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We present numerical evidences for the validity of the inequality between the total mass and the total

angular momentum for multiple axially symmetric (nonstationary) black holes. We use a parabolic heat

flow to solve numerically the stationary axially symmetric Einstein equations. As a by-product of our

method, we also give numerical evidences that there are no regular solutions of Einstein equations that

describe two extreme, axially symmetric black holes in equilibrium.
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I. INTRODUCTION

The final state of a gravitational collapse is expected to
be described by a black hole and not by a naked singularity.
Moreover, at late times, the system should settle down to a
stationary regime and since the Kerr black hole is expected
to be the only stationary black hole in vacuum, the final
state of all possible gravitational collapses should approach
a Kerr black hole. For simplicity, in this discussion we are
not considering electromagnetic fields and we are assum-
ing that at some finite time all the matter fields have fallen
into the black hole.

The above considerations roughly encompass what is
known as the standard picture of the gravitational collapse
which, in particular, includes the weak cosmic censorship
conjecture. To prove that this heuristic picture is in fact a
consequence of the Einstein field equations is one of the
most relevant open problems in classical general relativity.

One fruitful strategy to study some aspects of this prob-
lem is the following. From the heuristic picture presented
above it is possible to deduce some geometric inequalities
on the initial conditions for gravitational collapse. Hence,
initial conditions that violate these inequalities would au-
tomatically provide counterexamples for the validity of the
standard picture of the gravitational collapse. In fact, the
original intention of this strategy, proposed first by Penrose
[1], was to construct such counterexamples. However it
was not possible to find them. It became, in this way,
relevant the problem of finding proofs for such inequalities.
Such proofs provide indirect but highly nontrivial evidence
that the heuristic picture of the gravitational collapse is
correct (see the discussion in [2]). These kinds of inequal-
ities are also interesting by themselves because they pro-
vide unexpected mathematical connections between
geometric quantities.

A prominent example of this idea is the Penrose inequal-
ity which relates the mass with the area of the black hole

horizon on the initial conditions. An important special case
of this inequality has been proved in [3,4] (see also the
review article [5]). Another example of these kinds of
inequalities is the inequality between mass and angular
momentum. This inequality, which constitutes the main
subject of the present article, arises as follows.
Consider an axially symmetric gravitational collapse.

An important feature of axial symmetry is that axially
symmetric waves cannot carry angular momentum. In
other words: in vacuum, angular momentum is a conserved
quantity in axial symmetry. Let us assume that the heuristic
picture presented above is correct. Denote bym0 and J0 the
mass and angular momentum of the final Kerr black hole.
The Kerr black hole satisfies the inequalityffiffiffiffiffiffiffiffi

jJ0j
q

� m0: (1)

The Kerr solution is well defined for any choice of the
parameters m0 and J0, it defines however a black hole only
if inequality (1) is satisfied. Let m and J be the total mass
and total angular momentum of the initial conditions.
Since gravitational waves carry positive mass we have
m0 � m (this inequality is of course also valid without
the assumption of axial symmetry). And because angular
momentum is conserved in axial symmetry we have J ¼
J0. Hence, in order to reach the inequality (1) at a late time,
every initial condition for axially symmetric collapse must
satisfy ffiffiffiffiffiffi

jJj
p

� m: (2)

See [6] for a more detailed physical discussion. This
inequality involves only quantities defined on the initial
conditions. It is expected to hold for every axially sym-
metric vacuum (not necessarily stationary) black hole. The
inequality (2) was studied in a series of articles [6–8] and
finally proved for the case of one black hole in [9,10].
There exists however no proof for the case of multiple
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axially symmetric black holes. This problem appears to be
deeper (and considerably more difficult) than the single
black hole case. In particular, it is related, as we discuss
below, with the still open problem of the uniqueness of the
Kerr black hole among stationary black holes with discon-
nected horizons. The main purpose of this article is to
provide numerical evidence for the validity of (2) for
multiple black holes.

A naive method to test (2) is to take some configuration
of axially symmetric black holes and compute numerically
the mass and the angular momentum of it. For a given
configuration the relevant parameters are the separation
distance between the black holes and the individual angu-
lar momentum of them. But, of course, these parameters
(or any other finite set of parameters) do not uniquely
characterize the initial conditions. There exists infinitely
many configurations with the same parameters, this essen-
tially corresponds to the freedom of including gravitational
waves surrounding the black holes. Then, either we find a
counterexample or this naive method will give a very poor
evidence in favor of (2)—just some isolated points in the
space of all possible initial conditions.

Fortunately a different approach is possible. It is based
on the variational principle for the inequality (2) presented
in [7]. This variational principle states that the minimum of
the mass of a given configuration with fixed angular mo-
mentum is achieved by the associated (i.e. with the same
parameters) stationary and axially symmetric solution of
Einstein equations. Hence, in order to prove the inequality
(2) for a given configuration it is enough to compute the
mass of the corresponding stationary and axially symmet-
ric solution of Einstein equations, which is characterized
by the separation distance and individual angular momen-
tum of the black holes. The stationary and axially sym-
metric Einstein equations are nonlinear elliptic equations.
In this article, we use a heat flow to numerically solve
them. This parabolic flow has two important properties,
first for arbitrary data it converges (as time goes to infinity)
to a stationary and axially symmetric solution of Einstein
equations. Second, the mass is monotonically decreasing
along the evolution and the angular momentum is con-
served (under appropriate boundary conditions). Hence,
the flow provides an accurate procedure for computing
the minimum of the mass of each possible configuration.
This method is interesting by itself as a method for solving
numerically the stationary axially symmetric Einstein
equations with prescribed boundary conditions, which, up
to the best of our knowledge, have not been used so far.

For simplicity we will restrict ourselves to configura-
tions with only two black holes, although our method
applies for any number of black holes. For this configura-
tion, the most favorable case to violate the inequality (2) is
when the black holes have the same angular momentum
pointing in the same direction. This corresponds to a
repulsive spin-spin force between them. This is also the

most favorable case for reaching a stationary solution
representing two black holes at equilibrium, because it is
in principle conceivable that the repulsive spin force bal-
ance the gravitational attraction. This configuration has
only two parameters, the separation distance and the an-
gular momentum. However, as we will see in the next
section, due to the scale invariance of the equations we
have only one nontrivial parameter, which we chose to be
the separation distance. We can compute the mass for every
choice of the separation distance and plot a curve. From the
shape of the curve it is clear that, although we can compute
only a finite range, the inequality will be satisfied for every
separation distance. For other configurations we proceed in
similar way. Then, we obtain fairly strong numerical evi-
dences that the inequality is satisfied for two black holes
with any separation distances and any angular momentum.
As we mention above, the heat flow relaxes to a solution

of the stationary and axially symmetric Einstein vacuum
equations. An important open problem in general relativity
is whether the Kerr black hole is unique among stationary
black holes (see the recent article [11] and reference
therein). This is essentially the same problem as whether
is possible to achieve an equilibrium configuration of
multiple black holes in general relativity. This problem
has been studied in [12–17]. For some limit cases and
also for cases with reflection symmetry, it has been proved
that equilibrium is not possible. Also, from a different
perspective, the problem has been studied using exact
solutions in [18]. Again, the conclusion was that equilib-
rium is not possible for this class of solutions. Using the
heat flow, in this article we also provide numerical eviden-
ces that there is no regular equilibrium solution for two
extreme black holes. This case has not been analyzed
previously in the literature.
The plan of the article is the following. In Sec. II we

introduce the heat flow and analyze its main properties. We
also discuss the precise form of the conjecture regarding
inequality (2) and its relation with the black hole equilib-
rium problem mentioned above. In Sec. III we discuss the
numerical techniques used to solve the parabolic heat flow
equations. In Sec. IV we present our results, and in Sec. V
we give some further perspective on the open problems.
Finally, for the sake of completeness, we include an ap-
pendix with the explicit form of the extreme Kerr solution
used in our computations.

