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We study BPS vortices in the mass-deformed nonrelativistic N ¼ 6 UðNÞk �UðNÞ�k Chern-Simons-

matter theory. We focus on the massive deformation that preserves the maximal N ¼ 6 supersymmetry

and consider a nonrelativistic limit that carries 14 supercharges. In this nonrelativistic field theory we find

Jackiw-Pi type exact vortex solutions combined with S3 fuzzy sphere geometry. We analyze their

properties and show that they preserve one dynamical, one conformal, and five kinematical super-

symmetries among the full super Schrödinger symmetry.
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I. INTRODUCTION

Highly supersymmetric three-dimensional conformal
field theory has attracted much attention recently. A con-
formal theory having N ¼ 8 supersymmetry was con-
structed by Bagger and Lambert [1–3] and Gustavsson
[4,5] and was proposed as a low-energy effective theory
describing the world volume of two coincident M2 branes
in M theory. A salient feature of their construction is that it
entails a so-called three-algebra. There was a puzzle on
how to generalize this model to include an arbitrary num-
ber of M2 branes; this was elegantly solved by Aharony,
Bergman, Jafferis, and Maldacena [6] (hereafter ABJM)
using aUðNÞ �UðNÞ Chern-Simons-matter theory at level
(k, �k) describing N coincident M2 branes probing a
transverse C4=Zk orbifold space. The model has N ¼ 6
supersymmetry for generic k but for k ¼ 1 and 2 the
supersymmetry is enhanced to N ¼ 8. The model is
believed to have a gravity dual description which is M
theory on AdS4 � S7=Zk. In the ’t Hooft limit of large N
and large kwith fixed N=k this reduces to IIA string theory
on AdS4 � CP3. This model was reformulated using the
N ¼ 2 superspace formalism and further generalized in
[7].

Since the model of ABJMwas proposed there has been a
keen interest in constructing classical solutions in this
model, such as BPS fuzzy funnels [8], domain walls [9],
vortices, and Q balls [10], as well as time-dependent (non-
BPS) fuzzy spheres [11]. Solitonic solutions in the Bagger-
Lambert-Gustavsson model have also been studied in
[12,13]; see also [14–16]. These are particularly interesting
from the M theory viewpoint since they are expected to
correspond to various configurations of membranes.

Apart from M theory, three-dimensional Chern-Simons-
matter theory appears in various models of low-
dimensional condensed matter systems (see [17,18] for
reviews). While supersymmetry is not essential in this

context, theories like ABJM are expected to provide vari-
ous examples of solvable toy models. A new vogue in high
energy theoretical physics is to apply the idea of AdS/CFT
duality, or gauge-gravity duality more generally, to unveil
nonperturbative aspects of field theory models. A practical
approach for studying the physics of superconductivity
[19] and quantum Hall effect [20] in this context is to
contemplate an Abelian Higgs model on an AdS black
hole geometry that reproduces desired boundary behavior.
It is hoped that an ABJM-like setup can be used to con-
struct D-brane configurations that directly give rise to
holographic descriptions of such physics [21,22].
In condensed matter field theory interesting physics

usually arises in the nonrelativistic regime. Recently, the
nonrelativistic version of the AdS/CFT correspondence
[23–27] is actively investigated in a hope to open up
possibilities to test the conjectured duality against direct
laboratory experiments. Motivated by this, as well as by the
discrete light-cone quantization of M theory, nonrelativis-
tic limits of the ABJM model have been studied by several
groups [28,29]. It has been found that different nonrelativ-
istic limits can be taken, with different numbers of unbro-
ken supersymmetries.
In this paper we study solitonic solutions in the non-

relativistic version of the ABJM model. We find vortex
solutions, providing the first example of BPS solitonic
solutions in this model. It is known [10] that the relativistic
mass-deformed ABJM model possesses Jackiw-Lee-
Weinberg vortex solutions [30]. While our analysis may
be considered to be the nonrelativistic counterpart, it is
certainly not possible to take nonrelativistic limits on the
solution level as the structure of the supersymmetry alge-
bra and the shape of the potential change qualitatively in
these limits. We elaborate on various technicalities and
construct exact solutions of Abelian vortices, which turn
out to involve Jackiw-Pi solutions [31] as their subelement.
We then analyze the supersymmetric properties of these
solutions and show that these are exactly half-BPS with
respect to the nonrelativistic supersymmetry. As vortices
are known to play key roles in the physics of the super-

*shinsuke.kawai(AT)helsinki.fi
†shin.sasaki(AT)helsinki.fi

PHYSICAL REVIEW D 80, 025007 (2009)

1550-7998=2009=80(2)=025007(13) 025007-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.025007


conductor and quantum Hall effect, we expect these solu-
tions may serve as an exact toy example in the framework
of AdS/CMP (condensed matter physics) correspondence.

The plan of this paper is as follows. In the next section
we collect known results of the relativistic ABJM model
and its massive deformation. In Sec. III we review non-
relativistic limits of this theory, and in Sec. IV we describe
our construction of vortex solutions. We discuss super-
symmetric properties of these solutions in Sec. V, and
conclude in Sec. VI with discussions. In the appendix we
outline the derivation of the nonrelativistic supersymmetry
transformation rules that we use in Sec. V.

II. THE ABJM MODEL AND ITS MASSIVE
DEFORMATION

A. The massless model

We start with the ABJM model [6], i.e. a Chern-Simons-
matter theory of gauge group UðNÞ �UðNÞ at level (k,
�k), with matter fields belonging to the bifundamental
representation of this group. The bosonic part of the action
is

SbosABJM ¼
Z

d3xðLbos
kin þLCS � Vbos

D � Vbos
F Þ; (1)

where

L bos
kin ¼ �Tr½ðD�Z

ÂÞyðD�ZÂÞ þ ðD�W �AÞyðD�W �AÞ�;
(2)

LCS ¼ k

4�
���� Tr

�
A�@�A� þ 2i

3
A�A�A�

� Â�@�Â� � 2i

3
Â�Â�Â�

�
; (3)

Vbos
D ¼ 4�2

k2
Tr½jZB̂Zy

B̂
ZÂ � ZÂZy

B̂
ZB̂ �Wy �BW �BZ

Â

þ ZÂW �BW
y �Bj2 þ jWy �BW �BW

y �A �Wy �AW �BW
y �B

� ZB̂Zy
B̂
Wy �A þWy �AZy

B̂
ZB̂j2�; (4)

and

Vbos
F ¼ 16�2

k2
Tr½j�Â Ĉ�

�B �DW �BZ
ĈW �Dj2

þ j� �A �C�B̂ D̂Z
B̂W �CZ

D̂j2�: (5)

