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In the context of spin-foam models for quantum gravity, we investigate the asymptotical behavior of the

f6jg-symbol at next-to-leading order. This gives the first quantum gravity correction to the (3d) Regge

action. We compute it analytically and check our results against numerical calculations. The f6jg-symbol

is the building block of the Ponzano-Regge amplitudes for 3d quantum gravity, and the present analysis is

directly relevant to deriving the quantum corrections to gravitational correlations in the spin-foam

formalism.
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I. INTRODUCTION: SPIN FOAMS AND THE
f6jg-SYMBOL

The spin-foam formalism is an attempt to define rigor-
ously a path integral for Quantum Gravity. Spin foams can
be interpreted from several perspectives, as a covariant
history formulation for Loop Quantum Gravity describing
the evolution of the spin network states, as an improved
and quantized version of the Regge calculus for general
relativity, as a quantization of ‘‘almost topological’’ field
theories, as a higher-dimensional generalization of the
matrix models generating 2d surfaces. And they have
been shown to be related to many other approaches to
quantum gravity. The spin-foam model for 3d quantum
gravity is the Ponzano-Regge model [1], which was the
first spin-foam model ever written. It has been shown to
provide a consistent quantization of general relativity in
three space-time dimensions (for both Riemannian and
Lorentzian signatures). The main spin-foam models for
4d quantum gravity are the Barrett-Crane model [2] and
the more recent EPR-FK-LS family of spin-foam models
[3–5]. They are related to the reformulation of general
relativity as a constrained topological BF-theory and
were mostly constructed as a discretization of the path
integral over space-time geometries.

Such spin-foam models provide a description of the
quantum geometry of space-time at the Planck scale. The
main issue is then to extract semiclassical information
from the formalism and to show its relation to the more
standard perturbative approach to the quantization of gen-
eral relativity (as a quantum field theory). Solving this
question amounts to proving that we recover general rela-
tivity in a large scale (or low energy) regime of the spin-
foam models and to showing how to compute the quantum
corrections to the classical dynamics of the gravitational
field. A proposal to address this problem is the ‘‘spin-foam
graviton’’ framework proposed by Rovelli and collabora-
tors [6]. It defines the propagators and correlation functions
for geometric observables, mainly the area, from which we

can extract information about the (effective) space-time
metric and its (quantum) fluctuations. Most explicit calcu-
lations in this framework have been done at the leading
order (in the scale parameter) and for the simplest space-
time triangulation (a single tetrahedron in 3d and a single
4-simplex in 4d). In order to make the link with the
standard QFT perturbative expansion, we need to be able
to push these calculations further and calculate the corre-
lations both at higher order (‘‘loop corrections’’) and for
more refined triangulations (smoother boundary state). In
the present work, we focus on the first aspect: the leading
order of the correlations gives the classical propagator of
the graviton and we would like to compute the higher order
(quantum) corrections. Following the lines of [7–9], this
requires understanding the corrections to the asymptotical
behavior of the spin-foam vertex amplitude, which is the
amplitude associated to a single tetrahedron in 3d quantum
gravity or to a single 4-simplex in 4d models. This is the
basic building blocks of spin-foam models, which are then
constructed by gluing these spin-foam vertices in some
particular way in order to describe the whole space-time.
In the Ponzano-Regge model, the spin-foam vertex is given
by the f6jg-symbol from the recoupling theory of the
representations of SU(2). The Barrett-Crane model is de-
fined by the f10jg-symbol and the more recent models use
the EPR or FK vertex amplitudes. The present paper fo-
cuses on the f6jg-symbol, relevant for 3d quantum gravity.
They are three basic ways to compute the leading order

asymptotics of the f6jg-symbol and show its relation to the
Regge action for 3d gravity:
(i) Recursion relations [10]: Using the invariance of the

f6jg-symbol under Pachner moves (Biedenharn-
Elliott identity) or directly its definition as a recou-
pling coefficient, one can derive a recursion relation
for f6jg-symbol. This recursion formula is actually
very useful for numerical computations, but it can
also be approximated at large spins by a (second
order) differential equation. One then derive the
asymptotics from a WKB approximation.

(ii) Integral formula [11,12]: One can write the square of
the f6jg-symbol as an integral over four copies of
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SU(2). In the large spin regime, we can use saddle
point techniques and one derives the right asymp-
totics after a careful analysis of nondegenerate and
degenerate configurations for the saddle points. This
is the technique used to derive the asymptotics of the
Barrett-Crane and EPR-FK vertex amplitudes.

(iii) Brute-force approximation [13]: One can start from
the explicit algebraic formula of the f6jg-symbol as a
sum over some products of factorials. Using the
Stirling formula and after lengthy calculations, we
approximate the sum by an integral and use saddle
point techniques again which lead to the same
asymptotics.

We also point out the more sophisticated and rigorous
proof of the asymptotics by Roberts [14] based on geomet-
ric quantization, but that also uses an integral formula and
saddle point methods.

The present goal is to push these approaches one step
further and derive the first correction to the leading order
formula. As a first attempt, we focus on the third method
and show how to extract the next-to-leading order correc-
tions through a brutal approximation of the explicit alge-
braic expression of the f6jg-symbol. We compare our
results with the previous calculations for the cases of the
equilateral and isosceles tetrahedra [8] and check the gen-
eral case against numerical calculations. Although the final
explicit formula for this next-to-leading order in the gen-
eral case is not particularly pretty, we prove that it is indeed
possible to compute it analytically exactly and we show
that we could extract all orders of the f6jg-symbol using the
same procedure. This is a necessary step towards providing
explicit formulas or procedures to compute all orders of the
perturbative expansion (in term of the length scale) of the
graviton correlations in spin-foam models. Moreover, we
interpret this next-to-leading order of the f6jg-symbol as
providing quantum gravity corrections to the standard 3d
Regge action.

We could also use the more subtle approach of the
recursion relation. This requires a careful analysis of the

recursion relation and computing the corrections to the
WKB approximation [15]. Or we could use the integral
formula technique, then one should be particularly careful
when dealing with the degenerate contributions to the
f6jg-symbol.

II. THE f6jg-SYMBOL

The f6jg-symbol is the basic building block of the
Ponzano-Regge model which is a state sum model for 3d
Euclidean gravity formulated as a SU(2) gauge theory. The
Ponzano-Regge model is defined over a triangulation of
space-time: we build the 3d space-time manifold from
tetrahedra glued together along their respective triangles
and edges. We assign an irreducible representation (irreps)
of SU(2) to each edge e of the triangulation. These irreps
are labeled by a half-integer je 2 N=2, the spin, and the
dimension of the corresponding representation space is
given by dje ¼ 2je þ 1. Each tetrahedron of the triangu-

lation has six edges labeled by six spins je1 ; . . . ; je6 and we

associate it with the corresponding f6jg-symbol, which is
the unique (nontrivial) SU(2) invariant built from these six
representations. It is giving by combining four normalized
Clebsh-Gordan coefficients corresponding to the four tri-
angles of the tetrahedron. Finally, the Ponzano-Regge am-
plitude for a given colored triangulation is simply given by
the product of the f6jg-symbols associated to all its
tetrahedra.
Looking more closely at a single tetrahedron, we label

its four triangles by I ¼ 0; . . . ; 3. Then each of its six edges
is labeled by the couple of triangles to which it belongs,
(IJ) with 0 � I < J � 3. To each edge is attached a SU(2)

irrep of spin jIJ, which defines the length of that edge jIJ þ
1
2 ¼

djIJ
2 (see Fig. 1). There are several ways of expressing

the f6jg-symbol. The basic formula is the Racah’s single
sum formula which expresses the f6jg-symbol as a sum
over some products of factorials (see Appendix A). This is
our starting point as in [13]:

�
j01 j02 j03
j23 j13 j12

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðj01; j02; j03Þ�ðj23; j02; j12Þ�ðj23; j13; j03Þ�ðj01; j13; j12Þ

q XminpJ

maxvI

ð�1Þtðtþ 1Þ!Q
I
ðt� vIÞ!