II. THE VARIATIONAL PROBLEM AND THE
PARABOLIC FLOW

Consider a vacuum, axially symmetric spacetime. The
axial Killing vector defines two geometrical scalars, the
square of its norm � and the twist potential !. These
scalars characterize the spacetime in the following sense.
Take a foliation of Cauchy surfaces on the spacetime with
the corresponding time function. An initial data set for the
spacetime is determined by the value of the functions
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ð�;!Þ and the time derivatives ð�0; !0Þ on a Cauchy sur-
face. The Einstein evolution equations essentially reduce to
a nonlinear system of wave equations for ð�;!Þ. In appro-
priate coordinates, the total massm of the spacetime can be
written as a positive integral on a Cauchy surface in terms
of ð�;!Þ and ð�0; !0Þ. This integral is the nonlinear and
conserved energy of the system of waves equations (see
[19] for details).

An initial data set is called ‘‘momentary stationary’’ if
ð�0; !0Þ vanished. Stationary data are a particular class of
momentary stationary data for which the scalars ð�;!Þ
satisfy a set of elliptic equations [see Eqs. (13) and (14)
below]. An important feature of the mass integral is that,
for arbitrary data, the associated momentary stationary
data has less or equal mass. That is, there exists a lower
bound for the mass that can be written in terms only on
ð�;!Þ and no time derivatives ð�0; !0Þ are involved. This
lower bound for the mass plays a key role in order to reduce
the proof of the inequality (2) to a pure variational prob-
lem. It can be written as an integral in R3 as follows (for
details see [6,7,9,20]).

Let xi be Cartesian coordinates in R3 (denoted also by
x ¼ x1, y ¼ x2, z ¼ x3) and let ð�;�Þ be the associated

cylindrical coordinates defined by � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, tan� ¼

y=x. The positions of the black holes will be prescribed by
a finite collection of points ik located at the z axis. More
precisely, the points ik will represent extra asymptotic ends
on the spacetime and they can be associated with the
location of the black holes. For a given set of N þ 1 points
ik we define the separation intervals Ik, 0 � k � N � 1, to
be the open sets in the axis between ik and ik�1, and we
define I0 and IN as z < i0 and z > iN, respectively. Let Lk

be the length of Ik for 0 � k � N � 1. See Fig. 1. The
length Lk (which are measured with respect to the
Cartesian coordinates introduced above) will be associated

with the separation distance between the black holes (see
the discussion in [21]).
From the square norm � of the Killing vector we define

the following function �:

� ¼ �2e�: (3)

The lower bound of the mass is given by the following
functional:

M ð�;!Þ ¼ 1

32�

Z
R3
ðj@�j2 þ ��4e�2�j@!j2Þd�; (4)

where d� is the volume element of R3, @i denotes partial
derivatives with respect to Cartesian coordinates xi and
j@�j2 ¼ @i�@

i�. As we mentioned above, for an arbitrary
axially symmetric initial data ð�;!;�0; !0Þ with mass m
we have that (see [9])

m � M: (5)

The angular momentum Jk of the end ik is given by

Jk ¼ 1

8
ð!jIkþ1

�!jIkÞ: (6)

The total angular momentum is defined by

J ¼ XN�1

k¼0

Jk ¼ 1

8
ð!jIN �!jI0Þ: (7)

Note the value of the function ! at the axis prescribe the
angular momentum of the configuration.
The Euler-Lagrange equations of the functional M are

given by

��� e�2�j@!j2
�4

¼ 0; (8)

@i

�
@i!

�2

�
¼ 0: (9)

In these equations � ¼ @i@
i denotes the flat Laplacian in

R3. An important property of the functional (4) is that
Eqs. (8) and (9) correspond to the stationary axially sym-
metric Einstein equations.
We are now in position to formulate the variational

approach of the inequality (2). The conjecture is the fol-
lowing:
Conjecture 1 For arbitrary functions ð�;!Þ we have

M ð�;!Þ �
ffiffiffiffiffiffi
jJj

p
; (10)

where J is given by (7). Moreover, the equality in (10)
implies that the functions ð�;!Þ correspond to the extreme
Kerr solution. That is, for fixed total angular momentum J,
the extreme Kerr solution is the unique absolute minimum
of M.
The inequality (2) is a direct consequence of this con-

jecture and (5). It is important to emphasize that the
number of end points ik and their corresponding angularFIG. 1. N asymptotic ends.
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momentum Jk are not fixed. That is, the conjecture states
that for fixed J, extreme Kerr is the unique absolute mini-
mum among all possible functions ð�;!Þ and among all
possible configurations of ends ik with individual angular
momentum Jk. Note that in order to have a nonzero J we
need at least one end point.

This is a singular variational problem since a nonzero J
implies [by Eq. (7)] that at least one Jk is nonzero, then
Eq. (6) implies that ! is discontinuous at ik and hence has
infinity gradient at this point. In order to make the second
term in the integral (4) finite, the function � should diverge
at ik to compensate the divergence of the gradient of !.
Also, the singularity of� at ik cannot be too severe because
the first term in the integral (4) should remain bounded.

In the formulation of the conjecture we did not specify
the functional space of admissible functions ð�;!Þ for the
variational problem. As we mentioned above, the functions
are typically singular at ik, and hence the prescription of
the appropriate functional space can be quite subtle. We
will not discuss this issue here since it is beyond the scope
of this article. For our present purpose, it is enough to
assume some space of admissible functions which is regu-
lar enough in order that the integral (4) is well defined but it
is also compatible with the singular boundary conditions
(7) (for a discussion regarding this point see [9]).

Conjecture 1 was proved for the case N ¼ 1 in [9,10].
The case N � 2 is open. Remarkably, for general N in [10]
it has been proved that if the ends ik and the individual
angular momentum Jk are fixed then there exists a unique
minimum of the functionalM. This minimum satisfies the
Euler-Lagrange equations (8) and (9). That is, for fixed ik
and Jk, there exists functions ð�min; !minÞ, solutions of (8)
and (9), where !min satisfies (6), such that

M ð�;!Þ � Mmin; (11)

for all admissible functions ð�;!Þ where ! satisfies the
boundary condition (6) and we have defined

M min � Mð�min; !minÞ: (12)

What is not known is the value of Mmin. In particular, it is
not known if this minimum satisfies the inequality (10) for
N � 2. A natural strategy to prove the conjecture is to
prove that for arbitrary ik and Jk the minimum Mmin

satisfies (10). The main goal of this article is to compute
numerically this value for different configurations, show-
ing that it satisfies the inequality (10) in all considered
cases.

In order to compute Mmin we need to calculate the
solution ð�min; !minÞ of the Euler-Lagrange equations (8)
and (9) with boundary conditions (6). As an efficient
method for computing numerically both the solution and
the value of the energy M we propose a heat flow defined
as follows. We consider functions ð�;!Þ which depend on
the coordinates xi and an extra parameter t. Then, we
define the following flow

_� ¼ ��þ e�2�j@!j2
�4

; (13)

_! ¼ �2@i

�
@i!