Here A�, Â� are the UðNÞ �UðNÞ gauge fields, ZÂ, Wy �A

(Â ¼ 1, 2, �A ¼ 3, 4) are complex scalar fields in the
UðNÞ �UðNÞ bifundamental (N, �N) representation, the
world volume metric is ��� ¼ ð�1;þ1;þ1Þ, and �’s are

completely antisymmetric and �012 ¼ 1, �12 ¼ 1 ¼ ��12.
Our conventions closely follow those of [7] but we set the
normalization of the UðNÞ generators to be TrTaTb ¼
1
2�

ab. The gauge covariant derivative is

D�Z
Â ¼ @�Z

Â þ iA�Z
Â � iZÂÂ�; (6)

the gauge field strength is defined by

F�� ¼ @�A� � @�A� þ i½A�; A��; (7)

and similarly for Â�. The common Uð1Þ charge is fixed to

þ1. The model exhibits a manifest SUð2Þ � SUð2Þ �
Uð1ÞR global symmetry. Under each SUð2Þ, ZÂ and W �A

transform independently in the fundamental representa-
tion. In addition to this manifest symmetry, there is an
SUð2ÞR symmetry under which ðZ1; Wy3Þ and ðZ2; Wy4Þ
transform as doublets. It is argued in [6] that the SUð2Þ �
SUð2Þ global symmetry combined with the SUð2ÞR gives
rise to an enhanced R symmetry SUð4ÞR ’ SOð6ÞR. Hence
for generic values of k the model is endowed withN ¼ 6
supersymmetry (SUSY). For k ¼ 1 and 2 the SUSY is
further enhanced to N ¼ 8.
We consider a trivial embedding of the world volume in

the space-time, namely, the world volume coordinates
ðx0; x1; x2Þ are identified with the space-time coordinates

ðX0; X1; X2Þ. The four complex scalars ZÂ, Wy �A represent
the transverse displacement of the M2 branes along the
eight directions XI (I ¼ 3; � � � ; 10). The model is expected
to describe N coincident M2 branes probing C4=Zk in 11
dimensions, with the orbifolding symmetry Zk acting as

ðZÂ;Wy �AÞ ! eð2�i=kÞðZÂ;Wy �AÞ.
Combining with the fermionic part, the massless ABJM

model Lagrangian can be written in the SUð4Þ invariant
form as [7]

L ABJM ¼ LCS þLkin þLYuk þLpot; (8)

where LCS is (3) and

L kin ¼ �Tr½D�Y
y
AD

�YA þ i�yA��D��A�; (9)

L Yuk ¼ � 2�i

k
Tr½Yy

AY
A�yB�B � YAYy

A�B�
yB

� 2Yy
AY

B�yA�B � �ABCDYy
A�BY

y
C�D

þ �ABCDY
A�yBYC�yD�; (10)

Lpot ¼ 4�2

3k2
Tr½ðYAYy

A Þ3 þ ðYy
AY

AÞ3 þ 4YAYy
BY

CYy
AY

BYy
C

� 6YAYy
BY

BYy
AY

CYy
C�: (11)

We have combined the two SUð2Þ indices Â ¼ 1, 2, �A ¼ 3,
4 into one SUð4Þ index A ¼ 1; � � � ; 4 and rewritten the
fields

YA ¼ ðZÂ;Wy �AÞ; Yy
A ¼ ðZy

Â
; W �AÞ; (12)

�A ¼ ð�Â;� �AÞ; �yA ¼ ð�yÂ;�y �AÞ: (13)

The potential part can be written as a complete square form
[29]
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L pot ¼ �Vpot ¼ �2
3 Tr½WA

BCWyA
BC�; (14)

where

WA
BC ¼ GA

BC �GA
CB; (15)

GA
BC � ��

k
f2YBYy

AY
C þ �A

BðYCYy
DY

D � YDYy
DY

CÞg:
(16)

The massless N ¼ 6 SUSY transformations are gener-
ated by six ð1þ 2Þ-dimensional Majorana spinors �i, i ¼
1; 2; � � � ; 6. We shall also use SUSY parameters !AB and
!AB related to �i by

!AB ¼ �i½�i�AB; !AB ¼ ð�iÞ½ð�iÞ��AB; (17)

where the 4� 4 matrices � are chirally decomposed six-
dimensional � matrices which can be written using the
Pauli matrices as

�1 ¼ 	2 � I2; �2 ¼ �i	2 � 	3;

�3 ¼ i	2 � 	1; �4 ¼ �	1 � 	2;

�5 ¼ 	3 � 	2; �6 ¼ �iI2 � 	2:

(18)

It is easy to see that

ð!ABÞ� ¼ !AB; !AB ¼ 1
2�

ABCD!CD: (19)

The N ¼ 6 SUSY transformations are then [8]

�YA ¼ i!AB�B; (20)

�Yy
A ¼ i�yB!AB; (21)

��A ¼ ���!ABD�Y
B �!BCWA

BC; (22)

��yA ¼ D�Y
y
B�

�!AB �!BCWyA
BC; (23)

�A� ¼ � 2�

k
ðYA�yB��!AB þ!AB���AY

y
BÞ; (24)

�Â� ¼ 2�

k
ð�yAYB��!AB þ!AB��Y

y
A�BÞ: (25)

B. Massive deformation

For constructing solitonic solutions one needs to intro-
duce a mass scale into the action, which is accomplished by
massive deformation of the potential. In this paper we
follow the prescription of [32,33] that preserves the maxi-
mal N ¼ 6 supersymmetry.

The N ¼ 6 massive deformation is obtained by mod-
ifying the ‘‘superpotential’’ WA

BC into WA
BC þ �WA

BC,
where

�WA
BC ¼ 1

2ðMA
BYC �MA

CYBÞ;
MA

B ¼ m diagð1; 1;�1;�1Þ: (26)

Here, m is a real parameter having the dimension of mass.
Note that MA

B ¼ ðMA
BÞy ¼ MA

B. Under the deformation
the potential part is transformed into

L pot ! �2
3 Tr½ðWA

BC þ �WA
BCÞðWyA

BC þ �WyA
BCÞ�:
(27)

In components, the change of the Lagrangian due to the
massive deformation is

�L ¼ Tr

�
�m2Zy

Â
ZÂ �m2Wy �AW �A þ 4�m

k
ððZÂZy

Â
Þ2

� ðWy �AW �AÞ2 � ðZy
Â
ZÂÞ2 þ ðW �AW

y �AÞ2Þ
�
: (28)

This massive deformation breaks the SUð4ÞR symmetry
down to SUð2Þ � SUð2Þ �Uð1Þ � Z2. The vacuum struc-
ture of this mass-deformed ABJM model is discussed in
[33], where not only symmetric but also asymmetric
phases are found. The mass-deformed SUSY transforma-
tion law is obtained by replacing WA

BC with WA
BC þ

�WA
BC in the prescription described at the end of the last

subsection.

