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We study of the appearance of geometric quantum phases in the dynamics of a neutral particle that

possess a permanent magnetic dipole moment in rotating frames in a cosmic string spacetime. The

relativistic dynamics of spin-1=2 particle in this frame is investigated and we obtain several contributions

to relativistic geometric phase due rotation and topology of spacetime. We also study the geometric phase

in the nonrelativistic limit. We obtain effects analogous to the Sagnac effect and Mashhoon effect in a

rotating frame in the background of a cosmic string.
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I. INTRODUCTION

In the quantum theory, the phenomenon of the arising of
topological phases in the wave function of the particles in
interference experiments is one the most interesting quan-
tum effects which have attracted a special attention in the
last decades. The first quantum effect associated to the
topological quantum phases, demonstrated by Aharonov
and Bohm, is known as the Aharonov-Bohm (AB) effect
[1]. Aharonov and Casher (AC) [2] have studied the quan-
tum behavior of a neutral particle with a permanent mag-
netic dipole moment interacting with an external electric
field and have obtained a topological quantum phase. The
effect dual to the AC effect was proposed by He and
MacKellar [3] and, independently, by Wilkens [4]: when
they have investigated the quantum dynamics of an electric
dipole in the presence of an external magnetic field, they
have found that the wave function of the system acquires a
quantum phase. Following this way, Dowling et al. [5] and
Furtado and Duarte [6] have studied the effect dual to the
AB effect using the Maxwell duality transformation and
the quantum dynamics of a magnetic monopole in the
presence of a electric solenoid, respectively. Recently,
Horsley and Babiker have discussed the dual Aharonov-
Bohm effect in the dynamics of a composite particle [7,8].

In the last decades, effects generated by the rotating
frames have been studied within classical as well as within
quantum mechanics. The well known effect arisen due to
the rotation is the Sagnac effect [9]. The influence of the
rotation was also discussed in some works [10,11] in the
nonrelativistic quantum mechanics such as [12], where the
influence of the rotation of the Earth gives contribution to
the phase shift of the wave function. In Ref. [13], Anandan
has investigated the interference of coherent beams of
particles. The relativistic aspect of the rotation was studied
in [14], where the Dirac equation in flat spacetime is

written in the rotating frame. A review of the Sagnac effect
and corresponding experiments is given in [15] and a de-
tailed discussion of the Sagnac effect in the nonrelativistic
and relativistic regimes is presented in [16]. Another effect
arisen due to the rotating frames is the appearance of the
Berry phase [17]. In [18], the Berry phase arises due to
mechanical reasons, and possible experiments are sug-
gested to detect this phase. In [19] a time-dependent
Schröedinger equation is considered and a nonadiabatic
Berry phase is shown to arise from the exact solutions of
this equation of motion, thus it is proved that the Berry
phase can be observed within rotating systems.
The Refs. [20,21] are devoted to discussion of the phase

shift in the neutron wave function due to the rotation of the
Earth, and a interesting relation between the angular mo-
mentum corresponding to the motion of the neutron around
the center of the Earth and the angular velocity of the Earth
is showed. In Ref. [22], Mashhoon has discussed the
interference effects in rotating frames in flat spacetime
and an important coupling of the spin of the particles
with the angular velocity of the rotating frames, and this
coupling is known as the Mashhoon effect. In Ref. [23],
Hehl and Ni have studied the Dirac equation in a flat
spacetime with accelerated and rotating frames showing
Sagnac-type and a rotation-spin coupling effects. In
Ref. [24] the origin of the Sagnac and Mashhoon effects
is related to the application of Lorentz transformations.
The nonrelativistic limit of the Dirac equation with accel-
erated and rotating frames was also studied in [23] showing
redshift-like effect and the effects similar to those ones
studied in Refs. [20–22]. In the presence of a gravitational
field, through the weak field approximation, the Sagnac
effect and the spin-rotation coupling are derived in [25]
both in the relativistic and nonrelativistic dynamics of a
spin one half particle.
The study of appearance of geometric phases for a

