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We present two methods to include the asymptotic domain of a background spacetime in null directions

for numerical solutions of evolution equations so that both the radiation extraction problem and the outer

boundary problem are solved. The first method is based on the geometric conformal approach, the second

is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on

a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by

including future null infinity in the computational domain with relatively minor modifications. We

demonstrate the flexibility of the methods by considering both Boyer-Lindquist and ingoing Kerr

coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates

for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.
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I. INTRODUCTION

In numerical calculations of radiative fields, it is com-
mon to artificially truncate the computational domain by
introducing an outer boundary into the spacetime. It is well
known that this practice introduces conceptual and opera-
tional problems, specifically the outer boundary and the
radiation extraction problems [1–17]. Each incremental
development has taken considerably more effort, while a
clean solution to the problems is available on a geometrical
level, namely, including the asymptotic domain on the
computational grid [18–24].

First attempts on including the asymptotic domain on
the numerical level have been based on using a compacti-
fying coordinate along outgoing null surfaces [25,26]. This
allows one to include null infinity in the computational
domain where no boundary conditions are required and
radiation is naturally and unambiguously measured by
idealized observers. In addition, the numerical evolution
is very efficient as the grid follows outgoing radiation.
Setting the numerical outer boundary to null infinity solves
the aforementioned problems in a numerically efficient
manner.

Unfortunately null foliations can be inconvenient, espe-
cially because they tend to develop caustics in dynamical
spacetimes [27]. For solving the outer boundary and radia-
tion extraction problems, however, we only need access to
null infinity, whereas the interior foliation can be chosen
arbitrarily. This observation suggests that one could match
an arbitrary spacelike slice in the interior to an asymptotic
domain that extends to null infinity. This has first been tried
using Cauchy-characteristic matching [26,28–30]. There,
one uses an evolution based on Cauchy-type foliations in
the interior and communicates the in- and outgoing char-
acteristic variables along a timelike surface with a charac-
teristic evolution in the asymptotic domain. This method
introduces numerical difficulties due to the presence of a

nonsmooth matching along which the causal nature of the
slicing changes from spacelike to null. While Cauchy-
characteristic matching is a promising approach that re-
quires further study, in this paper we will explore an
alternative approach to the problem.
Instead of matching spacelike slices to null slices along a

timelike surface, here we use everywhere spacelike slices
that approach null infinity in the asymptotic domain. The
latter are called hyperboloidal surfaces as their behavior is
similar to the standard hyperboloids in Minkowski space-
time [19]. They are more flexible than null surfaces be-
cause the only local condition restricting their choice is
that they are spacelike. The asymptotic condition that they
approach null infinity does not restrict the type of spacelike
surfaces in the interior. It is favorable for numerical appli-
cations within the hyperboloidal approach that a gauge is
chosen in which the location of future null infinity (scri) is
independent of time, i.e. scri fixing [31–36]. Numerical
experiments with scri fixing have already been made suc-
cessfully in spherically symmetric spacetimes [37–42].
In this paper we discuss the case of a fixed Kerr black

hole background from the point of view of the hyperbol-
oidal approach with scri fixing. One might think that the
characteristic approach should be sufficient for calculating
radiative fields at null infinity when a background has been
given. Indeed, for given Minkowski and Schwarzschild
backgrounds, null coordinates are very useful and have
been regularly applied in numerical calculations [26,43–
45]. In Kerr spacetime, however, they are difficult to deal
with. There has been an ongoing effort to find a metric
representing the Kerr geometry in Bondi-Sachs form that
can be used in numerical computations [26,46–49], but to
our knowledge no numerical calculations including null
infinity could be presented so far.
The difficulties with the characteristic approach in Kerr

spacetime arise, in part, from the fact that null coordinates
are very rigid, i.e. the coordinate freedom for choosing a
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null surface is more restricted than for a spacelike surface.
The flexibility of hyperboloidal surfaces, on the other hand,
allows us to evolve radiative fields on a Kerr spacetime up
to and including null infinity while keeping, for example,
standard Boyer-Lindquist or ingoing Kerr coordinates near
the black hole.1 We have chosen these foliations as they are
the most common ones and have a differing qualitative
behavior near the horizon. In principle, any foliation near
the black hole can be chosen. The construction of such
hyperboloidal surfaces in Kerr spacetime is relatively new
[36]. In this paper we show that it is also amenable to
numerical calculations.

We discuss two methods for the numerical implementa-
tion of the hyperboloidal matching idea on the example of
a scalar wave equation. In both methods matching includes
certain choices of rescaling, time transformation, and co-
ordinate compactification. The first method is the well-
known conformal method as introduced by Penrose
[22,23]. It requires knowledge of the conformal transfor-
mation behavior of the equation one is trying to solve. The
second method is an essentially equivalent method that
may be more appealing to researchers unfamiliar with
conformal techniques. It considers the equation to be given
in a certain coordinate system and applies the above-
mentioned transformations [42]. These methods allow us
to solve the equations of interest including null infinity and
can be applied within the hyperboloidal approach indepen-
dent of matching.