�2

�
; (14)

where a dot denotes partial derivative with respect to t.
That is, we have added time derivatives to the right-hand
side of Eqs. (8) and (9). Equations (13) and (14) represent
the gradient flow of the energy (4). As t ! 1 we expect
that the solution of the flow will reach a stationary regime
(i.e. _� ¼ _! ¼ 0) and hence it will provide a solution of
equations (8) and (9).
The important property of the flow is that the energyM

is monotonic under appropriate boundary conditions. This
can be seen as follows. Consider the functional (4) defined
on a bounded domain� (denoted in the following byM�)
for functions that are solutions of (13) and (14) and take a
time derivative of M�. Integrating by parts and using the
evolution equations (13) and (14) we obtain

_M� ¼ � 1

16�

Z
�
ð _�2 þ ��2 _!2Þd�

þ 1

16�

I
@�

ð _�@n�þ ��2 _!@n!Þds; (15)

where ds is the area element of the boundary @� and @n
denotes exterior normal derivative with respect to @�. By
combining of homogeneous Neumann boundary condi-
tions

@n� ¼ 0; @n! ¼ 0 on @�; (16)

or Dirichlet boundary conditions

� ¼ g1; ! ¼ g2 on @�; (17)

for arbitrary time independent functions g1, g2 (since in
this case we get _� ¼ _! ¼ 0 on the boundary) will make
the boundary term in (15) vanish. And hence we get that

_M� ¼ � 1

16�

Z
�
ð _�2 þ ��2 _!2Þd� � 0: (18)

When the domain� isR3 we need to prescribe appropriate
fall off conditions in order to cancel the boundary term
in (15). However, as we will discuss in the next section, in
the numerical calculations the domain � is always
bounded and hence the boundary conditions (16) and
(17) will be used.
The procedure to compute the value ofMmin will be the

following. We begin with some arbitrary initial data ð�;!Þ
at t ¼ 0 that satisfies the boundary condition (6) for some
fixed configuration of ik and Jk. Then we solve numerically
the flow equations (13) and (14). The mass MðtÞ will
decrease with time, and it will reach the minimum value
as t ! 1. This minimum will be of course independent of
the initial data. That is, we expect the following behavior of
the solution of the flow equations
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lim
t!1�ðtÞ ¼ �min; lim

t!1!ðtÞ ¼ !min; (19)

and

lim
t!1MðtÞ ¼ Mmin: (20)

Note that (18) implies

M ðtÞ � Mmin 8 t: (21)

The monotonicity property (18), together with the upper
bound (21), make the flow equations ideally suited for a
numerical study of the inequality (10).

Equations (8) and (9) are essentially harmonic maps
with singular boundary conditions. The first existence
result for harmonic maps (in compact manifolds without
boundaries) used a heat flow [22]. In that reference the
behavior (19) was in fact proved. There exists also exten-
sions of this result to include regular boundary conditions
[23]. These works were the motivation for the flow equa-
tions (13) and (14). We emphasize however, that the ex-
istence results presented in [9,10] for Eqs. (8)–(14) with
the singular boundary conditions (6) (which are based on
[24]) do not use a heat flow, they use a direct variational
method. The numerical calculations presented in this ar-
ticle confirm (19) and hence suggest that a similar exis-
tence result can be proved using the present heat flow.

There is some freedom to construct a heat flow out of
Eqs. (8) and (9) in such a way that M is monotonic under
the evolution. Namely, we can multiply by arbitrary posi-
tive functions the left-hand side of (13) and (14) and we

still have that _M is negative. The choice made in (13) and
(14) appears to be the simplest one because the principal
part of the equations are given by heat equations. In effect,
we can write Eqs. (13) and (14) as follows:

_� ¼ ��þ e�2�j@!j2
�4

; (22)

_! ¼ �!� 4
@i!@i�

�
� 2@i!@i�: (23)

We also note that in Eq. (13) we can apply the maximum
principle for parabolic equations (see, for example, [25]) to
conclude that � will be positive for all t if the initial data
and boundary conditions are positive.

In this article, the flow (13)–(23) is used as an auxiliary
method for computing a solution of the Einstein stationary
equations. It is however interesting to point out the relation
of this flow with Einstein evolution equations. As we
mention above, in axially symmetry Einstein equations
reduce, in an appropriate gauge, to a system of wave
equations for ð�;!Þ. More precisely, these equations
have the structure of ‘‘waves maps’’ (see, for example,
[26] for the definition of wave maps). The initial conditions
for these equations are essentially the value of ð�;!Þ and
the value of the time derivative ð�0; !0Þ on a Cauchy

surface. For a typical collapse initial data, the system
will radiate gravitational waves and reach a final stationary
black hole of mass m0. The initial energy of the system is
given by the total mass m and it is conserved along the
evolution (see [19] for a discussion on this issue). The total
angular momentum J is also conserved along the evolu-
tion. We always have m0 � m. These data can be also
evolved using the heat flow. In this case the data are only
the value of ð�;!Þ at some time. The total energy of the
system if given byM, and we have seen thatm � Mwith
equality for momentary stationary data. The system will
dissipate energy and reach a final stationary regime with
final energyMmin. We have thatMmin � M. For the two
cases, the system will reach a solution of the Einstein
stationary equations at late time. These solutions are differ-
ent, and there is a priori no obvious relation between them.
In particular, there is no obvious relation between m0 and
Mmin.
The analogy presented above corresponds essentially to

the relation between wave maps, heat flows, and harmonic
maps which represents a geometric generalization of the
relation between wave equation, heat equation, and
Laplace equation. For the case without symmetries it is
not possible to reduce Einstein equation to a wave map but
the analogy can still be made if we use the Ricci flow
instead of the heat flow. Note however, that in our case the
parabolic equations, although nonlinear, are much simpler
than the Ricci flow equations. For a further discussion
about this analogy, see [26].
The flow equations will provide a numeric solution

ð�;!Þ of Eqs. (8) and (9). As we will see below, the
functions ð�;!Þ determine the complete metric of an sta-
tionary axially symmetric spacetime. However, although
the solution ð�;!Þ is always regular outside the ends ik, it
turns out that the other components of the metric are, in
general, not regular at the axis. That is, not all solutions
ð�;!Þ will produce a regular spacetime metric. In particu-
lar, it is expected that a solution ð�;!Þ that correspond to
many black holes (i.e.N � 2 in our setting) do not lead to a
regular metric. As we mentioned in the introduction, this is
a relevant point in the black hole uniqueness theorem. This
is precisely what we observe in the numerical computa-
tions presented in Sec. IV. We emphasize however that in
order to test the inequality (2) we only need to compute the
energy M which depends only on ð�;!Þ and not on the
other components of the spacetime metric. In particular,
the energy M is not affected by the possible singular
behavior at the axis of the other components of the metric.
To reconstruct the spacetime metric from ð�;!Þ we

follow [15]. Assume that ð�;!Þ are solutions of Eqs. (8)
and (9). Then, we can define, up to constants, the following
functions � and � by

�;� ¼ 1

4
���2ð�2

;� � �2
;z þ!2

;� �!2
;zÞ; (24)
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�;z ¼ 1

2
���2ð�;��;z þ!;�!;zÞ; (25)

and

�;z ¼ �
!;�

�2
; �;� ¼ ��

!;z

�2
: (26)

The spacetime metric, in coordinates ðt; �; z; �Þ, is given
by

g ¼ �Vdt2 þ 2Wdtd�þ �d�2 þ e2uðd�2 þ dz2Þ;
(27)

where � is given in terms of � by (3) and the functions V,
W, and u are defined by

W ¼ ��; V ¼ X�1ð�2 �W2Þ; e2u ¼ e2�

�
:

(28)

All functions depend only on ð�; zÞ. The two Killing vec-
tors of the metric are given

�� ¼
�
@

@t

�
�
; �� ¼

�
@

@�

�
�
; (29)

and we have

V ¼ ����	g�	; � ¼ ���	g�	;

W ¼ �	��g	�;
(30)

where �, 	 are spacetime indexes. We also have that ! is
the twist potential of �� (see [15]).

The metric (27) will be regular at the axis if the follow-
ing condition is satisfied

lim
�0!0þ

ffiffiffiffi
�

p
R�0

0 eud�
¼ 1: (31)

For arbitrary solutions ð�;!Þ this condition will not be
satisfied and hence the metric will not define a regular
solutions of Einstein equations. The singularities at the
axis of these kind of metrics are interpreted as the forces
needed to balance the gravitational attraction and keep the
bodies in equilibrium (see [15] for details).

The regularity condition (31) can be conveniently writ-
ten in term of a function q defined by [27]

q ¼ u� �

2
: (32)

This function satisfies the following equations:

q;� ¼ �

4
ð�2

;� � �2
;zÞ þ �

4�2
ð!2

;� �!2
;zÞ; (33)

q;z ¼ 1

2
�ð�;��;z þ ��2!;�!;zÞ: (34)

Condition (31) implies that

qj�¼0 ¼ 0: (35)

If the regularity condition fails, we can calculate the value
of q at each component of the axis

qk ¼ qjIk : (36)

These values are calculated integrating the gradients (33)
and (34) with an appropriate path; see Fig. 2. The force
between the black holes is given by

Fk ¼ 1

4
ðe�qk � 1Þ: (37)

Finally, we discuss an important property of the sta-
tionary equations (8) and (9), namely, their scale invariance
(see [28]). Let s > 0 be a real number. Given functions �
and ! we define the rescaled functions �s and !s by

�sð�; zÞ ¼ �

�
�

s
;
z

s

�
; !s ¼ s2!