Q
J
ðpJ � tÞ! ; (1)

where the vI and pi are given by the following sums:

8 K ¼ 0 . . . 3; vK ¼ X
I�K

jIK; 8 k ¼ 1 . . . 3; pk ¼
X
i�0;k

ðj0i þ jkiÞ:

The factors �ðj01; j02; j03Þ are weights associated to each triangle and are defined by:

�ðj01; j02; j03Þ ¼ ðj01 þ j02 � j03Þ!ðj01 � j02 þ j03Þ!ð�j01 þ j02 þ j03Þ!
ðj01 þ j02 þ j03 þ 1Þ! :

From this point, in all sums and products throughout this paper, capital indices K will run from 0 to 3 and lower-case
indices k will run from 1 to 3.
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We are interested in the large spin expansion of the
f6jg-symbol when scaling all the spins homogeneously.
Actually we will scale the lengths djIJ=2 instead of the

spins jIJ because the structure of the expansion will be
simpler (we expect an alternation of cosines and sines
without any mixing up at all orders as in [8]) and the
geometrical interpretation (when possible) is expected to
be simpler. Then we rescale all djIJ by �djIJ in (1), which is

equivalent to changing jIJ ¼ djIJ
2 � 1

2 to �
djIJ
2 � 1

2 . This

gives:

�
�dj01=2� 1=2 �dj02=2� 1=2 �dj03=2� 1=2
�dj23=2� 1=2 �dj13=2� 1=2 �dj12=2� 1=2

�

¼

�ð�dj01 ; �dj02 ; �dj03Þ�ð�dj23 ; �dj02 ; �dj12Þ�ð�dj23 ; �dj13 ; �dj03Þ�ð�dj01 ; �dj13 ; �dj12Þ

q X�min~pj�2

�max~vI�ð3=2Þ
ð�1Þt

� ðtþ 1Þ!Q
i
ðt� �~vI þ 3

2Þ!
Q
j
ð�~pj � t� 2Þ!

(2)

with the new conventions:

~vK ¼ X
I�K

djIK
2

; ~pk ¼
X
i�0;k

ðdj0i þ djkiÞ
2

;

�ð�dj01 ; �dj02 ; �dj03Þ ¼
ð�2 ðdj01 þ dj02 � dj03Þ � 1

2Þ!ð�2 ðdj01 � dj02 þ dj03Þ � 1
2Þ!ð�2 ð�dj01 þ dj02 þ dj03Þ � 1

2Þ!
ð�2 ðdj01 þ dj02 þ dj03Þ � 1

2Þ!
:

The quantity ~vK gives the perimeter of the triangleK while
the ~pk’s are the perimeters of (nonplanar) quadrilaterals.

III. PERTURBATIVE EXPANSION OF THE
6J-SYMBOL

In this section, we will give a procedure to obtain the full
perturbative expansion of the f6jg-symbol in term of the
length scale � and we compute explicitly the leading order
(Ponzano-Regge formulas) then the next-to-leading order
analytically.

A. General procedure

We give all the necessary formulas to obtain the
Ponzano-Regge corrections at any order. But calculations
are only performed explicitly at the next-to-leading order
for a generic f6jg-symbol. We start from Eq. (2).

a. First approximation: factorials. The factorial can be
expanded in a series:

n! ¼ ffiffiffiffiffiffiffiffiffi
2�n

p �
n

e

�
n
�
1þ 1

12n
þ 1

288n2
� 139

51840n3

� 571

2488320n4
þ � � �

�
(3)

In Eq. (2), there are factorials of the form: n!, ðnþ 1=2Þ!
and ðn� 1=2Þ!, which are rigorously defined through
Euler’s � function. From (3) we deduce asymptotic ex-
pansions for ðnþ 1=2Þ! and ðn� 1=2Þ! (see the details in
Appendix B). In order to get the next-to-leading order
(NLO) in the 1=� expansion of the f6jg-symbol, we replace
the factorials in Eq. (2) by their respective asymptotic
expansion:

n!� ffiffiffiffiffiffiffi
2�

p
eðnþð1=2ÞÞ lnðnÞ�n

�
1þ 1

12n

�
�
nþ 1

2

�
!� ffiffiffiffiffiffiffi

2�
p

eðnþ1Þ lnðnÞ�n

�
1þ 11

24n

�
�
n� 1

2

�
!� ffiffiffiffiffiffiffi

2�
p

en lnðnÞ�n

�
1� 1

24n

�
: (4)

Then, Eq. (2) reads at first order as:�
�dj01=2� 1=2 �dj02=2� 1=2 �dj03=2� 1=2
�dj23=2� 1=2 �dj13=2� 1=2 �dj12=2� 1=2

�

¼ 1

2�
eð�=2ÞhðdjIJ Þ

�
1� 1

24�
HðdjIJ Þ þO

�
1

�2

��
�: (5)

The first factor is given by:

l01

l03 l13

l12

l23

l02

FIG. 1. A single tetrahedron: the edge lengths are given by

lIJ ¼ djIJ
2 .
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hðdjIJ Þ ¼
X
I<J

djIJhdjIJ with

hdjIJ ¼
1

2
ln

� ðdjIJ � djIK þ djILÞðdjIJ þ djIK � djILÞðdjIJ � djJK þ djJLÞðdjIJ þ djJK � djJLÞ
ðdjIJ þ djIK þ djILÞð�djIJ þ djIK þ djILÞðdjIJ þ djJK þ djJLÞð�djIJ þ djJK þ djJLÞ

�
;

(6)

where (KL) is the opposite side to (IJ), that is K � L and
K, L � I, J. The second factor is due to the NLO of the
factorials:

HðdjIJ Þ ¼ 2
X
j;K

1

~pj � ~vK

� 2
X
K

1

~vK

¼ X
I

��rI þ P
K�I

rIK

2AI

�
;

(7)

where AI is the area of triangle I, rI is the radius of the
incircle of triangle I and rIK is the radius of the excircle to
the triangle I tangent to the side djIK of the triangle I.
Finally, � is a Riemann sum:

� ¼ 1

�2

Xmin~pj=2

x¼max~vI=2

eFðxÞ
�
1� 1

12�
GðxÞ þO

�
1

�2

��
e�fðxÞ

(8)

with the prefactor and the action given by:

fðxÞ ¼ i�xþ x lnðxÞ �X
K

ðx� ~vKÞ lnðx� ~vKÞ

�X
j

ð~pj � xÞ lnð~pj � xÞ;

