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Adopting the strong field limit approach, we studied the properties of strong field gravitational lensing

in the deformed Hořava-Lifshitz black hole and obtained the angular position and magnification of the

relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy

described by this metric, we estimated the numerical values of the coefficients and observables for

gravitational lensing in the strong field limit. Comparing with the Reissner-Nordström black hole, we find

that with the increase of parameter �, the angular position �1 decreases more slowly and rm more quickly,

but angular separation s increases more rapidly. This may offer a way to distinguish a deformed Hořava-

Lifshitz black hole from a Reissner-Nordström black hole by the astronomical instruments in the future.
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I. INTRODUCTION

The general theory of relativity tells us that photons
would be deviated from their straight path when they
pass close to a compact and massive body. The phenomena
resulting from the deflection of light rays in a gravitational
field are called gravitational lensing and the object causing
a detectable deflection is usually named as a gravitational
lens. Like a natural and large telescope, gravitational lens-
ing can provide us the information about the distant stars
which are too dim to be observed. Moreover, it can help us
to detect the exotic objects (such as cosmic strings) in the
universe as well as to verify alternative theories of gravity.
Most of the theories of gravitational lensing have been
developed in the weak field approximation [1–3] in which
one only keeps the first non-null term in the expansion of
the deflection angle. In general, it is enough for us to
investigate the properties of gravitational lensing by ordi-
nary stars and galaxies. However, when the lens is a
compact object with a photon sphere (such as a black
hole), a strong field treatment of gravitational lensing [4–
9] is needed instead because in this situation photons
passing close to the photon sphere have large deflection
angles and the weak field approximation is not valid any
more. Virbhadra and Ellis [6] find that near the line con-
necting the source and the lens, an observer would detect
two infinite sets of faint relativistic images on each side of
the black hole which are produced by photons that make
complete loops around the black hole before reaching the
observer. These relativistic images could provide a pro-
found verification of alternative theories of gravity in their
strong field regime. Thus, the study of the strong field
gravitational lensing by black holes in the different space-
times becomes appealing recent years.

On the basis of the Virbhadra-Ellis lens equation [7,8],
Bozza [10] devised an analytical method for calculating
the deflection angles for the light rays propagating close to
the Schwarzschild black hole and showed that there exists
a logarithmic divergence of the deflection angles at photon
sphere. Later Bozza’s technique was extended to other
static spacetimes. For example, Eiroa et al. [11–14] have
studied the gravitational lensing due to the Reissner-
Nordström black hole, the braneworld black hole, and the
Einstein-Born-Infeld black hole. Bozza [15] extended the
analytical method of lensing for a general class of static
and spherically symmetric spacetimes and showed that the
logarithmic divergence of the deflection angle at photon
sphere is a common feature for such spacetimes. Moreover,
he [16–18] has also studied the gravitational lensing by a
spinning black hole. Bhadra et al. [19,20] have considered
the gravitational lensing by the Gibbons-Maeda-Garfinkle-
Horowitz-Strominger charged black hole and the black
hole in the Brans-Dicke theory. Konoplya [21] has studied
the corrections to the deflection angle and time delay in the
background of a black hole immersed in a uniform mag-
netic field. Majumdar [22] has investigated the gravita-
tional lensing in the dilaton-de Sitter black hole
spacetimes. Perlick [23] has obtained an exact gravita-
tional lens equation in a spherically symmetric and static
spacetime and used it to study lensing by a Barriola-
Vilenkin monopole black hole. Gyulchev [24] has studied
the features of light propagation close to the equatorial
plane of the rotating dilaton-axion black hole spacetime
and obtained that there exists a significant dilaton-axion
effect present on the gravitational lensing observables in
the strong field limit. These results are very useful for us to
verify the validity of gravity theories through the astro-
nomical observation of the relativistic images in the
universe.
Recently, Hořava [25] proposes a renormalizable four-

dimensional theory of gravity, which admits the Lifshitz
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scale-invariance in time and space rather than Lorentz
invariant theory of gravity in 3þ 1 dimensions.
Thereafter, the Hořava-Lifshitz gravity theory has been
intensively investigated in [26–35] and its cosmological
applications have been studied in [36–42]. Some static
spherically symmetric black hole solutions have been
found in Hořava-Lifshitz theory [43–48] and the associated
thermodynamic properties with those black hole solutions
have been investigated in [49–52]. The quasinormal modes
of the massless scalar perturbations [53,54] and the gravity
lens in the weak field limit [54] have been studied in the
deformed Hořava-Lifshitz black hole spacetime. Since the
weak field limit takes the first order deviation from
Minkowski spacetime, it is necessary to study the gravity
lens in the strong field limit in the black hole spacetime
because that it starts from complete capture of the photon
and takes the leading order in the divergence of the de-
flection angle. The main purpose of this paper is to study
the gravity lens in the strong field limit in the deformed
Hořava-Lifshitz black hole spacetime [44].