III. NONRELATIVISTIC LIMIT OF THE MASS-
DEFORMED ABJM MODEL

The nonrelativistic limit of the ABJM model was re-
cently considered in [28,29]. Since this is essential for our
discussion we shall review it here in detail.
For this purpose it is instructive to recover the speed of

light c and the Planck constant @ in the Lagrangian:1

Lkin ¼ Tr

�
1

c2
DtY

ADtY
y
A �DiY

ADiY
y
A �m2c2

@
2

YAYy
A

� i�yA��D��A þ imc

@
�yÂ�Â �

imc

@
�y �A� �A

�
;

(29)

LCS ¼ k@c

4�
���
 Tr

�
A�@�A
 þ 2i

3
A�A�A


� Â�@�Â
 � 2i

3
Â�Â�Â


�
; (30)

L Yuk ¼ 2�i

k@c
Tr½Yy

AY
A�yB�B � YAYy

A�B�
yB

� 2Yy
AY

B�yA�B � �ABCDYy
A�BY

y
C�D

þ �ABCDY
A�yBYC�yD�; (31)

1The dimensions of constants and fields appearing in this
section in terms of mass M, length L, and time T are: ½@� ¼
ML2T�1, ½m� ¼ M, ½c� ¼ LT�1, ½k� ¼ L�1T, ½ZÂ� ¼ ½Wy �A� ¼
M1=2L1=2T�1=2, ½c A� ¼ M1=2T�1=2, ½A�� ¼ ½Â�� ¼ L�1,
½At� ¼ T�1, ½!� ¼ L1=2.
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L D ¼ �Vbos
D

¼ �Tr

���������2�

k@c
ðZB̂Zy

B̂
ZÂ � ZÂZy

B̂
ZB̂ �Wy �BW �BZ

Â

þ ZÂW �BW
y �BÞ

��������2þ
��������2�

k@c
ðWy �BW �BW

y �A

�Wy �AWB̂W
y �B � ZB̂Zy

B̂
Wy �A þWy �AZy

B̂
ZB̂Þ

��������2
�
;

(32)

L F ¼ �Vbos
F

¼ � 16�2

k2@2c2
Tr½j�Â Ĉ�

�B �DW �BZ
ĈW �Dj2

þ j� �A �C�B̂ D̂Z
B̂W �CZ

D̂j2�: (33)

The mass contributions to the potential term are (note that
the canonical mass terms have been included in Lkin)

L m ¼ 4�m

k@2
Tr½ðZÂZy

Â
Þ2 � ðZy

Â
ZÂÞ2 � ðWy �AW �AÞ2

þ ðW �AW
y �AÞ2�: (34)

For the time component of the gauge potential we intro-

duce A0 � 1
c At, Â0 � 1

c Ât. The covariant derivative then

becomes

DiZ
Â ¼ @iZ

Â þ iAiZ
Â � iZÂÂi; (35)

DtZ
Â ¼ @tZ

Â þ iAtZ
Â � iZÂÂt: (36)

We focus on the symmetric sector of the vacua and
decompose the (relativistic) scalar fields into the particle
and antiparticle parts,

ZÂ ¼ @ffiffiffiffiffiffiffi
2m

p ðe�iðmc2t=@ÞzÂ þ eiðmc2t=@Þẑ�ÂÞ; (37)

Zy
Â
¼ @ffiffiffiffiffiffiffi

2m
p ðeiðmc2t=@Þzy

Â
þ e�iðmc2t=@Þẑ�y

Â
Þ; (38)

Wy �A ¼ @ffiffiffiffiffiffiffi
2m

p ðe�iðmc2t=@Þwy �A þ eiðmc2t=@Þŵ�y �AÞ; (39)

W �A ¼ @ffiffiffiffiffiffiffi
2m

p ðeiðmc2t=@Þw �A þ e�iðmc2t=@Þŵ�
�A
Þ: (40)

Here, zÂ, ẑ�Â, etc. are regarded as nonrelativistic scalar

fields. Let us keep the particle degrees of freedom ðzÂ; wy �AÞ
and drop the antiparticle sector. Taking the nonrelativistic
limit amounts to sending c, m ! 1 and considering the
leading orders. The Chern-Simons term is not affected in
this nonrelativistic limit. The kinetic part of the bosonic
sector becomes

Lbos
kin ¼ Tr

�
i@

2
ð�zy

Â
Dtz

Â þDtz
Â � zy

Â
Þ þ @

2

2mc2
Dtz

ÂDtz
y
Â

� @
2

2m
Diz

ÂDiz
y
Â
þ i@

2
ð�w �ADtw

y �A þDtw
y �A � w �AÞ

þ @
2

2mc2
Dtw

y �ADtw �A � @
2

2m
Diw

y �ADiw �A

�
: (41)

The terms @
2

2mc2
jDtz

Âj2, @
2

2mc2
jDtw

y �Aj2 are subleading in the

limit c,m ! 1. The potential termsLD andLF are also of
subleading order. Nontrivial contributions in the potential
come from the mass-dependent part

L m ¼ �@2

km
Tr½ðzÂzy

Â
Þ2 � ðzy

Â
zÂÞ2 � ðwy �Aw �AÞ2

þ ðw �Aw
y �AÞ2�: (42)

Assembling the terms up to Oð1=c2Þ we find (the bosonic
part of) the Lagrangian for the nonrelativistic massive
ABJM model in the symmetric phase:

LNR;bos
ABJM ¼ k@c

4�
����Tr

�
A�@�A�þ2i

3
A�A�A�� Â�Â�Â�

�2i

3
Â�Â�Â�

�
þTr

�
i@

2
ð�zy

Â
Dtz

ÂþDtz
Â � zy

Â
Þ

� @
2

2m
Diz

ÂDiz
y
Â
þ i@

2
ð�w �ADtw

y �AþDtw
y �A �w �AÞ

� @
2

2m
Diw

y �ADiw �Aþ
�@2

km
fðzÂzy�AÞ2�ðzy

Â
zÂÞ2

�ðwy �Aw �AÞ2þðw �Aw
y �AÞ2g

�
: (43)

The equations of motion of the nonrelativistic theory are
read off from the Lagrangian. For the scalar fields we find

i@Dtz
Â ¼ � @

2

2m
D2

i z
Â � 2�@2

km
ðzB̂zy

B̂
zÂ � zÂzy

B̂
zB̂Þ; (44)

i@Dtw
y �A ¼ � @

2

2m
D2

i w
y �A

þ 2�@2

km
ðwy �Bw �Bw

y �A � wy �Aw �Bw
y �BÞ: (45)

These are gauged nonlinear Schrödinger equations. The
gauge field equations of motion (the Gauss law constraints)
are

Ei ¼ �ijJ
j; (46)

k@c

2�
B ¼ @cðzÂzy

Â
þ wy �Aw �AÞ; (47)

Ê i ¼ �ijĴ
j; (48)

k@c

2�
B̂ ¼ @cðzy

Â
zÂ þ w �Aw

y �AÞ; (49)
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where �0ij � �ij, Ej � F0j, B � F12, Êj � F̂0j, B̂ � F̂12,

and

Ji ¼ � i@�

kmc
ðzÂDiz

y
Â
�Diz

Â � zy
Â

þ wy �ADiw �A �Diw
y �A � w �AÞ; (50)

Ĵi ¼ i@�

kmc
ðzy

Â
Diz

Â �Diz
y
Â
� zÂ

þ w �ADiw
y �A �Diw �A � wy �AÞ; (51)

are the matter currents. There is a Uð1Þ global symmetry

ðzÂ; wy �AÞ ! ei�ðzÂ; wy �AÞ. The corresponding Noether
charge is

Q ¼ �
Z

d2xTr½zy
Â
zÂ þ w �Aw

y �A�: (52)

Likewise, the nonrelativistic limit of the fermionic part
can be taken by decomposing the fermions into the particle
and antiparticle parts and then discarding (say) the anti-
particle part. We abide by the supersymmetry and shall
keep the particle part of the spinor �A, which is [29]