FðxÞ ¼ 1

2
ln

�x3Q
j
ð~pj � xÞ3

Q
K
ðx� ~vKÞ4

�
;

GðxÞ ¼ � 13

x
þ 47

2

X
K

1

x� ~vK

þ 13
X
j

1

~pj � x
: (9)

The details of the computation are given in Appendix C.
b. Second approximation: Riemann sum. The second

approximation consists in replacing the Riemann sum � of
(5) by an integral. One k�1 factor of � plays the role of dx.
We can then rewrite Eq. (5) as:

f6jg � 1

2�

�
1� 1

24�
HðdjIJ Þ þO

�
1

�

��
eð�=2ÞhðdjIJ Þ

1

�

�
Z minð~pj=2Þ

maxð~vI=2Þ
dxeFðxÞ

�
1� 1

12�
GðxÞ þO

�
1

�2

��
e�fðxÞ:

(10)

This approximation does not generate any corrections at

leading order and at first order. It will nevertheless enter at
second order in terms in 1=�2.
c. Third approximation: saddle point approximation.We

have to study an integral of the form I ¼ R
b
a dxgðxÞe�fðxÞ

where � is a large parameter. The asymptotic expansion of
such an integral is given by contributions around the sta-
tionary points of the action f which are points, denoted x0,
of the complex plane such that f0ðx0Þ ¼ 0. We expand the
action fðxÞ and the function gðxÞ around the stationary
points x0 in term of �x ¼ x� x0:

fðxÞ ¼ X1
j¼0

fðx0ÞðjÞ
j!

ð�xÞj

¼ fðx0Þ þ f00ðx0Þ
2

ð�xÞ2 þ f>2
x0 ð�xÞ

and gðxÞ ¼ X1
j¼0

gðx0ÞðjÞ
j!

ð�xÞj ¼ gð�xÞ:

We then expand Kð�xÞ ¼ gð�xÞekf>2
x0

ð�xÞ in power of �x.
Following the standard stationary phase approximation, we
extend the integration domain to the wholeR. The integrals
are then ‘‘generalized Gaussians’’ which can easily be
computed. We group the resulting terms according to their
dependence on 1=�, being careful because of the function
gðxÞ which depends on 1=�. We recall that gðxÞ was
obtained by replacing the factorials in (2) by their series
expansion and we write gðxÞ under the general form:

gðxÞ ¼ X1
i¼1

giðxÞ
i!�i :

Then the complete perturbative expansion of I can be
written as:

I ¼ X
x0

e�fðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�

�f00ðx0Þ�

s �
1þ X1

n¼1

1

�n

�Xn�1

p¼0

~Np

ð2p� 1Þ!!
ð�f00ðx0ÞÞp

þ X2n
p¼0

Np

ð2nþ 2p� 1Þ!!
ð�f00ðx0ÞÞnþp

��
(11)

where
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~N p ¼ XE½2p=3�

i¼1

1

i!ðn� pþ iÞ!
XE½2p=i�

l1���li¼3

g
ð2p�Pi

j¼1
ljÞ

n�pþi ðx0Þ
ð2p�P

i
j¼1 ljÞ!

Yi
j¼1

fljðx0Þ
ðljÞ!

N0 ¼ gð2nÞ0 ðx0Þ
ð2nÞ! þ XE½2n=3�

i¼1

1

ði!Þ2
XE½2n=i�

l1���li¼3

g
ð2n�Pi

j¼1
ljÞ

i ðx0Þ
ð2p�P

i
j¼1 ljÞ!

Yi
j¼1

fljðx0Þ
ðljÞ!

Np ¼ XE½2ðpþnÞ=3�

i¼p

1

i!ði� pÞ!
XE½2ðnþpÞ=i�

l1���li¼3

g
ð2ðnþpÞ�Pi

j¼1
ljÞ

i�p ðx0Þ
ð2ðnþ pÞ �P

i
j¼1 ljÞ!

Yi
j¼1

fljðx0Þ
ðljÞ! for p � 1

(12)

The details of the computation are given in Appendix D.
From this expansion and adjusting the first approximation
to get the proper dependence on � for g and the prefactors,
it is possible to compute analytically the whole asymptotic
expansion of the f6jg-symbol.

Here to get explicitly the next-to-leading order of the
f6jg-symbol asymptotic expansion, we only need the next-
to-leading order of the 1=� expansion of I, so we cut the
previous formulas at n ¼ 1, then

I �X
x0

e�fðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�

�f00ðx0Þ�

s �
1þ 1

�

�
~N0 þ N0

�f00ðx0Þ

þ 3N1

ð�f00ðx0ÞÞ2
þ 15N2

ð�f00ðx0ÞÞ3
��

with the expansion coefficients given by

~N 0 ¼ g1ðx0Þ; N0 ¼ g000 ðx0Þ
2

;

N1 ¼ fð3Þðx0Þg00ðx0Þ
3!

þ fð4Þðx0Þg0ðx0Þ
4!

;

N2 ¼ g0ðx0Þ
2

�
fð3Þðx0Þ

3!

�
2
:

We recall that gðxÞ ¼ eFðxÞð1� GðxÞ
12� Þ; that is: g0ðxÞ ¼ eFðxÞ

and g1ðxÞ ¼ � GðxÞ
12 eFðxÞ. Finally, we obtain the approxima-

tion:

I�X
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

�f00ðx0Þ�

s
eFðx0Þþ�fðx0Þ

�
1þ 1

�

�
�Gðx0Þ

12

� F00ðx0Þ þ ðF0ðx0ÞÞ2
2f00ðx0Þ þ fð4Þðx0Þ þ 4fð3Þðx0ÞF0ðx0Þ

8ðf00ðx0ÞÞ2

� 5ðfð3Þðx0ÞÞ2
24ðf00ðx0ÞÞ3

�
þO

�
1

�2

��
(13)

This gives us the following expression for the asymptotic
expansion of the f6jg-symbol at second order:

��dj01=2� 1=2 �dj02=2� 1=2 �dj03=2� 1=2

�dj23=2� 1=2 �dj13=2� 1=2 �dj12=2� 1=2

�

�X
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�f00ðx0Þ2��3

s
expðFðx0Þ þ �fðx0ÞÞ

� exp

�X
I<J

�djIJ
2

hdjIJ

��
1þ 1

�

�
�HðjIJÞ

24
�Gðx0Þ

12

� F00ðx0Þ þ ðF0ðx0ÞÞ2
2f00ðx0Þ þ fð4Þðx0Þ þ 4fð3Þðx0ÞF0ðx0Þ

8ðf00ðx0ÞÞ2

� 5ðfð3Þðx0ÞÞ2
24ðf00ðx0ÞÞ3

�
þO

�
1

�2

��
(14)

where x0 are the stationary points of the phase, i.e. f
0ðx0Þ ¼

0. The next step is to identify these stationary points.

B. Contributions of the stationary points

The phase fðxÞ is an analytical function given by:

fðxÞ ¼ i�xþ x lnðxÞ �X
K

�
x� ~vK

2

�
ln

�
x� ~vK

2

�

�X
j

�
~pj

2
� x

�
ln

�
~pj

2
� x

�
; (15)

therefore the stationary points x0 satisfy the following
equation as shown in [13]:

f0ðxÞ ¼ i�þ lnðxÞ �X
lnðx� ~vK=2Þ

þX
lnð~pj=2� xÞ ¼ 0; (16)

which is equivalent to

x
Y
j

ðpj � xÞ ¼ �Y
K

ðx� vKÞ: (17)