Our paper is organized as follows. In Sec. II we adopt to
Bozza’s method and obtain the deflection angles for light
rays propagating in the deformed Hořava-Lifshitz black
hole. In Sec. III we suppose that the gravitational field of
the supermassive black hole at the center of our galaxy can
be described by this metric and then obtain the numerical
results for the observational gravitational lensing parame-
ters defined in Sec. II. Then, we make a comparison
between the properties of gravitational lensing in the de-
formed Hořava-Lifshitz and Reissner-Nordström metrics.
At last, we present a summary.

II. DEFLECTION ANGLE IN THE DEFORMED
HOŘAVA-LIFSHITZ BLACK HOLE

In the Hořava-Lifshitz gravity, the deformed action in
the limit �W ! 0 can be described by [44]

SHL ¼
Z

dtd3xðL0 þ ~L1Þ; (2.1)
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Here w, �, �, and � are the parameters in the Hořava-
Lifshitz theory. Kij is extrinsic curvature

Kij ¼ 1

2N
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respectively. For � ¼ 1, there exists a static and asymptoti-
cally flat black hole solution which has a form [44]

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d�2Þ; (2.6)

and

fðrÞ ¼ 2ðr2 � 2Mrþ �Þ
r2 þ 2�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ 8�Mr
p ; (2.7)

where� ¼ 1=ð2wÞ andM is an integration constant related
to the mass. Obviously, it returns the Schwarzschild space-
time as the parameter � ¼ 0. When the mass M ¼ 0, it is
corresponding to the Minkowski spacetime. Although the
metric of this black hole behaviors as that of Reissner-
Nordström black hole and the event horizons are given by

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � �

p
; (2.8)

there exists a distinct difference between them is that the
denominator of fðrÞ in the deformed Hořava-Lifshitz black
hole metric is no longer equal to r, which will make a great
deal influence on gravitational lensing in the strong field
limit.
As in [7,8,15], we just consider that both the observer

and the source lie in the equatorial plane in the deformed
Hořava-Lifshitz black hole (2.6) and the whole trajectory
of the photon is limited on the same plane. With the
conditions that � ¼ 	

2 and 2M ¼ 1, the metric (2.6) can

be rewritten as

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ CðrÞd�2; (2.9)

with

AðrÞ ¼ fðrÞ; BðrÞ ¼ 1=fðrÞ; CðrÞ ¼ r2: (2.10)

The deflection angle for the photon coming from infinite
can be expressed as

�ðr0Þ ¼ Iðr0Þ � 	; (2.11)

where r0 is the closest approach distance and Iðr0Þ is [7,8]

Iðr0Þ ¼ 2
Z 1

r0

ffiffiffiffiffiffiffiffiffi
BðrÞp

drffiffiffiffiffiffiffiffiffiffi
CðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðrÞAðr0Þ
Cðr0ÞAðrÞ � 1

q : (2.12)

It is easy to obtain that as parameter r0 decrease the
deflection angle increase. At a certain point, the deflection
angle will become 2	, it means that the light ray will make
a complete loop around the compact object before reaching
the observer. When r0 is equal to radius of the photon
sphere, the deflection angle diverges and the photon is
captured.
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The photon sphere equation is given by [7,8]

C0ðrÞ
CðrÞ ¼ A0ðrÞ

AðrÞ ; (2.13)

which admits at least one positive solution and then the
largest real root of Eq. (2.13) is defined as the radius of the
photon sphere. In the deformed Hořava-Lifshitz black hole
metric, the radius of the photon sphere can be given
explicitly by

rps ¼ 3þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256�2 � 27

p � 16�2Þ2=3
2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

256�2 � 27
p � 16�2Þ1=3 : (2.14)

When � ¼ 0, it can recovers that in the Schwarzschild
black hole spacetime in which rps ¼ 1:5. However, it is

quite a different from that in the Reissner-Nordström black
hole spacetime, which implies that there exist some distinct
effects of the Hořava-Lifshitz parameter � on gravitational
lensing in the strong field limit. Following the method
developed by Bozza [15], we define a variable

z ¼ 1� r0
r
; (2.15)

and obtain

Iðr0Þ ¼
Z 1

0
Rðz; r0Þfðz; r0Þdz; (2.16)

where

Rðz; r0Þ ¼ 2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞCðr0Þ

p
r0CðrÞ ¼ 2; (2.17)

fðz; r0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr0Þ � AðrÞCðr0Þ=CðrÞ

p : (2.18)