�A ¼ ffiffiffiffiffi
@c

p ðuþc�Aðt; ~xÞ þ u�cþAðt; ~xÞÞe�iðmc2=@Þt

¼
ffiffiffiffiffi
@c

2

s
c�A þ cþA

�ic�A þ icþA

� �
e�iðmc2=@Þt: (53)

The basis u� are mutually orthogonal two-component
constant vectors

u� � 1ffiffiffi
2

p 1
	i

� �
; (54)

and c�A are one-component spinors with dimension

½c � ¼ L�3=2T1=2. The fermionic part of the kinetic term
then becomes

L ferm
kin ¼ Tr

�
@c �c Aþ

�
i

c
Dtc�A � iD�cþA

�

þ 2mc2 �c Âþc�Â þ @c �c A�
�
i

c
DtcþA

� iDþc�A

�
þ 2mc2 �c

�A�cþ �A

�
: (55)

The equations of motion up to Oðc0Þ are

i@Dtc�A þ 2mc2�Â
Ac�Â � i@cD�cþA ¼ 0; (56)

i@DtcþA þ 2mc2�
�A
Acþ �A � i@cDþc�A ¼ 0: (57)

Using these equations of motion half of the fermionic
degrees of freedom can be dropped.

Finally, the Yukawa term becomes

LYuk ¼�@2

km
Tr½yyAyAð �c Bþc�B� �c B�cþBÞ� �c BþyAy

y
Ac�B

þ �c B�yAy
y
AcþBþ 2 �c BþyAy

y
Bc�A� 2 �c B�yAy

y
BcþA

� 2yyAy
Bð �c Aþc�Bþ �c A�cþBÞ

þ �ABCDðyyAc�By
y
CcþD� yyAcþBy

y
Cc�DÞ

� �ABCDðyA �c BþyCc D�� yA �c B�yCc DþÞ�; (58)

where we have denoted the particles collectively as yA ¼
ðzÂ; wy �AÞ, yyA ¼ ðzy

Â
; w �AÞ. The Yukawa term is subleading

and does not contribute to the fermion equations of motion
(56) and (57).

IV. THE BPS EQUATIONS AND THE VORTEX
SOLUTIONS

Now let us find vortex solutions that saturate the BPS
bound in this setup. To find codimension two BPS solu-
tions, we drop the fermion parts and consider static con-
figurations. The Hamiltonian of the system is the
conserved Noether charge for the gauge covariant time
translation [34]

�ZÂ ¼ �D0z
Â; �wy �A ¼ �D0w

y �A; (59)

�A0 ¼ �Â0 ¼ 0; �Ai ¼ �Ei; �Âi ¼ �Êi: (60)

The Hamiltonian density is given by

H ¼ Tr

�
@
2

2m
jDiz

Âj2 þ @
2

2m
jDiw

y �Aj2 � �@2

km
fðzÂzy

Â
Þ2

� ðzy
Â
zÂÞ2 � ðwy �Aw �AÞ2 þ ðw �Aw

y �AÞ2g
�
: (61)

In order to perform the Bogomol’nyi completion it is
convenient to use the relation

½Di;Dj�zÂ ¼ iðFijz
Â � zÂF̂ijÞ: (62)

Using this relation and the Gauss law constraints, and
writing D� � D1 � iD2, we find that the energy func-
tional simplifies to

E ¼
Z

d2xH

¼
Z

d2xTr

�
@
2

2m
jD�zÂj2 þ @

2

2m
jDþwy �Aj2

�

þ @
2

2m

Z
d2xS: (63)

The second term is a surface term evaluated at the bound-
ary
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Z
d2xS ¼ �i

Z
d2xf@1 Tr½zÂD2z

y
Â
� � @2 Tr½zÂD1z

y
Â
�

� @1 Tr½wy �AD2w �A� þ @2 Tr½wy �AD1w �A�g
¼ �i

I
dxi Tr½zÂDiz

y
Â
� wy �ADiw �A�: (64)

Now, for a finite energy configuration the fields settle down
to their vacua at infinity. Then

Diz
Âjboundary ¼ Diw �Ajboundary ¼ 0; (65)

and the surface term vanishes. We may conclude that the
BPS bound is given by

E ¼
Z

d2xTr

�
@
2

2m
jD�zÂj2 þ @

2

2m
jDþwy �Aj2

�

 0; (66)

which is saturated when both

D�zÂ ¼ 0; Dþwy �A ¼ 0; (67)

are satisfied. These are the BPS vortex equations.
Let us find a solution to these equations. The simplest

solution is just a configuration that the scalars are propor-

tional to the unit matrix zÂ, wy �A / 1N�N and Ai ¼ Âi. In
this case, the equations become trivial. The scalars and the
gauge fields are determined by a (anti)holomorphic func-
tion of z ¼ x1 þ ix2. This configuration is possible even
for the N ¼ 1 case.

Besides this trivial solution, we may find nontrivial,
nonsingular solutions specific to the multiple M2-brane
configuration. Although it is difficult to solve the matrix-
valued equation (67) together with the gauge field equa-
tions (46)–(49) in general, we may find solutions by as-
suming an ansatz that simplifies the equations:

zÂðxÞ ¼ c zðxÞSI; wy �AðxÞ ¼ c wðxÞSI;
AiðxÞ ¼ aiðxÞSISyI ; ÂiðxÞ ¼ aiðxÞSyI SI:

(68)

Here c zðxÞ, c wðxÞ, and aiðxÞ are ordinary (not matrix-
valued) functions and SI are constant matrices. In the first
and second expressions the indices are understood to be

Â ¼ ð1; 2Þ $ I ¼ ð1; 2Þ, �A ¼ ð3; 4Þ $ I ¼ ð1; 2Þ. The ma-
trices SIðI ¼ 1; 2Þ are the N � N ‘‘vacuum matrices’’ in
the form [33]

ðSy1 Þmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
�mn; ðSy2 Þmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N �m

p
�mþ1;n:

(69)

It is easy to show that

SI ¼ SJSyJ SI � SISyJ SJ; (70)

SyI ¼ SyI SJS
y
J � SyJ SJS

y
I ; (71)

Tr SISyI ¼ TrSyI SI ¼ NðN � 1Þ: (72)

The BPS equations (67) then reduce to

ðD1 � iD2Þc zðxÞ ¼ 0; ðD1 þ iD2Þc wðxÞ ¼ 0;

(73)

where Di � @i þ iai. These are in fact the vortex equa-
tions of Jackiw and Pi [31].