The previous equation reduces to a quadratic equation
Ax2 � Bxþ C ¼ 0 with
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A ¼ �X
j<l

~pk ~pl þ
X
K<L

~vK ~vL ¼ 1

2

� X
I<J;K<L;ðI;JÞ�ðK;LÞ

djIJdjKL

�

B ¼ �~p1 ~p2 ~p3 þ
X

I<J<K

~vI ~vJ ~vK ¼ 1

4

�� X
I<J;K<L;ðI;JÞ�ðK;LÞ

djIJdjKL

��X
I<J

djIJ

�
þX

J

�Y
K�J

djJK

��
C ¼ Y

K

vK:

(18)

As shown in [13], the discriminant � ¼ �ðB2 � 4ACÞ is given in terms of the djIJ by:

� ¼ 1

16

� X
I<J;K<L;ðI;JÞ�ðK;LÞ

djIJdjKL

� X
M<N;ðM;NÞ�ðI;JÞ;ðM;NÞ�ðK;LÞ

d2jMN
� d2jIJ � d2jKL

�
�X

K

Y
L�K

d2jKL

�

¼ 2

��������������������������

0 ðdj232 Þ2 ðdj132 Þ2 ðdj122 Þ2 1

ðdj232 Þ2 0 ðdj032 Þ2 ðdj022 Þ2 1

ðdj132 Þ2 ðdj032 Þ2 0 ðdj012 Þ2 1

ðdj122 Þ2 ðdj022 Þ2 ðdj012 Þ2 0 1
1 1 1 1 0

��������������������������
¼ 24ð3!Þ2V2; (19)

where V is the volume of the tetrahedron of edge length
djIJ=2. In the following we will focus on the case where
�> 0, i.e. V2 > 0, which corresponds to tetrahedra in flat
Euclidean space. The other case �< 0 corresponds to
tetrahedra admitting an embedding in the 2þ 1d
Minkowski space-time. And so, we get two stationary
points:

x� ¼ B� i
ffiffiffiffi
�

p
2A

: (20)

The geometrical interpretation of the stationary points is
not clear yet. We have shown that � is related to the
volume of the tetrahedron. B and A are also related to
invariant of the tetrahedron:

B ¼ X
I

vI

2
Aþ 24V cot�;

where we recall that vI is the perimeter of the triangle I of
the tetrahedron. The angle � is the Brocard angle of the

tetrahedron. Indeed,
dj01
2

dj02
2

dj03
2 ::

dj03
2

dj23
2

dj13
2 ::

dj12
2 �

dj02
2

dj23
2 ::

dj01
2

dj12
2

dj13
2 are the barycentric coordinates of

the second Lemoine point of the tetrahedron denoted L.
This point is such that the distance from L to the face I of
the tetrahedron is equal to RI tan�where RI is the radius of
the circumscribed circle of the triangle I and � is then

defined by
P

Jð
Q

K�J
djJK
2 Þ ¼ 12V cot�.

The geometrical significance of the stationary points still
has to be understood. However, we can now give the
explicit form of the leading order and of the next-to-
leading order of the f6jg-symbol.

Leading order.We first focus on the leading order and on
the xþ contribution. This analysis has already been done in
[13] and we just recall the main steps and give the
notations:

fðxþÞ ¼ P
I<J

djIJ
2 fdjIJ

where

fdj0i
¼ ln

�ðxþ � ~v0Þðxþ � ~viÞQ
j�i

ð~pj � xþÞ
�

for i; j 2 f1; � � � ; 3g

fdjik
¼ ln

�ðxþ � ~vkÞðxþ � ~viÞ
ð~pk � xþÞð~pi � xþÞ

�
for i; k 2 f1; � � � ; 3g:

(21)

The second derivative of f is given by:

� f00ðxþÞ ¼
X
K

1

xþ � ~vK

þX
j

1

~pj � xþ
� 1

xþ

¼ �i
ffiffiffiffi
�

p
exp

�
� ln

�
xþ

Y
j

ð~pj � xþÞ
��
;

where we have used the Eq. (17) which gives xþ
Q

jð~pj �
xþÞ ¼ �Q

Kðxþ � ~vKÞ. In the same way, we can simplify
FðxþÞ ¼ � 1

2 lnðxþ
Q

jð~pj � xþÞÞ. The exponential piece

of f00ðxþÞ and eFðxþÞ compensate and we get:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�f00ðxþÞ
p eFðxþÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�i
ffiffiffiffi
�

pp :

Collecting these different results yields the following con-
tribution of the xþ stationary point:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�f00ðxþÞ2��3

s
expðFðxþÞ þ �fðxþÞÞ

� exp

�X
I<J

�djIJ
2

hdjIJ

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��3

ffiffiffiffi
�

pp exp

�
i
�

4
þX

IJ

ð�djIJ=2ÞðhdjIJ þ fdjIJ
Þ
�
:

(22)
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The same analysis for the x� contribution yields the
same contribution as the previous one with an opposite
phase:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�f00ðx�Þ2��3

s
expðFðx�Þ þ �fðx�ÞÞ

� exp

�X
I<J

�djIJ
2

hdjIJ

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��3

ffiffiffiffi
�

pp exp

�
�i

�

4
þX

IJ

ð�djIJ=2ÞðhdjIJ þ �fdjIJ Þ
�
:

(23)

We must now compute fdjIJ which is a complex loga-

rithm. We recall that the principal value of the logarithm is
defined by Logz :¼ lnjzj þ iArgz. Therefore, we have to
compute =ðfdjIJ Þ ¼ �IJ. From (21), we can write that:

�0i ¼ Argðxþ � ~v0Þ þ Argðxþ � ~viÞ �
X
j�i

Argð~pj � xþÞ

�ik ¼ Argðxþ � ~vkÞ þ Argðxþ � ~viÞ � Argð~pk � xþÞ
� Argð~pi � xþÞ: (24)

The analysis done in [13] shows that �IJ can be identified
as the (exterior) dihedral angles of the tetrahedron.
Moreover,

<ðfdj0i Þ ¼ ln

��������ðxþ � ~v0Þðxþ � ~xiÞQ
j�i

ð~pj � xþÞ
��������

<ðfdjik Þ ¼ ln

��������ðxþ � ~vkÞðxþ � ~viÞ
ð~pi � xþÞð~pk � xþÞ

��������:

(25)

A tedious (but interesting) computation shows that:

<ðfdjIJ Þ þ hdjIJ ¼ 0: (26)

Then, summing the contributions of xþ and x� we get the
leading order of the 6j-symbol:

�
�dj01=2� 1=2 �dj02=2� 1=2 �dj03=2� 1=2
�dj23=2� 1=2 �dj13=2� 1=2 �dj12=2� 1=2

�

�L:O:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

12��3V

s
cos

�
�

4
þ SR

�
;

