L ¼ 1=m. This is precisely the regime where the
flat-space causality results of [4,12] cease to apply. Indeed,
Ref. [13] extended the causality analysis done for pure
supergravity in [14] to prove that N ¼ 2 supergravity is

causal and hyperbolic when m>
ffiffi
2
3

q
eMPl.

3

The main drawback of extended supergravity is that it
cannot solve the causality problem of spin 3=2 fields unless
the charge obeys the ‘‘Kaluza-Klein’’ relation e ¼ m=MPl.
When—as for electromagnetic interactions—e is fixed

*Address after October 1, 2009: Scuola Normale Superiore,
Piazza dei Cavalieri 7, I-56126 Pisa, Italy.

1The causality problem is a classical pathology; its quantum
analog is that canonical commutators become ill defined. The
latter was noticed in [7] long before [4].

2Light spin 3=2 particles may also appear in Randall-Sundrum
models [8].

3Partial results on causality of N ¼ 2 and Kaluza-Klein
supergravities can also be found in [15].
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(e � 0:3), the gravitational backreaction of spin 3=2 par-
ticles much lighter than OðeMPlÞ is negligible, so they can
still propagate superluminally.

B. Adding nonminimal terms

A different solution to the causality problem may be to
change the minimal spin 3=2 theory not by adding new
dynamical degrees of freedom, but simply by adding non-
minimal gauge invariant interactions. That this could be
the right solution is strongly suggested by analogy with the
only known example of a consistent model of high-spin
particles of arbitrary charge, which propagates causally in
an external electromagnetic field, constant but otherwise
arbitrary. This is the Argyres-Nappi action [16]. It de-
scribes a single, massive spin 2 field, charged under a
Uð1Þ. Charge and mass are independent variables; in par-
ticular, a dynamical regime exists which decouples gravi-
tational interactions, while keeping the Uð1Þ charge finite.
The Argyres-Nappi action is highly nonminimal: it is
quadratic in the charged spin 2 field but nonpolynomial
in the electromagnetic field strength F��. It was obtained

from the equations of motion of charged open strings in a
background with a nonzero, constant external field strength
F��.

Even though derived within string theory, the reason
why the Argyres-Nappi theory is causal and consistent is
simple: After a straightforward redefinition of variables, its
equations of motion enforce the standard transverse-
tracelessness constraint on the spin 2 field h��. By sub-

stituting the constraint into the equations of motion, one
obtains a good hyperbolic system, hh�� þ
lower derivative terms ¼ 0, which manifestly propagates
5 degrees of freedom within the light cone.

It would be odd if what works with spin 2 does not work
with spin 3=2, especially since the reason for causality in
the Argyres-Nappi action is not due to exotic properties of
string theory, but rather to a clever combination of non-
minimal terms. So, even for spin 3=2, it makes sense to
consider a general nonminimal Lagrangian of the form4

L ¼ �i �c �A
���ðFÞD�c � � i �c �B

��ðFÞc �;

A���ðFÞ ¼ ���� þOðFÞ;
B��ðFÞ ¼ m��� þOðFÞ: (1)

The nonminimal couplings A���ðFÞ, B��ðFÞ are functions
of the electromagnetic field strength F��, analytic near

F�� ¼ 0. Their form will be specified later.

C. What we cannot expect to find

Before analyzing further Eq. (1), it is important to under-
stand clearly what problem we must solve and which one
we should not. Our aim is to find a Lagrangian that prop-
agates within the light cone only 4 degrees of freedom—
the four physical helicities of a spin 3=2 field—in an
external electromagnetic background. Our method will
work for constant backgrounds. While this is a drawback,
it does take care of the original Velo-Zwanziger problem,
which manifests itself already for constant backgrounds
[4].
We do not want to find a Lagrangian that works for

arbitrarily large values of the relativistic field invariants
F��F

��, F��
~F��.5 The reason is that whenever these

invariants become Oðm4=e2Þ, several instabilities appear,
that make the very concept of a long-lived, propagating
spin 3=2 field unphysical. One such instability is the
Schwinger pair production [17], which becomes significant
when F��

~F�� ¼ 0 and F��F
�� ��m4=e2. Another is the

spin 3=2 analog [18] of the Nielsen-Olesen instabilities
[19], which appear when F��

