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Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of

4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the

scalar zero modes are massless, it is well known that quantum corrections make them massive. We

compute these radiative corrections at 1 loop in an effective field theory framework, using the background

field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum

over KK modes in the effective field theory approach, we consider the same problem in two different UV

completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification

radius R is much bigger than the scale of the UV completion (R � ffiffiffiffiffi
�0p
, a), we recover a mass

renormalization that is independent of the UV scale and agrees with the one derived in the effective

field theory approach. These results support the idea that the value of the mass corrections is, in this

regime, universal for any UV completion that respects locality and gauge invariance. The string analysis

suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the

adjoint scalars appearing in N ¼ 2, 4 super Yang-Mills is highly suppressed, even if the lattice

regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-

dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
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I. INTRODUCTION

Gauge theories compactified on a circle or a torus appear
in various different physical contexts. For instance, the
reduction on a circle from four to three dimensions is
relevant for studying the finite-temperature effects, while
toroidal compactification from D to four dimensions pro-
vides the simplest possible toy model for extra-
dimensional theories. The components of the gauge field
along the compact dimensions appear as scalars in the
effective field theory for the noncompact space. Imposing
periodic boundary conditions, these scalars contain a mass-
less zero mode. It has been known for a long time that these
massless modes are lifted by radiative corrections [1]: in a
Yang-Mills theory compactified on the circle S1 it is pos-
sible to write a gauge invariant mass term and so we expect
to find a nonzero 1-loop correction �m2 that vanishes in the
limit R ! 1. The quantum mass corrections to the zero
and higher Kaluza-Klein modes were thoroughly studied in
the context of extra-dimensional field theories [2–4], with
particular attention towards phenomenological applica-
tions; see for instance [5]. However this effective field
theory approach has some shortfalls: since a higher-
dimensional field theory is nonrenormalizable, a sensitivity
to the UV physics can appear which depends on the regu-
larization scheme; moreover it is not entirely clear how to
treat rigorously the sum over the Kaluza-Klein modes.
Different approaches for computing the vacuum polariza-
tion have been proposed and seem to give mostly consis-

tent results; see, e.g., Refs. [6–16]. The finiteness of the
scalar mass can also be obtained in the effective potential
approach, as discussed in Ref. [17]. The equivalence of the
two approaches and a first step towards a 2-loop calcula-
tion were presented in Ref. [18].
In this paper we want to explore dimensional reduction

as a tool for defining extended supersymmetric theories. In
particular we try to find new hints for defining extended
supersymmetry on the lattice without fine-tuning. In order
to obtain some quantitative information, we concentrate on
the 1-loop corrections to the mass of the adjoint scalar field
that is obtained from the zero mode of the gauge field
component along a compactified direction, and try to dis-
entangle the high-energy (i.e., cutoff scale) contributions
from the low-energy ones. Insight on this problem is
obtained by considering the quantum corrections to the
mass of the Kaluza-Klein zero modes in two different
UV completions of Yang-Mills: string theory and lattice
field theory. As we shall see below, both cases are concrete
examples of finite theories, where explicit and unambigu-
ous computations can be performed. Even though the
computational techniques are different in the two cases, a
clear physical picture emerges from the comparison of the
two computations: the leading order correction to the
scalar mass is universal and agrees with the result obtained
from an effective field theory computation.
The string theory computation is most easily compared

with the quantum field theory one if the latter is performed
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using the background field method and a Schwinger-time
regularization; see Ref. [19] and references therein. The
setup for the background field calculation is discussed in
Sec. II. However our goal in this work is to obtain a
quantitative result for the string and lattice theory compu-
tations; we summarize the effective field theory computa-
tion mainly to set up a common notation and facilitate the
comparison. Our results in Sec. II agree with the well-
known results in Refs. [2–4] for the mass renormalization
of the scalar mode, thereby providing a new consistency
check. In string theory we follow the procedure outlined in
Refs. [20–22] and relate the mass shift �m2 to the corre-
lator of two vertex operators. Note that the string compu-
tation requires a prescription to regulate the divergences
that appear when the two vertices are very close on the
world sheet. These divergences are automatically regulated
when the soft insertions of the external states are re-
summed and one derives the radiative mass corrections
from the effective action, as done in Refs. [23,24]. Even
if this approach is very efficient for untwisted string states
such ours, it cannot be applied to the case of twisted states.
Thus it is interesting to follow Refs. [20–22], as we do, and
extract the mass renormalization from the 2-point function
(see Ref. [25] for an application of this approach in the
context of closed string theory). With the proper prescrip-
tion for the short distance’s divergences on the world sheet,
we verify that the mass corrections to the components of
the gauge field in the noncompactfied dimensions vanish,
as dictated by the 4-dimensional gauge symmetry. Having
regulated these divergences, the string theory techniques
are readily extended to the case of compact space-time
dimensions. In close analogy with the noncompact case,
we find that the string calculation is easily mapped into the
quantum field theory calculation and there is quantitative
agreement between the two approaches when the string
scale is much lower than the compactification scale

(
ffiffiffiffiffi
�0p � R).
In order to study the theory defined on a discrete space-

time lattice, we generalize the techniques developed in
Ref. [26] in the context of finite-temperature field theories.
Again, when the lattice scale a is much lower than the
compactification scale, the mass generated by radiative
corrections for the component of the gauge field in the
compact dimension is found to be identical to the one
obtained in the effective theory calculation and thus to

the string theory one in the regime
ffiffiffiffiffi
�0p � R. Notice that

the lattice and the string theory calculations deal with the
sum over the Kaluza-Klein modes in a very different way:
the string UV completion provides a setup where the so-
called Kaluza-Klein regularization is implemented in a
consistent way and the sums run over all the modes; on
the contrary, lattice gauge theory provides a gauge invari-
ant way of implementing a hard cutoff on the integrals and
sums and only modes of energies up to 1=a are considered.
The fact that these two different approaches yield the same

result in the limit a,
ffiffiffiffiffi
�0p � R suggests that all UV com-

pletions that respect locality and gauge invariance yield a
leading order contribution to the scalar mass that is com-
pletely captured by an effective field theory approach. The
physical reason is that the high-energy modes in the UV
completion see the extra dimensions as uncompact and so
do not contribute to the mass renormalization because of
the higher-dimensional gauge symmetry.
We find that a similar pattern holds also for the 1-loop

contribution of fermions in lattice perturbation theory. The
fermionic contribution can actually be written in a form
that is very close to the bosonic one. As a consequence, we
find that the leading terms in the bosonic and fermionic
contributions to the mass renormalization of the adjoint
scalar field cancel whenever the number of degrees of
freedom are equal. Hence the mass renormalization of
the scalar field is highly suppressed if a supersymmetric
theory is dimensionally reduced. Our computation pro-
vides an explicit 1-loop realization of the mechanism
suggested in Ref. [27], and supports the interesting possi-
bility that Yang-Mills theories with extended supersymme-
try can be defined on the lattice without any fine-tuning by
dimensional reduction of a higher-dimensional N ¼ 1
theory, exactly as it happens in the continuum case [28].
The paper is organized as follows. Section II introduces

the main ingredients in the calculation of the quantum
corrections to the masses of the Kaluza-Klein zero modes,
and derives the usual formula for the mass shifts in a new
effective field theory framework, namely, in the back-
ground field method with a Schwinger-time regularization.
The details of the string computation are described in
Sec. III. Section IV deals with the details of the lattice
computation, for the cases of bosonic and fermionic con-
tributions in the loops. The possibility of an accidental
extended supersymmetric is discussed at the end of
Sec. IV. The main results of this work are summarized in
the conclusion together with some open questions that
could be addressed in future works.