neutral particle with permanent magnetic and electric di-
pole moments was done in some backgrounds. In [26,27],
the electromagnetic effects affecting the electric and mag-
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netic dipoles moments were discussed in flat spacetime. In
[28], the geometric phases for neutral particles were ob-
tained in the context of the noncommutative quantum
mechanics, and in [29], in the context of the Lorentz-
symmetry violation. In the presence of a topological de-
fect, the quantum dynamics of a charged particle with a
magnetic dipole moment interacting with an electromag-
netic field was investigated in [30]. The geometric phases
for a neutral particle with permanent electric and magnetic
dipole moments interacting with an external electric field
in curved spacetime was studied in [31] and in curved
spacetime and in the presence of torsion in [32].

In this paper, we discuss the relativistic and nonrelativ-
istic behavior of a neutral particle with a permanent mag-
netic dipole moment interacting with an external electric
field in a rotating frame in a cosmic string background. We
show that, if we construct a local corotating frame where
there are no torques on the dipole moment, the relativistic
coupling between the spin of the particle and the rotation of
the local reference frame arises naturally without need to
use the weak field approximation. We also show that the
wave function of the neutral particle acquires a relativistic
phase shift due to the topology of the cosmic string space-
time, the interaction between the magnetic dipole moment
with the external electric field, the spin-rotation coupling
and due to the rotation of the local reference frame. In the
nonrelativistic case we show that the wave function of the
neutral particle acquires a nonrelativistic quantum phase
due to five contributions: one due to the topology of the
topological defect, one due to the interaction between the
electric field and the magnetic dipole moment, one due to
the coupling spin-rotation and two given by gauge fields
arising due to the rotation of the local reference frame. We
will also show that the spin-rotation coupling [22] arises in
the nonrelativistic behavior of the neutral particle without
using of the weak field approximation.

This work is structured as follows: In Sec. II, we present
the cosmic string spacetime and the field configuration in a
rotating frame. In Sec. III, we discuss the relativistic
dynamics of the neutral particle with permanent magnetic
dipole moment interacting with an external electric field in
a rotating frame in a cosmic string spacetime and obtain the
relativistic geometric phases acquired by the wave function
of the neutral particle. In Sec. IV, we investigate the non-
relativistic behavior of this neutral particle in the presence
of the topological defect in rotating frames and obtain the
nonrelativistic geometric phases. In Sec. V, we present our
conclusions.

II. COSMIC STRING SPACETIME AND FIELD
CONFIGURATION IN THE ROTATING FRAME

In this section we describe the curved spacetime in the
rotating frame. The chosen curved spacetime is the cosmic
string spacetime, where the line element is given by

ds2 ¼ �dT2 þ dR2 þ �2R2d�2 þ dZ2; (1)

where � ¼ 1� 4� is a parameter associated with the
deficit angle of cosmic string spacetime and is defined in
the range 0<�< 1, with � being the linear mass density,
and we consider that @ ¼ c ¼ G ¼ 1. The azimuthal angle
varies in the interval: 0 � ’< 2�. The parameter � can
assume only values �< 1 (unlike of this, in [33,34], it can
assume values greater than 1, which correspond to an
anticonical spacetime with negative curvature). This ge-
ometry possesses a conical singularity represented by the
following curvature tensor

R�;’
�;’ ¼ 1� �

4�
�2ð~rÞ; (2)

where �2ð~rÞ is the two-dimensional delta function. This
behavior of the curvature tensor is denominated as a coni-
cal singularity [35]. The conical singularity gives rise to the
curvature concentrated on the cosmic string axis, in all
other places the curvature is zero.
We are interesting in work out with a rotating frame,

thus, we carry out the following coordinate transformation

T ¼ t; R ¼ �; � ¼ ’þ!t; Z ¼ z; (3)

where ! is the constant angular velocity of the rotating
frame which must satisfy !� � 1. With this transforma-
tion, the line element (1) becomes

ds2 ¼ �dt2 þ d�2 þ �2�2ðd’þ!dtÞ2 þ dz2 (4)

