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Pushing the asymptotics of the 6 j-symbol further
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In the context of spin-foam models for quantum gravity, we investigate the asymptotical behavior of the
{6j}-symbol at next-to-leading order. This gives the first quantum gravity correction to the (3d) Regge
action. We compute it analytically and check our results against numerical calculations. The {6;}-symbol
is the building block of the Ponzano-Regge amplitudes for 3d quantum gravity, and the present analysis is
directly relevant to deriving the quantum corrections to gravitational correlations in the spin-foam

formalism.
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I. INTRODUCTION: SPIN FOAMS AND THE
{6/}-SYMBOL

The spin-foam formalism is an attempt to define rigor-
ously a path integral for Quantum Gravity. Spin foams can
be interpreted from several perspectives, as a covariant
history formulation for Loop Quantum Gravity describing
the evolution of the spin network states, as an improved
and quantized version of the Regge calculus for general
relativity, as a quantization of “‘almost topological™ field
theories, as a higher-dimensional generalization of the
matrix models generating 2d surfaces. And they have
been shown to be related to many other approaches to
quantum gravity. The spin-foam model for 3d quantum
gravity is the Ponzano-Regge model [1], which was the
first spin-foam model ever written. It has been shown to
provide a consistent quantization of general relativity in
three space-time dimensions (for both Riemannian and
Lorentzian signatures). The main spin-foam models for
4d quantum gravity are the Barrett-Crane model [2] and
the more recent EPR-FK-LS family of spin-foam models
[3-5]. They are related to the reformulation of general
relativity as a constrained topological BF-theory and
were mostly constructed as a discretization of the path
integral over space-time geometries.

Such spin-foam models provide a description of the
quantum geometry of space-time at the Planck scale. The
main issue is then to extract semiclassical information
from the formalism and to show its relation to the more
standard perturbative approach to the quantization of gen-
eral relativity (as a quantum field theory). Solving this
question amounts to proving that we recover general rela-
tivity in a large scale (or low energy) regime of the spin-
foam models and to showing how to compute the quantum
corrections to the classical dynamics of the gravitational
field. A proposal to address this problem is the ““spin-foam
graviton” framework proposed by Rovelli and collabora-
tors [6]. It defines the propagators and correlation functions
for geometric observables, mainly the area, from which we
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can extract information about the (effective) space-time
metric and its (quantum) fluctuations. Most explicit calcu-
lations in this framework have been done at the leading
order (in the scale parameter) and for the simplest space-
time triangulation (a single tetrahedron in 3d and a single
4-simplex in 4d). In order to make the link with the
standard QFT perturbative expansion, we need to be able
to push these calculations further and calculate the corre-
lations both at higher order (“loop corrections’) and for
more refined triangulations (smoother boundary state). In
the present work, we focus on the first aspect: the leading
order of the correlations gives the classical propagator of
the graviton and we would like to compute the higher order
(quantum) corrections. Following the lines of [7-9], this
requires understanding the corrections to the asymptotical
behavior of the spin-foam vertex amplitude, which is the
amplitude associated to a single tetrahedron in 3d quantum
gravity or to a single 4-simplex in 4d models. This is the
basic building blocks of spin-foam models, which are then
constructed by gluing these spin-foam vertices in some
particular way in order to describe the whole space-time.
In the Ponzano-Regge model, the spin-foam vertex is given
by the {6;}-symbol from the recoupling theory of the
representations of SU(2). The Barrett-Crane model is de-
fined by the {10/}-symbol and the more recent models use
the EPR or FK vertex amplitudes. The present paper fo-
cuses on the {6/}-symbol, relevant for 3d quantum gravity.
They are three basic ways to compute the leading order
asymptotics of the {6;}-symbol and show its relation to the
Regge action for 3d gravity:

(1) Recursion relations [10]: Using the invariance of the
{6j}-symbol under Pachner moves (Biedenharn-
Elliott identity) or directly its definition as a recou-
pling coefficient, one can derive a recursion relation
for {6}-symbol. This recursion formula is actually
very useful for numerical computations, but it can
also be approximated at large spins by a (second
order) differential equation. One then derive the
asymptotics from a WKB approximation.

(i1) Integral formula [11,12]: One can write the square of
the {6/}-symbol as an integral over four copies of
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SU(2). In the large spin regime, we can use saddle
point techniques and one derives the right asymp-
totics after a careful analysis of nondegenerate and
degenerate configurations for the saddle points. This
is the technique used to derive the asymptotics of the
Barrett-Crane and EPR-FK vertex amplitudes.

(iii) Brute-force approximation [13]: One can start from
the explicit algebraic formula of the {6 j}-symbol as a
sum over some products of factorials. Using the
Stirling formula and after lengthy calculations, we
approximate the sum by an integral and use saddle
point techniques again which lead to the same
asymptotics.

We also point out the more sophisticated and rigorous
proof of the asymptotics by Roberts [14] based on geomet-
ric quantization, but that also uses an integral formula and
saddle point methods.

The present goal is to push these approaches one step
further and derive the first correction to the leading order
formula. As a first attempt, we focus on the third method
and show how to extract the next-to-leading order correc-
tions through a brutal approximation of the explicit alge-
braic expression of the {6;}-symbol. We compare our
results with the previous calculations for the cases of the
equilateral and isosceles tetrahedra [8] and check the gen-
eral case against numerical calculations. Although the final
explicit formula for this next-to-leading order in the gen-
eral case is not particularly pretty, we prove that it is indeed
possible to compute it analytically exactly and we show
that we could extract all orders of the {6;}-symbol using the
same procedure. This is a necessary step towards providing
explicit formulas or procedures to compute all orders of the
perturbative expansion (in term of the length scale) of the
graviton correlations in spin-foam models. Moreover, we
interpret this next-to-leading order of the {6j}-symbol as
providing quantum gravity corrections to the standard 3d
Regge action.