�
�

s
;
z

s

�
: (38)

The functions ð�s;!sÞ define solutions of Eqs. (8) and (9)
with respect to the rescaled coordinates ðs�; szÞ. Under this
scaling, the physical parameters rescale as

J ! s2J; Lk ! sLk; (39)

and

M ð�s;!sÞ ¼ sMð�;!Þ: (40)

Note that the quotient J=L2 is scale invariant. In particular,
for the case of two black holes, with parameters J1, J0, and
L0, the scale invariance of the solution implies that only
two parameters are nontrivial.

III. THE NUMERICAL IMPLEMENTATION

We analyze in this section how to solve numerically the
flow equations (13) and (14).

A. Equations and boundary conditions

Although the problem has axial symmetry, Eqs. (13) and
(14) are written in R3 (the Laplace operator corresponds to
the flat Laplacian in R3). We can solve these equations for
arbitrary data, with or without axial symmetry. The mini-

FIG. 2. The bounded domain for the numerical calculation for
two black holes located at i0 and i1. The dashed line indicates a
typical path for the integration of the function q.
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mum will be axially symmetric for any choice of initial
data. This is of course possible because the boundary
conditions (6) are axially symmetric. The above consider-
ations suggest that we can solve numerically the flow
equations in R3. This approach has the advantage that no
extra boundary conditions on the axis are needed and also
that the equations look more regular in these coordinates.
However, from the numerical point of view, this method
has two major disadvantages. The first one is that there is a
significant loss of resolution because a three-dimensional
grid is used instead of two-dimensional one. Second, the
functions are singular at the end points ik and those points
are inside the domain. That is, there are grid points at both
sides of a singularity and this is very problematic for the
finite difference method. We found that it is much more
convenient to work in a two-dimensional grid using cylin-
drical coordinates and imposing appropriate boundary con-
ditions on the axis, as we describe in the following. The
only disadvantage of this approach is that we need to
handle terms which are formally singular at the axis. A
typical example is the term @��=� which appears in the

cylindrical form of the Laplacian in R3, namely,

�� ¼ @2��þ @2z�þ @��

�
: (41)

However, following [29,30], this kind of terms can be
handle numerically in a very satisfactory manner as we
will describe below.

Consider R2 with coordinates ð�; zÞ. The domain of
interest for our problem is the half plane � � 0. The axis
� ¼ 0 is a boundary of the domain. To simplify the nota-
tion and the discussion we will focus on the two black hole
problem (i.e. we will have only two end points i0 and i1
separated by a distance L). We emphasize however that the
following discussion trivially extends to the general case.

In order to handle the singular behavior of the functions
at the points ik located on the axis, we decompose the
solution as follows. Let ð�0; !0Þ be the extreme Kerr
solution (see the Appendix centered at the end i0 with
angular momentum J0. And let ð�1; !1Þ be the extreme
Kerr solution centered at i1 with angular momentum J1.
Instead of working with ð�;!Þ, which are singular at ik, we
will work with ð ��; �!Þ defined by

� ¼ �0 þ �1 þ ��; ! ¼ !0 þ!1 þ �!: (42)

The idea is that all the singular behavior of the functions
are contained in ð�0; !0Þ and ð�1; !1Þ. We expect the
functions ð ��; �!Þ to be regular during the evolution.

If we insert the ansatz (42) into the flow equations (13)
and (14) and use the fact that each pair ð�0; !0Þ and
ð�1; !1Þ are solutions of the stationary equations (8) and
(9), we obtain the following equations for ð ��; �!Þ:

_�� ¼ � ��þ e�2�0 j@!0j2
�4

ðe�2�1�2 �� � 1Þ

þ e�2�1 j@!1j2
�4

ðe�2�0�2 �� � 1Þ

þ e�2�0�2�1�2 ��

�4
ðj@ �!j2 þ 2@i!0@

i �!

þ 2@i!1@
i �!þ 2@i!0@

i!1Þ; (43)

and

_�! ¼ � �!� 4
@i �!@i�

�
� 2@i �!@i ��� 2@i �!@i�0

� 2@i �!@i�1 � 2@i!1@
i�0 � 2@i!0@

i�1

� 2@i!0@
i ��� 2@i!1@

i ��: (44)

These are the equations that we actually solve.
Let us analyze the boundary conditions for Eqs. (43) and

(44). We begin with the axis. The boundary conditions for
the function �� at the axis are given by the regularity
conditions. That is, �� should be a regular function in R3

and hence it should depend smoothly on �2 (see, for
example, [31,32] for a discussion on regularity conditions
at the axis for axially symmetric problems) and then at the
axis it must satisfy

@� ��j�¼0 ¼ 0: (45)

We use Eq. (45) as Neumann boundary conditions at the
axis.
For the function �! the boundary conditions should be

such that they do not change the angular momentum during
the evolution. Since the angular momentum is prescribed
by the value of ! at the axis, the natural choice is that the
angular momentum is fixed by the values of !0 and !1 at
the axis. Hence the appropriate boundary condition for �!
at the axis is the homogeneous Dirichlet one

�!j�¼0 ¼ 0: (46)

If we consider the whole half plane � � 0 as domain,
then we need to prescribe fall off conditions for �� and �! at
infinity compatible with the asymptotic flatness of the
solutions (see [9]). In particular, the solutions and its first
derivative should go to zero at infinity.
In our case, since the grid is always finite, we need to

consider a bounded domain. The domain will be the rect-
angle jzj � zmax and 0 � � � �max, where zmax and �max

are arbitrary positive constants (see Fig. 2). Let us denote
by C the part of the boundary that does not contain the axis
� ¼ 0. We need to prescribe boundary conditions on C.
These boundary conditions should have two important
properties. First, they should imply that the energy on the
domain is monotonic under the evolution. Second, in the
limit zmax, �max ! 1 they should be compatible with
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asymptotic flatness. That it, in this limit we want to recover
the complete solution on the half plane.

For �� we can in principle chose between (16) or (17).
Note however that an homogeneous Neumann boundary
condition for � translate into an inhomogeneous Neumann
boundary condition for �� [since they are related by
Eq. (42)]. Hence, the simpler choice is the homogeneous
Dirichlet condition

��jC ¼ 0: (47)

With this choice is also simpler to extend the function to
the whole half plane as we will see below.

For �! we cannot prescribe a Neumann boundary condi-
tion onC since if we do so we cannot control the value of �!
at the points ð0;�zmaxÞ, whereC touches the axis � ¼ 0. In
particular, this will be incompatible with (46). Hence, the
only possibility is to prescribe an homogeneous Dirichlet
condition

�!jC ¼ 0: (48)

That is, our set of boundary conditions for the numerical
evolution is given by (45)–(48).

The variational problem formulated in Sec. II uses R3 as
domain, which is equivalent, by the axial symmetry, to the
half plane � � 0. The fact that in every numerical compu-
tation only a finite domain can be used will of course
introduce an error. In general it is not easy to measure
this error. However, in our case, the variational character-
ization of Mmin implies that an upper bound of this quan-
tity is always obtained even using a finite grid. This can be
seen as follows. Consider the functions ð ��; �!Þ obtained in
the numerical evolution of the flow equations (43) and (44)
in the bounded domain �. These functions are, in princi-
ple, only defined in�. However, we can extend them to R3

imposing that they vanish outside �. And hence, by (42),
we get functions ð�;!Þ defined in R3. Since ð ��; �!Þ vanish
on @� [by the boundary conditions (47) and (48)] this
extension will be continuous but of course, in general, it
will not be differentiable at the boundary @�. However the
extension is weakly differentiable. Moreover the weak
derivative is square integrable (see, for example, [33] for
the definition of weak derivative and also for the proof of
this fact). Hence, for the extended functions ð�;!Þ the
integral (4) is well defined in R3 and they satisfy the
boundary conditions (6). That is, they represent admissible
test functions for the variational problem. Since Mmin is a
minimum we have

M ð�;!Þ � Mmin; (49)

where we emphasize that in this equation ð�;!Þ are the
extended functions. Note that in R3 n� we have

� ¼ �0 þ �1; ! ¼ !0 þ!1; (50)

and hence we can decompose the integral Mð�;!Þ as
follows:

M ð�;!Þ ¼ M�ð�;!Þ þMR3n�ð�0 þ �1; !0 þ!1Þ:
(51)

The first integral will be the result of the numerical com-
putations using the heat flow. The second integral depends
only on the explicit functions ð�0; �1;!0; !1Þ. We com-
puted this integral using MAPLE 9.5.