The function Rðz; r0Þ is regular for all values of z and r0.
However, fðz; r0Þ diverges as z tends to zero. Thus, we split
the integral (2.16) into two parts

IDðr0Þ ¼
Z 1

0
Rð0; rpsÞf0ðz; r0Þdz;

IRðr0Þ ¼
Z 1

0
½Rðz; r0Þfðz; r0Þ � Rð0; rpsÞf0ðz; r0Þ�dz;

(2.19)

where IDðr0Þ and IRðr0Þ denote the divergent and regular
parts in the integral (2.16), respectively. To find the order of
divergence of the integrand, we expand the argument of the
square root in fðz; r0Þ to the second order in z and obtain
the function f0ðz; r0Þ:

f0ðz; r0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðr0Þzþ qðr0Þz2

p ; (2.20)

where

pðr0Þ ¼ 2� 3r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r40 þ 4�r0

q ;

qðr0Þ ¼ 3r0ðr30 þ �Þ
ðr30 þ 4�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r40 þ 4�r0

q � 1:

(2.21)

When r0 is equal to the radius of photon sphere rps, the

coefficient pðr0Þ vanishes and the leading term of the
divergence in f0ðz; r0Þ is z�1, thus the integral (2.16)
diverges logarithmically. Close to the divergence, Bozza
[15] found that the deflection angle can be expanded in the
form

�ð�Þ ¼ � �a log

�
�DOL

ups
� 1

�
þ �bþOðu� upsÞ; (2.22)

where

�a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
qðrpsÞ

q ;

�b ¼ �	þ bR þ �a log
r2ps½C00ðrpsÞAðrpsÞ � CðrpsÞA00ðrpsÞ�

ups

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3ðrpsÞCðrpsÞ

q ;

bR ¼ IRðrpsÞ; ups ¼
rpsffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrpsÞ

q : (2.23)

DOL denotes the distance between observer and gravi-
tational lens, �a and �b are so-called the strong field limit
coefficients which depend on the metric functions eval-
uated at rps. In general, the coefficient bR can not be

calculated analytically and need to be evaluated numeri-
cally. Here we expand the integrand in Eq. (2.19) in powers
of � as in [15], we can get

bR ¼ bR;0 þ bR;1�þOð�Þ2; (2.24)

and evaluate the single coefficients bR;0 and bR;1. bR;0 is the
value of the coefficient for a Schwarzschild black hole and
bR;1 is the correction from the Hořava-Lifshitz parameter

�,

bR;1 ¼ 16

45
½�13þ 4

ffiffiffi
3

p þ 10 logð3� ffiffiffi
3

p Þ� ¼ �1:3148;

(2.25)

which is larger than that of the Reissner-Nordström black
hole where bR;1 ¼ �1:5939 [15]. Figs. 1 tell us that with

the increase of � increases the coefficient �a increase, but
both of the minimum impact parameter ups and another

coefficient �b increases, which is similar to that in the
Reissner-Nordström black hole metric. However, as shown
in Fig. 1, in the deformed Hořava-Lifshitz black hole, �a
increases more quickly, both of �b and ups decrease more

slowly. This means that in principle we can distinguish a
deformed Hořava-Lifshitz black hole from a Reissner-
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Nordström black hole by using strong field gravitational
lensing.

Considering the source, lens and observer are highly
aligned, the lens equation in strong gravitational lensing
can be written as [10]


 ¼ �� DLS

DOS

��n; (2.26)

where DLS is the distance between the lens and the source,
DOS ¼ DLS þDOL, 
 is the angular separation between
the source and the lens, � is the angular separation between
the imagine and the lens, ��n ¼ �� 2n	 is the offset of
deflection angle and n is an integer. The position of the n-th
relativistic image can be approximated as

�n ¼ �0n þ
upsenð
� �0nÞDOS

�aDLSDOL

; (2.27)

where

en ¼ eð �b�2n	Þ= �a; (2.28)

�0n are the image positions corresponding to � ¼ 2n	. The
magnification of n-th relativistic image is given by

�n ¼ u2psenð1þ enÞDOS

�a
DLSD
2
OL

: (2.29)

If �1 represents the asymptotic position of a set of images
in the limit n ! 1, the minimum impact parameter ups can

be simply obtained as

ups ¼ DOL�1 (2.30)

In the simplest situation, we consider only that the outer-
most image �1 is resolved as a single image and all the
remaining ones are packed together at �1. Then the angu-
lar separation between the first image and other ones can be
expressed as

s ¼ �1 � �1; (2.31)

and the ratio of the flux from the first image and those from
the all other images is given by

R ¼ �1P1
n¼2 �n

: (2.32)

For a highly aligned source, lens and observer geometry,
these observables can be simplified as

s ¼ �1eð
�b�2	Þ= �a; R ¼ e2	= �a: (2.33)

The strong deflection limit coefficients �a, �b and the mini-
mum impact parameter ups can be obtained through mea-

suring s, R and �1. Then, comparing their values with
those predicted by the theoretical models, we can identify
the nature of the black hole lens.