II. MASS CORRECTIONS IN COMPACTIFIED
FIELD THEORIES

This section concentrates on the study of the mass
renormalization in the SUðNÞ Yang-Mills gauge theory
using the background field method in a space-time with
compactified dimensions. We shall see below that even
though our calculations are performed in a different set-
ting, they reproduce the results that have already appeared
in the literature. The correspondence between quantum
field theory and string computations is apparent when
amplitudes are expressed in terms of Schwinger parame-
ters and an explicit mapping can be defined to relate the
string moduli and the Schwinger parameters; see [19] and
references therein. We shall therefore use the Schwinger
parametrization in order to emphasize the connection with
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the string theory approach. A similar approach has recently
been developed in Refs. [29,30].

Clearly, before considering any explicit computation,
the gauge invariance of the theory should be used to con-
strain the form of the 2-gluon correlator. This is most easily
done in a path integral approach and by using Becchi-
Rouet-Stora invariance; see for instance [31]. In configu-
ration space, this 2-point function must satisfy the Ward
identity

@

@xM
@

@yN
hAaMðxÞAbNðyÞi ¼ �i�ab�Dðx� yÞ; (2.1)

where, in aD-dimensional theory,M ¼ 0; . . . ; D� 1. If all
dimensions are uncompact this leads to the usual conclu-
sion that the gluon self-energy is transverse and no mass
term can be generated. We will see this feature arising
explicitly in our 1-loop computation. In a toroidal compac-
tification the situation is different. Since we focus on the
case of vanishing Wilson lines, all fields are periodic
around the compact dimension and the associated mo-
menta are discrete. Thus for the Kaluza-Klein zero modes,
Eq. (2.1) reduces to a constraint involving only the gluon
polarizations along the uncompact directions, since these
modes have a nonzero momentum only along these direc-
tions. The mass correction of the other components (which
are scalars from the lower dimensional point of view) is not
constrained by any symmetry and can only be determined
by performing an explicit computation. Let us notice that
for the higher Kaluza-Klein modes these Ward identities
yield again nontrivial constraints on the quantum mass
corrections; see Sec. 3 of Ref. [15], where this point is
discussed in detailed.

Quantitative information on the renormalization of zero-
mode mass can only be obtained by explicit calculations.
We consider first the case of a D-dimensional theory,
without compact dimensions, in order to set up our frame-
work, and check indeed the symmetry constraints are
satisfied.

Starting from the Feynman rules detailed in Ref. [32],
we compute the sum of 1-loop diagrams contributing to the
gauge boson 2-point function at zero external momentum.1

In a D-dimensional theory, without compact dimensions,
there are four diagrams (as opposed to three in standard
Yang-Mills theories, as a result of an extra Feynman rule of
2-ghost 2-gluon interaction), and their contributions are
shown below:

The sum of these amplitudes amounts to

A ¼ ðD� 2Þg2DN
Z dDk

ð2�ÞD
�
2k�k�

k4
� g��

k2

�
: (2.3)

We suppress color indices, which appear only in a delta
function.
This quantity is ultraviolet divergent and needs to be

properly regularized in order to evaluate the mass correc-
tions. The gauge coupling g has mass dimension ½g� ¼
4�D
2 , and so any divergence contained in this amplitude

which is to contribute to a mass shift of the gauge boson
must have mass dimension 2� ð4�DÞ ¼ D� 2. In four
dimensions this is a quadratic divergence.
In dimensional regularization, the divergence appears as

a factor �ð1� D
2Þ, which has a first pole at D ¼ 2.

However, using the recursion relation for Gamma func-
tions, this can be transformed into a factor �ð2� D

2Þ [be-
cause of the appearance of a (D� 2) factor before the
integral] which has its first pole at D ¼ 4 as expected for
a logarithmic divergence in four dimensions.
In this work a cutoff on the Schwinger time is used to

regulate the divergences. This is again in order to compare
in a straightforward way with perturbative string theory
calculations, but also so that we can extract the divergences
as powers of a mass scale � which, while we associate it
with a momentum cutoff for the theory, does not break the
gauge invariance. This procedure involves the exponentia-
tion of the propagators in the momentum integrals using

1

Xr
¼ 1

�ðrÞ
Z 1

0
dTTr�1e�TX; (2.4)

where the variable T is termed a Schwinger-time parame-
ter. As an example, this procedure yields for a tadpole
diagram

1Note that we have used different metrics in different contexts.
The field theory computation employs a ‘‘mostly negative’’
metric, the string theory computation a ‘‘mostly positive’’ met-
ric, while the lattice computation is performed in Euclidean
space-time. The reader should keep these conventions in mind
in comparing results in this paper.
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Z dDk

ð2�ÞD
1

k2
¼

Z 1

0
dT

Z dDk

ð2�ÞD e�Tk2

¼ 1

ð4�ÞðD=2Þ
Z 1

0
dTT�ðD=2Þ; (2.5)

which is a divergent integral. The divergences arise from
the T ! 0 region of the integral, where there is no expo-
nential damping of the contribution from large momenta in
the above expression, and so we can regulate by imposing a
lower bound T0 on the integration variable T. Doing this
we see that the divergence appears in the result as a factor

T1�ðD=2Þ
0 and so, as we expect, this divergence is of mass

dimension D� 2. In order to associate the lower bound on
the Schwinger time with a momentum cutoff �, we write
T0 ¼ 1

�2 . Thus the two integrals contained in Eq. (2.3)

amount to

Z dDk

ð2�ÞD
1

k2
¼ �i

ð4�ÞðD=2Þ
�D�2

D
2 � 1

;

Z dDk

ð2�ÞD
k�k�

k4
¼ �ig��

2ð4�ÞðD=2Þ
�D�2

D
2 � 1

:

(2.6)

Inserting this result into Eq. (2.3) we see that the two terms
cancel and the expression vanishes as required by gauge
invariance.

Let us now examine the effects of compactification on
this cancellation. We restrict ourselves to the case where
we compactify one of the D dimensions, leaving an effec-
tive theory in d ¼ D� 1 dimensions. The resulting effec-
tive theory consists of a d component gauge boson, and a
scalar field in the adjoint representation arising from the
extra-dimensional component of the originalD component
gauge field. The momentum of the fields in the finite
compactified dimension produces a tree-level mass for an
infinite tower of fields called Kaluza-Klein (KK) modes.

The gauge coupling is rescaled by g2d ¼ g2D
2�R .

The zero-mode gauge boson does not receives any 1-
loop mass renormalization after compactification since the
computation of the 2-point function is basically the one
discussed above. The adjoint scalar however, does, as
expected due to the breaking of the original gauge invari-
ance. We will illustrate this here, and confirm agreement
with the result obtained in Refs. [2–4]. Note that in Ref. [4]
the relevant 2-point functions are computed not at zero
external momentum p, but in the approximation p2 ¼ r2,
where r ¼ p5 ¼ n

R is the KK mass of the external particle.

As a result of the Poisson resummation used to compute the
sum over KKmodes, inverse powers of the KKmode of the
external particle are generated, which can yield extra con-
tributions to the final result which would be missed in the
p ¼ 0 limit. This only affects the result for r � 0 external
modes however, and therefore we can work at p ¼ 0 for
our purposes.