(27)

where SR ¼ P
I<J

�djIJ
2 �IJ is the Regge action. This is the

well-known limit given by Ponzano and Regge [1] and
which has justified their state sum model for 3d Euclidean
gravity where the f6jg-symbol is the spin-foam amplitude
for a single tetrahedron.
Next-to-leading order. The next-to-leading order is then

given by the term in 1
�5=2 in Eq. (14). Using Eqs. (6)–(8), we

rewrite the leading order in terms of x�, ~vI, ~pj and �:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48��5V

p fAðxþ; ~vI; ~pj;�ÞeiðSRþð�=4ÞÞ

þ Aðx�; ~vI; ~pj;�Þe�iðSRþð�=4ÞÞg; (28)

where

Aðxþ; ~vI; ~pj;�Þ ¼ �HðdjIJ Þ
24

þ 1

24i
ffiffiffiffi
�

p
�
Q
I
ðxþ � ~vIÞ

�
��2 � 3i

�X
K

Y
L�K

ðxþ � ~vLÞ
�
�

ffiffiffiffi
�

p
þ

�
9
X
K

Y
L�K

ðxþ � ~vLÞ2

þ 6
Y
I

ðxþ � ~vIÞ
X
K<L

ðxþ � ~vKÞðxþ � ~vLÞ
�
�� 6i

�
�Y

j

ð~pj � xþÞ3 �
X
K

Y
L�K

ðxþ � ~vLÞ3

þX
j

x3þ
Y
l�j

ð~pl � xþÞ3 �
�X

K

Y
L�K

ðxþ � ~vLÞ
��
�Y

j

ð~pj � xþÞ2 þ
X
K

Y
L�K

ðxþ � ~vLÞ2

�X
j

x2þ
Y
l�j

ð~pl � xþÞ2
�� ffiffiffiffi

�
p

� 5

�
�Y

j

ð~pj � xþÞ2 þ
X
K

Y
L�K

ðxþ � ~vLÞ2 �
X
j

x2þ
Y
l�j

ð~pl � xþÞ2
�
2
�
:

(29)

Since x� are conjugated to each other, we obviously have
AðxþÞ ¼ Aðx�Þ. Moreover, numerical computations shows
that <ðAðx�; ~vI; ~pj;�ÞÞ ¼ 0, and in particular AðxþÞ ¼
�Aðx�Þ. This is a priori a nontrivial result to obtain
from the previous formulas. Nevertheless, we tested it
numerically for various choices of spin and it always
turned out true. Thus we believe that there should be a
way to show it analytically. We can then give an explicit

formula of the NLO of the f6jg-symbol:

f6jg �
�!1

f6jgNLO ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12��3V

p cos

�
�

4
þ SR

�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12��5V

p =ðAðxþ; ~vI; ~pj;�ÞÞ

� sinðSR þ �=4Þ: (30)
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This result is confirmed by numerical simulations. The
plots Fig. 2 represent numerical simulations of the
f6jg-symbol minus its approximation given above (30).
Moreover, to enhance the comparison, we have multiplied
by �5=2 to see how the coefficient of the next-to-leading
order is approached and we have divided by cosðSR þ
�=4Þ (oscillations of the next-to-next-to-leading order) to
suppress the oscillations; that is we have plotted:

�NLO 	 �5=2 f6jg � f6jgNLO
cosðSR þ �=4Þ : (31)

As expected, the numerical simulations show that this
rescaled difference �NLO goes to 0 as 1=� when � goes
to 1. Moreover, the data for �NLO without any oscillation
suggest that we correctly divided by cosðSR þ �=4Þ and
thus the NNLO of the f6jg-symbol should oscillate in
cosðSR þ �=4Þ. Therefore, this strongly suggest that the
asymptotic expansion of the f6jg-symbol in term of the
inverse length scale ��1 is given by a series of alternating
sines and cosines. We strongly underline that this is true
because we have rescaled the edge lengths djIJ . If we had
instead rescaled the spins jIJ as usually done, we would
have found an oscillatory behavior controlled by a mixing
of cos and sin at each order (as shown explicitly for the
case of the isosceles tetrahedron in [8]). This suggests that
the djIJ are indeed the right parameter to consider when
studying the semiclassical behavior of the f6jg-symbol.

The only thing left to do in the present analysis is to
provide the NLO coefficient =ðAðxþÞÞ with a geometrical
interpretation and to show rigorously that <ðAðxþÞÞ
vanishes.

Finally, we rewrite the approximation up to NLO of the
f6jg-symbol in a slightly different manner:

f6jg � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12��3V

p cos

�
�

4
þ SR þ 1

�
=ðAðxþÞÞ þO

�
1

�2

��
:

(32)

This shows that the next-to-leading corrections to the
f6jg-symbol can be directly considered as corrections to
the Regge action for (3d) gravity:

SeffectiveR 	 SR þ 1

�
=ðAðxþÞÞ:

This quantum gravity correction 1
�=ðAðxþÞÞ should have

an interpretation in the continuum limit (or large scale
limit). It would be interesting to understand to which
kind of terms it corresponds in an effective action for 3d
(quantum) gravity. We point out that an expansion in 1=�
with alternating cos and sin could be similarly reabsorbed
as corrections to the Regge action. This would define in the
spin-foam framework the quantum gravity corrections to
classical 3d gravity due to the fundamental discreteness of
the theory. Such correction would enter the gravitational
correlations (of the ‘‘graviton propagator’’ type) at second
order as suggested in [7].

IV. SOME PARTICULAR CASES

A. The equilateral tetrahedron

For the equilateral tetrahedron, all the edges have the
same length: that is8 I, J, djIJ ¼ d. The tetrahedron with

edge length d=2 has a volume V ¼ ðd=2Þ3 ffiffiffi
2

p
=12 and has

all equal dihedral angles � ¼ arccosð�1=3Þ. In this case,
the expressions greatly simplify. For instance, the station-

ary points are x� ¼ 11�i
ffiffi
1
2

p
6 d. Equations (27) and (28)

reduce to:

f6jgNLOequi ¼ 25=4ffiffiffiffiffiffiffiffiffi
�d3

p cos

�
SR þ �

4

�

� 31

72
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
�d5

p sin

�
SR þ �

4

�
; (33)

where the Regge action is SR ¼ 3d�. The result was al-
ready obtained in [8]. We confirm it by numerical simula-
tions. The plot in Fig. 3 gives the equilateral f6jg-symbol
minus its NLO approximation (33). Like for the previous

plots, we have multiplied by �5=2 to see how the coefficient
of the next-to-leading order is approached and we have
divided by cosðSR þ �=4Þ (oscillations of the next to next-
to-leading order) to suppress the oscillations. This gives a
curve converging to 0 as 1=� asymptotically.