We could also use the more subtle approach of the
recursion relation. This requires a careful analysis of the
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recursion relation and computing the corrections to the
WKB approximation [15]. Or we could use the integral
formula technique, then one should be particularly careful
when dealing with the degenerate contributions to the
{6j}-symbol.

II. THE {6;}-SYMBOL

The {6;}-symbol is the basic building block of the
Ponzano-Regge model which is a state sum model for 3d
Euclidean gravity formulated as a SU(2) gauge theory. The
Ponzano-Regge model is defined over a triangulation of
space-time: we build the 3d space-time manifold from
tetrahedra glued together along their respective triangles
and edges. We assign an irreducible representation (irreps)
of SU(2) to each edge e of the triangulation. These irreps
are labeled by a half-integer j, € N/2, the spin, and the
dimension of the corresponding representation space is
given by d; = 2j, + 1. Each tetrahedron of the triangu-
lation has six edges labeled by six spins j, , ..., j, and we
associate it with the corresponding {6,}-symbol, which is
the unique (nontrivial) SU(2) invariant built from these six
representations. It is giving by combining four normalized
Clebsh-Gordan coefficients corresponding to the four tri-
angles of the tetrahedron. Finally, the Ponzano-Regge am-
plitude for a given colored triangulation is simply given by
the product of the {6j}-symbols associated to all its
tetrahedra.

Looking more closely at a single tetrahedron, we label
its four triangles by I = 0, .. ., 3. Then each of its six edges
is labeled by the couple of triangles to which it belongs,
(IJ)with 0 = I < J = 3. To each edge is attached a SU(2)
irrep of spin j;;, which defines the length of that edge j;; +
% = d’# (see Fig. 1). There are several ways of expressing
the {6j}-symbol. The basic formula is the Racah’s single
sum formula which expresses the {6/}-symbol as a sum

over some products of factorials (see Appendix A). This is
our starting point as in [13]:

minp;

{jm Jo2 j03}
Jz Jiz Ji2

where the v; and p; are given by the following sums:

Vg = ZjIK’

I#K

VK=0...3

Vik=1...3

(=D + 1)

= \/A(jm,]'oz, Jo3) AU oz J12)A G, i jos) AGons jizs ji2) D m
maxv; l;l(t - vl)!l;[(pj - t)'

Pk = Z Goi + Jui)-

i#0,k

The factors A(jo;, joa Jo3) are weights associated to each triangle and are defined by:

(ot + Jo2 — Jos)'Gor — Joz + Jjo3)!(—Jjor + Joo + Jo3)!

Ao, Joo» Jo3) =

(ot + Jjo2 + joz + D!

From this point, in all sums and products throughout this paper, capital indices K will run from 0 to 3 and lower-case

indices k will run from 1 to 3.
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We are interested in the large spin expansion of the
{6j}-symbol when scaling all the spins homogeneously.
Actually we will scale the lengths d;, /2 instead of the
spins j;; because the structure of the expansion will be
simpler (we expect an alternation of cosines and sines
without any mixing up at all orders as in [8]) and the
geometrical interpretation (when possible) is expected to

be simpler. Then we rescale all d;,, by Ad;, in (1), which is
equivalent to changing j;,; =~ —1 to A d‘% — 1. This

gives:

{/\djm/z

1/2 A, /2—1/2 Ad;, /2~ 1/2}
A, )2 —

1/2 Ad;/2—1/2 Ad;,/2—1/2
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Aminp;—2

- 'JA(/\ 101’ Iov’ Ioz)A()ldjzz’ Jo2? J]z)A(/\ Jz%’ m’ Im)A()‘djm’ Ji3? )ldjlz) Z

(t+ 1)
+%)!lf[(/\ﬁj—t—2)!

X

with the new conventions:

(G, +d;, —d;,) —

A(Ad;,, Ad;,, Ad;) = -2 Jo

2) (A (d]m

(_1)t (2)

Amaxd;—(3/2)

, (d, +d;,)
pk= Z ]012 Jki ,

i#0,k
d]oz + djm) B 2)'(A( d + d + d]oz) B 2)

Jor’ Jo2’

The quantity v gives the perimeter of the triangle K while
the p,’s are the perimeters of (nonplanar) quadrilaterals.

III. PERTURBATIVE EXPANSION OF THE
6J-SYMBOL

In this section, we will give a procedure to obtain the full
perturbative expansion of the {6;}-symbol in term of the
length scale A and we compute explicitly the leading order
(Ponzano-Regge formulas) then the next-to-leading order
analytically.

A. General procedure

We give all the necessary formulas to obtain the
Ponzano-Regge corrections at any order. But calculations
are only performed explicitly at the next-to-leading order
for a generic {6/}-symbol. We start from Eq. (2).

a. First approximation: factorials. The factorial can be
expanded in a series:

n 1 1 1
n! = \/27Tn(ﬁ> <1 +—+ - 39
e

12n ~ 288n%>  51840n°

571
— + ... 3
2488320n* ) )

d/m + d + djo%) o )

In Eq. (2), there are factorials of the form: n!, (n + 1/2)!
and (n — 1/2)!, which are rigorously defined through
Euler’s I" function. From (3) we deduce asymptotic ex-
pansions for (n + 1/2)! and (n — 1/2)! (see the details in
Appendix B). In order to get the next-to-leading order
(NLO) in the 1/ X expansion of the {6 j}-symbol, we replace
the factorials in Eq. (2) by their respective asymptotic
expansion:

2~ Dt (1/2) n()— n<1 +L)

12n
(n + l). - 1/_27Te<n+1>1n<n>—n<1 + i)
2) 24n
1 1
— )1~ /2 nln(n)—n(l _ _) 4
(” 2) me 24n @)

Then, Eq. (2) reads at first order as:

A, /2=1/2 Ad;,/2—1/2 Ad;,/2—1/2
{ /2-1/2 Ad;,/2-1/2 Ad /2—1/2}

Ji2

o) o

jn

—H (d;,) +

1
_ L oma(y —
¢ I"( 240

27

The first factor is given by:
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Zdjuhdj”

1<J

h(d

i) = with

(d;

J1 ]II(

+ deL)(d +d;,

Ji
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d]IL )(d (6)

Ji

—d, +dm)(d +d,

]l/ JIK

-—1
ha, ((d +d; +d;)(—d

Ju Jik

, T d;

Ji Jik

where (KL) is the opposite side to (IJ), that is K # L and
K, L # I, J. The second factor is due to the NLO of the
factorials:

)

-+ 3k
H(d]”) K#I

225

Kb~

) T

where A; is the area of triangle I, r/ is the radius of the
incircle of triangle I and rk is the radius of the excircle to
the triangle [ tangent to the side d;,, of the triangle /.
Finally, % is a Riemann sum:
1 minp;/2 1 1
FO[1 — — G(x) + 0(_)) Af(x)
¢ ( 229+ o))

Ly

x=maxv; /2

3

®)
with the prefactor and the action given by:
f(x) = i7x + xIn(x) — Z(x — Ug) In(x — Dg)
-
= 30 = n(p; =)
T(p; — x)’
Fx) =+ ln(m)
6= -2 44 ©)

2 Kx—vK

The details of the computation are given in Appendix C.

b. Second approximation: Riemann sum. The second
approximation consists in replacing the Riemann sum 3, of
(5) by an integral. One k™! factor of 3 plays the role of dx.
We can then rewrite Eq. (5) as:

{6j}~$( : H(d],,)+0(§))

min(j;/2)
X f ”/ dxe F<X>( G(x)+0<1))e)‘f(’“).
max(9;/2)

(10)
This approximation does not generate any corrections at

iy

w/2n(,,) L
2

]lL) )
+d; )N—d;, +d; +d

+ d][L)(d +d; ]JL)

Ju Jik 1

leading order and at first order. It will nevertheless enter at
second order in terms in 1/A2.

c¢. Third approximation: saddle point approximation. We
have to study an integral of the form I = [? dxg(x)e?™
where A is a large parameter. The asymptotic expansion of
such an integral is given by contributions around the sta-
tionary points of the action f which are points, denoted x,
of the complex plane such that f/(x;) = 0. We expand the
action f(x) and the function g(x) around the stationary
points x, in term of dx = x — x:

© )
oo = 3 1
=0

= f(xo) + =—=—

(8x)

90 (592 + 726

and g(x) = Z g(x:) (8x)) = g(bx).
=0

We then expand K(6x) = g(5x)ekf?02(6x) in power of dx.
Following the standard stationary phase approximation, we
extend the integration domain to the whole R. The integrals
are then “‘generalized Gaussians” which can easily be
computed. We group the resulting terms according to their
dependence on 1/, being careful because of the function
g(x) which depends on 1/A. We recall that g(x) was
obtained by replacing the factorials in (2) by their series
expansion and we write g(x) under the general form:

gi(x)
AL

()—z

Then the complete perturbative expansion of I can be
written as:
(o)

— Af(Xo)
=2 \/—f”(x )A(l 2

2n+2p— 1!
+ S )

1

/\n

(2p — D!

i =)

(55

(1)

where
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- (@2p- i.: ;)

P E[2p/3] 1 B2e/i] 8n— pEI " (x) l—[f (xo)

P = i!(n—p+i)' -1, 3(2]7 ZJ 1 / (l )'
N (Zn)(x ) . ZZn/ﬂ 1 E[2n/i] g ”*Zjﬁl l_[fl ()Co) (12)

07 T 2n) S 6, 4, 2p -3 l,) (Z))!

E[2(p+n)/3] 1 E[2(n+p)/i] g(-z_(n‘i'p)_zb/zl j)(xO) i flj(xo)
N, = e — ; forp=1
= l!(l — p)' Il =3 (2(71 + p) - =1 l])' j=1 (lj)'

The details of the computation are given in Appendix D.
From this expansion and adjusting the first approximation
to get the proper dependence on A for g and the prefactors,
it is possible to compute analytically the whole asymptotic
expansion of the {6;}-symbol.

Here to get explicitly the next-to-leading order of the
{6j}-symbol asymptotic expansion, we only need the next-
to-leading order of the 1/A expansion of /, so we cut the
previous formulas at n = 1, then

. 21 1/~ N,
I~ e/\f(«\’o) 7(] + f<N + 70
% V=o' Mot Sy

3N, 15N,
T )R (—f”(xo))3))

with the expansion coefficients given by

]\70=g1(x0), Nozw,
N, = f(3)(x0)g6(x0) f(4)(xo)go(xo)
! 3! 41 :
go(xo) (f (3)()60)
N2 =75 ( 3! ) ‘

We recall that g(x) = ¢f™@(1 — %’j‘)); that is: go(x) = ef®
and g,(x) = — %em‘)

tion:

. Finally, we obtain the approxima-

x| 27 ooy o L Gxo)
! ZO —F(xp)A eftor [1 * A( 12

_ F'"(x) + (F'(xo))2 f(4)(x0) + 4f(3)(x0)F’(x0)
2f"(x) 8(f"(xo))>

“sury) )] &

This gives us the following expression for the asymptotic
expansion of the {6;}-symbol at second order:

{Adjm/Z —1/2 Ad;,/2—1/2 Ad,; /2 - 1/2}
/2—=1/2 Ad;,/2—1/2 Ad;,/2—1/2

]72

S SR+ Af()

/\djl.l 1 _ H(Jlj) o G(XO)
X CXp(KZJThdI_”)[I + X( 24 12
_ F'(xo) + (F'(x0)* | [ (xo) + 4% (xo) F' (x)
2f"(xo) 8(f”(x0))2

i) o)) a4

where x, are the stationary points of the phase, i.e. f'(xy) =
0. The next step is to identify these stationary points.