We test our implementations by reproducing previously
obtained quasinormal mode frequencies [51,52] and tail
decay rates [50,53,54]. Our numerical tests focus on scalar
fields but our method of including null infinity can be used
with a wide variety of systems of evolution equations on a
Kerr, Schwarzschild, or Minkowski background that admit
asymptotically flat solutions. In particular, the application
of our techniques to calculate other types of radiative fields
such as gravitational perturbations should be straight-
forward.

The paper is organized as follows: In Sec. II, we present
the main idea of hyperboloidal matching that allows us to
include null infinity in the computational domain while
using standard coordinates near the black hole. Section III
presents the conformal method and applies it using ingoing
Kerr coordinates, Sec. IV presents the coordinate based
method applied to Boyer-Lindquist coordinates. The re-
sulting equations are then solved in Sec. V using standard
numerical techniques. Beyond confirming well-known pre-
dictions with our code, we also study decay rates for scalar
perturbations of a Kerr black hole near and at null infinity
confirming predictions due to Hod [55] for the first time.
We conclude with a short discussion of our results.

II. THE MAIN IDEA

As mentioned in the introduction, the construction of
null coordinates in a Kerr background is relatively com-
plicated [46–49], whereas hyperboloidal foliations that are
useful for numerical purposes can be given explicitly [36].
Following [36], we construct hyperboloidal foliations that
coincide in an interior domain exactly with ingoing Kerr or
Boyer-Lindquist coordinates.
The ingoing Kerr and Boyer-Lindquist representations

of the Kerr metric will be given in terms of coordinates that
we denote by ðt; r; y; ’Þ. Here, t is the time coordinate of
the corresponding metric, r is a radial coordinate along
level sets of t and y is an angular coordinate defined by
cos#, where # and ’ are the angular coordinates on a
sphere. In order to match a spacelike surface to null infinity
in a stationary spacetime, we introduce a new time coor-
dinate � of the form

� ¼ t� hðrÞ: (1)

The function hðrÞ is called the height function. The advan-
tage of the above transformation is that it keeps the time
direction invariant. The stationary Killing field that is
timelike outside the event horizon has the same coordinate
representation in both t and � for any choice of hðrÞ. It is
given by @t or, equivalently, by @�. This implies that the
Kerr metric in the new coordinates is manifestly stationary
and natural observers that follow integral curves of the
stationary Killing field are again given by surfaces of
constant spatial coordinates. A natural consequence of
the choice (1) is that null infinity is at a fixed spatial
coordinate location with respect to a time-independent
compactifying coordinate along level sets of �. This con-
siderably simplifies the numerical implementation as well
as the analysis of the solution [33,41].
A compactifying coordinate can be introduced by

r ¼ �

�
; with � ¼ �ð�Þ: (2)

This choice implies that the zero set of � corresponds to
infinity in terms of the physical coordinate r. The choice of
the conformal factor can be made in such a way as to
ensure that future null infinity (denoted by Iþ) is at the
coordinate location � ¼ S, for example, by setting
�extð�Þ ¼ 1� �=S. In an interior domain near the black
hole we want to use the standard physical coordinates,
which implies �intð�Þ ¼ 1. There is a transition between
the interior and the exterior domain where we match the
two functions. Many choices are possible on the transition
domain. Here, we set

1We use the naming convention for the coordinatization of
Kerr spacetime as in [50].
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�ð�Þ ¼
8><
>:
�intð�Þ for � � �int;
�intð�Þe�ð���intÞ2=ð���extÞ2 þ�extð�Þð1� e�ð���intÞ2=ð���extÞ2Þ for �int <�< �ext;
�extð�Þ for � � �ext:

(3)

Hyperboloidal foliations that coincide with standard Boyer-Lindquist or ingoing Kerr foliations in the interior can be
constructed by suitably choosing the derivative of the height function dh=dr ¼: H. Here, we choose

Hð�Þ ¼
8><
>:
0 for � � �int;
Hextð�Þð1� e�ð���intÞ2=ð���extÞ2Þ for �int < �< �ext;
Hextð�Þ for � � �ext:

(4)

The choice H ¼ 0 along with � ¼ 1 near the black hole
ensures that the foliation and the coordinates are not
changed. The function Hextð�Þ is different for Boyer-
Lindquist and ingoing Kerr foliations [36]. Its choice will
be discussed in later sections.

III. THE CONFORMAL METHOD

The conformal method to study the asymptotic behavior
of radiative fields was introduced by Penrose [22,23,56].
The example of the scalar wave equation was the first
system where the hyperboloidal initial value problem
was studied [57,58]. In this section we will present the
conformal method for the scalar wave equation on a Kerr
spacetime.