B. The isosceles tetrahedron

We now consider an isosceles tetrahedron that is a
tetrahedron which has two opposite edges of length equal

FIG. 2. Plots of the difference �NLO between the f6jg-symbol and its analytical approximation up to NLO. On the left, we look at the
f6jg-symbol for d1 ¼ 5�, d2 ¼ 7�, d3 ¼ 9�, d4 ¼ 7�, d5 ¼ 9�, d6 ¼ 9� with the x-coordinate standing for 3�. On the right, we have
plotted the case d1 ¼ 15�, d2 ¼ 17�, d3 ¼ 19�, d4 ¼ 19�, d5 ¼ 21�, d6 ¼ 17� with � running from 60 to 200.
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to d1
2 and d2

2 and the remaining four edges of the same length

equal to d
2 (see Fig. 4). The volume of the tetrahedron is:

V2 ¼ 1

28ð3!Þ2 d
2
1d

2
2ð4d2 � d21 � d22Þ;

and the dihedral angles are:

� ¼ arccos

� �d1d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2 � d21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2 � d22

q �
;

�1;2 ¼ 2 arccos

�
d2;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4d2 � d21;2

q �
:

Once again, Eqs. (27) and (28) simplify and we get :

f6jgðisoÞNLO ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�V�3

p cos

�
SR þ �

4

�

� Fðd; d1; d2Þ
24V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�V�3

p sin

�
SR þ �

4

�
; (34)

where Fðd;d1; d2Þ ¼ 768d6ðd2 � d21 � d22Þ þ 736d4d21d
2
2þ

240d4ðd41 þ d42Þ � 176d2d21d
2
2ðd21 þ d22Þ�

�24d2ðd6
1
þd6

2
Þþ10d2

1
d2
2
ðd4

1
þd4

2
Þþ25d4

1
d4
2

96ð4d2�d2
1
Þð4d2�d2

2
Þð4d2�d2

1
�d2

2
Þ, and the Regge action SR ¼

2d�þ d1
2 �1 þ d2

2 �2. Let us point out that the volume in-

creases as �3 while F goes as �2, so that the NLO scales

properly as ��5=2.
This reproduces the result previously obtained in [8]. We

can easily check that this reduces to the previous equi-
lateral case when d1 ¼ d2 ¼ d and we further confirm it by
numerical simulations. The plots in Fig. 5 represents nu-
merical simulations of an isosceles f6jg-symbol minus the
analytical formula (34). Like for the previous plot, we have

multiplied the data by �5=2 to see how the coefficient of the
NNLO order is approached and we have divided by
cosðSR þ �=4Þ (NNLO oscillations) to suppress the oscil-
lations. This rescaled difference goes asymptically as ��1

as in the previous plots (the apparent change of conver-
gence rate is simply due to the a priori different factors in
front of ��1 and the different scales used on the x and y
axis). Finally, the geometrical interpretation of the term
Fðd; d1; d2Þ remains to be understood. If we cannot provide
it with a geometrical meaning, there is little hope to
interpret the NLO coefficient =ðAðxþÞÞ in the generic
case. Nevertheless, we give a more compact expression
for the denominator of F:

96ð4d2 � d21Þð4d2 � d22Þð4d2 � d21 � d22Þ ¼ 963
V2

cos2�
:

(35)

We still need to express the numerator of F in term of
geometrical objects. For instance, we could express it in
term of d2, ð4d2 � d21Þð4d2 � d22Þ and ð4d2 � d21 � d22Þ,
which would provide a formula in term of the volume
and the dihedral angles. Nevertheless, we have not been
able to find such a useful rewriting of this NLO coefficient.

V. CONCLUSION

We investigated the asymptotical behavior of the
f6jg-symbol. Starting from its expression as a (finite)
sum over (half-)integers of algebraic combinations of fac-
torials, we followed the footsteps of [13] and showed that

FIG. 5. Differences between isosceles f6jg-symbols and their analytical approximation (34). The x-axis stands for d with � goes
from 200 to 600. On the left hand side, we consider isosceles tetrahedra with d1 ¼ 3�, d2 ¼ 3�, d ¼ 7�. On the right hand side, we
have plotted the case d1 ¼ 9�, d2 ¼ 3�, d ¼ 21�.

d1

d
2

2

d2

2

FIG. 4. The isosceles tetrahedron.

FIG. 3. Difference between the equilateral f6jg-symbol and the
analytical result (33). The x-axis stands for d and d goes from
200 to 600.
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one can derive systematically the corrections to the leading
order formula at any order. The method relies on three
steps. First, we use the Stirling formula (with the appro-
priate corrections) to approximate the factorials. Second,
we consider the sum as a Riemann sum and approximate it
by an integral (over the real line). Finally, we perform a
saddle point approximation to compute the behavior of the
f6jg-symbol for (homogeneously) large spins.

Using this framework, we showed that we recover an
oscillating leading order (LO) with frequency given by the
Regge action as is well-known and was already proved in
[13]. Then we computed analytically the next-to-leading
(NLO) corrections. The formula that we obtain is explicit,
although not compact, and we could not interpret it geo-
metrically in a clear way. Nevertheless, we performed two
simple checks. First, we checked that our complicated
formula reduces to the known expression for the NLO for
isosceles tetrahedra [8]. Second, we checked it numerically
in various cases and found a perfect fit. These numerical
simulations also confirmed that the NLO is a �

2 -phase shift

with respect to the LO (the NLO is given by a sin instead of
a cos) and that the NNLO is back in phase with the LO
(again a cos), which confirms our expectation of an alter-
nating asymptotical series in cosþ 1

j sinþ 1
j2
cosþ 1

j3
�

sinþ . . . .
We point out that we computed in details the corrections

due to the Stirling formula and to the saddle point approxi-
mation. However we did not study the Riemann sum
approximation. It does not contribute to the LO and
NLO. It will only enter at the level of the NNLO.

This work is mainly technical and can be applied to the
computation of gravitational correlations for 3d quantum
gravity following [6–9]. It will enter the quantum correc-
tions to the propagator/correlations at second order, as was
shown in [7]. Indeed, the first order corrections are derived
from the path integral of the Regge action, while the
deviations from the Regge action as computed here enter
at second order (as two-loop corrections). From this per-
spective, this NLO of the f6jg-symbol describes the leading
order deviation of quantum gravity with respect to the
classical gravity, or in other words the first quantum gravity
corrections to the classical 3d Regge action.

Beyond the technicality of the paper, our purpose was to
show that computing such corrections is indeed possible
(although it does lead to complicated expressions) and that
similar methods could be used for 4d spin-foam gravity.

Although these methods allow straightforward (but
lengthy) analytical calculations, which might be handled
by a computer program, their drawback is the loss of the
geometrical meaning of the expressions obtained. An alter-
native way to proceed is to use the exact recursion relations
satisfied by the f6jg-symbol (see [10]) and other spin-foam
amplitudes (see [16]) to probe the asymptotic behavior and
the induced corrections of the correlations. This is left to
future investigation [15].
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APPENDIX A: THE f6jg-SYMBOL—RECOUPLING
THEORY

The f6jg-symbol is a real number and it is obtained by
combining four normalized Clebsh-Gordan coefficients
along the six edges of a tetrahedron, with edge lengths

given by jIJ þ 1
2 ¼

djIJ
2 (0 � I < J � 3). We usually ex-

press the 6j-symbol in term of the Wigner 3j-symbols :�
j01 j02 j03
j23 j13 j12

�
¼ X

�

ð�1Þj01þj03þj01��01��03��01

� j01 j12 j13
�01 �12 ��13

� �

� j13 j23 j03
�13 �23 �03

� �

� j03 j02 j01
�03 �02 ��01

� �

� j02 j23 j12
�02 �23 �12

� �
: (A1)

The Wigner 3j symbols are very simply related to the
Clebsh-Gordan coefficients hj01j12�01�12jj13�13i by:
hj01j12�01�12jj13�13i ¼ ð�1Þj01�j12þ�13ð2j13 þ 1=2Þ1=2