B. Contributions of the stationary points

The phase f(x) is an analytical function given by:

f(x) = imx + x1n(x) — Z(x — %) ln(x _ %)

K
35 ) "

therefore the stationary points x, satisfy the following
equation as shown in [13]:

f'(x) = im + In(x) — ZIn(x — Ug/2)

+Zln(ﬁj/2—x) =0, (16)
which is equivalent to

1 =0 = —];[(x — k). (17)
J

The previous equation reduces to a quadratic equation
Ax*> — Bx + C = 0 with
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1
=D bt Y Uk = 3

(I<J,K<L,(I,J)#(K,L)

d; d;
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)

Jis " JKL
i<l K<L
| (18)
B=—pip:ps + Z U0, 0k = 4_1[( Z dj, m)(zdju> Z(ndm)] C= an'
I<J<K I1<J,K<L,(IJ)#(K,L) 1<J K+#J K
As shown in [13], the discriminant A = —(B? — 4AC) is given in terms of the d i, by:
1
- 2 2 _p
A= EI: Z d]IJdJKL< d/MN d]u d]KL) Z l_[ ]KL]
I<J,K<L,(17)#(K,L) M<N,(M,N)#(1,J),(M,N)#(K,L) K L#K
G A
N I
=2 (Z}Tn)z (ZJ%)Z dO (d/%)z 1 1= 24(31)2V2, (19)
Cpr e G0 1
1 1 1 1 0
|
. d:
where V is the volume of the tetrahedron of edge length o) =3, fa,, where
d;, /2. In the following we will focus on the case where
A >0, i.e. V> >0, which corresponds to tetrahedra in flat _1 (xy —Do)xy — ;) fori, jE {1, ---.3)
Euclidean space. The other case A <0 corresponds to f i — 1 [1(; —x. o S
tetrahedra admitting an embedding in the 2+ 1d J#i
Minkowski space-time. And so, we get two stationary — 3 — 5
points: fa, = ln[()f+ — Uk)()i+_ v,)] for i, k € {L,---,3}.
ik (Px — x)(pi — x4)
B=iVA @D
=T Toa (20) The second derivative of f is given by:
Lo . . L 1
The geometrical interpretation of the staponary points is — flxy) = Z + z
not clear yet. We have shown that A is related to the ] Pj— x4 x+

volume of the tetrahedron. B and A are also related to
invariant of the tetrahedron:

B = Z%A + 24V cot,

where we recall that v; is the perimeter of the triangle 7 of

the tetrahedron. The angle € is the Brocard angle of the
iy iy i .. i D D . Dy ¢

getra}edrcin d.Indeed, 2 2 2 4T T3 2t

R e el d’T” are the barycentric coordinates of
the second Lemoine point of the tetrahedron denoted L.
This point is such that the distance from L to the face I of
the tetrahedron is equal to R; tanf where R; is the radius of
the circumscribed circle of the triangle / and 6 is then
defined by 3 ;([Tx-; 4y = 12V cotd.

The geometrical 51gn1ﬁcance of the stationary points still
has to be understood. However, we can now give the
explicit form of the leading order and of the next-to-
leading order of the {6}-symbol.

Leading order. We first focus on the leading order and on
the x, contribution. This analysis has already been done in
[13] and we just recall the main steps and give the
notations:

_ —NKeXp(‘ ln<x+ l__[(f?j - x+)>>’

where we have used the Eq. (17) which gives x ]'[j(ﬁj —
x1) = —[Ix(x+ — Ug). In the same way, we can simplify
F(x;) = — 4 In(x,JT;(p; — x+)). The exponential piece
of f"(x) and e"*+) compensate and we get:

; F(xy) — 1
/_f//(er)e '__l\/K

Collecting these different results yields the following con-
tribution of the x stationary point:

| st

Ad;
X eXp(Z # hdju)

1<J

1 T
T x| 15+ 30, /2y, + fu)|

(22)
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The same analysis for the x_ contribution yields the
same contribution as the previous one with an opposite
phase:

%exmﬂm + Af(x))
/\diu
X eXp<1<Zj T hdjl/ )

i %+ Y, /2y, + fdj”)].
1J
(23)

which is a complex loga-

1
_ exp[
\/277)\3\/K

We must now compute fd/_
Iy

rithm. We recall that the principal value of the logarithm is
defined by Logz := In|z| + i Argz. Therefore, we have to
compute I(f’ dm) = #,,. From (21), we can write that:

—7;) - ZArg(ﬁj —xy)
i

— Uy) + Arg(x, — 7;) — Arg(pp — xy)

— Arg(p; — x4). (24)

The analysis done in [13] shows that 6;; can be identified
as the (exterior) dihedral angles of the tetrahedron.
Moreover,

R(fy, ) =In

Ooi = Arg(xy — 7g) + Arglxy

O = Arg(x

(xy — To)(xy — X;)
l'l(ﬁj —xy)
J#Fi (25)

(xp — o)y — D))

(Pi = x)(Px — x4)

R(fy ) =1n

Jik

_H(dy,) | 1 [_
24 24i/AA[[(xs — B))
1

+ 6U(x
+ 241

A(-x+’ ﬁlr ﬁj» A) =

K<L

J I1#j K L#K
- Zele - £ )VE - 5(-

Since x. are conjugated to each other, we obviously have
A(x;) = A(x_). Moreover, numerical computations shows
that M(A(x~, ), p;, A)) =0, and in particular A(x,) =
—A(x_). This is a priori a nontrivial result to obtain
from the previous formulas. Nevertheless, we tested it
numerically for various choices of spin and it always
turned out true. Thus we believe that there should be a
way to show it analytically. We can then give an explicit

~0) ¥ (e~ e~ 90))A — 61 -

—e = (S T o)~
l_[(p, —x 2+ Y [T — 9% =
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A tedious (but interesting) computation shows that:

R(fy,)+ ha, =0. (26)

Then, summing the contributions of x, and x_ we get the
leading order of the 6;-symbol:

A, /2= 1/2 Ad, /2 —1/2 Ad; /2~ 1/2
Ay /2~ 1/2 Ad, /2 —1/2 Ad; /2 —1/2
(27)
L.O. 1 T
~1/— sl
12m3v°08[4 R]

where S = Y, /\dz’” 0;; is the Regge action. This is the
well-known limit given by Ponzano and Regge [1] and
which has justified their state sum model for 3d Euclidean
gravity where the {6;}-symbol is the spin-foam amplitude
for a single tetrahedron.