~F�� ¼ 0 and F��F
�� �

þm4=e2. Though these instabilities are normally said to
occur when either the electric field (Schwinger) or the
magnetic field (Nielsen-Olesen) are Oðm2=eÞ, it is impor-
tant to realize that they only depend on relativistic invariant
combinations of the field strength. These instabilities mean
that whatever Lagrangian one may use to describe a spin
3=2 field in isolation, it will always be only an effective
one, reliable only when energies are sufficiently small and
the relativistic field invariants are much smaller than
Oðm4=e2Þ. It is thus particularly telling that the Argyres-
Nappi Lagrangian becomes ill defined precisely when the
relativistic field invariants reach their critical strength
�m4=e2 [16].
The Velo-Zwanziger problem is different in that it per-

sists even at arbitrarily small values of the relativistic field
invariants. Concretely, in the minimal model, the magnetic

field B can reach its critical value jBj ¼
ffiffi
3
2

q
m2=e6 in a

frame where jEj ¼
ffiffi
3
2

q
m2=e� �, with � an arbitrarily

small number. So, it is a real problem that occurs within
the regime of validity of the effective theory.
This is the problem we need to solve: we must find a

nonminimal Lagrangian that propagates causally the cor-
rect number of degrees of freedom whenever jF��F

��j �
m4=e2, jF��

~F��j � m4=e2.

We shall not worry if the Lagrangian fails whenever
either of these invariants becomes Oðm4=e2Þ, since in
any case any Lagrangian treating the electromagnetic
background as fixed is meaningless, because it fails to

4Our conventions are as follows: the metric ��� is mostly plus,
�c � ¼ c y

��
0, ��y ¼ �����, �5 ¼ �i�0�1�2�3. We always

antisymmetrize with unit strength: ��1...�n ¼ 1
n!�

�1��2 � � ��
��n þ antisymmetrization.

5 ~F�� ¼ 1
2 �����F

�� with ����� totally antisymmetric and
normalized as �0123 ¼ þ1.

6For minimal supergravity the critical value instead is jBj ¼ffiffiffi
3

p
m2=e.
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take into account large effects due to electromagnetic
backreaction.

D. What is not a solution

Hermiticity of the Lagrangian in Eq. (1) imposes some
constraints on the coefficients A���ðFÞ, B��ðFÞ, namely,

�0ðA���Þy�0 ¼ A���; �0ðB��Þy�0 ¼ �B��: (2)

Moreover, unless A��� and B�� are antisymmetric in their
vector Lorentz indices, Eq. (1) propagates additional de-
grees of freedom whenever F�� � 0. These degrees of

freedom are dangerous because they interact through rele-
vant and irrelevant interactions with the electromagnetic
field, but are absent at F�� ¼ 0, when the coefficients in

the Lagrangian (1) are antisymmetric. So, their kinetic
term is proportional to jF��j and thus the strength of all

their irrelevant interactions diverges in the weak field limit
jF��j ! 0. The existence of these unwanted degrees of

freedom makes the solution of the Velo-Zwanziger prob-
lem proposed in the Appendix of [20] unacceptable, as
pointed out in [12]. Yet, the idea that nonminimal inter-
actions may cure the problem can be salvaged from that
work, as we shall proceed to explain.

II. CONSTRAINTS

What makes the Argyres-Nappi action work is that on an
appropriately redefined spin 2 field it enforces the same
constraint as the free action does, namely, transverse-
tracelessness.7 Similarly, here we demand that our non-
minimal action enforce the constraint

��c � ¼ 0: (3)

We will present later a nonminimal action satisfying this
requirement. It will turn out to have a canonical kinetic
term A��� ¼ ����. Before entering into the details of its
construction, it is instructive to see why constraint (3)
ensures at once that the equations of motion derived from
Lagrangian (1) define a hyperbolic system that propagates
causally 4 degrees of freedom.

When A��� ¼ ����, the equations of motion are

R� þ B��c � ¼ 0; R� � ����D�c �; (4)

while their gamma trace is

2���D�c � þ � � � ¼ 0 (5)

where the ellipses stand for ‘‘mass’’ terms containing no
derivatives. Using the identity

���� ¼ ����� � ����� þ �����; (6)

Eq. (5), and the constraint (3), one can reduce equations of
motion (4) to a standard, manifestly causal Dirac form:

D6 c � þ nonderivative terms ¼ 0: (7)

Since B�� is antisymmetric in �, �, the 0th component of
the equations of motion, R0 ¼ 0, contains neither time
derivatives nor c 0; thus, it enforces four constraints among
the remaining fields c i, i ¼ 1; 2; 3. Constraint (3) then
removes c 0 ¼ �0�ic i leaving 3� 4� 4 ¼ 8 physical
variables, i.e. 4 degrees of freedom (four coordinates and
four conjugate momenta). A completely analogous way to
prove the same result uses the obvious fact that consistent
propagation of the constraint (3) and Eq. (7) imply
D�c � ¼ nonderivative terms; so, using Eq. (7) to write

D0c 0 ¼ �0�iDic 0 þ nonderivative terms, one gets from
the above divergence the four additional constraints needed
to reduce the number of degrees of freedom to four.