By keeping a generic nonvanishing external momentum
p � 0 for the zero modes, it would be possible to compute
higher-derivative terms in the low-energy effective action
which can be relevant in phenomenological applications
[33]. However, in this paper, we focus on the mass correc-
tion terms which represent the most relevant contributions
in the infrared, and which are most easily computed both in
string theory and in the lattice field theory approach.
In computing the contributions to the scalar 2-point

function at zero momentum, there are two integrals,
summed over Kaluza-Klein modes, which arise. These are

I1 ¼
X
l

Z ddk

ð2�Þd
1

k2 � l2

¼ � i

ð4�Þd=2
X
l

Z 1

0

dT

Tðd=2Þ e
�l2T;

I2 ¼
X
l

Z ddk

ð2�Þd
l2

ðk2 � l2Þ2

¼ i

ð4�Þðd=2Þ
X
l

l2
Z 1

0

dT

Tðd=2Þ�1
e�l2T;

(2.7)

with l ¼ m
R where m is an integer denotes the mass of a KK

mode, and the sum over l is a sum over the integers m.
There are seven diagrams contributing to the 2-point

function for the adjoint scalar field; they are shown in
Table I with their contributions in terms of I1 and I2.
The second diagram in Table I vanishes only at zero

momentum and in the Feynman type gauge.2 The sum of
all the diagrams produces

A ¼ ðd� 1Þg2dN½I1 þ 2I2�: (2.8)

TABLE I. Diagrams yielding the quantum corrections to the
adjoint scalar mass.

Diagram g2dNI1 g2dNI2

0 2d

0 0

d 0

0 2

1 0

0 �4

�2 0

2I.e. � the parameter of the background gauge fixing term is
� ¼ 1; see [32]
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We evaluate the integrals from (2.7) following a similar
procedure to the noncompact case. After exponentiating
propagators and performing the Gaussian momentum in-

tegral, we find quantities such as
P

le
�Tl2 where the sum is

over the KK mode of the loop particle. We evaluate such
infinite sums through a Poisson resummation, transforming
the sum over KK modes into a sum over the winding
number of the path of the loop particle around the compact
extra dimension

X
l¼ðm=RÞ

e�Tl2 ¼ ð2�RÞffiffiffiffiffiffiffiffiffiffi
4�T

p X
n

e�ðð�2R2n2Þ=TÞ: (2.9)

The n ¼ 0 term corresponds to the noncompact case, and
so produces a�D�2 divergence. In all other terms we make

the change of variables t ¼ �2R2n2

T which then results in the

integration over the Schwinger parameter producing
Gamma functions with arguments away from the singular-
ities. Omitting further details, we obtain

I1 ¼ � i

2

ð2�RÞ2�d

�ððdþ1Þ=2Þ �ðd� 1Þ�
�
d� 1

2

�

� i

ð4�Þðd=2Þ
2

ffiffiffiffi
�

p
R

d� 1
�d�1;

I2 ¼ i

2

ð2�RÞ2�d

�ððdþ1Þ=2Þ �ðd� 1Þ
�
1

2
�

�
d� 1

2

�
� �

�
dþ 1

2

��

þ 1

2

i

ð4�Þðd=2Þ
2

ffiffiffiffi
�

p
R

d� 1
�d�1:

(2.10)

In Table II we show the final contribution of each diagram.
We quote the coefficient of i

ð4�Þðd=2Þ
2ffiffiffi
�

p ð�RÞ2�d�ðd�
1Þ�ðd�1

2 Þ, and also i
ð4�Þðd=2Þ

2
ffiffiffi
�

p
R

d�1 �d�1 that results for each

diagram.
It is easily seen that the divergent contributions cancel

each other, as expected by the higher-dimensional gauge
invariance. The total contribution then becomes

A ¼ ðd� 1Þg2dN
X
l

Z ddk

ð2�Þd
�

2l2

ðk2 � l2Þ2 þ
1

k2 � l2

�

¼ �ðd� 1Þg2dN
ið2�RÞ2�d

�ððdþ1Þ=2Þ �ðd� 1Þ�
�
dþ 1

2

�
:

(2.11)

This results in an additive mass renormalization of the
adjoint scalar field of

�m2 ¼ g2dN

�ððdþ1Þ=2Þ
ðD� 2Þ
ð2�RÞd�2

�ðd� 1Þ�
�
dþ 1

2

�
: (2.12)

For D ¼ 5 and d ¼ 4, this gives

�m2 ¼ 9g24N

16�4R2
�ð3Þ: (2.13)

III. MASS CORRECTIONS IN THEOPEN BOSONIC
STRING THEORY

The naive vacuum of the open bosonic string theory is
unstable, as it is signalled by the presence of a tachyon
excitation with mass square M2

t ¼ �1=�0. However, it is
still useful to study formally the perturbation theory around
this unstable point, since in this way it is possible to
understand, in a simple setup, many properties of the string
amplitudes of fully consistent theories. In practice, one can
compute the loop amplitudes by using standard string
techniques [34] and discard by hand the tachyon contribu-
tions before considering the loop integrals. This approach
has been already used successfully in the past in the study
of the low-energy limit of 1-loop string amplitudes; see for
instance [19,35]. Moreover the analysis of the radiative
corrections to the mass of the string states was initiated in
the context of bosonic theory [20]. Most of the early
studies of these radiative corrections were done in the
context of closed string theory [21,22,25]. More recently
[23,24], the same problem has been analyzed in an open
string context by computing the effective action for two
stacks of D-branes. In this section we will consider this
(bosonic) D-brane setup, but we will follow the original
approach of [20] and compute the 2-point function for open
strings on the annulus. Even if we focus on the string states
corresponding to the internal components of the gauge
field, this approach can be used also when the vertex
operators contain twist fields, a situation where the tech-
nique used in Refs. [23,24] cannot be applied.
Let us consider a stack of N space-filling D-branes in

bosonic string theory and we take the space-time to be the
product of the d-dimensional Minkowski space and s
circles of radius R (in principle, bosonic string is critical
only if dþ s � D ¼ 26, however this constraint will play
no role in most of our computations). We will focus on the
massless open string states supported by these D-branes.
The (on shell) 2-point amplitude with massless states
requires one to take the external particles at zero momen-

TABLE II. Nonzero contributions from the diagrams in Fig. 1.

Diagram �R2�d ��d�1

dð2� dÞ d

�d �d

2� d 1

�1 �1

�2ð2� dÞ �2

2 2
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tum, which is sufficient for computing the 1-loop mass
corrections we are interested in. The vertex operator de-
scribing these states is simply3

Va ¼ igDT
a@XI; (3.1)

where Ta is a SUðNÞ generator,4 gD is the D-dimensional
Yang-Mills coupling, and I � � ¼ 0; . . . ; d� 1 for the
vector boson, while I � i ¼ 1; . . . ; s for the scalars arising
from the Kaluza-Klein reduction of the higher-dimensional
gauge field.

The radiative correction to the tree-level mass square
(�m2

I ) is obtained from the planar 2-point amplitude AI:

AI ¼ �g2DN TrðTaTbÞ
Z
h@XIð1Þ@XIðyÞid�; (3.2)

where in our conventions TrðTaTbÞ ¼ �ab=2 and of course
the index I is not summed, but takes one of the values listed
above. In our case the correlator h. . .i is taken over the
annulus topology, d� is the 1-loop integration measure
(3.7). Let us analyze these ingredients in some detail.