B. Numerical methods

We now describe the way we carry out the numerical
computations. We use a finite difference scheme to solve
the initial-boundary-value problem (IBVP) given by the
Eqs. (43) and (44) and boundary conditions (45)–(48). We
also perform numerical integrations on the computed so-
lutions to evaluate both the mass M� and the function q1
[see Eq. (36)] used to evaluate the force (37).
The IBVP is written in cylindrical coordinates ð�; zÞ on

the domain 0 � � � �max and �zmax � z � zmax. Given
two integers N� and Nz we define the step size in the � and

z direction, respectively, as hz ¼ 2zmax=Nz and h� ¼
�max=N�. Our equations have singular coefficients at the

points i0 and i1 on the � ¼ 0 axis. These point will be
placed, in all our runs, at positions z ¼ hzk, k 2 Z. The
computational grid is defined so that the gridpoint at the
site ði; jÞ has coordinates

�i ¼
�
i� 3

2

�
h�; i ¼ 0; 1; 2; . . . ; N� þ 2; N� þ 3;

zj ¼
�
j� 3

2

�
hz; j ¼ 0; 1; 2; . . . ; Nz þ 2; Nz þ 3;

in this way the uniform grid is half a step size displaced
with respect to the coordinate axes and singular points. One
can think that the domain is broken into N� � Nz cells

being each grid point with 2 � i � N� þ 1 and 2 � j �
Nz þ 1 placed at the center of a cell. The gridpoints with
i ¼ 0, 1, N� þ 2, N� þ 3, and 2 � j � Nz þ 1 are grid-

points at the center of ‘‘ghost cells’’ used to impose bound-
ary conditions at the � ¼ const parts of the boundary.
Analogously, the gridpoints with j ¼ 0, 1, Nz þ 2, Nz þ
3, and 2 � i � N� þ 1 are gridpoints at the center of

‘‘ghost cells’’ used to impose boundary conditions at the
z ¼ const parts of the boundary. The four gridpoints at
each corner of the grid are not used.
Many of the problems we actually compute are sym-

metric or antisymmetric with respect to the z ¼ 0 plane. In
these cases the symmetry is used explicitly to reduce the
grid to half-size and so the computer time needed. The grid
covers a domain with z � 0 (see Fig. 3).
In our numerical scheme, the four partial derivatives @�,

@z, @
2
�, and @

2
z of �� and �! are approximated by the standard

fourth-order accurate symmetric difference operators [34]

D ¼ D0

�
I� h

6
DþD�

�
; (52)
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D2 ¼ DþD�
�
I � h2

12
DþD�

�
: (53)

Here Dþ and D� denote, as usual, the forward and back-
ward difference operators, i.e., if fi is a grid function on a
one-dimensional grid with step size h, we have Dþfi ¼

ðfiþ1 � fiÞ=h, and D�fi ¼ ðfi � fi�1Þ=h. To be more
explicit we show the approximations to the derivatives
with respect to �. If ui;j ¼ uð�i; zjÞ, i.e., ui;j denotes the
grid function associated to the smooth function uð�; zÞ,
then

@u

@�
ð�i; zjÞ ’

1
12 ui�2;j � 2

3ui�1;j þ 2
3uiþ1;j � 1

12 uiþ2;j

h�
;

@2u

@�2
ð�i; zjÞ ’

� 1
12 ui�2;j þ 4

3ui�1;j � 5
2ui;j þ 4

3 uiþ1;j � 1
12 uiþ2;j

h2�
:

To carry out the time evolution we use the Du Fort-
Frankel method. This method is known to be a good choice
for solving parabolic problems because it is explicit and
nevertheless unconditionally stable [35] at least when ap-
plied for solving an initial value problem. In the notation of
[35] (or [34], Sect. 7.3) we set � ¼ 2. The � parameter in
this case has to be chosen bigger than 4=3 for the method to
be stable. The time step cannot be chosen big though, and
the reason is twofold. First a big time step gives rise to an
increasing parasitic solution [34] and more important, the
boundary conditions also impose stability restrictions. In
the way we treat the boundary conditions (explained be-
low) we have a scheme that is stable as can be seen
explicitly in our runs, but this scheme is probably not
unconditionally stable. Experimentally we did some runs
with a big time step and could see how the solution
diverges in few time steps starting at the boundaries
(around the singular points i0 and i1). In most of our
computations we use h� ¼ hz ¼ 10�2 and a time step

t ¼ 10�4, i.e. the square of the space step size which is
the normal ratio in explicit schemes for parabolic prob-

lems. This time step is however, as the equations have
singular coefficients, around 10 times bigger than the
time step we could use with other explicit schemes like
3rd order Runge-Kutta. The Du Fort-Frankel scheme is
only second order accurate but this posses no inconven-
ience since we are looking for the stationary solution of the
parabolic problem. In this case, the truncation error due to
the time discretization vanishes when the solution ap-
proaches the time independent state.
All the boundary conditions we use are either homoge-

neous Dirichlet or homogeneous Neumann boundary con-
ditions. The boundary conditions are imposed to a grid
function via the points at the ghost cells (see for example
[36]). We show, as example, how this is done for boundary
conditions (45) and (46). Given the values of ��i;j and �!i;j

in the interior of the domain, i.e., for 2 � i � N� þ 1 and

2 � j � Nz þ 1, the values at the ghost cells with i ¼ 0, 1
are defined as

�� 0;j ¼ ��3;j; ��1;j ¼ ��2;j; ðNeumannÞ;
�!0;j ¼ � �!3;j; �!1;j ¼ � �!2;j ðDirichletÞ:

In this way the boundary conditions (45) and (46) are
satisfied exactly to the accuracy order of our computations
and the same difference operators can be used at all grid-
points inside the domain. As we are using the fourth-order
accurate operators defined in (52) and (53), which have a
span of �2 gridpoints, we need two lines of ghost cells
outside the domain for each part of the boundary.
We start the time evolution with initial data that satisfies

the right boundary conditions. Now, given the solution at
time t satisfying the right boundary conditions the right-
hand side of the equations can be computed in the interior
of the domain and the time evolution algorithm computes
the values of �� and �!, in the interior of the domain, at the
next time tþ 
t. Then the solution at this time is extended
to the ghost cells so that it obeys the right boundary
conditions and the process is iterated.
Different criteria can be used to stop the time evolution

when one is looking for the stationary state. As the main
quantity we want to compute in each run is the mass M�

of the final stationary solution, we stop the run when the

FIG. 3. Computational grid for the symmetric and antisym-
metric cases. The gridpoints are at the intersection of the dashed
lines (cells are not shown). The rectangle in thick lines is the
domain for the IBVP.
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derivative of M� with respect to time becomes, in abso-
lute value, smaller than a given small value.

To compute the massM� and the value of q1 we need to
approximate two-dimensional and one-dimensional inte-
grals. As the gridpoints are placed at the center of cells that
cover the domain of our IBVP, the simplest appropriate
rule to approximate these integrals is the midpoint rule.
The integrand in (4), when written in cylindrical coordi-
nates, have singular points at i0 and i1. However the mid-
point rule provides good enough results. For example, as in
our runs we used vanishing initial data, i.e., ��ðt ¼ 0Þ ¼
�!ðt ¼ 0Þ ¼ 0, the integral in (4) becomes an integral of
known, given functions. Thus, we could compare the value
obtained with our code to the value obtained with a very
precise integration rule—implemented in MAPLE; in the
worst case the relative difference between these values
was smaller than 10�3.