Next-to-leading order. The next-to-leading order is then
given by the term in 4> in Eq. (14). Using Egs. (6)~(8), we
rewrite the leading order in terms of x.., ¥;, p; and A:

{A(xy, Dy, pj, A)e/ St (/4

1
VATAV

+A(x_, Oy, pj, A)e (Set /4y (28)

where

AT 3‘(2 P f’L))A\/K + (92 []Gs =5,

K L#K K L#K

l_[(P] —xy) - Z n(x+ —.)

K L#K

l_[(Pj —xy) 2+ z l_[(x+ - UL)2
K L#K
Sl )]

K L#K J I#j
(29)
[
formula of the NLO of the {6}-symbol:
(6} ~ {65} ! cos| 7+ 54
j - 7
JINLO = e 4 R
1 (93
— ———=SAlx4, T}, pj, A))
Jizay T
X sin(Sg + 7/4). (30)
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FIG. 2. Plots of the difference Sy; o between the {6/}-symbol and its analytical approximation up to NLO. On the left, we look at the

{6j}-symbol for d; = 51, d, =T\, d; =
plotted the case d| = 15A, d, = 17, d; =

9\, d,
19A, dy =

This result is confirmed by numerical simulations. The
plots Fig. 2 represent numerical simulations of the
{6j}-symbol minus its approximation given above (30).
Moreover, to enhance the comparison, we have multiplied
by A%2 to see how the coefficient of the next-to-leading
order is approached and we have divided by cos(Sy +
7 /4) (oscillations of the next-to-next-to-leading order) to
suppress the oscillations; that is we have plotted:

{6 — {6/ino
/2 B JINLO
Onro = A° 2cos(SR + 7/4)

As expected, the numerical simulations show that this
rescaled difference Sy goes to 0 as 1/A when A goes
to 0. Moreover, the data for 6y o without any oscillation
suggest that we correctly divided by cos(Sg + 7/4) and
thus the NNLO of the {6j}-symbol should oscillate in
cos(Sg + 7/4). Therefore, this strongly suggest that the
asymptotic expansion of the {6/}-symbol in term of the
inverse length scale A~! is given by a series of alternating
sines and cosines. We strongly underline that this is true
because we have rescaled the edge lengths d;, . If we had
instead rescaled the spins j;; as usually done, we would
have found an oscillatory behavior controlled by a mixing
of cos and sin at each order (as shown explicitly for the
case of the isosceles tetrahedron in [8]). This suggests that
the d;,, are indeed the right parameter to consider when
studying the semiclassical behavior of the {6;}-symbol.

The only thing left to do in the present analysis is to
provide the NLO coefficient J(A(x,)) with a geometrical
interpretation and to show rigorously that J(A(x.))
vanishes.

Finally, we rewrite the approximation up to NLO of the
{6j}-symbol in a slightly different manner:

€19}

N %S(A(xﬁ) + 0(%)]
(32)

65} ! [”+s
j} ~ ———= cos| —
J2zoy o L4 o

This shows that the next-to-leading corrections to the
{6j}-symbol can be directly considered as corrections to
the Regge action for (3d) gravity:

S%fcc“ve =Sp+— \S(A()C+))

=TA,ds = 9A, dg = 9A with the x-coordinate standing for 3A. On the right, we have
19A, ds = 21, dg =

17A with A running from 60 to 200.

This quantum gravity correction %S(A()u)) should have
an interpretation in the continuum limit (or large scale
limit). It would be interesting to understand to which
kind of terms it corresponds in an effective action for 3d
(quantum) gravity. We point out that an expansion in 1/A
with alternating cos and sin could be similarly reabsorbed
as corrections to the Regge action. This would define in the
spin-foam framework the quantum gravity corrections to
classical 3d gravity due to the fundamental discreteness of
the theory. Such correction would enter the gravitational
correlations (of the ““graviton propagator” type) at second
order as suggested in [7].

IV. SOME PARTICULAR CASES

A. The equilateral tetrahedron
For the equilateral tetrahedron, all the edges have the
same length: thatis V 1, J, dj” = d. The tetrahedron with
edge length d/2 has a volume V = (d/2)3+/2/12 and has
all equal dihedral angles @ = arccos(—1/3). In this case,
the expressions greatly simplify. For instance, the station-

ary points are x. = “iTi\/%-d. Equations (27) and (28)
reduce to:

(670 =

4 T
Sp+—
i rd °°S< : 4)
sm(S 77)
R y
72\/\/—77'(15

where the Regge action is S = 3d6. The result was al-
ready obtained in [8]. We confirm it by numerical simula-
tions. The plot in Fig. 3 gives the equilateral {6;}-symbol
minus its NLO approximation (33). Like for the previous
plots, we have multiplied by A3/2 to see how the coefficient
of the next-to-leading order is approached and we have
divided by cos(Sg + 7/4) (oscillations of the next to next-
to-leading order) to suppress the oscillations. This gives a
curve converging to 0 as 1/A asymptotically.