FIG. 1. Variation of the coefficients of the strong field limit �a, �b and the minimum impact parameter ups with parameter � in the
deformed Hořava-Lifshitz black hole spacetime (in the upper row) and with q2 in the Reissner-Nordström black hole (in the lower
row).
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III. NUMERICAL ESTIMATION OF
OBSERVATIONAL GRAVITATIONAL LENSING

PARAMETERS

In this section, supposing that the gravitational field of
the supermassive black hole at the galactic center of Milky
Way can be described by the deformed Hořava-Lifshitz
black hole spacetime, we estimate the numerical values for
the coefficients and observables of gravitational lensing in
the strong field limit, and then we study the effect of the
metric parameter � on the gravitational lensing.

The mass of the central object of our Galaxy is estimated
to be 2:8� 106M� and its distance is around 7.6 kpc. For
different �, the numerical value for the minimum impact
parameter ups, the angular position of the relativistic im-

ages �1, the angular separation s and the relative magni-

fication of the outermost relativistic image with the other
relativistic images rm are listed in the Table I.
It is easy to obtain that our results reduce to those in the

Schwarzschild black hole spacetime as � ¼ 0. Moreover,
from the Table I, we also find that as the parameter �
increases, the minimum impact parameter ups, the angular

position of the relativistic images �1, and the relative
magnitudes rm decrease, but the angular separation s
increases.
From Fig. 2, we find that in the deformed Hořava-

Lifshitz black hole with the increase of parameter �, the
angular position �1 decreases more slowly and rm more
quickly, but angular separation s increases more rapidly.
This means that the bending angle and the relative magni-
fication of the outermost relativistic image with the other

TABLE I. Numerical estimation for main observables and the strong field limit coefficients for
black hole at the center of our galaxy, which is supposed to be described by the deformed
Hořava-Lifshitz black hole spacetime. � is the parameter of metric. Rs is Schwarzschild radius.
rm ¼ 2:5 logR.

� �1 (�arcsecs) s (�arcsecs) rm (magnitudes) ups=RS �a �b

0 16.870 0.0211 6.8219 2.598 1.000 �0:4002
0.05 16.610 0.0273 6.5014 2.558 1.049 �0:4450
0.10 16.327 0.0368 6.1387 2.514 1.111 �0:4888
0.15 16.014 0.0530 5.7162 2.466 1.193 �0:5331
0.20 15.658 0.0835 5.2008 2.411 1.312 �0:5826
0.25 15.239 0.1541 4.5145 2.347 1.511 �0:6586

FIG. 2. Gravitational lensing by the Galactic center black hole. Variation of the values of the angular position �1 and the relative
magnitudes rm with parameter � in the deformed Hořava-Lifshitz black hole spacetime (in the upper row) and with q2 in the Reissner-
Nordström black hole (in the lower row).
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relativistic images are smaller in the deformed Hořava-
Lifshitz black hole. Our results also agree with that ob-
tained by in the weak field limit [54]. In order to identify
the nature of these two compact objects lensing, it is
necessary for us to measure angular separation s and the
relative magnification rm in the astronomical observations.
Table I tell us that the resolution of two extremely faint
images separated is �0:06 �arcsec, which is too small.
However, with the development of technology, the effects
of parameter � on gravitational lensing may be detected in
the future.

IV. SUMMARY

Gravitational lensing in strong field limit provides a
potentially powerful tool to identify the nature of black
holes in the different gravity theories. In this paper we have
investigated strong field lensing in the deformed Hořava-
Lifshitz black hole spacetime. The model was applied to
the supermassive black hole in the Galactic center. Our
results show that with the increase of the parameter � the
minimum impact parameter ups, the angular position of the

relativistic images �1 and the relative magnitudes rm
decrease. The angular separation s increases. Comparing
with the Reissner-Nordström black hole, we find with the
increase of parameter �, the angular position �1 decreases
more slowly and rm more quickly, but angular separation s
increases more rapidly. This may offer a way to distinguish
the deformed Hořava-Lifshitz black hole from a Reissner-
Nordström black hole by the astronomical instruments in
the future.
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