We will parametrize the annulus as the upper half com-
plex plane (minus the point z ¼ 0) modded out by the
equivalence relation z ! kz, where k is a real number k 2
ð0; 1Þ. Each value of k corresponds to a different shape for
the annulus and, in the amplitude (3.2), we need to inte-
grate over all possibilities. The two borders of the annulus
are the segments on the real axis y 2 ½k; 1� and y 2
½�1;�k�. We are free to choose the position of the first
vertex operator and the second vertex operator has to stay
on the same border, y 2 ½k; 1� in our case. The correlator
h@XIð1Þ@XIðyÞi can be split in the contribution of the
vibration modes of the string and the one of the center of
mass and rigid motion (zero modes). By following the
derivation in Chap. 8 of [34], one can compute these
correlators. The nonzero-mode (nzm) part is expressed in
terms of the Green function satisfying Dirichlet boundary
conditions GD

h@XIðy1Þ@XJðy2Þinzm ¼ �2�0�IJ@y1@y2GDðy1; y2Þ (3.3)

with

GDðy1; y2Þ ¼ ln

�
ðy1 � y2Þ

Y1
n¼1

ð1� kny1=y2Þð1� kny2=y1Þ
ð1� knÞ2

�

� 1

2
lny1 � 1

2
lny2; (3.4)

where the last two terms have been added so that GD has

simpler periodicity properties, but obviously they do not
contribute to (3.3). In the computation of the zero-mode
part we use the expansion @XðyÞ ¼ �ið2�0Þp̂=yþ . . . ,
where the dots stand for the nonzero-modewe have already
taken into consideration. Thus we get

h@XIðy1Þ@XJðy2Þizm ¼ Vol

ð2�RÞs
X
ni

Z ddp

ð2�Þd

�
�
�ð2�0Þ2 p

I

y1

pJ

y2
þ h. . .inzm

�

� e
�0ðP p2

�þ
P
i

ððn2i Þ=ðR2ÞÞÞ lnk
; (3.5)

where the volume is Vol: ¼ ð2�ÞD�dð0ÞRs. If we consider
standard gauge bosons as external states, the index I lies in
the noncompact space. After integrating over p, we can see
that the zero-mode contribution combines with the
nonzero-mode one and transforms the Dirichlet Green
function into the Neumann one GN:

GNðy1; y2Þ ¼ GDðy1; y2Þ þ ðlny1 � lny2Þ2
2 lnk

: (3.6)

Let us analyze the gauge boson mass corrections first
and show that we get a vanishing mass correction as
required by gauge invariance. The 1-loop measure is

dk

k2
dy½�ðkÞ� ¼ dk

k2
dy

�Y1
n¼1

ð1� knÞ2�D

��
� �

�0 lnk

�
d=2

;

(3.7)

where the last factor follows from the Gaussian integration
in (3.5) and the product over n is the contribution of the
string vibration modes. Then, from (3.2) we read

�m2
� ¼ ��0 g

2
dN

ð2�Þd
Z 1

0
dk½�ðkÞ�

�
Z 1

k
dy

�
�

�
0

��������
�i�0 lnk
�R2

��
s
@y1@yGNðy1; yÞ

��������y1¼1
;

(3.8)

where gd is the d-dimensional Yang-Mills coupling g2d ¼
g2D=ð2�RÞs and

�ð�j	Þ ¼ X
n

exp½�in2	þ 2�in��: (3.9)

Apparently �m2
� is trivially zero, since the integrand is a

total derivative. However, as discussed in Ref. [25], one has
to keep in mind two points: first the integrand is quadrati-
cally divergent as y ! 1 or y ! k so it has to be regular-
ized, then after regularization (3.8) is zero only if the
integral over y is single valued on the boundary of the
annulus (i.e., periodic when y ! ky). By using the explicit
expression for the Green functions (3.4) and (3.6) one can
check the following properties:

3We use the same conventions of Ref. [36]. Equation (3.1)
basically states that open string endpoints are minimally coupled
to the gauge field. This also fixes the overall normalization of the
vertex operator. Alternatively the normalization can be deter-
mined by using unitarity and by matching the low-energy
behavior of the tree-level 3-point function against the Yang-
Mills 3-gluon vertex.

4At the full string level the gauge group is UðNÞ, however all
amplitudes with external Uð1Þ massless states vanish.
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@y1GNðy1; ky2Þ ¼ @y1GNðy1; y2Þ ¼ @y1GNðy2; y1Þ;
GNðy�1

2 ; y�1
1 Þ ¼ GNðy1; y2Þ: (3.10)

Then we regularize the integral (3.8) simply by cutting
away the dangerous region around y ¼ 1� k and, by using
(3.10), we get

Z 1

k
dy@y@GNð1; yÞ !

Z 1�


k=ð1�
Þ
dy@y@GNð1; yÞ

¼ 2@GNð1; 1� 
Þ � 2



þOð
Þ:

(3.11)

The divergent contribution is due to the exchange of an off
shell zero-momentum tachyon. It can be renormalized
away by redefining the 2-dimensional cosmological con-
stant, that is by adding to the world-sheet sigma model a

coupling C
R ffiffiffi

h
p

, where h is the metric on the world sheet
and C is an appropriate constant. As usual [37], we will
discard this divergent contribution without leaving any
additional finite part. After this regularization Eq. (3.11)
vanishes and no radiative mass correction for the gauge
boson is generated at 1-loop.

The situation is very different if we consider the scalars
arising from the Kaluza-Klein compactification I ¼ i ¼
1; . . . ; s. Let us first focus on the case R ! 0, where the
analysis simplifies (by applying a T duality this limit is
equivalent to a lower dimensional D-brane in the uncom-
pact space). In this limit the sum in Eq. (3.5) vanishes and
thus we have:

�m2
i ðR ! 0Þ ¼ ��0 g

2
dN

ð2�Þd
Z 1

0
dk½�ðkÞ�

�
Z 1

k
dy@y1@yGDðy1; yÞ

��������y1¼1
: (3.12)

By using Eq. (3.6) we can see that the integral over y now
yields also a finite term

Z 1�


k=ð1�
Þ
dy@y@GDð1; yÞ

¼
Z 1�


k=ð1�
Þ
dy@y

�
@GNð1; 1� 
Þ þ lny

lnk

�
� 2



� 1þOð
Þ:

(3.13)

Thus, by implementing the same subtraction used in the
gluon case, we are left with a nonzero contribution to the
scalar mass

�m2
i ðR ! 0Þ ¼ �0 g

2
dN

ð2�Þd
Z 1

0

dk

k2

�Y1
n¼1

ð1� knÞ2�D

�

�
� ��

�0 lnk

�
d=2

: (3.14)

This result is still divergent as k ! 0 (and k ! 1), but these
are physical poles that correspond to the propagation of the

open (and closed) string tachyon. In a tachyon-free string
theory these poles will be automatically absent, in the
present case we will subtract them by hand.
Let us now consider the case of a compactification with

finite radius.

�m2
i ¼ ��0 g

2
dN

ð2�Þd
Z 1

0

dk

k2
Y1
n¼1

ð1� knÞ2�D

�
� �

�0 lnk

�
d=2

�
�
�

�
0

��������
�i�0 lnk
�R2

��
s�1

�
Z 1

k
dy

�
@@yGDð1; yÞ�

�
0

���������
i�0

�R2
lnk

�

� 2�0

4�2R2

1

y
�00

�
0

���������
i�0

�R2
lnk

��
; (3.15)

where �0ð0j	Þ ¼ @��ð�j	Þj�¼0. By using the regularization
(3.13), the integral over y can be performed explicitly.
Then one can see that the first term is the stringy general-
ization of the field theory term proportional to I1, while the
second one generalizes the contribution 2I2 in Eq. (2.8).
Both integrands are now dressed with the Dedekind func-
tion (3.19) � function which takes into account the con-
tribution of the stringy modes. In order to compute the
mass shift it is convenient to invert the modular parameter
in (3.15) so that the two terms combine in a single con-
tribution. Under this transformation, the � function trans-
forms as follows:

�ð�j	Þ ¼ 1ffiffiffiffiffiffiffiffiffi�i	
p e��i�2=	�

�
�

	

���������
1

	