Let us for simplicity set wy �A ¼ 0 and solve the equa-

tions for zÂ, Ai, and Âi. We call this solution ‘‘BPS-I.’’
Geometrically, this is a configuration of M2 branes polar-
ized into a fuzzy S3. The physical radius of the fuzzy S3 is
evaluated as

R2 ¼ 2

NTM2

Tr½ZÂZy
Â
� ¼ N � 1

TM2

jc zj2
m

; (74)

where TM2 is the tension of an M2 brane. Note that in the
case of N ¼ 1, the fuzzy sphere collapses into zero size
and there are no nontrivial solutions. Our solutions may be
regarded as an embedding of the Jackiw-Pi Abelian vorti-
ces in the nonrelativistic ABJM model (see also discus-
sions in Sec. VI). These solutions are specific to the
multiple M2 branes. The size of the fuzzy sphere is related
to the Uð1Þ charge of the vortices, as explained below.
It is well known that the Jackiw-Pi vortex equation

allows exact solutions. The Gauss law constraint for the
ansatz (68) is

b ¼ f12; (75)

where b ¼ 2�
k jc zj2 and fij � @iaj � @jai. Changing the

variables

c zðxÞ ¼ ei�ðxÞ
1=2ðxÞ; ð�; 
 2 RÞ; (76)

the BPS equation becomes

ðD1 � iD2Þc ¼
�
i@1�


1=2 þ 1

2

�1=2@1
þ ia1


1=2

þ @2�

1=2 � i

2

�1=2@2
þ a2


1=2

�
ei�

¼ 0; (77)

giving a pair of equations

aiðxÞ ¼ �@i�þ 1
2�ij@

j ln
: (78)

Substituting these into the Gauss law constraint, we have
the Liouville equation

r2 ln
 ¼ � 4�

k

; (79)

which may be solved by


ðxÞ ¼ k

2�
r2 lnð1þ jfðzÞj2Þ; (80)

where fðzÞ is a holomorphic function of z ¼ x1 þ ix2. The
Uð1Þ Noether charge for this configuration is
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Q ¼ �NðN � 1Þ
Z

d2x
 ¼ �NðN � 1Þ k

2�
ð2�Þ

�
Z

dr

�
r
@2

@r2
þ @

@r

�
� lnð1þ jfj2Þ; (81)

where r ¼ jzj. This is proportional to the magnetic charge
via the relation (75). As is well known, this fact is specific
for Chern-Simons vortices.

Particularly simple examples of vortex profiles are ob-
tained by choosing the holomorphic function to be

fðzÞ ¼
�
z0
z

�
n
; n 2 Z; (82)

where z0 is a complex constant. In this case


ðxÞ ¼ k

2�

4n2

r20

ð rr0Þ2ðn�1Þ

½1þ ð rr0Þ2n�2
; (83)

and

Q ¼ 2knNðN � 1Þ: (84)

Again, this vanishes for a single M2 brane implying that
our solution is physically meaningful only for N 
 2.

The phase � is determined as follows. For small and
large values of r, 
 behaves as


� r2ðn�1Þ; ðr ! 0; n 
 2Þ; (85)


� r�2n�2; ðr ! 1Þ; (86)

and hence

aiðxÞ � �@i�þ ðn� 1Þ�ij x
j

r2
; ðr ! 0Þ: (87)

The regularity of the gauge field at r ¼ 0 demands � ¼
�ðn� 1Þ argz ¼ �ðn� 1Þ arctanðx2=x1Þ. These are non-
topological vortices since jc zj ! 0 as r ! 1. To illustrate
the solutions, profiles of jc zj2 are shown in Fig. 1 for
fðzÞ ¼ 1

z ,
1
z2
and 1

zðz�1Þ , with k ¼ 1.

Instead of setting wy �A ¼ 0, we may set zÂ ¼ 0 and find

similar solutions for wy �A:

c wðxÞ ¼ ei�ðxÞ
1=2ðxÞ; (88)


ðxÞ ¼ � k

2�
r2 lnð1þ jfðzÞj2Þ; (89)

� ¼ ðn� 1Þ arctanðx2=x1Þ: (90)

We call these solutions ‘‘BPS-II.’’
A comment is in order regarding the relation between

the solutions here and the ones found in the relativistic
ABJM model. In [10], the authors found 1=4 BPS vortex
solutions in the F-term mass deformation of the relativistic
ABJM model, where (similarly to our nonrelativistic case
here) an Abelian solution is embedded together with the
fuzzy S3 geometry. Their analysis [10] relies on numerical
study as there is no analytic solution known for relativistic
Chern-Simons vortices, even for the Abelian case. In con-
trast, in our nonrelativistic case, the BPS equation reduces
to the Liouville equation and is exactly solvable, as we
have just shown. The solvability of the equation is a special
feature of the nonrelativistic limit of the Chern-Simons-
matter theory. The exact solutions (78), (80), and (88)–(90)
cannot be obtained from the relativistic ones.

V. THE SUPER SCHRÖDINGER SYMMETRY
PRESERVED BY THE VORTICES

The vortices found in the previous section are exact
solutions to the BPS equations. In this section we study
their supersymmetric properties and see how many of the
nonrelativistic supercharges are preserved by the BPS
solutions. Our notations and terminology of the nonrela-
tivistic SUSY transformations follow [29]. We shall de-
compose the SUSY transformation parameters !AB and
!AB using the basis u� in the same way as we did for the
fermions:

! ¼ ~!�uþ þ ~!þu� ¼ 1ffiffiffi
2

p ~!� þ ~!þ
�i ~!� þ i ~!þ

� �
; (91)

~!AB� ¼ ð ~!�ABÞy ¼ 1

2
�ABCD ~!�CD; (92)

where �1234 ¼ �1234 ¼ 1.

FIG. 1 (color online). The profiles of the vortex solutions. jc zj2 is shown in the examples of (82) with n ¼ 1 (left), n ¼ 2 (middle),
and fðzÞ ¼ 1

zðz�1Þ (right).
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The super Schrödinger symmetry is generated by 14
components of supercharges. Ten of them are associated
with kinematical SUSY, characterized by anticommutation

relations of the supercharges fQK;Q
y
Kg �M=m whereM

is the total mass operator. The corresponding 10 SUSY
parameters are

ð ~!þÂ B̂; ~!� �A �B; ~!�Â �BÞ: (93)

Two of the other supercharge components belong to dy-
namical SUSY, characterized by supercharge commutator

fQD;Q
y
Dg �H, and their SUSY parameters are

ð ~!�Â B̂; ~!þ �A �BÞ: (94)

The two remaining components are associated with con-
formal SUSY.

The transformation rules for the kinematical SUSY are

�Kz
Â ¼ !Â B̂� cþB̂ �!Â �Bþ c� �B; (95)

�Kw
y �A ¼ !

�A B̂� cþB̂ �!
�A �Bþ c� �B; (96)

�KcþÂ ¼ �!þÂ B̂z
B̂ þ!þÂ �Bw

y �B; (97)

�Kc� �A ¼ !� �A B̂z
B̂ þ!� �A �Bw

y �B; (98)

�KAt ¼ �@

km
½zÂ �c �Bþ!�Â �B þ wy �A �c �Bþ!� �A �B þ zÂ �c B̂�!þÂ B̂

þ wy �A �c B̂�!þ �A B̂ þ!Â B̂� zy
Â
cþB̂ þ!

�A B̂� w �AcþB̂

þ!Â �Bþ zy
Â
c� �B þ!

�A �Bþ w �Ac� �B�; (99)

�KAþ ¼ 2�

km
ðwy �A �c �Bþ!þ �A �B þ!Â B̂þ cþÂz

y
B̂
Þ; (100)

�KA� ¼ 2�

km
ðzÂ �c B̂�!�Â B̂ þ!