C. Runs and tests

All the solutions of the IBVP we computed can be
divided into three groups. The first group consists of sym-
metric configurations in which J0 ¼ �1:0 is placed at z ¼
�L=2 and J1 ¼ J0 is placed at z ¼ L=2. Within this group
we carried out runs for different values of L, and for
different domain sizes. It is clear in this case the solutions
� and ! of (13) and (14) are, respectively, symmetric and
antisymmetric as functions of z. Moreover �� and �! satisfy
the same symmetry during the whole time evolution of our
IBVP—even on a finite domain—provided the domain
itself and the initial data are symmetric. The obvious initial
data satisfying all boundary conditions and symmetry is
��ðt ¼ 0Þ ¼ �!ðt ¼ 0Þ ¼ 0; this is what we used in all our
runs.

The second group of solutions we computed correspond
to antisymmetric configurations in which we placed J0 ¼
�1:0 at z ¼ �L=2 and J1 ¼ �J0 at z ¼ L=2. We carried
out runs for different values of L. The solutions in this
group also have a clear symmetry. In this case both �� and
�! are symmetric as functions of z.
The third group of solutions we computed correspond to

asymmetric configurations in which we placed J0 ¼ 1:0 at
z ¼ �1=2 and J1 � J0 at z ¼ 1=2. Within this group we
carried out runs for various values of J1.

When computing solutions in the symmetric or antisym-
metric configurations we need to compute the solution in
half the domain only, z 2 ½0; zmax� and � 2 ½0; �max�. z ¼
0 becomes a boundary and all we need is to use extra
boundary conditions at z ¼ 0 that obey the symmetry of
the solutions. This boundary conditions are homogeneous
Neumann for �� and homogeneous Dirichlet for �! in the
symmetric case, and homogeneous Neumann for both
functions in the antisymmetric case. By using the symme-
try of the solution we reduce to one half the computer time
needed.

A main issue, from the point of view of the numerical
calculations, is to determine the size of the domain where

to compute M�. At the same time we need to estimate
error we commit in the determination of M. We attack
these questions mainly by studying the symmetric case.
The time evolution ofM�, for different values of L, can

be seen in Fig. 4. The initial data in all the runs was set to
zero. The smaller the value of L is the bigger the initial
M� is, and also the stronger the equations dissipate so that
the code runs for a longer time and the final ‘‘stationary’’
M� turns out to be smaller.
With the purpose of evaluating the precision of the

values of mass obtained and of determining a convenient
domain size to carry out our computations we performed
runs with the same physical parameters but on different
domains (and corresponding grids). The results are shown
in Table I for the two smallest values of L. In Table I
‘‘M�0’’ is the value of M�ðt ¼ 0Þ for vanishing initial
data ( ��ðt ¼ 0Þ ¼ �!ðt ¼ 0Þ ¼ 0) as computed by our pro-
gram; ‘‘MM

�0’’ is the same quantity as computed by an

integration routine of MAPLE 9.5. ‘‘M�’’ is the value
computed by our program when the solution is close
enough to the stationary state (jdM�=dtj< 5:0� 10�4

for these runs). ‘‘M0’’ is the value of the total initial
energy, computed with MAPLE 9.5, on a huge domain
ð�; zÞ 2 ½0; 40000� � ½�20000; 20000�. Finally ‘‘M’’ is
given by M ¼ M� þ ðM0 �MM

�0Þ. On the one hand

we have the error introduced by the integration routine.
Comparing the second and third columns of the table we
see that our integration routine can guarantee three correct
figures (two after the decimal point) at initial time. We
assume this also holds at final time. On the other hand there
is the error introduced by the compactness of the computa-
tional domain. Each domain used quadruples the previous
domain in size. The values of M obtained for the three
largest domains are coincident when we round the figures
to four digits. Based on this facts we are confident enough

FIG. 4. Time evolution of M� for different values of L
(number close to each curve). In this plot, all the runs were
stopped when jdM�=dtj< 5:0� 10�4. The detail shows the
evolution for a short while t 2 ½0; 0:3�.
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as to choose the domain ð�; zÞ 2 ½0; 40� � ½�20; 20�, in
which our code runs fast enough, for all our computations.
Hence, we accept as correct the computed values of M
rounded to three digits. The same domain was used to
perform the runs in the antisymmetric and asymmetric
cases.

VI. RESULTS

In this section we present the results of the numerical
simulations. As we pointed out above, we will concentrate
on the two black holes case with individual momentum J0,
J1 and separated by a distance L.

A. Expected behavior

Let us first discuss, in an heuristic way, the expected
behavior of the total mass Mmin of the stationary solution
corresponding to this configuration in some asymptotic
limits.

Consider the far limit L ! 1. In this limit, we expect
the interaction between the black holes to be small. If we
make an expansion in powers of L�1 of the total mass
Mmin the first nontrivial terms should correspond to the
sum of the individual masses. The second term should
correspond to the Newtonian gravitational interaction en-
ergy between the black holes. And finally, the third term
should be given by the interaction between the angular
momentum of the black holes. This term is called spin-spin
interaction in the literature (see [21,37] for a detailed
discussion of this issue). That is, we expect the following
expansion

M min � m0 þm1 �m0m1

L
þ 2J0J1

L3
þOðL�4Þ; (54)

wherem0 ¼
ffiffiffiffiffiffiffiffijJ0j

p
andm1 ¼

ffiffiffiffiffiffiffiffijJ1j
p

. This kind of expansion
is valid without the assumption of axial symmetry, in fact
the formula (54) arises as particular case of the general
expansion presented in [21,37]. Also, for the solution
ð�min; !minÞ we expect the following behavior in the limit
L ! 1

�min � �0 þ �1; !min � !0 þ!1: (55)

The Newtonian interaction is of course always negative.
However the sign of the spin-spin interaction depends on
the individual signs of the angular momentum J0 and J1.
For the aligned case (i.e. when J0 and J1 has the same sign)
it is positive and hence has opposite sign as the Newtonian
interaction. This is the most interesting case regarding the
inequality (2) since it is expected to be the most favorable
situation to find a counterexample to conjecture 1. This can
be seen as follows. In a configuration with aligned angular
momentum the total amount of angular momentum jJj
(recall that J ¼ J0 þ J1) is always greater than in the
anti-aligned case. On the other hand the first terms in the
expansion (54) are the same in both cases. That is, up to
order L�2 we have the same mass in both configurations
but the aligned one has greater total angular momentum.
Also, from the point of view of the black hole equilibrium
problem the aligned configuration is the most interesting
one since in this case it is in principle conceivable that the
spin-spin force balance the Newtonian gravitational attrac-
tion to make the equilibrium possible at some particular
separation distance L. On the other hand, for the anti-
aligned case it has been proved that the equilibrium is
not possible [17].
Let us discuss now the limit L ! 0. In this limit we have

only one asymptotic end and hence we expect that the
solution approach to a single extreme Kerr solution with
angular momentum J. Let us denote this solution by
ð�01; !01Þ. This behavior can be justified as follows.
Consider the behavior of the individual extreme Kerr so-
lutions ð�0; !0Þ and ð�1; !1Þ. The sum (�0 þ �1, !0 þ
!1) it is of course not a solution of the stationary equa-
tions (8) and (9) even in this limit since the equations are
not linear. However, the extreme Kerr solutions have a
‘‘linear piece’’, namely, the functions !̂0 and !̂1 which
fix the angular momentum of the solution [see Eq. (A3)]. In
the limit L ! 0 this sum corresponds to !̂01. Since this is
the part of ! that fixes the angular momentum and the
solution is unique for fixed angular momentum, the flow
equation should produce functions ð ��; �!Þ such that the

TABLE I. Several runs with the symmetric configuration and the same physical parameters, J0 ¼ J1 ¼ 1:0, but on different
domains. In all cases h� ¼ hz ¼ 10�2, 
t ¼ 10�4, and the initial data was set to zero. The upper half of the table corresponds to

L ¼ 0:1 and the lower part to L ¼ 1:0.