�
; (3.16)

which implies

�00ð0j	Þ ¼ 1ffiffiffiffiffiffiffiffiffi�i	
p 1

	2
�00

�
0j � 1

	

�
� 1ffiffiffiffiffiffiffiffiffi�i	

p 2�i

	
�

�
0j � 1

	

�
:

(3.17)

By using (3.16) and (3.17) in (3.15), we can combine the
terms proportional to � and reconstruct again the
Neumman Green function (3.6). As we have seen above,
in this case the (properly regularized) integral over y
vanishes. Thus

�m2
i ¼

�g2dN

ð2�0Þðd=2Þ�2

1

ð2�Þdþ1

1

2R2

Z 1

0

dk

k2
Y1
n¼1

ð1� knÞ2�D

�
��2�

lnk

�ðd=2Þ�1½�ð0jiTRÞ�s�1
�00ð0j i

TR
Þ

Tð5=2Þ
R

; (3.18)

where TR ¼ �ð�0 lnkÞ=ð�R2Þ. If we work with a critical
theory (D ¼ 26) and consider the case of a single compact
dimension (s ¼ 1), we recover Eq. (81) of [24]. In order to
match the results, one needs to perform a modular trans-
formation and use

MASS CORRECTIONS IN STRING THEORYAND . . . PHYSICAL REVIEW D 80, 025003 (2009)

025003-7



k1=24
Y1
n¼1

ð1� knÞ ¼ �

�
lnk

2�i

�
¼

��2�

lnk

�
1=2

�

�
� 2�i

lnk

�
:

(3.19)

Then in this case we can write (3.18) in the closed string
channel tc ¼ �1= lnk and we obtain5

1

2

g226
ð2�0Þ13

ð2�RÞ2
ð2�Þ25

Z 1

0
dtc�

�24ð2�itcÞ

� X1
w¼�1

w2e�w2tc�
2R2=�0

: (3.20)

Let us go back to Eq. (3.18) and study the compactifi-
cation on a circle (s ¼ 1) for a generic dimension d. If we
discard by hand the tachyon poles, the leading contribution
comes from the region TR > 1 (i.e., j lnkj>�R2=�0)
where the �00 is not suppressed. In the regime where the
string scale is much higher than the compactification scale
R2 � �0, this implies also j lnkj � 1. In this limit the
string amplitudes reduce to the field theory result; see
[19] and references therein. Thus we expect that, when
R2 � �0, the string result automatically reduces to the
field theory one (2.12). Let us check that this is indeed
the case. Since k is small we can expand the product over n
in (3.18) and keep only the second term that cancels the
tachyonic pole. Then we have

�m2
i �

g2dN

ð2�0Þðd=2Þ�2

1

ð2�Þd�2

D� 2

2R2

�
2�0

R2

�ðd=2Þ�2

�
Z 1

0
dTRT

�ð3=2Þ�ðd=2Þ
R

X1
w¼�1

w2e��w2=TR : (3.21)

By means of a change of variable the integral reduces to the
Euler formula of the Gamma function and the sum to the
definition of the Riemann zeta function

�m2
i �

g2dN

�ððdþ1Þ=2Þ
D� 2

ð2�RÞd�2
�

�
dþ 1

2

�
�ðd� 1Þ: (3.22)

Let us close this section by noting that the mechanism
we have just discussed actually holds at any order in
perturbation theory. The explicit expressions for the
Green functions with Dirichlet or Neumann boundary con-
dition become more involved on a world sheet with an
arbitrary number of holes or handles. However everything
can be written in terms of classical functions defined on the
appropriate Riemann surface, such as the Abelian differ-
entials and the prime form (see for instance [38]). The main
ingredient used in the string computation is the periodicity
of the integrand when the relative position of the two
vertex operators changes. It is possible to generalize step
by step the procedure described in this section and check

that even with the higher loop Green functions the integral
over the relative position of the punctures yields the same
results as in (3.11) and (3.13). Thus the vector states are
protected against a mass renormalization because in the
relevant string 2-point function the Neumann Green func-
tion appears. On the contrary, the internal polarizations of
the gauge field are not protected and the higher loop
contributions to the mass shift are given by a generalization
of (3.18) which involves Riemann’s � functions instead of
the Jacobi ones. Still we expect that the same mechanism
described above is at work: when R2 � �0 the elements of
the period matrix, which generalize the 1-loop parameter
lnk, must be large otherwise the result is suppressed. In this
limit, we expect6 that the string answer reduces to the field
theory one and all factors of �0 cancel. At first sight this
seems to be in agreement with results obtained at 2-loop in
quantum field theory [18,39]. A more careful investigation
is needed in order to clarify this issue.

IV. MASS CORRECTIONS ON THE LATTICE

In this section we consider (dþ 1)-dimensional gauge
theories regularized on an asymmetric lattice. In particular,
we consider one dimension to be much smaller than the
remaining ones so as to recover in the continuum limit a
theory compactified on a circle. We use Ns to indicate the
number of points in the compact dimension, then its radius
R is 2�R ¼ Nsa, where a is the lattice spacing. By using
standard lattice perturbation theory, we compute (again)
the 1-loop radiative corrections to the mass of the gluon
and the scalar states. A similar computation for standard 4-
dimensional theories was performed in Ref. [40] in order to
check that there is no mass renormalization for the vector
bosons, as required by gauge invariance. We want to see
how this result changes when the finite size effects of the S1

compactification are taken into account. In this case, gauge
invariance does not protect the mass of the gauge boson
polarized along the S1. The compactification from four to
three dimensions has been analyzed in detail in Ref. [26].
As already discussed in the Introduction, this case is rele-
vant for studying the thermal behavior of the Yang-Mills
theory: the nonzero mass corrections to the time compo-
nent of the vector boson are interpreted as a screening
effect for the (electric) components of the force.

A. Bosonic contribution

We start by focusing on pure Yang-Mills theory.
Technically we mix the approaches of [26,40]. We com-
pute the five 1-loop Feynman diagrams contributing to the
2-point function, see Fig. 1, when one of theD dimensions
of the lattice is compact, and focus on the component of the
2-point function in this direction in order to examine the

5Contrary to what is claimed in [24], Eq. (3.20) does not vanish
in the limit R ! 0. In this limit the sum over w becomes an
integral and one recovers (3.14).

6When one wants to focus on the contributions from the
massless states in the loops, as we have done in (3.21), it is
rather difficult to explicitly check this point even at two loops.
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mass correction to the generated adjoint scalar. Since we
are interested only in extracting the mass correction we can
put the external momenta to zero, which simplies drasti-
cally the computation with the 4-particle vertices. Then we
combine these contributions together by using a discrete
version of the partial integration introduced in Ref. [40].
Let us see how this works in details.