� j01 j12 j13
�01 �12 ��13

� �
:

And Racah gave a general formulas for the Clebsh-Gordan
coefficient:

hj01j12�01�12jj13�13i
¼ �ð�01 þ �12; �13Þ�ðj01j12j13Þ

�

ð2j13 þ 1Þðj01 þ �01Þ!ðj01 � �01Þ!ðj12 þ �12Þ!ðj12 � �12Þ!ðj13 þ �13Þ!ðj13 � �13Þ!

q
�X

�

ð�1Þ�
ðj01 � �01 ��Þ!ðj13 � j12 þ �01 þ �Þ!ðj12 þ �12 ��Þ!ðj13 � j01 � �12 þ �Þ!�!ðj01 þ j12 � j13 ��Þ! ;
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where �ðj01; j12; j13Þ ¼ ðj01þj12�j13Þ!ðj01�j12þj13Þ!ð�j01þj12þj13Þ!
ðj01þj12þj13þ1Þ! From these, Racah gave a tensorial formulas for the

6j-symbol, the Racah’s single sum formulas:

�
j01 j02 j03
j23 j13 j12

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðj01; j02; j03Þ�ðj23; j02; j12Þ�ðj23; j13; j03Þ�ðj01; j13; j12Þ

q Xminpj

maxvI

ð�1Þt ðtþ 1Þ!Q
i
ðt� vIÞ!

Q
j
ðpj � tÞ! (A2)

with vK ¼ P
I�KjIK 8 K 2 f0; � � � ; 3g and pk ¼ P

i�0;kðj0i þ jkiÞ 8 k 2 f1 � � � 3g.

APPENDIX B: FACTORIALS

The factorial n! is defined for a positive integer n as:

n! 	 nðn� 1Þ � � � 2 � 1 ¼ �ðnþ 1Þ;
where �ðnÞ is the gamma function for integers n. This definition is generalized to noninteger values. Using the identities for
the � function, we write explicitly the values for half-integers:

�
�1

2

�
!¼ ffiffiffiffi

�
p

;

�
1

2

�
!¼

ffiffiffiffi
�

p
2

;

�
n� 1

2

�
!¼

ffiffiffiffi
�

p
2n

ð2n� 1Þ!!¼
ffiffiffiffi
�

p ð2nÞ!
22nn!

;

�
nþ 1

2

�
!¼

ffiffiffiffi
�

p
2nþ1

ð2nþ 1Þ!!¼
ffiffiffiffi
�

p ð2nþ 1Þ!
22nþ1n!

;

where n!! is the double factorial :

n!! 	
8<
:
n � ðn� 2Þ � � � 5 � 3 � 1 if n > 0 odd;
n � ðn� 2Þ � � � 6 � 4 � 2 if n > 0 even;
1 if n ¼ �1 or 0:

Using the asymptotic expansion of a large factorial n!� ffiffiffiffiffiffiffiffiffi
2�n

p ðneÞnð1þ 1
12n ¼ 1

288n3
� 139

51840n3
� 571

2488320n4
� � �Þ, we can get an

asymptotic expansion for:

ðnþ 1=2Þ!� ffiffiffiffiffiffiffi
2�

p
eðnþ1Þ lnðnÞ�n

�
1þ 1

2n

��
1þ 11

12ð2nÞ þ
1

288ð2nÞ2 �
139

51840ð2nÞ3 �
571

2488320ð2nÞ4 þ � � �
�

�
�
1� 1

12n
� 1

288n2
þ 139

51840n3
þ 571

2488320n4
� � � �

�
;�

n� 1

2

�
!� ffiffiffiffiffiffiffi

2�
p

en lnðnÞ�n

�
1þ 11

12ð2nÞ þ
1

288ð2nÞ2 �
139

51840ð2nÞ3 �
571

2488320ð2nÞ4 þ � � �
�

�
�
1� 1

12n
� 1

288n2
þ 139

51840n3
þ 571

2488320n4
� � � �

�
; (B1)

or more simply, at the next-to-leading order:

n!� ffiffiffiffiffiffiffiffiffi
2�n

p �
n

e

�
n
�
1þ 1

12n

�
;

�
nþ 1

2

�
!� ffiffiffiffiffiffiffi

2�
p

eðnþ1Þ lnðnÞ�n

�
1þ 11

24n

�
;

�
n� 1

2

�
!� ffiffiffiffiffiffiffi

2�
p

en lnðnÞ�n

�
1� 1

24n

�
:

(B2)

APPENDIX C: FIRST APPROXIMATION: FACTORIALS ! NEXT-TO-LEADING ORDER OF THE
STIRLING FORMULA

In this section, all computations are done at the next-to-leading order. We replace the factorials in Eq. (2) by their
respective asymptotic expansion.

(i) Then, a typical triangle coefficient:

�ð�dj01 ; �dj02 ; �dj03Þ ¼
ð�2 ðdj01 þ dj02 � dj03Þ � 1

2Þ!ð�2 ðdj01 � dj02 þ dj03Þ � 1
2Þ!ð�2 ð�dj01 þ dj02 þ dj03Þ � 1

2Þ!
ð�2 ðdj01 þ dj02 þ dj03Þ � 1

2Þ!

will be
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�ð�dj01 ; �dj02 ; �dj03Þ ¼ 2�½e�ð�=2Þðdj01þdj02þdj03 Þ ln½ð�=2Þðdj01þdj02þdj03 Þ�þð�=2Þðdj01þdj02þdj03 Þ

�
�
1þ 1

12�ðdj01 þ dj02 þ dj03Þ
�
eð�=2Þðdj01þdj02�dj03 Þ ln½ð�=2Þðdj01þdj02�dj03 Þ��ð�=2Þðdj01þdj02�dj03 Þ

�
�
1� 1

12�ðdj01 þ dj02 � dj03Þ
�
eð�=2Þðdj01�dj02þdj03 Þ ln½ð�=2Þðdj01�dj02þdj03 Þ��ð�=2Þðdj01�dj02þdj03 Þ

�
�
1� 1

12�ðdj01 � dj02 þ dj03Þ
�
eð�=2Þð�dj01þdj02þdj03 Þ ln½ð�=2Þð�dj01þdj02þdj03 Þ��ð�=2Þð�dj01þdj02þdj03 Þ

�
�
1� 1

12�ð�dj01 þ dj02 þ dj03Þ
�
;

which simplifies

�ð�dj01 ; �dj02 ; �dj03Þ ¼ 2�eð�=2Þ½ð�dj01þdj02þdj03 Þ lnð�dj01þdj02þdj03 Þþðdj01�dj02þdj03 Þ lnðdj01�dj02þdj03 Þ�

� e�ð�=2Þ½ðdj01þdj02�dj03 Þ lnðdj01þdj02�dj03 Þþðdj01þdj02þdj03 Þ lnðdj01þdj02þdj03 Þ�

�
�
1� 1

12�

�
1

�dj01 þ dj02 þ dj03
þ 1

dj01 � d� j02 þ dj03
þ 1

dj01 þ dj02 � d� j03

� 1

dj01 þ dj02 þ dj03

��
: (C1)