Domain ð�; zÞ M�0 MM
�0 Relative error M� M0 M

½0; 10� � ½�5; 5� 2.650 041 128 2.651 146 040 �4:17� 10�4 1.220 646 770 2.898 066 024 1.467 566 754

½0; 20� � ½�10; 10� 2.773 619 709 2.774 724 666 �3:98� 10�4 1.332 235 504 2.898 066 024 1.455 576 862

½0; 40� � ½�20; 20� 2.835 391 328 2.836 496 292 �3:90� 10�4 1.393 365 251 2.898 066 024 1.454 934 983

½0; 80� � ½�40; 40� 2.866 221 110 2.867 326 074 �3:85� 10�4 1.424 331 374 2.898 066 024 1.455 071 324

½0; 10� � ½�5; 5� 2.002 782 916 2.003 994 940 �6:05� 10�4 1.381 272 815 2.251 736 983 1.629 014 858

½0; 20� � ½�10; 10� 2.127 077 532 2.128 289 601 �5:70� 10�4 1.496 600 061 2.251 736 983 1.620 047 443

½0; 40� � ½�20; 20� 2.188 941 879 2.190 153 954 �5:53� 10�4 1.558 251 402 2.251 736 983 1.619 834 431

½0; 80� � ½�40; 40� 2.219 783 296 2.220 995 372 �5:46� 10�4 1.589 210 683 2.251 736 983 1.619 952 294
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final ð�;!Þ approach to the Kerr extreme solution with
angular momentum J. That is, in the limit L ! 0we expect
the following behavior:

M �
ffiffiffiffiffiffi
jJj

p
; (56)

and

�min � �01; !min � !01: (57)

In this limit the function �� is singular. This can be seen as
follows. In the limit L ! 0, by Eq. (A6), the singular
behavior of the sum �0 þ �1 is given by

�0 þ �1 ¼ �4 logrþOð1Þ: (58)

On the other hand, by the same Eq. (A6), the behavior of
the extreme Kerr solution �01 is given by

�01 ¼ �2 logrþOð1Þ: (59)

Then, in order to reach (59), the function �� generated by
the flow should be singular in the limit L ! 0. This is
precisely what we observe in our computation as we will
see.

Finally, let us discuss the general shape of the curve
MminðLÞ. This curve should not have minimum or maxi-
mum, since, roughly speaking, a minimum or maximum
will signal an equilibrium point. Using the asymptotic
limits (54) and (56), we conclude that the curve MminðLÞ
should lie between the lines

ffiffiffiffiffiffijJjp
and

ffiffiffiffiffiffiffiffijJ0j
p þ ffiffiffiffiffiffiffiffijJ1j

p
and it

should be monotonically increasing with L, that is,

@MminðLÞ
@L

> 0: (60)

B. Results of computations

Let us consider first the symmetric configuration, that is,
two black holes with the same angular momentum J0 ¼
J1 ¼ J separated by a distance L. As we have discussed in

Sec. II, by the scale invariance of the equations, we can
normalize to J ¼ 1 without loss of generality.
In Figs. 5 and 6 we present the plots of ��ð�; zÞ and

�!ð�; zÞ for the symmetric case with L ¼ 1 in the semi-
domain as a typical plot of the solutions obtained. A detail
of each plot near the ends, where most of the variations of
the functions occur, is also shown.
Our main result is shown in Table II where we present

the computed values of M (rounded to three digits).
Figure 7 shows the plot M as function of L. Clearly all

values of M are higher than
ffiffiffi
2

p
and conjecture 1 is

satisfied. Direct observation of Fig. 7 shows that M is a
monotonic function of L and, at least graphically, seems to

obey that M ! ffiffiffi
2

p
when L ! 0. Moreover, although the

values of L for which we could compute the solution are
not big, the plot also shows that the limit M ! 2 when
L ! 1 is plausible.
For every value of L in Table II we also computed the

force between the black holes given by (37) and the value
of the derivative dM=dL. To compute the force we eval-
uated the corresponding value of q1 by following ten
different trajectories surrounding the end i1. We found
that the values of q1, for the different trajectories, are not
the same as expected. The reason is that q1 is a much more
sensitive measurement of ‘‘stationarity’’ of the solution
than M is and so we would need a much longer evolution
to have a good value of q1 (see explanation below). All the
values of q1 have the right sign though, and the force
between the black holes is always attractive. Thus, we
present in Table III coarse values of the force. It is impor-
tant to stress, though, that the sign is correct and the value
of the force is decreasing with L in coincidence with the
values of the derivative of M. Shown values of dM=dL
were obtained by computing values of M at two extra
nearby values of Lþ 
L and approximating the derivative
by a symmetric finite difference operator.
Naively, we would expect that the force F is equal to the

derivative dM=dL. From our data, we observe that this

FIG. 5. Plots of �� in the semidomain z 2 ½0; 20�, � 2 ½0; 40� (left) and detail of the same graph in a small square region z 2
½0:005; 1:005� and � 2 ½0:005; 1:005� to show the behavior of the solution close to the singular point i1 (located at � ¼ 0 and z ¼ 0:5).
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equality appears only to be true in the limit L ! 1.
However, since our values for F are coarse, this difference
could in principle be a consequence of numerical errors.

Using a small domain, so that our code runs fast, we
performed two runs with the same physical parameters
(L ¼ 1) but stopping the time evolution with two different
criteria. The short run stopped when dM=dt<
5:0� 10�4, as most of our runs. The long run stopped
when the both the absolute values of the time derivatives of
�� and �!, at every site, was smaller than 10�5, i.e., this last
criterion sensed stationarity pointwise. When the long run
stopped, the value of dM=dt was around 10�10 but the
value ofM itself was coincident up to four digits to that of
the short run. The values of q1 computed at final time on
ten different trajectories around i1 for both runs showed a
variation of 1.27% for the short run and 0.025% for the
long run.

The function �� is bounded on the whole domain.
However, one can see how the peak values of sigma at

FIG. 6. Plots of �! in the semidomain z 2 ½0; 20�, � 2 ½0; 40� (left) and detail of the same graph in a small square region z 2
½0:005; 1:005� and � 2 ½0:005; 1:005� to show the behavior of the solution close to the singular point i1 (located at � ¼ 0 and z ¼ 0:5).

TABLE II. Computed values of M� and final energy M for
different values of L in the symmetric configuration. The indi-
vidual angular momentum parameters are J0 ¼ J1 ¼ 1, and

hence we have
ffiffiffiffiffiffijJjp ¼ ffiffiffi

2
p

. The domain used was defined by
zmax ¼ 20 and �max ¼ 40. The grid used (for the semidomain) is
4000� 2000 points.

L M� initial M� final M

0.1 2.84 1.39 1.45

1.0 2.19 1.56 1.62

2.0 1.98 1.66 1.72

3.0 1.90 1.72 1.78

4.0 1.88 1.76 1.82

5.0 1.87 1.78 1.84

6.0 1.87 1.80 1.86

7.0 1.87 1.82 1.88

8.0 1.87 1.83 1.89

FIG. 7. A plot of the values presented in Table II. The indi-
vidual points are the values of M. We have also plotted the
Newtonian interaction plus the spin-spin interaction given by
Eq. (54). The two horizontal lines located at 2 and

ffiffiffi
2

p
indicate

the sum of the individual masses m0 þm1 ¼ 2 and the total
angular momentum J ¼ ffiffiffi

2
p

, respectively.

TABLE III. Values of q1, the attractive force between the
black holes and derivative of M with respect to L.