By using the Feynman rules listed in Refs. [26,40], it is
straightforward to construct the contribution of the dia-
gram in Figure 1(a):

Aa ¼ g2dþ1N

ad�1

1

Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd

�
�cos2 �n

Ns

Dn

þ
�
d� 2

2
þ 1

4

� sin2 2�n
Ns

D2
n

�
; (4.1)

where gdþ1 is the Yang-Mills coupling of the higher-
dimensional theory and 1=Dn is the bosonic propagator

Dn ¼ 4sin2
�n

Ns

þ 4
Xd
i¼1

sin2
qi
2
: (4.2)

The factor of 1=4 in the square parenthesis of Eq. (4.1)
cancels against the ghost loop depicted in Fig. 1(d):

Ad ¼ g2dþ1N

a2
1

Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd
�
� 1

4

sin2 2�n
Ns

D2
n

�
: (4.3)

Let us now consider the tadpole contributions [Figs. 1(b)
and 1(e)]:

Ab ¼ g2dþ1N

ad�1

1

Ns

�
1

12
� XNs�1

n¼0

Z �

��

ddq

ð2�Þd

� d cos2�nNs
� cos2 �n

Ns
þ 4

3 sin
2 �n
Ns

Dn

�
(4.4)

for the gluon loop, and

Ae ¼ � 2

3

g2dþ1N

ad�1

1

Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd
sin2 �n

Ns

Dn

(4.5)

for the ghost loop. The factor of 1=12 in (4.4) cancels
against the diagram in Fig. 1(c), which arises in the lattice
regularization from the integration measure. Thus, by com-
bining all these contributions, we obtain a simple expres-
sion for the gluon for the complete amplitude:

A ¼ g2dþ1N

ad�1

d� 1

Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd
�2sin2 2�n

Ns

D2
n

� cos2�nNs

Dn

�
:

(4.6)

We can combine the two terms in this equation by using a
discrete version of the integration by parts discussed in
Ref. [40]. First we need the (forward) derivative of Dn

Dnþ1 �Dn � rDn

¼ 2 sin
2�n

Ns

sin
2�

Ns

þ 4 cos
2�n

Ns

sin2
�

Ns

:

(4.7)

By using this result, we can rewrite the first term in (4.6) as
follows:

XNs�1

n¼0

2sin2 2�n
Ns

D2
n

¼ XNs�1

n¼0

sin2�nNs
rDn

sin2�Ns
D2

n

¼ � XNs�1

n¼0

sin2�nNs

sin2�Ns

�
r 1

Dn

þrDn

Dn

r
�
1

Dn

��
;

(4.8)

where the term added in the second step vanishes due to the
periodicity of Dn. At the first order in the continuum limit
(Ns ! 1) the second term of this equation vanishes and we
obtain the relation used in Ref. [40]. It is easy to see that the
discrete analogue of an integration by parts involves the
backward derivative r�gn � gn � gn�1X

n

½rfn�gn ¼ �X
n

fn½r�gn�: (4.9)

By using this relation for the first term of Eq. (4.6) we see
that it cancels the second term, thus the total amplitudes
become

A ¼ g2dþ1N

ad�1
ðd� 1Þ

Z �

��

ddq

ð2�Þd

�
�
1

Ns

XNs�1

n¼0

sin2�nNs

sin2�Ns

rDn

Dn

r
�
1

Dn

��
: (4.10)

It is possible to perform explicitly the sum over the discrete
modes of the momentum in the compact dimension. The
idea is to rewrite the sum as a contour integral; this can be

(a) gluon sunset:

(b) gluon tadpole:

(c) measure:

(d) ghost sunset:

(e) ghost tadpole:

FIG. 1. Contributions to the gluon 2-point function in the pure
gauge theory.
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done by promoting the combination e2�i=Ns to a complex
variable z. Then Dn is substituted by the function DðzÞ ¼
4
P

sin2 qi
2 � ðzþ z�1 � 2Þ and Dnþ1 by Dðeðð2i�Þ=ðNsÞÞzÞ.

Then we multiply the complex function obtained from

(4.10) by the function 1=ðzNs � 1Þ which has poles at z ¼
e2�in=Ns for any integer n. Then the square parenthesis in
(4.10) is equal to

½. . .� ¼ 1

2�i

I
C

dz

z

z� z�1

eðð2i�Þ=ðNsÞÞ � e�ðð2i�Þ=ðNsÞÞ

�
2

DðzÞ

� 1

Dðeðð2i�Þ=ðNsÞÞzÞ �
Dðeðð2i�Þ=ðNsÞÞzÞ

D2ðzÞ
�

1

zNs � 1
;

(4.11)

where the contour C is the union of an anticlockwise circle
of radius slightly bigger than 1, and a clockwise circle with
radius slightly smaller than 1. By supposing that the func-
tion in the parenthesis of (4.11) does not contain additional
poles on the circle of unit radius (this is certainly the case
for generic values of qi), one can apply the Cauchy theo-
rem and recover the sum in its original form. Since the
integrand is well behaved at infinity, we can also deform
the contours and sum all the residues whose modulus is
different from 1. In this case the relevant poles are z ¼ 0, at

z ¼ e	 ~� for the terms 1=DðzÞ, and at z ¼ e	 ~�e�ðð2�iÞ=ðNsÞÞ

for the term containing Dðeðð2i�Þ=ðNsÞÞzÞ, where

~� ¼ arccosh

�
1þ 2

Xd
i¼1

sin2
qi
2

�
: (4.12)

The residues of the poles of the first term [proportional to
1=DðzÞ] in (4.11) sum up to zero, while the remaining
contributions combine to yield a very simple expression

A ¼ g2dþ1N

ad�1
ðD� 2Þ

�
Ns

Z �

��

ddq

ð2�Þd
eNs

~�

ðeNs
~� � 1Þ2

�
: (4.13)

Clearly, in the large Ns limit, this integral is dominated by
the infrared region of low momenta; in fact when q ! 0

then also ~� ! 0, while for physical momenta of the order
1=a (i.e., finite q) the integrand is exponentially sup-
pressed. So, in this limit, we can approximate the square
parenthesis in (4.13) as follows:

½. . .� ¼ Ns

Z ddq

ð2�Þd
eNsq

ðeNsq � 1Þ2

¼ �
Z dq

ð2�Þd �d�1q
d�1 d

dq

�
1

eNsq � 1

�
; (4.14)

where �d�1 ¼ 2�d=2=�ðd=2Þ is the volume of the
d-dimensional sphere of unit radius. Then we can integrate
by parts and use

Z 1

0
dx

xa�1

ex � 1
¼ �ðaÞ�ðaÞ (4.15)

to obtain a compact formula for the 2-point function

�m2 �D� 2

ð2�Þd
g2dþ1N

ð2�RÞd�1

2�ðd=2Þ

�ðd2Þ
�ðdÞ�ðd� 1Þ: (4.16)

By using Legendre’s duplication formula

�ðdÞ ¼ 2d�ð1=2Þffiffiffiffiffiffiffi
2�

p �

�
d

2

�
�

�
dþ 1

2

�
; (4.17)

we can bring the lattice result to the same form found in the
string theory derivation of the previous section (3.22)

�m2 � g2dN

�ððdþ1Þ=2Þ
ðD� 2Þ
ð2�RÞd�2

�ðd� 1Þ�
�
dþ 1

2

�
: (4.18)

B. Wilson fermions in the loop

We expect that the same pattern seen in the previous
section arises for the loop contribution of any massless
particle coupled in a way that respects the higher-
dimensional gauge invariance. In this section we show
that this is indeed the case when considering Wilson fer-
mions minimally coupled to the higher-dimensional gauge
field. For the sake of simplicity we will choose the Wilson
parameter to be 1 (r ¼ 1). Of course, in the lattice
Lagrangian for the Wilson fermions, the chiral symmetry
is broken and thus a mass term for these fermions is
generated through quantum corrections. In order to have
a vanishing effective mass one would need to add fine-
tuned counterterms that cancel these corrections. Since
here we will focus only on the 1-loop contribution to the
scalar mass, the counterterms for the fermion mass do not
play any role and we will neglect this point. The fermion
contribution to the 1-loop function with two external sca-
lars is given by the diagrams in Fig. 2. Even if the lattice
Feynman rules for Wilson fermions are rather different
from those of the gluons, we see that the computation
can be done by following closely the same steps described
in the previous sections. Again we focus on the case of the
zero-momentum external particle, since we want to extract
the mass corrections from the 2-point function.
By using the Feynman rules listed in Ref. [26], we obtain

for the first diagram in Fig. 2(a)