III. CONSTRUCTION OF THE NONMINIMAL
ACTION

Of course, the real question is whether a nonminimal
action that gives Eq. (3) exists. We prove that it does by
explicitly constructing one.
Our ansatz for the nonminimal ‘‘Pauli’’ terms is

A��� ¼ ����; (8)

B�� ¼ m��� þGþ
�� þ ��T�½����; (9)

Gþ
�� � G�� þ 1

2�����G
�� (10)

The Lorentz tensor G�� is antisymmetric (G�� ¼ �G��)

and OðFÞ, while the Lorentz tensor T�� is symmetric and

traceless (T�� ¼ T��, T
�
� ¼ 0) and OðF2Þ. Hermiticity of

Lagrangian (1) implies that T�� is real and G�� is imagi-

nary. Apart from these constraints, they are as-yet unspe-
cified functions of the electromagnetic field strength F��.

As pointed out in Ref. [12], addition of Gþ
�� alone can

never yield a causal theory, irrespective of its functional
dependence on F��. It is crucial to notice that the term

proportional to T�� instead is structurally different from all

those studied in [12].8

A few identities that will be crucial for our construction
and follow from elementary manipulations of gamma-
matrix algebra are (6) and

��Gþ
�� ¼ 1

2� � G��; � �G � ���G
��; (11)

Gþ
�� ¼ �1

4�
�� �G���� (12)

7In the notation of Ref. [16] the transverse-traceless field is
ðHhH	Þ��.

8Appendix B of [12] proves that nonminimal terms of the
generic form B�� ¼ iW�� þ �5X�� þ ���Y þ i�5���Z still
allow for superluminal propagation, even when the coefficients
W, X, Y, Z are arbitrary functions of F��. To the best of our
knowledge, the last term in our Eq. (9) has never been considered
before.
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��D½�c �� ¼ 1
2R� � 1

4���
�R�; ���D�c � ¼ 1

2�
�R�:

(13)

Either direct calculation or simple considerations of rep-
resentation theory of the Lorentz group lead to another
important identity9

G��
~G�� ¼ �1

4�
�
�G��

~G��: (14)

Thanks to these identities, the gamma trace of the equa-
tions of motion (4) is

2���D�c � þ T����c � ¼ ½�3mþOðFÞ�� � c : (15)

The term multiplying � � c � ��c � on the right-hand

side of this equation is a 4� 4 matrix containing no
derivatives, thus built only out of gamma matrices, G��,

and T��. The split into the constant term �3m and higher

powers of the electromagnetic field follows simply from
our ansatz, G�� ¼ OðFÞ, T�� ¼ OðF2Þ.

Next we take the divergence of equations of motion (4).
Since the covariant derivative D� obeys ½D�;D�� ¼
ieF�� we have

D�R
� ¼ �ieF����c � þ ie

2
� � F� � c : (16)

By using Eq. (15), identities (11)–(13) plus the vanishing
of ���	
�� and ��T���

�10 we rewrite the divergence as

�ie��F
��c � � 1

2m��T
��c �

� 1
4�

�� �G½m��� �Gþ
�� þ T���c �

� 1
2��T

��½m��� �Gþ
�� þ T���c �

¼ ½32m2 þOðFÞ�� � c : (17)

In this equation we use again identities (11)–(13) as well as
identity (14) to simplify the term quadratic in G; we obtain

��ð�ieF�� þmG�� þ 1
2T

�
�Gþ

�� � 1
2G

þ
��T

�
� þG��T

�
� Þc �

� ��ðG�
�G�� þmT�� þ 1

2T
�
�T��Þc �

¼ ½32m2 þOðFÞ�� � c : (18)

Two conditions must be met to enforce the standard
constraint � � c ¼ 0. The first is that the left-hand side
of Eq. (18) must either vanish or be proportional to

OðFÞ� � c ; the second is that the matrix ½32m2 þOðFÞ�
is invertible.
The hard one is the first.
To satisfy it, we first of all set

T�
� ¼ AðG��G

�� � 1
4G��G

����
�Þ; (19)

where A is a constant. This choice renders the term
T�
�T�� ¼ OðF4Þ� � c and also makes the term inside the

first parenthesis in Eq. (18) antisymmetric in �, �. Both
properties follow from Eq. (14), which gives the identities
(TrH � H

�
�)

Gþ
��G

��� ¼ G�
��G

þ�� ¼ 2½G��G
�� � 1

4 TrðG2Þ��
��
(20)

G

��G


�� ¼ 1
2½TrðG2Þ 
 i�5 TrðG ~GÞ���

�: (21)

Now the two terms in parentheses in Eq. (18) must sepa-
rately either vanish or be proportional to � � c , since the
first is antisymmetric in �, � while the second is
symmetric.
The choice A ¼ �m�1 makes the whole symmetric

term in (18) equal to OðF2Þ� � c . On the other hand, the
antisymmetric term vanishes if G�� satisfies the following

implicit equation:

G�� ¼ þ ie

m
F�� þ 1

4m2
TrðG2ÞG�� � 1

4m2
TrðG ~GÞ ~G��:

(22)

This can be solved by power series as long as the relativ-
istic field invariants F��F

��, F��
~F�� have magnitudes

that are small compared to m4=e2.11 This is the crucial
feature we need, namely, a theory that only breaks down
for large invariants, but that is well behaved when they are
small, even when some field strength component becomes
Oðm2=eÞ.
Equations (19) and (22) make the constraint (18) take

the desired form

½32m2 þOðFÞ�� � c ¼ 0: (23)

The proportionality matrix multiplying � � c contains only
gamma matrices and powers of ðe=m2ÞF�� with dimen-

sionless coefficients; therefore, Lorentz invariance implies
that its determinant can only be a function of relativistic
field invariants, hence invertible when jF��F

��j,
jF��

~F��j � m4=e2. So the second condition is met pre-

cisely when an effective Lagrangian description is sup-
posed to make sense.
The redefinition G�� ¼ imX�� and a straightforward

computation give the explicit form of the matrix; the con-

9G�� decomposes into irreducible representations of SLð2; CÞ
as ð1; 0Þ þ ð0; 1Þ while ~G�� decomposes as ð1; 0Þ � ð0; 1Þ. The
most general tensor product of the two decomposes as ð2; 0Þ þ
ð1; 0Þ þ ð0; 1Þ þ ð0; 0Þ, but since its antisymmetric part vanishes
on self-dual or anti-self-dual backgrounds, it cannot contain
either (1, 0) or (0, 1). On the other hand, the same tensor product
can only contain representations appearing in the tensor product
ð12 ; 12Þ � ð12 ; 12Þ ¼ ð1; 1Þ þ ð1; 0Þ þ ð0; 1Þ þ ð0; 0Þ. The only com-
mon element is (0, 0).
10The first is a standard gamma-matrix identity, while the
second follows from tracelessness of T��.

11(Semi)explicitly, G�� ¼ aF�� þ b ~F��, with a, b analytic
functions of the relativistic field invariants. They obey a ¼
ie=mþO½TrðF2Þ;TrðF ~FÞ�, b ¼ O½TrðF2Þ;TrðF ~FÞ� for
jTrðF2Þj, jTrðF ~FÞj � m4=e2.
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straint equation then becomes

f48� ½TrðX2Þ�2 � ½TrðX ~XÞ�2g� � c ¼ 0; (24)

which manifestly depends only on relativistic field
invariants.

IV. SUMMARY

The construction presented in this paper answers a ques-
tion that in various guises remained unanswered for many
decades, namely: does a consistent, causal Lagrangian
describing a single massive, charged particle of spin larger
than 1 in interaction with the electromagnetic field exist?

The answer for spin 3=2 is yes, at least for constant
external fields. This is a major achievement in itself, since
constant fields are exactly those that cause the Velo-
Zwanziger acausality [4] and the Johnson-Sudarshan prob-
lem [7].

The crucial property of our construction is that the
standard gamma-tracelessness constraint � � c ¼ 0 is en-
forced exactly. Enforcing it only up to a finite order in an
expansion in powers of the field strength would not suffice.
To see this, we may try to substitute G�� ¼ iðe=mÞF��,

T�� ¼ 0 in our nonminimal ansatz Eq. (9). This choice

satisfies constraint (3) up to OðF2Þ:
�
3

2
m2 þOðFÞ

�
� � c ¼ e2

m2
��F��F

��c �: (25)

As shown in [12], superluminal propagation of signals
occurs when c 0 � 0, c i ¼ 0 solve this equation.

Contrary to, say, constraint Eq. (24), Eq. (25) depends on
quantities, such as the electromagnetic stress energy tensor,
that can be large even when the relativistic field invariants
are small. This property allows c 0 � 0, c i ¼ 0 to be a
solution even when jTrðF2Þj, jTrðF ~FÞj � m4=e2, as it can
be easily proven by direct computation [12].
It is also illuminating that the solution involves no extra

degrees of freedom and that carefully chosen parity-
preserving nonminimal terms suffice. It is an amusing
and perhaps deep fact that the nonminimal couplings also
give a gyromagnetic factor g ¼ 2—the same value needed
to improve the high-energy behavior of ‘‘Compton’’ for-
ward scattering amplitudes, and the one given by open
string theory [20].
It is finally worth noticing that the nonminimal terms

required by causality in our admittedly nonunique
Lagrangian lower the intrinsic UV cutoff of the theory,

from its theoretical maximum �� e�1=2m [21], to ��
e�1=3m. If this property were to extend to the most general
causal Lagrangian of charged spin 3=2 fields, it would offer
a powerful tool to establish stronger, model independent
limits on the UV cutoff of such theories.
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