A. Conformal transformation of the scalar wave
equation

Our notation follows [41], where the conformal method
was applied to calculate tail decay rates for scalar and
Yang-Mills fields at null infinity in a Schwarzschild
spacetime.

Here, we are interested in solutions to the scalar wave

equation ~h ~� ¼ 0, for a scalar field ~� in a Kerr spacetime
with metric ~g. The coordinate transformations (1) and (2)
result in a representation of the Kerr metric ~g that is
singular at � ¼ 0. To include null infinity in a regular
way we need to rescale the Kerr metric ~g with �2. The
Kerr spacetime is weakly asymptotically simple, implying
that with a suitable choice of the transformations (1) and
(2) the rescaled metric g ¼ �2~g is smoothly extendable
through null infinity where we have f� ¼ 0; d� � 0g. The
following conformal transformation rule holds:

�
h� 1

6
R

�
� ¼ ��3

�
~h� 1

6
~R

�
~�; with � ¼

~�

�
; (5)

where R and ~R are the Ricci scalars of the rescaled and the
physical metrics g and ~g, respectively. The scalar wave
equation with respect to the rescaled metric then becomes

h�� 1

6
R� ¼ 0: (6)

Note that the above equation is invariant under both coor-
dinate and conformal transformations.

B. First order reduction

The wave Eq. (6) can be written in any coordinate
system fx�g as
g��@�@�� ¼ ��@��þ 1

6R�; where �� :¼ g����
��:

To bring it to first order form we introduce the auxiliary
variables �� :¼ @��. Assuming that the coordinate x0

denotes the time direction we get the following system of
evolution equations:

ð�g00Þ@0�0 ¼ 2g0a@a�0 þ gab@a�b

�
�
�0�0 þ �a�a þ 1

6R�

�
;

@0�a ¼ @a�0; @0� ¼ �0: (7)

The above system is symmetric hyperbolic [59]. Its coef-
ficients are calculated with respect to the conformal metric
g written in coordinates f�; �; y; ’g. In the case of a Kerr
spacetime we can apply the separation of variables
�ð�; �; y; ’Þ ¼ �ð�; �; yÞe�ik’ and study solutions for
each k mode independently, because azimuthal modes
decouple in the presence of axisymmetry. Here, we will
choose initial data corresponding to a single azimuthal
mode with k ¼ 0. In this case, the indices a and b span
over � and y.

C. Hyperboloidal compactification in ingoing Kerr
coordinates

In the following, we present a hyperboloidal compacti-
fication of the ingoing Kerr representation of the Kerr
metric. The ingoing Kerr slicing is one of the most com-
monly used slicing conditions for numerical calculations
on Kerr spacetime. Its level sets allow us to apply an
excision technique inside the black hole horizon.
Asymptotically they approach spatial infinity. For their
relation to the Boyer-Lindquist coordinates see [50].
Following usual notation we introduce

~� :¼ r2 þ a2y2; ~4 :¼ r2 þ a2 � 2mr; (8)

where m and a are the ADM mass and the angular mo-
mentum of the Kerr spacetime, respectively. After trans-
forming to compactifying coordinates we will use

� :¼ �2 ~� and 4 :¼ �2 ~4.
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The Kerr metric in ingoing Kerr coordinates reads

~giK ¼ �
�
1� 2mr

~�

�
dt2 þ 4mr

~�
dtdr� 4amr

~�

� ð1� y2Þdtd’� 2að1� y2Þ
�
1þ 2mr

~�

�
drd’

þ
�
1þ 2mr

~�

�
dr2 þ

~�

1� y2
dy2

þ
�
r2 þ a2 þ 2ma2rð1� y2Þ

~�

�
ð1� y2Þd’2: (9)

This metric gives the following simple evolution equa-

tion for @t ~�t:

ð~�þ 2mrÞ@t ~�t ¼ 4mr@r ~�t þ ~4@r ~�r þ ð1� y2Þ@y ~�y

þ 2m ~�t þ 2ðr�mÞ ~�r � 2y ~�y:

(10)

Applying the coordinate transformations (1) and (2) to
the above metric and rescaling with �2 gives

giK ¼ ��2

�
1� 2m��

�

�
d�2 � 2L

�
H � 2m��

�

� ð1þHÞ
�
d�d�� 4am��3

�
ð1� y2Þd�d’

þ g��d�
2 � 2Lað1� y2Þ

�
1þ 2m��

�
ð1þHÞ

�

� d�d’þ �

1� y2
dy2 þ

�
�2 þ a2�2

þ 2ma2��3ð1� y2Þ
�

�
ð1� y2Þd’2: (11)

Here, L :¼ �� �@��, and

g�� ¼ L2

�2

�
1�H2 þ 2m��

�
ð1þHÞ2

�
:

The radial component of the spacetime metric appears to
be singular, but with a suitable choice for the derivative of
the height function it acquires an explicitly regular form.
Following [36] we make that choice in the exterior domain
to be

Hext ¼ 1þ 4m�

�
þ ð8m2 � C2

iKÞ�2

�2
; (12)

where CiK is a free parameter. Only the first two terms are
required for the regularity of g��. The third term (involving

the free parameter CiK) is taken for numerical purposes as
will be discussed later. The appearance of such a free
parameter for hyperboloidal foliations should be con-
trasted with asymptotic solutions to eikonal equations
used for asymptotic constructions of null hypersurfaces,
where no such parameters are allowed [46].

With the above choice for the derivative of the height
function the metric is manifestly regular at Iþ. By setting
�ext ¼ 1� �=S we get

giKjIþ ¼ �2d�d�þ 2
C2
iK

S2
d�2 � 2að1� y2Þd�d’

þ 1

1� y2
dy2 þ ð1� y2Þd’2:

The coordinate speed of outgoing characteristics at null
infinity reads cþ ¼ �2g��=g��; for the above metric this

is cþ ¼ S2=C2
iK. We see that the coordinate speed of

characteristics depends on the coordinate location of null
infinity and an additional free parameter CiK. The latter is
related to the asymptotic value of the mean extrinsic cur-
vature of our surfaces. This is the reason why we included
the third term in the expansion (12): the parameter CiK is
important if we want the coordinate location of Iþ to be
large while avoiding strong restrictions on the allowed time
step due to a large value of the coordinate speed of out-
going characteristics.

IV. THE COORDINATE BASED APPROACH

We can recognize essentially three steps in the hyper-
boloidal compactification of Kerr spacetime: a time trans-
formation (1), a spatial compactification (2), and a
rescaling (5). In the previous section we calculated a
conformal metric that has a smooth extension through
null infinity and studied the conformal transformation
behavior of the underlying covariant differential equation.
In this section we will instead go through the above three
steps at the level of the partial differential equations written
in some coordinate system. We will follow this approach in
an explicitly noncovariant notation. The rationale behind
this is to have an alternative to the geometric approach,
which might be more straightforward to apply for those not
familiar with conformal techniques. This approach may
also be useful in cases where the conformal transformation
behavior of the equation of interest is difficult to calculate
[42].

A. The transformations

Suppose that we are given a linear, second order partial

differential equation for a function ~� in two spatial dimen-
sions

@t ~�t ¼ ~Atr@r ~�t þ ~Arr@r ~�r þ ~Ayy@y ~�y þ ~Bt ~�t

þ ~Br ~�r þ ~By ~�y þ ~C ~�; (13)

where ~�� :¼ @� ~�. Assuming that the coefficients are

independent of t, we write the above equation under the
following transformations:
(i) Time transformation: We introduce a new time co-

ordinate as in (1). Equation (13) then becomes

ANIL ZENGINOĞLU AND MANUEL TIGLIO PHYSICAL REVIEW D 80, 024044 (2009)

024044-4



ð1� ~ArrH2 þ ~AtrHÞ@� ~�� ¼ ð ~Atr � 2H ~ArÞ@r ~��

þ ~Arr@r ~�r þ ~Ayy@y ~�y

þ ð ~Bt � ~BrH

� ~Arr@rHÞ ~�� þ ~Br ~�r

þ ~By ~�y þ ~C ~�; (14)

(ii) Spatial compactification: We introduce a compacti-
fying radial coordinate as in (2). We set

J :¼ d�

dr
¼ �2

L
;

J0 :¼ dJ

dr
¼ �3

L3
ð2ð@��ÞLþ ��@2��Þ;

with L ¼ �� �@�� as before. Equation (13) be-

comes

@t ~�t ¼ ~AtrJ@� ~�t þ ~ArrJ2@� ~�� þ ~Ayy@y ~�y þ ~Bt ~�t

þ ð ~BrJ þ ~ArrJ0Þ ~�� þ ~By ~�y þ ~C ~� : (15)

(iii) Rescaling: We define the rescaled evolution variable

� :¼ fðrÞ ~�. Equation (13) becomes

@t�t ¼ ~Atr@r�t þ ~Arr@r�r þ ~Ayy@y�y

þ
�
~Bt � ~Atr @rf

f

�
�t þ

�
~Br � 2 ~Arr @rf

f

�
�r

þ ~By�y þ
�
~C� ~Br @rf

f

þ ~Arr

�
2
ð@rfÞ2
f2

� @2rf

f

��
�: (16)

Combining the three steps above gives us finally an
evolution equation of the form

@��� ¼ A��@��� þ A��@��� þ Ayy@y�y

þ B��� þ B��� þ By�y þ C�: (17)

This method is essentially equivalent to the conformal
method. Equation (7), which we obtained with the confor-
mal method, can also be derived by using the coordinate
based approach just presented and making consistent
choices of rescaling and coordinate transformations. This
has been used as a check for the final equations that the
have numerically implemented.