(a) fermion sunset:

(b) fermion tadpole:

FIG. 2. Fermionic contributions to the gluon 2-point function.
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Aa ¼ �g2dþ1TðFÞ
ad�1

cD
Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd

�
�
1

2

�
sin

4�n

Ns

þDn sin
2�n

Ns

�
2 1

Df
n

� 1

�
1

Df
n

; (4.19)

where TðFÞ is the index of the fermion representation, cD
counts the physical polarizations of the fermion, and Df

n is
the Wilson propagator

Df
n ¼ sin2

2�n

Ns

þXd
i¼1

sin2qi þ 1

4
D2

n: (4.20)

The contribution of the tadpole diagram [see Fig. 2(b)] is

A2 ¼ �g2dþ1TðFÞ
ad�1

cD
Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd

� sin2 2�n
Ns

� 1
2 cos

2�n
Ns

Dn

Df
n

: (4.21)

By combining the two diagrams we obtain an expression
that has a structure similar to Eq. (4.6)

A ¼ � g2dþ1TðFÞ
ad�1

cD
Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd
�
1

2

�
�sin4�nNs

þDn sin
2�n
Ns

Df
n

�
2 � cos2 2�n

Ns
þ 1

2 cos
2�n
Ns

Dn

Df
n

�
:

(4.22)

Then we will follow the same approach used in computing
the bosonic loop: we start by focusing on the first term and
rewrite it in terms of the variation of the fermionic propa-

gator Df
nþ1 �Df

n � rDf
n

XNs�1

n¼0

1

2

�sin4�nNs
þDn sin

2�n
Ns

Df
n

�
2

¼ 1

2 sin2�nNs

XNs�1

n¼0

ðsin4�nNs
þDn sin

2�n
Ns

ÞrDf
n

ðDf
nÞ2

; (4.23)

where we have discarded all the terms that sum up to zero
due to the periodicities of the trigonometric functions. The
we can rewrite (4.23) as follows:

XNs�1

n¼0

sin4�nNs
þDn sin

2�n
Ns

2 sin2�nNs

�
�r 1

Df
n

�rDf
n

Df
n

r 1

Df
n

�
: (4.24)

We can now use (4.9) and ‘‘integrate’’ by parts the first
term in the parenthesis. In this way we see that it precisely
cancels the second term in (4.22). Thus the full 2-point
amplitude is

A ¼ � g2dþ1TðFÞ
ad�1

cD
Ns

XNs�1

n¼0

Z �

��

ddq

ð2�Þd
sin4�nNs

þDn sin
2�n
Ns

2 sin2�nNs

�
�
2

Df
n

� 1

Df
nþ1

� Df
nþ1

ðDf
nÞ2

�
: (4.25)

As in the previous section we can rewrite this sum as a
contour integral. Before doing this, it is convenient to
rewrite the propagator for the Wilson fermion in the fol-
lowing form:

Df
n ¼

�
1þ 2

Xd
�¼1

sin2
q�

2

�

�
�
4sin2

�n

Ns

þ
P

d
i¼1 sin

2qi þ 4ðPd
i¼1 sin

2qiÞ2
1þ 2

P
d
i¼1 sin

2qi

�
:

(4.26)

In this way the fermionic result (4.25) will take a form that
is very similar to the one encountered in the bosonic case.
In particular the first parenthesis combines with the other
sin’s in (4.25) and the contour integral we find has the same
analytical structure as (4.11)

A ¼ � g2dþ1TðFÞcD
ad�1

Z �

��

ddq

ð2�Þd
I
C

dz

2�iz

� z� z�1

eðð2i�Þ=ðNsÞÞ � e�ðð2i�Þ=ðNsÞÞ

�
2

D̂ðzÞ �
1

D̂ðeðð2i�Þ=ðNsÞÞzÞ
� D̂ðeðð2i�Þ=ðNsÞÞzÞ

D̂2ðzÞ
�

1

zNs � 1
; (4.27)

where 1=D̂ðzÞ has poles at z ¼ e	�f
with

~�f ¼ arccosh

�
1þ 1

2

Pd
i¼1 sin

2qi þ 4ðPd
i¼1 sin

2qiÞ2
1þ 2

P
d
i¼1 sin

2qi

�
:

(4.28)

Thus we have now rewritten the 1-loop fermionic contri-
bution in the same form as encountered in the bosonic
computation and the only difference is in the explicit
relation between the position of the poles and the momenta
q. Thus the 1-loop fermion contribution to the scalar mass
is

�m2 ¼ � g2dþ1TðFÞcD
ad�1

�
Ns

Z �

��

ddq

ð2�Þd
eNs

~�f

ðeNs
~�f � 1Þ2

�
:

(4.29)

As we have already seen, in the large Ns limit, only the
low-energy momenta contribute significantly to this inte-
gral q� 1=Ns. Then we can expand (4.12) for small q’s
and we see that, for low-energy momenta, we have again
�f � jqj. Thus, in this limit, the fermion contribution to
the scalar mass reduces to the result derived in the effective
field theory [4]
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�m2 �� cDTðFÞ
ð2�Þd

g2dþ1

ð2�RÞd�1

2�ðd=2Þ

�ðd2Þ
�ðdÞ�ðd� 1Þ:

(4.30)

C. Accidental extended supersymmetry on the lattice?

Even if our lattice analysis has been restricted to pertur-
bation theory, the results of this section suggest the exciting
possibility of realizing super Yang-Mills (SYM) theories
with extended supersymmetry on the lattice in an acciden-
tal way. As is well known, lattice regularization breaks
most of the symmetries of the Poincaré group and all
supersymmetries that are present in the continuum version
of the same theory. However Poincaré symmetries arise
automatically in the continuum limit, because all relevant
or marginal operators that could violate them are prohib-
ited by some of the symmetries that are present in the
theory at finite lattice spacing. A similar observation ap-
plies also to the 4-dimensional N ¼ 1 SYM theory
[27,41,42]: if one adds to the standard Yang-Mills theory
a chiral fermion in the adjoint representation, then no
dangerous operator, such as a mass term for the fermions,
can be dynamically generated and, at low energies, one
automatically recovers a supersymmetric theory. Of course
from a lattice prospective the challenging aspect of this
program is to simulate dynamical chiral fermions.

In the case of extended supersymmetry an additional
complication arises: even pure SYM contains scalars (the
complex scalar of the vector multiplet). Once supersym-
metry is broken by the lattice regularization, one expects
that a relevant mass term for these scalars is dynamically
generated and thus apparently there is no hope to get a
supersymmetric theory at low energies without fine-tuning
[27]. This is indeed the case if the scalars are described by
site variables in a 4-dimensional lattice. Various ap-
proaches have been suggested to overcome this problem,
such as deconstruction, or the idea of realizing some of the
supersymmetric generators at finite lattice spacing; see,
e.g., Refs. [43–47], a recent review with extensive biblio-
graphic references can be found in Ref. [47].