L q1 F1 dM=dL

0.1 �1:00 0.430 0.247

1.0 �0:53 0.174 0.133

2.0 �0:30 0.088 0.074

3.0 �0:20 0.054 0.047

4.0 �0:14 0.038 0.032

5.0 �0:11 0.028 0.023

6.0 �0:082 0.021 0.017

7.0 �0:067 0.017 0.013

8.0 �0:052 0.013 0.011
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the symmetry axis, ��ð� ¼ 0Þ, occur very close or at the
singular points i0 and i1. In the symmetric case one, as we
have seen in Sec. IVA, we expect that the value of �� in the
axis, in the region between the ends i0 and i1 diverges as
L ! 0. We could observe this behavior in our numerical
solutions. Figure 8 shows the plots of ��ð� ¼ h�=2; zÞ as
function of z. The expected divergent behavior as L ! 0 is
clearly seen in the graph.

We consider now the antisymmetric case, where J0 ¼
�J1 and separated by a distance L. Since the total angular
momentum in this case is zero, the inequality (10) is
trivially satisfied. Nevertheless, it is important to compute
this case for testing purpose.

As in the previous case we fixed the angular momentum
and normalize them to J0 ¼ 1 and J1 ¼ �1. The results
obtained are shown in Table IV and plotted in Fig. 9.

Finally, we consider the asymmetric case, where J0 and
J1 are separated by a distance L ¼ 1We perform runs with

J0 ¼ �1 and varying J1 2 ½�1:0; 1:0�. This case is inter-
esting because in the limit J1 ¼ 0 we must recover the one
extreme Kerr black hole solution and hence the equality in
(10). Note that this limit (as the limit L ! 0 in the sym-
metric case) is a singular limit. In both limits we are

FIG. 8. Plots of �� as functions of z at � ¼ h�=2 (the closest
gridpoints to the symmetry axis) for different values of L
(numbers close to each curve). Only the z > 0 part of the plot
is shown.

TABLE IV. Computed values of M� and final energy M for
different values of L in the antisymmetric configuration J0 ¼
�J1 ¼ 1, where the total angular momentum J is zero. The
domain used was defined by zmax ¼ 20 and �max ¼ 40. The grid
used (for the semidomain) is 4000� 2000 points.

L M� initial M� final M

0.5 2.39 1.04 1.10

1.0 2.14 1.35 1.41

2.0 1.95 1.59 1.65

3.0 1.88 1.68 1.75

4.0 1.86 1.74 1.80

5.0 1.86 1.77 1.83

6.0 1.86 1.79 1.86

7.0 1.86 1.81 1.87

8.0 1.86 1.82 1.89

FIG. 9. The total mass in the antisymmetric case as function of
L. J0 ¼ �1 is located at z ¼ �L=2 and J1 ¼ 1 is located at z ¼
L=2. The semidomain is ð�; zÞ 2 ½0; 40� � ½0; 20�. The continu-
ous line is the Newtonian plus spin-spin interaction.

TABLE V. Computed values of M� and final energy M in
the asymmetric configuration as function of J1, where J0 ¼ �1.
The separation distance is L ¼ 1, the location of i0 is fixed at
z ¼ �0:5, and i1 is fixed at z ¼ 0:5. The domain used was
defined by zmax ¼ 20 and �max ¼ 40. The grid used is 4000�
4000 points.

J1 M� initial M� final M
ffiffiffiffiffiffijJjp

�1:0 2.19 1.56 1.62 1.41

�0:9 2.12 1.52 1.58 1.38

�0:8 2.06 1.49 1.54 1.34

�0:7 1.98 1.45 1.50 1.30

�0:6 1.91 1.41 1.46 1.26

�0:5 1.82 1.36 1.41 1.22

�0:4 1.72 1.32 1.36 1.18

�0:3 1.61 1.27 1.30 1.14

�0:2 1.48 1.21 1.24 1.10

�0:1 1.32 1.13 1.16 1.05

0.0 0.98 0.98 1.00 1

0.1 1.30 1.10 1.13 0.95

0.2 1.46 1.15 1.18 0.89

0.3 1.59 1.18 1.22 0.84

0.4 1.69 1.21 1.25 0.77

0.5 1.78 1.24 1.28 0.71

0.6 1.87 1.24 1.31 0.63

0.7 1.94 1.28 1.34 0.55

0.8 2.02 1.30 1.36 0.45

0.9 2.08 1.33 1.39 0.32

1.0 2.14 1.35 1.41 0
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exploring the neighborhood of the equality in (10) and
hence the most favorable cases for a possible
counterexample.

The results are shown in Table V and plotted in Fig. 10.
We observe that the inequality (10) is satisfied in all cases.

V. CONCLUSION

The main result of this article is given in Tables II and V.
In all cases, we have verified the inequality (10). That is,
we have provided strong numerical evidence that this in-
equality is true for two axially symmetric black holes.
Moreover, we have computed a nonzero force in the sym-
metric case (Table III) and hence we have also provided
numerical evidences that the equilibrium is not possible for
two extreme black holes.

The monotonic dependence of the total energy M in
terms of the separation distance L plotted in Fig. 7 suggests
a possible strategy to prove analytically the inequality (10).
Namely, to study the neighborhood of L ¼ 0 of the energy.
In particular, the first step is to prove that dM=dL > 0 at
L ¼ 0. Since the value of M at L ¼ 0 is known, this will
prove the inequality near L ¼ 0. The second step (probably
much more difficult) will be to prove that dM=dL > 0 for
any L.

Finally, we have also shown that the heat flow equa-
tions (13) and (14) constitute an efficient and simple nu-
merical method to construct solutions of the stationary and
axially symmetric Einstein equations. We expect that this
method can be used also with other kind of boundary
conditions.
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APPENDIX: EXTREME KERR SOLUTION

The extreme Kerr black hole corresponds to the limit

m ¼ ffiffiffiffiffiffijJjp
of the Kerr metric, wherem is the total mass and

J is the angular momentum of the spacetime. Usually,
instead of J in the literature the parameter a ¼ J=m is
used, the extreme limit correspond to a ¼ �m.
Using the notation of Sec. II, for the extreme Kerr black

hole we have only one end i0 located at the origin. The
explicit form of the functions ð�0; !0Þ are given by

�0 ¼ log�0 � 2 log�; !0 ¼ !̂0 � 2J3 cos�sin4�

jJj� ;

(A1)

where

�0 ¼
�
~r2 þ jJj þ 2jJj3=2~rsin2�

�

�
sin2�; (A2)

!̂ 0 ¼ 2Jðcos3�� 3 cos�Þ; (A3)

and

~r ¼ rþ
ffiffiffiffiffiffi
jJj

p
; � ¼ ~r2 þ jJjcos2�: (A4)

In these equations, ðr; �Þ are spherical coordinates in R3

related with the cylindrical coordinates ð�; zÞ by the stan-

dard formulas r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
and tan� ¼ �=z.

In this equations, J is an arbitrary constant. It gives the
angular momentum and it is the only free parameter in this
solution. In agreement with Eq. (6), we have

!0ð� ¼ 0Þ ¼ �4J; !0ð� ¼ �Þ ¼ 4J: (A5)

Note that the angular momentum is given by !̂0, the other
part of !0 vanishes at the axis.
The singular behavior of �0 at i0 is given by

�0 ¼ �2 logrþOð1Þ: (A6)

The sign change J ! �J implies � ! � and! ! �!.
The limit J ¼ 0 correspond to flat spacetime and it is given
by

�0 ¼ 0; �0 ¼ �2; !0 ¼ 0: (A7)

FIG. 10. The total mass in the asymmetric case as function of
J1 	 J0 ¼ �1 is located at z ¼ �1=2, and J1 is located at z ¼
1=2. The semidomain is ð�; zÞ 2 ½0; 40� � ½0; 20�. The continu-
ous line is the lower bound according to conjecture 1.
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The important property of the functions ð�0; !0Þ is that
they are solutions of Eqs. (8) and (9). In the above equa-
tions the end point i0 is chosen to be at the origin of the
coordinate system. We have the obvious freedom to trans-
late this point to an arbitrary location. In particular, the

extreme Kerr solution centered at the point i1 used in
Sec. III is given by

�1 ¼ �0ð�; z� L=2Þ; !1 ¼ !0ð�; z� L=2Þ: (A8)
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