Note that in the coordinate based method we do not need

to rescale the function ~� with�. We can choose to rescale
it with any function that behaves asymptotically like r, and
read off the radiation field directly at null infinity. In fact, a
common approach in numerical calculations is to evolve

the variable � :¼ r ~�. To see how this relates to the con-
formal rescaling of the previous section, make a simple

choice for the conformal factor� ¼ 1� �. In terms of the
physical coordinate r we have have

r ¼ �

1� �
) � ¼ r

1þ r
) � ¼ 1� � ¼ 1

1þ r
:

Therefore, and due to the falloff behavior of ~�, the rescal-

ing ~�=� ¼ ð1þ rÞ ~� is asymptotically equivalent to the

rescaling r ~� in first order.

B. Hyperboloidal compactification of the scalar wave
equation in Boyer-Lindquist coordinates

We have used the above method to transform the scalar
wave equation on a Kerr background written in Boyer-
Lindquist coordinates. The Kerr metric in those coordi-
nates reads

~g BL ¼ �
�
1� 2mr

~�

�
dt2 � 4amr

~�
ð1� y2Þdtd’þ

~�
~4dr2

þ
~�

1� y2
dy2 þ ~R2ð1� y2Þd’2:

Instead of writing the conformal Kerr metric we derive the
scalar wave equation on this background and work directly
with that equation. It is common practice to introduce the
tortoise coordinate r� for the numerical implementation of
the wave equation because the Boyer-Lindquist coordi-
nates do not give a foliation of the event horizon. The
tortoise coordinate is defined by

dr�
dr

¼ r2 þ a2

~�
:

The scalar wave equation in Boyer-Lindquist coordinates
can be written as

@t ~�t ¼ ðr2 þ a2Þ2
D2

@r�
~�r� þ

~�ð1� y2Þ
D2

@y ~�y þ 2r~�

D2
~�r�

� 2y~�

D2
~�y;

@t ~�r� ¼ @r�
~�t; @t ~�y ¼ @y ~�t; @t ~� ¼ ~�t; (18)

where we have defined D2 :¼ ðr2 þ a2Þ2 � a2 ~�ð1� y2Þ.
From the above equation we calculate the equation for a

rescaled variable� :¼ r ~� following the prescription given
by Eq. (16). Then we introduce a time function � as in
Eq. (14), such that the level surfaces of � approach null
infinity. The Kerr metric in Boyer-Lindquist coordinates
approaches a Schwarzschild metric in standard
Schwarzschild coordinates; therefore, we may assume
that the asymptotic form of H needs to be chosen as for
the Schwarzschild spacetime in standard Schwarzschild
coordinates. Remember, however, that the asymptotic
Schwarzschild metric in null directions in the tortoise
coordinate is of standard Minkowski form. Therefore, we
can choose for H the expression for the standard hyper-
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boloids in Minkowski spacetime [36]. We set

Hext ¼ r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� þ C2

BL

q ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ�2C2

BL

q : (19)

For the second part of the above equation we used r� ¼
�=�. Here, CBL is a free parameter that determines the
asymptotic extrinsic curvature of the hyperboloidal sur-
faces as in the case of Minkowski spacetime [36,60]. As in
the ingoing Kerr case, the value of CBL needs to be chosen
close to the value of the coordinate location of null infinity,
S, in order to prevent the coordinate speeds of outgoing
characteristics from becoming too large.

For the spatial compactification (2) we choose the func-
tion� as in the ingoing Kerr case. Here,� determines the
spatial coordinate compactification and does not acquire
the meaning of a conformal factor for the spacetime metric.

The above choices fix the transformations and result in
an explicitly regular set of equations each of which has the
form (17). Their final form is rather lengthy but straightfor-
ward to calculate and will therefore not be presented.

V. NUMERICS

As a test of the two approaches to include null infinity in
numerical simulations by spacelike matching ‘‘standard’’
Cauchy hypersurfaces to hyperboloidal slicings here we
implement them on a 2þ 1 code solving a scalar wave
equation on a Kerr spacetime. Near the black hole we use
ingoing Kerr and Boyer-Lindquist coordinates.

The conformal method is applied for the hyperboloidal
compactification in the ingoing Kerr case, and the coordi-
nate based approach in the Boyer-Lindquist case. We note
that there is no specific reason for this choice. Other
coordinate choices are possible as well. The equations
we solve numerically are given in Eq. (7) with respect to
the metric (11) and in Eq. (18) with the transformations
(14)–(16). The asymptotic form of the height functions for
ingoing Kerr and Boyer-Lindquist foliations are (12) and
(19), respectively.