The factor

�ð�dj01 ; �dj02 ; �dj03Þ�ð�dj23 ; �dj02 ; �dj12Þ�ð�dj23 ; �dj13 ; �dj03Þ�ð�dj01 ; �dj13 ; �dj12Þ

q
in Eq. (2) can then

easily be put into the form:

ð2�Þ2eð�=2ÞhðdjIJ Þ
�
1� 1

24�
HðdjIJ Þ

�
(C2)

where

hðdjIJ Þ ¼
X
I<J

djIJhdjIJ with

hdjIJ ¼
1

2
ln

� ðdjIJ � djIK þ djILÞðdjIJ þ djIK � djILÞðdjIJ � djJK þ djJLÞðdjIJ þ djJK � d� jJLÞ
ðd� jIJ þ djIK þ djIL Þð�djIJ þ djIK þ djILÞðdjIJ þ djJK þ djJLÞð�djIJ þ djJK þ djJLÞ

�

K � L and K;L� I; J HðdjIJ Þ ¼ 2
X
j;K

1

~pj � ~vK

� 2
X
K

1

~vK

where K 2 f0; � � � ; 3g and j 2 f1; � � � ;3g

(C3)

and we recall that ~vK ¼ P
I�K

djIK
2 8 K 2 f0; � � � ; 3g, ~pk ¼

P
i�0;k

ðdj0iþdjki Þ
2 8 k 2 f1 � � � 3g.

(ii) We now replace the factorials in the sum of (2) by their approximations and we change of variables: t ¼ �x:

�ð�djIJ Þ ¼
Xmin~pj

x¼max~vI

ð�1Þ�x
ð�xþ 1Þð�xÞ!Q

j
ð�ð~pj � xÞÞQ

j
ð�ð~pj � xÞ � 1Þ

Q
I
ð�ðx� ~vIÞ þ 3=2Þð�ðx� ~vIÞ þ 1=2Þ!Q

j
ð�ð~pj � xÞÞ! ¼

1

ð2�Þ3
Xminpj

x¼maxvI

eG1ðxÞG2ðxÞ; (C4)

where

G1ðxÞ ¼ i��xþ 3 ln�þ lnxþ 2
X
j

lnð~pj � xÞ �X
I

lnðx� ~vIÞ þ ð�xþ 1=2Þðlnxþ ln�Þ � �xþX
I

�ðx� ~vIÞ

�X
I

ð�ðx� ~vIÞ þ 1Þðln�þ lnðx� ~vIÞÞ �
X
j

ð�ð~pj � xÞ þ 1=2Þðln�þ lnð~pj � xÞÞ þX
j

�ð~pj � xÞ; (C5)

which can be simplified using the fact that
P

I ~vI ¼ P
j ~pj:
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G1ðxÞ ¼ �2 ln�þ 1

2
ln

x3
Q
j
ð~pj � xÞ3

Q
I
ðx� ~vIÞ4

þ �

�
i�xþ x lnx�X

I

ðx� vIÞ lnðx� vIÞ

�X
j

ðpj � xÞ lnðpj � xÞ
�
; (C6)

and

G2ðxÞ¼
1þ 1

12�x

ð1þ 3
2�ðx�~vIÞ

Q
I
ð1þ 11

24�ðx�~vIÞÞ
Q
j
ð1þ 1

12�ðpj�xÞÞ

¼ 1� 1

�

�
� 13

12x
þX

I

47

24ðx�vIÞ

þX
j

13

12ðpj�xÞþO

�
1

�

��
: (C7)

Moreover,

eG1ðxÞ ¼ 1

�2
eFðxÞþ�fðxÞ; (C8)

where

fðxÞ ¼ i�xþ x lnðxÞ �X
I

ðx� vKÞ lnðx� vIÞ

�X
j

ðpj � xÞ lnðpj � xÞ

FðxÞ ¼ 1

2
ln

�x3Q
j
ðpj � xÞ3

Q
I
ðx� vIÞ4

�
: (C9)

Then the sum can be approximated by:

�ð�djIJ Þ ¼
1

ð2�Þ3�2

Xminpj

x¼maxvI

e�fðxÞþFðxÞ

�
�
1� 1

12�
GðxÞ þO

�
1

�

��
e�fðxÞ; (C10)

where

GðxÞ ¼ � 13

x
þX

K

47

24ðx� vKÞ þ
X
j

13

pj � x
:

(C11)

APPENDIX D: THIRD APPROXIMATION: THE
STATIONARY PHASE METHOD

We are interested in the 1=� expansion of the integral:

I ¼
Z min~pj=2

max~vI=2
dxeFðxÞ

�
1� 1

12�
GðxÞ þO

�
1

�

��
e�fðxÞ:

We do not give here the proof of the whole expansion
(Eq. (11)) because of the heavy formalism but we directly
prove the next-to-leading order formula (Eq. (13)); the
procedure is the same but the computations are easier.
The asymptotic expansion of such an integral is given by
contributions around the stationary points of the phase
denoted x0. We expand the phase fðxÞ around the sta-

tionary points x0 at fourth order and the function gðxÞ ¼
eFðxÞð1� 1

12�GðxÞÞ at second order and we extend the in-

tegration to infinity.

I �X
x0

Z þ1

�1
dð�xÞðgðx0Þ þ g0ðx0Þ�x

þ 1

2
g00ðx0Þð�xÞ2Þe�ðfðx0Þþð1=2Þf00ðx0Þð�xÞ2Þ

�
�
1þ �

�
1

3!
fð3Þðx0Þð�xÞ3 þ 1

4!
fð4Þðx0Þð�xÞ4

�

þ �2

2

�
1

3!
fð3Þðx0Þð�xÞ3

�
2 þOð�2Þ

�
; (D1)

where in our case, gðxÞ ¼ eFðxÞð1� 1
12�GðxÞÞ and then the

integration are ‘‘generalized’’ Gaussians:

I �X
x0

eFðx0Þþ�fðx0Þ
��

1� 1

12�
Gðx0Þ

�Z þ1

�1
dð�xÞe��ðð�f00ðx0ÞÞ=2Þð�xÞ2 þ 1

2
ððF0ðx0ÞÞ2 þ F00ðx0ÞÞ

�
Z þ1

�1
dð�xÞð�xÞ2e��ðð�f00ðx0ÞÞ=2Þð�xÞ2 þ �

�
fð4Þðx0Þ

4!
þ fð3Þðx0Þ

3!
F0ðx0Þ

�Z þ1

�1
dð�xÞð�xÞ4e��ðð�f00ðx0ÞÞ=2Þð�xÞ2

þ �2

2

�
fð3Þðx0Þ

3!

�
2 Z þ1

�1
dð�xÞð�xÞ6e��ðð�f00ðx0ÞÞ=2Þð�xÞ2 þO

�
1

�3=2

��
(D2)

which can easily be computed:

I�X
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

�f00ðx0Þ�

s
eFðx0Þþ�fðx0Þ

�
1þ 1

�

�
�Gðx0Þ

12
�F00ðx0ÞþðF0ðx0ÞÞ2

2f00ðx0Þ þfð4Þðx0Þþ4fð3Þðx0ÞF0ðx0Þ
8ðf00ðx0ÞÞ2

� 5ðfð3Þðx0ÞÞ2
24ðf00ðx0ÞÞ3

�
þO

�
1

�

��
:

(D3)
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