(33)

B. The isosceles tetrahedron

We now consider an isosceles tetrahedron that is a
tetrahedron which has two opposite edges of length equal

024035-8



PUSHING THE ASYMPTOTICS OF THE 6-SYMBOL ...

300 400 500 =80 O
-I-F"""- *

-0.0015
-0.002
-0.0025 ey
-0.003
-0.0035}"

-0.004

FIG. 3. Difference between the equilateral {6}-symbol and the
analytical result (33). The x-axis stands for d and d goes from
200 to 600.

to % and % and the remaining four edges of the same length
equal to ‘51 (see Fig. 4). The volume of the tetrahedron is:

1
2 2 20472 )
Vv 28(3‘)251 1d5(4d” — d),
and the dihedral angles are:
—dd
0= arccos( =2 )

Jod — Bfad? —

d
0, = 2arccos($).

Once again, Eqgs. (27) and (28) simplify and we get :
i 1 T

{6 j}(m) e — cos(S + —)
MO gy U 4

F(d dl’ dz) ( 77)
S . (G4)
24V/\\/127TV)\3 K
where F(d, dy, dy) = 768d%(d> — d? — d2) + 136d* d>d3+

%
2

[S1ESY

1

2

FIG. 4. The isosceles tetrahedron.
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240d*(d} + d3) — 176d*d3d5(d3 + d5) X
—24d2(d6+d6)+10d2d2(d4+d4)+25d4d

5604~ dz)(4d’ d’)(4d2 F-B),
2d0 + %01 + %02. Let us point out that the volume in-
creases as A* while F goes as A2, so that the NLO scales
properly as A /2,

This reproduces the result previously obtained in [8]. We
can easily check that this reduces to the previous equi-
lateral case when d; = d, = d and we further confirm it by
numerical simulations. The plots in Fig. 5 represents nu-
merical simulations of an isosceles {6,}-symbol minus the
analytical formula (34). Like for the previous plot, we have
multiplied the data by A%/2 to see how the coefficient of the
NNLO order is approached and we have divided by
cos(Sg + 7/4) (NNLO oscillations) to suppress the oscil-
lations. This rescaled difference goes asymptically as A~
as in the previous plots (the apparent change of conver-
gence rate is simply due to the a priori different factors in
front of A~! and the different scales used on the x and y
axis). Finally, the geometrical interpretation of the term
F(d, d,, d,) remains to be understood. If we cannot provide
it with a geometrical meaning, there is little hope to
interpret the NLO coefficient J(A(x,)) in the generic
case. Nevertheless, we give a more compact expression
for the denominator of F:

2 and the Regge action S; =

V2
— &) =96’ ——.
) cos?6

(35)

96(4d2 — d2)(4d> — d3)(4d> —

We still need to express the numerator of F in term of
geometrical objects. For instance, we could express it in
term of d?, (4d*> — d3)(4d> — d3) and (4d*> — d? — d3),
which would provide a formula in term of the volume
and the dihedral angles. Nevertheless, we have not been
able to find such a useful rewriting of this NLO coefficient.

V. CONCLUSION

We investigated the asymptotical behavior of the
{6j}-symbol. Starting from its expression as a (finite)
sum over (half-)integers of algebraic combinations of fac-
torials, we followed the footsteps of [13] and showed that

8000 10000 12000 14000 16000

-0.02 . -
_0.04/
,o;‘%‘,.' g

-0.08

FIG. 5. Differences between isosceles {6}-symbols and their analytical approximation (34). The x-axis stands for d with A goes
from 200 to 600. On the left hand side, we consider isosceles tetrahedra with d; = 3A, d, = 3A, d = 7A. On the right hand side, we

have plotted the case d; = 9A, d, = 31, d = 21A.
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one can derive systematically the corrections to the leading
order formula at any order. The method relies on three
steps. First, we use the Stirling formula (with the appro-
priate corrections) to approximate the factorials. Second,
we consider the sum as a Riemann sum and approximate it
by an integral (over the real line). Finally, we perform a
saddle point approximation to compute the behavior of the
{6j}-symbol for (homogeneously) large spins.

Using this framework, we showed that we recover an
oscillating leading order (LO) with frequency given by the
Regge action as is well-known and was already proved in
[13]. Then we computed analytically the next-to-leading
(NLO) corrections. The formula that we obtain is explicit,
although not compact, and we could not interpret it geo-
metrically in a clear way. Nevertheless, we performed two
simple checks. First, we checked that our complicated
formula reduces to the known expression for the NLO for
isosceles tetrahedra [8]. Second, we checked it numerically
in various cases and found a perfect fit. These numerical
simulations also confirmed that the NLO is a 7 -phase shift
with respect to the LO (the NLO is given by a sin instead of
a cos) and that the NNLO is back in phase with the LO
(again a cos), which confirms our expectation of an alter-
nating asymptotical series in cos+% sin+jl2 cos%—ji3 X
sint....

We point out that we computed in details the corrections
due to the Stirling formula and to the saddle point approxi-
mation. However we did not study the Riemann sum
approximation. It does not contribute to the LO and
NLO. It will only enter at the level of the NNLO.

This work is mainly technical and can be applied to the
computation of gravitational correlations for 3d quantum
gravity following [6-9]. It will enter the quantum correc-
tions to the propagator/correlations at second order, as was
shown in [7]. Indeed, the first order corrections are derived
from the path integral of the Regge action, while the
deviations from the Regge action as computed here enter
at second order (as two-loop corrections). From this per-
spective, this NLO of the {6 j}-symbol describes the leading
order deviation of quantum gravity with respect to the
classical gravity, or in other words the first quantum gravity
corrections to the classical 3d Regge action.