In both cases we prescribe initial data of the form

�ð0; �; yÞ ¼ 0; ��ð0; �; yÞ ¼ e�ðr�r0Þ2=�2
Yl0; (20)

where Yl0 denotes the familiar spherical harmonics of
degree l and order k ¼ 0. The data are of compact support.
We set��ð0; �; yÞ ¼ 0 for � > �int. Regarding the parame-
ters in the initial data we choose r0 ¼ 5 and � ¼ 2 with
mass m ¼ 1.

A. The numerical method

We use method of lines with fourth order Runge-Kutta
time integration. For the angular derivatives we use a
pseudospectral collocation method with Legendre polyno-
mials, as in [54], which is both efficient and automatically
takes care of the coordinate singularities at the poles. We
use finite differences in the radial direction. The reason

why we do not use spectral differencing in the radial
direction is the nonsmooth matching (3) and (4). We
wish to remark, however, that we could, in principle, apply
spectral differencing by using a multipatch approach in
which the matching boundaries coincide with some of the
patch boundaries. We did not follow this approach only due
to the simplicity of the finite difference method.
In the ingoing Kerr case the inner boundary is a space-

like surface inside the event horizon so that one can use the
excision technique. The outer boundary is at null infinity.
We apply one-sided finite differencing at both boundaries
using the same order operators at the boundaries as in the
interior [61]. In the Boyer-Lindquist case we set the inner
boundary very close to the black hole. We apply the out-
going boundary condition (ingoing with respect to the
black hole) at the inner boundary, which we set at r� ¼
�40m. We use fourth order accurate finite differencing
operators in the Boyer-Lindquist case instead of the eight
order operators used in the ingoing Kerr case, as the out-
going boundary condition is simpler to apply with respect
to fourth order operators.
We add Kreiss-Oliger type artificial dissipation to the

evolution equation for the time derivative of � to suppress
numerical high-frequency waves [62]. For a 2p� 2 accu-
rate scheme we choose an operator (Q) of order 2p as

Q ¼ �ð�1Þp h
2p�1

2p
Dp

þDp�;

where h is the grid size, D� are the forward and backward
finite differencing operators, and � is the dissipation pa-
rameter, which we set as � ¼ 0:03.
One major source of error is the matching between the

inner coordinates and the coordinates of the hyperboloidal
compactification. The matching is performed using
Eqs. (3) and (4). We found that the matching along �int

introduces large numerical errors in the solution that con-
verge with the order of the finite differencing method. The
fact that the numerical errors are large near �int is to be
expected because the matching is not analytic at �int,
whereas it is analytic at �ext. In our simulations we set
�int to be at around 20m in both cases. This is a point where
improvement may lead to a more efficient code. The outer
matching introduces no problems.
We put the numerical outer boundary at � ¼ S ¼ 100 in

both cases. The numerical outer boundary corresponds to
future null infinity. Its coordinate location effects the co-
ordinate speed of characteristics as discussed before.
Experiments with different coordinate locations of future
null infinity delivered qualitatively similar results. An im-
portant point with respect to the coordinate location of the
outer boundary is related to the choice of parameters that
determine the hyperboloidal foliation. The free parameters
CiK and CBL need to be both of the order of S as discussed
in Secs. III C and IVB.
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The convergence properties of our codes can be seen in
Fig. 1. For these plots, a three level convergence analysis
has been performed for an l ¼ 0 initial data using 1600,
3200, and 6400 grid cells in the radial direction and 4
points in the angular direction where spectral differencing
was applied. We used quadruple precision for the runs
because the numerical error was below machine accuracy
at late times when double precision was used. The time
step for the ingoing Kerr case was dt ¼ 0:05, while for the
Boyer-Lindquist case it was dt ¼ 0:1. The reason why we
can choose a larger time step in the Boyer-Lindquist case is
because the coordinate speeds of characteristics are lower.

We see that, in the ingoing Kerr case, the convergence
factor settles down at around 8 after an initial transient
phase in which it starts at 4, the order of the time integra-
tion. The reason is that in this initial phase the error is
dominated by the time integration. This is the same behav-
ior as in [42]. To get a convergence factor of 8 from the
beginning a much lower time step needs to be chosen,
which is not practical for late-time tail calculations [42].
In the Boyer-Lindquist case where both the time integra-
tion and the spatial discretization is of fourth order the
convergence factor is 4. The irregularities in the plots are
due to matching. When a wave package passes through the
matching boundary �int, the error increases significantly
but in a convergent fashion.