�A �B� c� �Aw �BÞ; (101)

and the rules for the dynamical SUSY are

�Dz
Â ¼ � i

2m
!Â B̂� D�cþB̂; (102)

�Dw
y �A ¼ i

2m
!

�A �B� Dþc� �B; (103)

�DcþÂ ¼ i

2m
!�Â B̂DþzB̂; (104)

�Dc� �A ¼ � i

2m
!þ �A �BD�wy �B; (105)

�DAt ¼ i�@

2km2
½�zÂDþ �c B̂�!�Â B̂ � wy �AD� �c �Bþ!þ �A �B

þ!Â B̂� w �ADþc� �B þ!Â B̂þ zy
Â
D�cþB̂�; (106)

�DA� ¼ 0: (107)

For the sake of brevity we have used in these expressions
rescaled SUSY parameters

ð!þÂ B̂; !� �A �B;!�Â �BÞ �
ffiffiffiffiffiffiffiffiffi
2mc

@

s
ð ~!þÂ B̂; ~!� �A �B; ~!�Â �BÞ;

(108)

ð! �A �Bþ ; !Â B̂� ; !Â �B� Þ �
ffiffiffiffiffiffiffiffiffi
2mc

@

s
ð ~! �A �Bþ ; ~!Â B̂� ; ~!Â �B� Þ; (109)

and

ð!�Â B̂; !þ �A �BÞ �
ffiffiffiffiffiffiffiffiffi
2m@

c

s
ð ~!�Â B̂; ~!þ �A �BÞ; (110)

ð! �A �B� ; !Â B̂þ Þ �
ffiffiffiffiffiffiffiffiffi
2m@

c

s
ð ~! �A �B� ; ~!Â B̂þ Þ: (111)

Dimensions of these new parameters are

½!þÂ B̂� ¼ ½!� �A �B� ¼ ½!�Â �B� ¼ ½! �A �Bþ � ¼ ½!Â �B� �
¼ ½!Â �B� � ¼ 1; (112)

½!�Â B̂� ¼ ½!þ �A �B� ¼ ½! �A �B� � ¼ ½!Â B̂þ � ¼ ML: (113)

We sketch derivation of the nonrelativistic SUSY trans-
formation formulae in the appendix.
Let us first consider the BPS-I vortices, which are solu-

tions to the BPS equations

wy �A ¼ 0; D�zÂ ¼ 0: (114)

Applying these conditions to the fermion transformation
rules �c , we have

�KcþÂ ¼ �!þÂ B̂z
B̂; (115)

�DcþÂ ¼ i

2m
!�Â B̂DþzB̂; (116)

�Kc� �A ¼ þ!� �A B̂z
B̂; (117)

�Dc� �A ¼ 0; (118)

hence the conditions �c ¼ 0 imply !þÂ B̂ ¼ !�Â B̂ ¼
!� �A B̂ ¼ 0. This means that the BPS-I solutions break

five kinematical and one dynamical SUSYs.
For the BPS-II solutions the BPS equations are

zÂ ¼ 0; Dþwy �A ¼ 0; (119)

and the transformation rules become

�KcþÂ ¼ !þÂ �Bw
y �B; (120)
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�DcþÂ ¼ 0; (121)

�Kc� �A ¼ !� �A �Bw
y �B; (122)

�Dc� �A ¼ � i

2m
!þ �A �BD�wy �B: (123)

The conditions �c ¼ 0 then give !þÂ �B ¼ !� �A �B ¼
!þ �A �B ¼ 0 and we see that the BPS-II solutions also break

five kinematical and one dynamical SUSYs.
The properties of the vortex solutions associated with

the conformal SUSY can be inferred from the fact that the
conformal supercharge S is written as a commutator of the
special conformal generator K and the dynamical super-
charge QD [28,29,34],

S ¼ i½K;QD�: (124)

Using the dynamical SUSY transformation rules (104) and

(105) we see that under the conformal SUSY �ScþÂ �

Â B̂z

B̂ and �Sc� �A � 
 �A �Bw
y �B. The former vanishes for the

BPS-II conditions (119) whereas the latter vanishes for the
BPS-I conditions (114). We may thus conclude that the
BPS-I and BPS-II both preserve half of the conformal

SUSY. Note that once we turn on both zÂ and wy �A, the
BPS equations break all the SUSYs in general and hence

there would be only the trivial solution zÂ ¼ wy �A ¼ 0. We
summarize the results in Table I.

VI. DISCUSSIONS

In this paper we studied vortex solutions in the non-
relativistic ABJM model and discussed the nonrelativistic
SUSY they preserve. The ABJM model is a particularly
interesting type of Chern-Simons-matter theory as its
gravitational dual is well understood and its nonrelativistic
limit is also expected to have a gravitational dual through a
nonrelativistic version of AdS/CFT correspondence [23–
27]. We obtained exact solutions to the BPS equations and
showed that these vortices preserve half of the ten kine-
matical, two dynamical, and two conformal SUSYs. The
solutions discussed in this paper are related to those of the
Jackiw-Pi model. In fact, the correspondence can be seen at
the Lagrangian level. Let us take the BPS-I ansatz for
example: setting w �A ¼ 0 and assuming the fuzzy S3 con-

figuration,

zÂ ¼ c SI; A� ¼ a�S
ISyI ; Â� ¼ a�S

y
I S

I;

(125)

the nonrelativistic ABJM model Lagrangian (43) reduces
to

L NR;bos
ABJM ¼ NðN � 1ÞLJP; (126)

where

LJP ¼ k

4�
����a�@�a� þ i@

2
ð�cDt

�c þ �cDtc Þ

� @
2

2m
jDic j2 þ �@2

km
ðc �c Þ2 (127)

is identified as the Lagrangian of the Jackiw-Pi model [31].
We note that the fuzzy S3 sphere ansatz is essential in this
correspondence, and the correspondence holds only for
N 
 2. The Jackiw-Pi model gives Abelian vortices,
whereas the gauge fields of the ABJM model (of N 
 2)
are non-Abelian. We may say that the Abelian vortices are
embedded in the nonrelativistic ABJM model, with the
non-Abelian nature of the ABJM gauge fields converted
into the fuzziness of the S3 part and the numerical factor of
(126).
While our solutions may be considered as an embedding

of the Abelian Jackiw-Pi vortices, it is not obvious from
this fact alone how many of the nonrelativistic 14 SUSYs
are preserved by the BPS solutions. The Jackiw-Pi model
LJP, which is the nonrelativistic limit of the N ¼ 2
Abelian Chern-Simons-Higgs model [30], does not exhibit
14 SUSYs but keeps only a part of them. This means that in
order to see the full structure of the unbroken SUSY kept
by the vortex solutions, it is necessary to analyze the BPS
equation (78) derived from the original nonrelativistic
ABJM model, not the effective description (126) and
(127). One of our motivations to look for vortex solutions
in the nonrelativistic ABJM model arose from their poten-
tial importance in holographic descriptions of (1þ 2)-
dimensional condensed matter systems. The structure of
the preserved SUSYs is important for determining the
corresponding solutions in the gravity side. It would be
interesting to find a solution that preserves seven
Schrödinger SUSYs in the 11-dimensional gravity dual.
Let us comment on more realistic models for condensed

matter physics. Physically interesting problems such as
superconductivity and quantum Hall effect involve exter-
nal fields, and the parity of the systems is accordingly

TABLE I. Broken and preserved SUSYs for our vortex solutions BPS-I and BPS-II. Here �
for preserved and � for broken SUSYs.