Beyond the technicality of the paper, our purpose was to
show that computing such corrections is indeed possible
(although it does lead to complicated expressions) and that

similar methods could be used for 4d spin-foam gravity.
|

<j01j12a01a12|j13a13>

= 0(ag; + ay, a13)A(o1j12/13)

PHYSICAL REVIEW D 80, 024035 (2009)

Although these methods allow straightforward (but
lengthy) analytical calculations, which might be handled
by a computer program, their drawback is the loss of the
geometrical meaning of the expressions obtained. An alter-
native way to proceed is to use the exact recursion relations
satisfied by the {6}-symbol (see [10]) and other spin-foam
amplitudes (see [16]) to probe the asymptotic behavior and
the induced corrections of the correlations. This is left to
future investigation [15].
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APPENDIX A: THE {6;}-SYMBOL—RECOUPLING
THEORY

The {6,}-symbol is a real number and it is obtained by
combining four normalized Clebsh-Gordan coefficients

along the six edges of a tetrahedron, with edge lengths
given by jj, +1="22 (0 =1<J=3). We usually ex-
press the 6j-symbol in term of the Wigner 3 j-symbols :

Joi Jo j03}: (—1)101+J'03+J'01*0101*0103*‘101
{j23 j13 j12 Z

o

X(]m Ji2 j13)
Qo dpp TOag3

% ( Jis J» Jos )
a3 dp3 Qo3

x ( Jo3  Jo2  Joi )
oz Gy T Qg

x(]oz J3 Ji2 ) (A
QG dr3 A

The Wigner 3 symbols are very simply related to the
Clebsh-Gordan coefficients (jy; jj2@o; @12lji3013) by:

Gorjnaoranljizas) = (=)o intas(2); + 1/2)1/2

X(]m Ji2 j13>
Qg @) Tag3

And Racah gave a general formulas for the Clebsh-Gordan
coefficient:

X \/(2113 + DGor + @o)!or = ao)!Giz + @)z — @)z + @13)!(is — ag3)!

X

(=D*

T Uor — aor = WGz = Jio + aor + )G + an — w0 = jo — @i + e)!w!lGo + ji2 = jiz — w)!
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. : : — Vo tin=i)Go—int+i)(=jo+intis)!
where A(JOI’ J12r ]13) - (ot +jiztjiz+D!

6j-symbol, the Racah’s single sum formulas:

From these, Racah gave a tensorial formulas for the

. , . minp; t+ 1)!
{J.Ol Jo2 J.(B} ‘JA(JOI’JOZ’J03)A(]23’]02’JIZ)A(JZ%JH’JO%)A(JOI:]B:J]Z) Z( 1! ( ) (A2)

Jz o Ji3 Ji2 e ﬂ(t —v)![1(p; — 1!
j

with vg = ¥ ukjik V K €10, -+, 3} and pyp = 320400 + k) V K E{L--- 3}

APPENDIX B: FACTORIALS
The factorial n! is defined for a positive integer n as:
nl=nn—-1)---2-1=Tn+1),

where I'(n) is the gamma function for integers n. This definition is generalized to noninteger values. Using the identities for
the I function, we write explicitly the values for half-integers:

(=7 Q)= (-2 =TE (D) VT gy = TOIE D

2 : 2 ’ 2 22n ! 2 : 2n+1 22n+1 ! ’

where n!! is the double factorial :

n-m—2)---5-3-1 if n>0 odd,
n!!E{n (n—2)---6-4-2 if n>0 even,
1 if n=—1or0.
Using the asymptotic expansion of a large factorial n! ~ v27n(2)"(1 + 3= = 55— — s7iee— — 7220— - ), we can get an
asymptotic expansion for:
1 11 1 139 571
+1/2)! ~ V2 ("“)‘“W*"(l + —)(1 + + - - + - )
(n+1/2) e n 122n) ' 288(2n)°  51840(2n)°  2488320(2n)"
( 1 1 139 571 )
x(1-—— + + — ),
12n  288n> 51840n°  2488320n*
1 11 1 139 571
— =) ~+2 "1ﬂ<">—"(1 + + - - + )
(" 2) e 122n) ' 288(2n)>  51840(2n)° 2488320(2n)
1 1 139 571
X (1-—- + + — ), Bl
( 12n 288n%>  51840n°  2488320n* ) ®D

or more simply, at the next-to-leading order:

n! ~ \/27Tn<ﬁ) (1 + L) (n + %)' ~ \/2776(”“)1“(”)_"(1 + %) ( )' ~ \27e" M= ”( ! )
e

12n n 24n
(B2)

APPENDIX C: FIRST APPROXIMATION: FACTORIALS — NEXT-TO-LEADING ORDER OF THE
STIRLING FORMULA

In this section, all computations are done at the next-to-leading order. We replace the factorials in Eq. (2) by their
respective asymptotic expansion.
(1) Then, a typical triangle coefficient:

(G(d;, +d;,

/\djog) _ Joi Jm) 2) (A (djm joz + djo3) B %)!(%(_djm + djoz + Jm) — )

()L (d]m + d!oz + djo3) o %)'

Ad;

Jo2?

A(Ad;

Jor’

will be
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A(Adjm’ /\djoz’ /\dj(B) — 277_[6—(/\/2)(51,-01 +dj, +d/03)1n[(/\/2)(d101 +df02+df03)]+(/\/2)(d101 +dj, +dj03)

y (1 N 1 )e(;t/z)(djm+dj02—d,03)1n[()L/2)(djm +djy, ~djo )= (A/2)(d5y, +dipy ~djoy)
12/\(djm + djoz + djo3)

X (l — ! )eu/ 2>(d.f01 ~djp, +d/’03)]n[()‘/ 2)(d.f(n —djo, Tdjy, 1=(A/2)(d), ~djp, +d/'o3)
12/\(djm + djoz o djos)

« (1 B 1 )e()t/2)(—djm+dj02+djm)ln[(/\/2)(—djm tdj, +djo 1= (V2 (~djy, +dj, +dy)
12/\(d/m o djoz + d/o3)

x@— : )
IZA(_djm + d/oz + djos)

which simplifies

A(Ad; ,Ad; ,Ad; )= 2 e A DU=djy, +djg, +djo) In(=djo, +djg, +djo)+(djo, —djo, +djo) In(do, —djo, +djgs)]