As a next test we calculate a fundamental quasinormal
mode frequency. The quasinormal mode ringing for initial
data with l ¼ 2 can be seen in Fig. 2. We plot here the
ringing as measured by an observer at r ¼ 3m and at Iþ in
ingoing Kerr coordinates. We observe that the duration of
ringing along Iþ is shorter. Therefore, we use the signal
measured closer to the black hole for the fitting. The
frequencies are obtained by fitting the signal to the formula

�ð�Þ ¼ Ae�!2� sinð!1�þ ’Þ: (21)

Here, !1 and !2 are the mode frequencies, A is the
amplitude and ’ is the phase of the wave signal. The fitting
is performed using a simple least squares method on the

interval � 2 ½60m; 150m�. The error in frequency is rather
dominated by the fit than by numerics. We find !1 ¼
0:491 971 and !2 ¼ 0:094 653. These numerical values
are very close to those obtained by using Leaver’s contin-
ued fraction method [63,64], which read !1 ¼ 0:49 196
and !2 ¼ 0:09 463. The latter have also been confirmed
numerically by other codes [51,52]. We obtain a similar
result with the code based on Boyer-Lindquist coordinates.
Quasinormal mode frequencies are the same for all

observers. Including null infinity in the computational
domain does not give us a different picture. The tail decay
rates, however, vary from observer to observer as discussed
in the next subsection.

B. Tail decay rates

In contrast to the quasinormal mode frequencies, the
asymptotic tail decay rates at a finite distance and at null
infinity are different. Also, before the asymptotic decay
rates are obtained, the signals differ substantially from
each other. The signal that is relevant for an idealized
observer is the one measured at null infinity. This is be-
cause realistic sources of gravitational radiation are at
astronomical distances from us. Our detectors are better
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FIG. 1. Convergence in the L2 norm in the radial direction for ingoing Kerr (left plot) and Boyer-Lindquist (right plot) coordinates

near the black hole. The convergence factor Q is calculated by Q ¼ log2
k�low��medkL2
k�med��highkL2

where the norm is taken over the whole grid at a

given time. We see that in the ingoing Kerr case the convergence factor attains its value 8 after a transient phase because numerical
errors in the time integration dominate as observed in [42]. In the Boyer-Lindquist case the convergence factor is 4. The irregularities
in the convergence factors are due to matching.
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FIG. 2 (color online). Quasinormal mode ringing of Kerr
spacetime with m ¼ 1 and a ¼ 0:5 excited by a Gaussian initial
data with l ¼ 2 mode as measured by an observer located along
r ¼ 3m (the solid red curve) and Iþ (the dashed blue curve) in
ingoing Kerr coordinates.
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modeled by observers at future null infinity than by ob-
servers at finite distances in numerical computations
[41,65,66].

The transition between timelike and null infinity in the
decay rates for a monopole perturbation can be seen in
Fig. 3. In that figure, the local power index has been plotted
for various observers ordered by distance ranging from
close to the black hole up to and including future null
infinity. We define the local power index as

p�;yð�Þ ¼ d lnj�ð�; �; yÞj
d ln�

: (22)

We calculate the time derivatives by using finite differ-
encing from numerical data. The function p�;yð�Þ becomes

the exponent of the polynomial decay of the solution
asymptotically in time. We did not observe a significant
variation of the index with respect to the angular location y
of the observer.

We see that the monopole perturbation decays with rate
�3 near timelike infinity, while the rate at null infinity is
�2. The decay rate for the l ¼ 1mode is�5 near the black
hole and�3 near null infinity, as can be seen in Fig. 4. This
behavior is the same as in Schwarzschild spacetime and is
in accordance with the prediction of Table II in [55]. The
decay rate for l ¼ 2 is as for l ¼ 0 and the rate for l ¼ 3 is
as for l ¼ 1 due to mode coupling in accordance with

earlier predictions and calculations [50,53–55]. For the l ¼
4mode the decay rate near timelike infinity is�5 but along
null infinity it is�4. This is also in accordance with Hod’s
prediction (see Table I in [55]).
We see that the calculation in ingoing Kerr coordinates

near the black hole is not as accurate as in Boyer-Lindquist
coordinates. This is due to the smaller time step in the
ingoing Kerr case as mentioned in Sec. VA.
We mention that from a physical point of view, in an

axisymmetric spacetime the concept of a pure l-mode
initial data does not have a geometrically invariant mean-
ing. In this case, only the monopole perturbations can be
defined invariantly. This has led to some confusion about
decay rates for Kerr spacetime. In our studies the asymp-
totic decay rates in both coordinate systems coincide for
any l-mode initial data as in (20) due to the fact that we are
using the same type of initial data in coordinates that are
related in a way which leaves the notion of an l-mode
invariant as explained in [50]. Here, we found that the
asymptotic rates are the same for such initial data in in-
going Kerr and Boyer-Lindquist coordinates also at null
infinity.
Predictions of late-time decay rates are valid asymptoti-