Type of SUSY Kinematical Dynamical Conformal

!þÂ �B !þÂ B̂ !� �A �B !� �A B̂ !�Â B̂ !þ �A �B 
Â B̂ 
 �A �B

BPS-I � � � � � � � �
BPS-II � � � � � � � �
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broken. While the Jackiw-Pi vortex solutions that we de-
scribed in this paper do not involve external fields, a
straightforward modification to include external fields is
known once the Lagrangian is suitably modified. For ex-
ample, let us add an additional term to the ABJM
Lagrangian,

�L ¼ Tr½F12Z
ÂZy

Â
� F̂12Z

y
Â
ZÂ�: (128)

With the fuzzy S3 configuration

F12 ¼ BSISyI ; F̂12 ¼ BSyI SI; (129)

together with the BPS-I ansatz, the Hamiltonian acquires
an additional term proportional to NðN � 1Þ @

2mBjc zj2. It
is then possible to modify the vortex solutions to include
the external fields following [35]. It is interesting to see
whether it is possible to accommodate more realistic mod-
els such as the Zhang-Hansson-Kivelson model [36] of the
quantum Hall effect.

Finally, it is also an interesting question whether the
model allows other types of solitonic solutions, such as an
embedding of non-Abelian vortices, solutions with less
supersymmetry, time-dependent solutions, and so on. For
embedding non-Abelian solutions, once one assumes an

ansatz A� ¼ Â�, the bifundamental scalar fields can be

effectively treated as adjoint matter fields. It would be
interesting to see if it is possible to embed the non-
Abelian solutions of the Toda-type [37]. Finding more
general solutions requires further study. Determination of
the complete moduli space of the solutions, in particular,
its relation to the broken SUSY structure, and clarification
of the string theoretical origin of additional terms like
(128) are also important problems. We hope to come
back to these issues in the near future.
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APPENDIX A: THE NONRELATIVISTIC
SUPERSYMMETRY

In this appendix we describe how the nonrelativistic
SUSY transformation rules (95)–(107) arise in the non-
relativistic limit of the N ¼ 6 mass-deformed SUSY
transformations. This is accomplished by decomposing
the relativistic fields into nonrelativistic particle and anti-
particle parts, dropping the antiparticle part, and expanding
for large c and m. Then the leading terms are identified
as the kinematical and the next-to-leading as the dynami-
cal SUSY transformation terms. See [28,29,34] for fur-

ther details,2 and [38,39] for related work on the
Schrödinger and super Schrödinger algebras.
We use the following conventions: the three-

dimensional gamma matrices are

ð��Þ�� ¼ ði	2; 	1; 	3Þ; f��; ��g ¼ 2���: (A1)

A spinor product is related to a matrix product as

�y��� ¼ ��y�0�; (A2)

where � is a 2� 1 matrix (vector) and the dagger in the
right-hand side (RHS) is interpreted as the matrix adjoint.
In the following, we interpret � as the two-component
vector �. The spinor indices are raised and lowered as

�� ¼ �����; �� ¼ ����
�; �12 ¼ ��12 ¼ 1:

(A3)

The standard position of spinor contraction is

�� ¼ ���� ¼ ��t�0�: (A4)

I. The scalar part

Let us start from the scalar part and consider the trans-
formation �YA ¼ i!AB�B. Using the fermion decomposi-
tion (53) we may write

ð!ABÞ�ð�BÞ� ¼ �!AB�0�B

¼ � ffiffiffiffiffi
@c

p
ið ~!AB� cþB � ~!ABþ c�BÞe�iðmc2=@Þt:

(A5)

Decomposing the scalar field as

YA ¼ @ffiffiffiffiffiffiffi
2m

p yAe�ðmc2=@Þt þ ðantiparticleÞ; (A6)

and dropping the antiparticle part, the first two components
of the SUSY transformation become

�zÂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p
@

ð ~!Â B̂� cþB̂ þ ~!Â �B� cþ �B � ~!Â B̂þ c�B̂

� ~!Â �Bþ c� �BÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p
@

�
~!Â B̂� cþB̂ þ i@

2mc
~!Â �B� Dþc� �B

� i@

2mc
~!Â B̂þ D�cþB̂ � ~!Â �Bþ c� �B

�
þ ðhigher order termsÞ: (A7)

We have used the Dirac equations (56) and (57) to go to the
second line. From the leading order we find (using the
rescaled parameters),

�Kz
Â ¼ !Â B̂� cþB̂ �!Â �Bþ c� �B; (A8)

2The literature available at the time of writing contains some
mathematical typos.
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and from the next-to-leading order,

�Dz
Â ¼ � i

2m
!Â B̂� D�cþB̂: (A9)

From the other components we similarly find

�Kw
y �A ¼ !

�A B̂� cþB̂ �!
�A �Bþ c� �B; (A10)

�Dw
y �A ¼ i

2m
!

�A �B� Dþc� �B: (A11)

II. The fermion part

Next we consider the transformation of the fermion. The
first term on the RHS of the SUSY transformation can be
written upon particle-antiparticle decomposition (and ne-
glecting the antiparticle) as

��!ABD�Y
B ¼ �i

mcffiffiffiffiffiffiffi
2m

p �0!ABy
Be�ðmc2=@Þt þ 1ffiffiffiffiffiffiffi

2m
p @

c
�0!ABDty

Be�ðmc2=@Þt þ @ffiffiffiffiffiffiffi
2m

p �i!ABDiy
Be�ðmc2=@Þt

¼
mc
@
ð ~!þAB � ~!�ABÞyB þ 1

c ði ~!þAB � i ~!�ABÞDty
B þ i ~!þABD�yB � i ~!�ABDþyB

mc
@
ði ~!þAB þ i ~!�ABÞyB � 1

c ð ~!þAB þ ~!�ABÞDty
B þ ~!þABD�yB þ ~!�ABDþyB

 !
@

2
ffiffiffiffi
m

p e�iðmc2=@Þt:

(A12)

The Dty
B terms are subleading and can be dropped. The mass independent part in the second term on the RHS is also

subleading. The mass-dependent term gives nontrivial contributions,

mc

@
YC!ÂC ¼ c

2

ffiffiffiffi
m

p zB̂ ~!�Â B̂ þ wy �B ~!�Â �B þ zB̂ ~!þÂ B̂ þ wy �B ~!þÂ �B

�izB̂ ~!�Â B̂ � iwy �B ~!�Â �B þ izB̂ ~!þÂ B̂ þ iwy �B ~!þÂ �B

 !
: (A13)