Jo1’ Jo2’ Jo3

X ef(/\/z)[(djm+dj027dj03)1n(dj01+dj027d,03)+(dj01+dj02+d,03)1n(d,m+dj02+dj03)]

1 1 1 1
X [1 ——( + : + .
122 _djm + d/oz + djoz djm —d—jot djoz djm + djoz —d = jo

)]
S ————— ) (C1)
d/01 + djoz + djos

The factor \/A()\djm, Ad;,, Ad; )A(Ad,,, Ad;,, Ad; ) A(Ad;,,, Ad; ., Ad; )A(Ad; , Ad; ., Ad; ) in Eq. (2) can then

easily be put into the form:

1
A/2)h(d,

(277)2 M2 .w>(1 — mH(dj,,)) (C2)

where

hd;,) = Zdj”hdm with

1<J
_ 1 1I1< (dju — d/lK + d/lL)(d/u + d/u( — d/1L)(dju — deK + deL)(dju + deK —d- jJL) )

dfu T — 7 — —
2 (d Ju Tt dle + dle)( djll + djlk + dle)(dju + deK + deL)( djlj + dJJK + dle)
1 1
K#L and K,L#1J H(d;)=2)———2>— whereK€{0,--+,3} and jE{l,--,3}
5k Pj— Vk K UK
(C3)
- d; - (d;, +d; )
and we recall that g = 3, x5V K €10, - -+, 3}, pp = Xivop 5V k€{l---3}
(i1)) We now replace the factorials in the sum of (2) by their approximations and we change of variables: t = Ax:
ning, (Ax + DODTIAG; = NG, =) = 1) |,
S(Ad;) = (—™ . . 1 _ = eOWG,(x),  (C4)
o x=mzax17, H()\(x — Uy + 3/2)(A(x — U[) + 1/2)!1_[(/\(19]' —x))! (27T)3 xzé,w, g
1 J
where

G, (x) = imAx + 31InA + Inx + 2 In(p; — x) = D In(x — #;) + (Ax + 1/2)(Inx + InA) — Ax + D Ax — )
j I Ji

= > (Ax = 7)) + DA + In(x — 7)) = D (A(P; — x) + 1/2)(InA + In(p; — x)) + D A(p; — x), (C5)
1 j J

J
which can be simplified using the fact that 3,0, = 3 ;p;:

024035-12



PUSHING THE ASYMPTOTICS OF THE 6-SYMBOL ...

| 31_[(15]' - x)3
Gi(x) = —2InA + = lni
: l;[(x - oy
+ )\I:iﬂ'x + xIlnx — Z(x — v In(x — vy)
7
=Sy~ D) tnlp; — )] (c6)
J
and
1+—=+—
GQ()C) — 12/\x
(1 + 2/\(x3—17,)1:[(1 + 24A(x o ))l-l( + 12A(p; —x))
1 13 47
(-5
)\( 12x 224(x— V)
13 1
+ Yy — 4 O(—)). (CT
; 12(p; — x) A
Moreover,
00 = L rweare C8)
where

f(x) = imx + xIn(x) —

Z(X — vg) In(x — v))
I

PHYSICAL REVIEW D 80, 024035 (2009)

where
13 47

7+%24(x—v1()+§

13
pj—x

J
(C11)

G(x) = —

APPENDIX D: THIRD APPROXIMATION: THE
STATIONARY PHASE METHOD

We are interested in the 1/ expansion of the integral:

_ [ F(x)( b (l)) A
1 ,[maxﬁ,/2 dxe 1 oA Glx)+0 P e,
We do not give here the proof of the whole expansion
(Eq. (11)) because of the heavy formalism but we directly
prove the next-to-leading order formula (Eq. (13)); the
procedure is the same but the computations are easier.
The asymptotic expansion of such an integral is given by
contributions around the stationary points of the phase
denoted x,. We expand the phase f(x) around the sta-
tionary points x, at fourth order and the function g(x) =
(1 — ﬁG(x)) at second order and we extend the in-
tegration to infinity.

— L — L — +o0
2.(p; = 2)lnlp; = =3 [ a0 + s
xg ¢ T®
3]_[(p- _
J 1 o1
Fx) = 1 1n< ) (9) + 5g”(xo)(éx)z)e"(f(xo)“‘/z)f (x)(3)%)
ﬂ( )t 1 1
(14 (37000 + 0 0°)
Then the sum can be approximated by: 4!
1 minp; A2< ) 3) 5 )
= X X 4+ — +
E(Adj”) = mngxvle/\ﬂ )+F() f (XO)(‘sx) 0(/\ ) > (Dl)
% (1 LG(x) + 0(1>)6A_f'(x) (C10) where in our case, g(x) = ¢™¥(1 — 12)\ G(x)) and then the
12X A ' integration are ‘“‘generalized” Gaussians:
I~ ZEF(xo)-%-)uf(xo)l:(l — —G(xo)) [ d(8x)e™ A= (o) /2802 3 2 ((F’(xo))z L F(xy))

Xo

00 4) (3)
x f % A(8x)(5x)2e M) D67 +A(f (o) , [P x0)

41

2

which can easily be computed:

/\2 3) Xi 1 2
LA (f (O)) [ d(8x)(8x)0¢ M 1"w)/2)(39) +0(A3/2)]

F"(xp) + (F'(x)))?

1 (xo)) f T A(52)(Sx)te— M1 /2)(0x

D2)

F®(xg) + 413 (x0) F'(x0)

F(x0)+Af(Xo)|:1 + l(_ G(XO) N

27
I~ -
% — A A

12 2f"(xo)

) o]

(D3)

8(/"(x0))?
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