cally. In our numerical simulations, we also observe the
intermediate behavior of the local power index. It is well
known that for distant observers the limiting rate is attained
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FIG. 3 (color online). Tail decay rates for initial data with a pure l ¼ 0 mode in ingoing Kerr (left) and Boyer-Lindquist (right)
coordinates. The solid blue curves are measured by observers along Iþ. The solid red curves are measured by observers close to the
black hole at r ¼ 10 in units where massm ¼ 1. The dashed black curves correspond to observers at r ¼ f5000; 1000; 500g from top to
bottom.
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FIG. 4 (color online). Tail decay rates for an l ¼ 1 mode. Observers are located as in Fig. 3.
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later in time [67]. One observes that the decay rate for
distant observers is between the rate for close observers
and the rate along null infinity [41,66]. This is also seen for
the lower lmodes in Kerr spacetime (Figs. 3 and 4). For the
l ¼ 4mode, however, we observe that the decay for distant
observers is faster than for observers very close to the black
hole (Fig. 5). We do not have analytical evidence explain-
ing this behavior. It may be suggested that it is due to the
anomalous nature of l � 4modes related to mode coupling
in Kerr spacetime [50,53–55]. We speculate that for distant
observers the Schwarzschild decay rates may still have
some validity. In Schwarzschild spacetime, a decay rate
of �4 at null infinity would lead to a decay rate of �7
along timelike surfaces. This rate seems to be approached
by distant observers in Fig. 5. We expect that the rate for
close by observers will be attained by distant observers
much later in time. Wewish to stress, however, that this is a
speculative attempt at explaining what we observe.
Analytical calculations need to be performed to understand
the intermediate behavior of the local power index.

VI. DISCUSSION

We have presented the first numerical evolution scheme
for scalar fields on the background of a rotating black hole
that includes future null infinity. Our method is based on
the construction of hyperboloidal surfaces in Kerr space-
time presented in [36]. While previous studies of character-
istic foliations do allow, in principle, compactification at
null infinity on a Kerr spacetime [46–49], they did not
culminate in numerical applications. In this paper we
have presented and implemented two methods based on
the hyperboloidal compactification technique that include
null infinity in the computational domain. Our methods are
very flexible and allow us to keep any preferred choice of
coordinates near the black hole.

We confirmed well-known results concerning quasinor-
mal mode frequencies and tail decay rates measured by
observers close to the black hole. In addition, we presented
decay rates at and near null infinity confirming earlier
predictions [55] for the first time. Our method allows us
to study the transition between timelike and null infinity
with respect to the decaying signal.

We expect that our methods can be applied to discuss
physically more interesting evolution equations so that

predictions concerning the behavior of electromagnetic
and gravitational perturbations at future null infinity can
be studied as well [68,69]. The coordinate based approach
of Sec. III may be easier to apply to problems where the
conformal transformation behavior is not known. In nu-
merical calculations the equations of interest are given
anyway in a specific coordinate system. Once the asymp-
totic form of the height function is known, the coordinate
based approach can be applied easily to transform the
equations to include null infinity in the computational
domain.
In numerical applications of the hyperboloidal approach,

one usually finds that the hyperboloidal method is very
efficient in calculating the outgoing radiation accurately
[41,42]. In our study of spacelike matching, however, we
find that the presence of a matching domain is a significant
source of numerical error. There are many possibilities to
solve this problem. One option is to devise better matching
techniques, such as matching at a multipatch boundary.
This approach will still have to deal with the change of
characteristic speeds across the matching domain. The
other option would be to construct an analytic, horizon
penetrating hyperboloidal foliation, which renders the in-
troduction of matching domains unnecessary. It would be
interesting to study hyperboloidal foliations of Kerr space-
time analytically or numerically using methods that proved
useful in the case of Schwarzschild spacetime [70–72].
This work suggests that once the spherically symmetric

case has been mastered, extension to less symmetries is
more or less straightforward in the hyperboloidal approach.
There are two reasons for this. First, hyperboloidal folia-
tions can be made to coincide with any known foliation
near the black hole [36]. This allows us to use methods that
have been applied successfully in numerical relativity in an
inner domain where the fields are strong. Second, asymp-
totically flat spacetimes become flat, and therefore spheri-
cally symmetric in the asymptotic domain. As a
consequence, the spherically symmetric case already gives
important clues on how to deal with the asymptotic region
in the hyperboloidal approach.
The observations presented in this paper may be useful

in the fully nonlinear case, once the hyperboloidal evolu-
tion problem with the Einstein equations is solved.
Specifically, the numerical discussion of having null infin-
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FIG. 5 (color online). Tail decay rates for an l ¼ 4 mode. Observers are located as in Fig. 3.
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ity at an arbitrary but fixed spatial coordinate location and
setting the conformal factor to unity in the interior while
allowing it to vanish in the asymptotic domain in a certain
way can be expected to be relevant in the nonlinear case.
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