The results of this section suggests a different possibil-
ity: one can use the Kaluza-Klein reduction on the lattice to
engineer 4-dimensional SYM theories with extended
supersymmetries from a higher-dimensional N ¼ 1 the-
ory. After all, also in the continuum field theories, this is
the easiest way to construct SYM theories with extended
supersymmetry [28]. In this approach the scalar fields are
the internal components of the higher-dimensional gauge
field and so are described by link variables in the compact
directions of a higher-dimensional asymmetric lattice.
Then, at distances shorter than the compactification scale
R, the scalar fields and the gauge field are on the same
footing and both are constrained by the higher-dimensional
gauge invariance. Thus no dangerous contribution to the
mass of the scalar fields can come from the high-energy

modes (i.e., modes with energies bigger than 1=R). On the
contrary the quantum corrections to the scalar mass are
purely due to finite size effects and only modes with
energies lower than 1=R can contribute. In the limit a �
R, these modes are completely blind to the effects of the
lattice regulator and thus to the supersymmetry breaking
effects of the regularized theory. This is clearly visible in
Eqs. (4.13) and (4.29): when 1 � Ns the two expressions
reduce to those obtained in the continuum effective field
theory and thus they cancel when expected. The overall
normalization in these results basically counts the number
of bosonic and fermionic degrees of freedom that can
contribute to the mass corrections. For instance, if we
choose D ¼ 6 and two compact dimensions, there is a
fermion/boson degeneracy and we obtain N ¼ 2 SYM.7

Thus there is hope to describe extended SYM theories
on the lattice without having to fine-tune the scalar masses
by using a higher-dimensional lattice with a different num-
ber of sites in the compact and uncompact dimension. For
scales that are bigger than the compactification radius, but
smaller that the size of the ‘‘uncompact’’ dimensions
(Ns � x � L) the lattice theory should reduce to a stan-
dard 4-dimensional gauge theory. Of course an obvious
drawback of this approach is that simulations might be very
expensive when the number of dimensions of the lattice is
big (for instance, we would need 6 compact dimensions to
simulateN ¼ 4 SYM). Moreover there are several points
that require further study in order to see whether this
proposal can be realized in a practical way. A first obvious
question is whether the pattern we described is general or is
just a peculiarity of the 1-loop perturbation theory. There
are actually some indications that this mechanism is indeed
general. The distinction between high-energy modes, con-
strained by the higher-dimensional gauge invariance, and
the low-energy ones, constrained by the tree-level super-
symmetry, does not seem to rely on the 1-loop approxima-
tion. So one would expect that the higher loop radiative
corrections to the scalar mass follow the same pattern and
the leading contribution in the large R limit is independent
of the UV cutoff. Indications in this sense come from the
string analysis, where the 1-loop case is not special. A
more fundamental question to be addressed is to check
whether this approach can be used to study the strongly
coupled regime of an N ¼ 2 supersymmetric theory on
the lattice. Doubts in this respect were raised in Ref. [27],
where it was noticed that, starting from a weakly-coupled
6-dimensional theory, the dynamically generated scale in 4
dimensions �4 is exponentially suppressed in the large Ns

limit. In this case, the a-dependent corrections to

7The explicit expressions (4.16) and (4.30) are valid in the case
of a single compact dimension s ¼ 1. For two compact dimen-
sions one of the integrals in (4.13) and (4.29) becomes a sum,
however the mechanism described here still applies: the leading
order contribution is independent of the lattice spacing and
cancel between fermion and boson loops when expected.
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Eqs. (4.18) and (4.30) are likely to spoil the accidental
supersymmetry at the scale �4. However a strongly
coupled 6-dimensional starting point is needed in order
to take a continuum limit of the lattice description which
keeps the radius R and the 4-dimensional coupling g4
finite. Thus the problem mentioned above does not appear
in the scaling limit that is relevant to study of a fixed 4-
dimensional supersymmetric physics. Another open ques-
tion concerns the other types of fine-tuning that might be
necessary in order to recover a theory with extended su-
persymmetry. For instance, one would expect to fine-tune
the quartic coupling among scalars and the Yukawa cou-
plings so that they are all related to the gauge coupling
constant. The interplay between higher-dimensional gauge
invariance and tree-level supersymmetry described here
should be helpful also to avoid the fine-tuning of the
couplings.

On a more practical side, one should worry about the
subleading corrections to Eqs. (4.18) and (4.16). These
corrections will certainly spoil the low-energy supersym-
metry and we can suppress them only in the large Ns limit
which is of course computationally very expensive. If these
corrections are small for a moderate number of lattice
points in the compact dimensions, then this approach can
be really transformed into a practical tool for analyzing
N ¼ 2 or even N ¼ 4 SYM on the lattice. Some indi-
cations in this direction come from [26], where it is pointed
out that already for Ns ¼ 8 the lattice artifact effects are
only of the order of 2%.

V. CONCLUSIONS

In this paper we studied the quantum corrections to the
mass of the internal components of the gauge field in
Kaluza-Klein compactifications. Within an effective field
approach this problem was analyzed in detail in Refs. [1–
4,6,12,13]. The main feature of this result is that it depends
only on the compactification scale R and is independent of
the UV cutoff � necessary to define the higher-
dimensional gauge theory (of course we assume � �
1=R). Even if this is the case, it is natural to wonder
whether an effective field theory approach is reliable, since
one is summing over the whole tower of Kaluza-Klein
states which at a certain point will have masses bigger
that then UV cutoff itself. In order to answer this question
we studied the same problem in two different UV finite
theories: string theory and lattice gauge theories. In the first

case the UV cutoff is set by the string length
ffiffiffiffiffi
�0p
, while in

the second case the same role is played by the lattice
spacing a; both of these theories represent local and gauge
invariant UV completions of higher-dimensional Yang-
Mills theories.

The interesting result is that, in the regime R � ffiffiffiffiffi
�0p
, a,

both the lattice and the string computations reproduce
exactly the same result found in field theory, thus justifying
a posteriori the approach used in Refs. [2–4]. This analysis

clarifies also the mechanism that protects the effective field
theory results from the contributions of the modes with an

energy of the order of the UV cutoff: since R � ffiffiffiffiffi
�0p
, a,

these very energetic modes see all dimensions on the same
footing and the constraints of the higher-dimensional
gauge invariance should be taken into account. Thus, if
we want to compute radiative corrections to terms that
would violate the higher-dimensional gauge invariance,
we do not really need to know the UV details of the string
or lattice theories. It is sufficient to know that these UV
completions respect locality and gauge invariance and this
ensures that the leading order contribution to these terms is
completely captured by an effective field theory approach.
By carrying out the computation in the full UV finite
theory, we see explicitly that the suppression of the UV

modes is of the order of e�R=
ffiffiffiffi
�0p

(or e�R=a), while the
contribution of the low-energy modes reproduces the ex-
pected effective field theory result.
The string analysis can be relevant for phenomenologi-

cal applications in the context of models with large extra
dimensions. In particular it would be interesting to general-
ize our computation to the amplitudes involving external
states with a nonzero Kaluza-Klein charge. This case has
been discussed in detail from the field theory point of view
[15,16,27]. The string analysis can either support the pic-
ture emerging from the field theory computations or maybe
indicate subtleties due to the high-energy modes. Of course
it would be interesting to carry out the same quantitative
analysis in the case of tachyon-free string theory. This
might be directly useful in the string phenomenological
scenarios where the standard model is engineered on
D-branes, which usually contain nonchiral exotic matter
fields.
In the context of lattice gauge theories the problem of

the radiative corrections to the Kaluza-Klein scalars is
interesting because of its connection with the possibility
of obtaining an accidentally supersymmetric theory at low
energies. This is why we have considered explicitly also
the contribution of (Wilson) fermions. Even if technically
the computation is more involved than its bosonic counter-
part, we do not find any particular surprise and the pattern
described in Sec. IV arises. There is certainly the need of
more study to see whether this proposal can be turned into
a concrete approach to supersymmetry on the lattice. In
general, we hope that setups suggested by D-brane con-
structions and/or compactifications can provide useful sug-
gestions on how to realize supersymmetric theories on the
lattice also beyond the case of super Yang-Mills theories.
Of course it would be very interesting to try and also
include chiral multiplets and construct a lattice realization
of more complicated supersymmetric theories.
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