As the fermion transformations decompose as

��A ¼ 1ffiffiffi
2

p ffiffiffiffiffi
@c

p �c�A þ �cþA

�i�c�A þ i�cþA

� �
e�iðmc2=@Þt; (A14)

we find

�c�Â þ �cþÂ ¼ þi
mcffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð�i ~!�Â B̂ þ i ~!þÂ B̂ÞzB̂ þ i
mcffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð�i ~!�Â �B þ i ~!þÂ �BÞwy �B

� @ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð�i ~!�Â B̂DþzB̂ � i ~!�Â �BDþwy �B þ i ~!þÂ B̂D�zB̂ þ i ~!þÂ �BD�wy �BÞ

�mc

@

@ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ðzB̂ ~!�Â B̂ þ wy �B ~!�Â �B þ zB̂ ~!þÂ B̂ þ wy �B ~!þÂ �BÞ; (A15)

�i�c�Â þ i�cþÂ ¼ þi
mcffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð� ~!�Â B̂ � ~!þÂ B̂ÞzB̂ þ i
mcffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð� ~!�Â �B � ~!þÂ �BÞwy �B

� @ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð ~!�Â B̂DþzB̂ þ ~!�Â �BDþwy �B þ ~!þÂ B̂D�zB̂ þ ~!þÂ �BD�wy �BÞ

�mc

@

@ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð�izB̂ ~!�Â B̂ � iwy �B ~!�Â �B þ izB̂ ~!þÂ B̂ þ iwy �B ~!þÂ �BÞ: (A16)

Because of the Dirac equations (56) and (57), �c�Â on the
left-hand side (LHS) is subleading. Then in terms of the
rescaled SUSY parameters we obtain the kinematical �K

and dynamical �D SUSY transformations

�KcþÂ ¼ �!þÂ B̂z
B̂ þ!þÂ �Bw

y �B; (A17)

�DcþÂ ¼ i

2m
!�Â B̂DþzB̂: (A18)

Similarly,

�c� �A þ �cþ �A ¼ i@ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð ~!� �A B̂DþzB̂ þ ~!� �A �BDþwy �B

� ~!þ �A B̂D�zB̂ � ~!þ �A �BD�wy �BÞ

þ 2mcffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð ~!� �A B̂z
B̂ þ ~!� �A �Bw

y �BÞ;
(A19)
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� i�c� �A þ i�cþ �A ¼ � @ffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p ð ~! �A B̂DþzB̂

þ ~!� �A �BDþwy �B þ ~!þ �A B̂D�zB̂

þ ~!þ �A �BD�wy �BÞ � i
2mcffiffiffiffiffiffiffiffiffiffiffiffi
2m@c

p

� ð ~!� �A B̂z
B̂ þ ~!� �A �Bw

y �BÞ;
(A20)

and again due to the Dirac equations (56) and (57) we may
drop �cþ �A on the LHS, leading to

�Kc� �A ¼ !� �A B̂z
B̂ þ!� �A �Bw

y �B; (A21)

�Dc� �A ¼ � i

2m
!þ �A �BD�wy �B: (A22)

III. The gauge field part

Finally, we consider the gauge field part. Note that the
temporal and the spatial parts of the relativistic SUSY
transformation formula come with different powers of c:

�At ¼ þ 2�

k@
ðYA�yB�0!AB þ!AB�0�AY

y
BÞ; (A23)

�A� ¼ � 2�

k@c
ðYA�yB��!AB þ!AB�i�AY

y
BÞ; (A24)

where

�� � �1 � i�2 ¼ �i 1
1 	i

� �
: (A25)

Upon nonrelativistic decomposition of the fields the tem-
poral part becomes

�At ¼ 2�

k

ffiffiffiffiffiffiffi
@c

2m

s �
� i@

2mc
zÂDþ �c B̂� ~!�Â B̂ � i@

2mc
wy �ADþ �c B̂� ~!� �A B̂ þ zÂ �c �Bþ ~!�Â �B þ wy �A �c �Bþ ~!� �A �B þ zÂ �c B̂�cþÂ B̂

þ wy �A �c B̂� ~!þ �A B̂ � i@

2mc
zÂD� �c �Bþ ~!þÂ �B � i@

2mc
wy �AD� �c �Bþ ~!þ �A �B þ ~!Â B̂� zy

Â
cþB̂ þ ~!

�A B̂� w �AcþB̂

þ i@

2mc
~!Â �B� zy

Â
Dþc� �B þ i@

2mc
~!

�A �B� w �ADþc� �B þ i@

2mc
~!Â B̂þ zy

Â
D�cþB̂ þ i@

2mc
~!

�A B̂þ w �AD�cþB̂

þ ~!Â �Bþ zy
Â
c� �B þ ~!

�A �Bþ w �Ac� �B

�
þ ðhigher order termsÞ: (A26)

Using the rescaled SUSY parameters we obtain

�KAt ¼ �@

km
½zÂ �c �Bþ!�Â �B þ wy �A �c �Bþ!� �A �B þ zÂ �c B̂�!þÂ B̂

þ wy �A �c B̂�!þ �A B̂ þ!Â B̂� zy
Â
cþB̂ þ!

�A B̂� w �AcþB̂

þ!Â �Bþ zy
Â
c� �B þ!

�A �Bþ w �Ac� �B�; (A27)

�DAt ¼ i�@

2km2
½�zÂDþ �c B̂�!�Â B̂ � wy �AD� �c �Bþ!þ �A �B

þ!Â B̂� w �ADþc� �B þ!Â B̂þ zy
Â
D�cþB̂�: (A28)

The spatial part of the transformation formula can be
found similarly. From

�Aþ ¼ 4�

kc

ffiffiffiffiffiffiffi
@c

2m

s �
� i@

2mc
zÂDþ �c B̂� ~!þÂ B̂

� i@

2mc
wy �ADþ �c B̂� ~!þ �A B̂ þ zÂ �c �Bþ ~!þÂ �B

þ wy �A �c �Bþ ~!þ �A �B þ ~!Â B̂þ cþÂz
y
B̂
þ ~!Â �Bþ cþÂw �B

þ i@

2mc
~!

�A B̂þ Dþc� �Az
y
B̂
þ i@

2mc
~!

�A �Bþ Dþc� �Aw �B

�
þ ðhigher order termsÞ; (A29)

we obtain

�KAþ ¼ 2�

km
ðwy �A �c �Bþ!þ �A �B þ!Â B̂þ cþÂz

y
B̂
Þ; (A30)

�DAþ ¼ 0; (A31)

and from

�A� ¼ 4�

kc

ffiffiffiffiffiffiffi
@c

2m

s �
zÂ �c B̂� ~!�Â B̂ þ wy �A �c B̂� ~!� �A B̂

� i@

2mc
zÂD� �c �Bþ ~!�Â �B � i@

2mc
wy �AD� �c �Bþ ~!� �A �B

þ i@

2mc
~!Â B̂� D�cþÂz

y
B̂
þ i@

2mc
~!Â �B� D�cþÂw �B

þ ~!
�A B̂� c� �Az

y
B̂
þ ~!

�A �B� c� �Aw �B

�
þ ðhigher order termsÞ; (A32)

we have

�KA� ¼ 2�

km
ðzÂ �c B̂�!�Â B̂ þ!

�A �B� c� �Aw �BÞ; (A33)

�DA� ¼ 0: (A34)
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