¼ �ð1�!2�2�2Þdt2 þ 2!�2�2d’dtþ d�2

þ �2�2d’2 þ dz2: (5)

With the line element given by the expression (5), we
need to construct the local reference frame to which the
observers will be associated. It is the local reference frame
in which we can define the spinor in the curved spacetime.
We can build the local reference frame through a non-

coordinate basis �̂a ¼ ea�dx
�, which its components

ea�ðxÞ satisfy the following relation [36,37]

g��ðxÞ ¼ ea�ðxÞeb�ðxÞ�ab: (6)

The components of the non-coordinate basis ea�ðxÞ are

called tetrads or vierbeins, and they form our local refer-

ence frame. The tetrad has an inverse one defined as dx� ¼
e�a�̂

a, where

ea�e
�
b ¼ �a

be
�
ae

a
� ¼ ��

�: (7)

We are interested to build a corotating framewhere there
is no torque on the magnetic dipole moment. Thus, we
choose that the tetrad and its inverse are
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ea�ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
0 � !�2�2ffiffiffiffiffiffiffiffiffi

1��2
p 0

0 1 0 0

0 0 ��ffiffiffiffiffiffiffiffiffi
1��2

p 0

0 0 0 1

0
BBBBBBB@

1
CCCCCCCA
;

e�aðxÞ ¼

1ffiffiffiffiffiffiffiffiffi
1��2

p 0 !��ffiffiffiffiffiffiffiffiffi
1��2

p 0

0 1 0 0

0 0

ffiffiffiffiffiffiffiffiffi
1��2

p
�� 1

0 0 0 1

0
BBBBBBB@

1
CCCCCCCA
;

(8)

where � ¼ !��. Note that this choice makes the 1-axis of
the local reference frame to be parallel to the �-axis of the
spacetime and the 3-axis of the local reference frame—to
be parallel to the z-axis of the spacetime. Let us write the
tetrad and its inverse in the matrix form.

With the information about the choice of the local
reference frame, we can obtain the one-form connection
!a

b ¼ !�
a
bdx

� through the Maurer-Cartan’s structure

equation [37]. In the absence of the torsion field, the
Maurer-Cartan’s structure equation may be written as

d�̂a þ!a
b ^ �̂b ¼ 0; (9)

where the operator d is the exterior derivative and the
symbol ^ means the external product. So, the nonzero
components of the one-form connection are

!t
0
1 ¼ !t

1
0 ¼ � !2�2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ;

!t
1
2 ¼ �!t

2
1 ¼ � !�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ;

(10)

!�
0
2 ¼ !�

2
0 ¼

!�

ð1� �2Þ ; (11)

!’
0
1 ¼ !’

1
0 ¼ � !�2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ;

!’
1
2 ¼ �!’

2
1 ¼ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p :

(12)

Now we suggest that there is an electric charge density
	e concentrated in the z-axis of the cosmic string. This
distribution of charges creates a cylindrically symmetric
electric field in the rest frame of the observer (a ¼ 0),
given by [31,32]

E�
ðrfÞ ¼

	effiffiffiffiffiffiffi�g
p ; (13)

where g ¼ detðg��Þ. So, with the 1-axis of the local refer-

ence frame is parallel to the �-axis of the spacetime, we
have E1 ¼ e1�E�

ðrfÞ ¼ 	e=
ffiffiffiffiffiffiffi�g

p
. However, in the acceler-

ated reference frame associated with the observer, the

fields are given by [38–40]

F�� ¼ e�ae
�
bF

ab: (14)

Thus, the components of the electric and magnetic fields in
the corotating frame of the observer are

E� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p 	e

��
; E’ ¼ 0; Ez ¼ 0;

B� ¼ 0; B’ ¼ 0; Bz ¼ 0:

(15)

Here we had just used the local reference frame given by
the expression (8). In that way, we get all information about
the topology of the cosmic string and the rotating frame.
Our next step is to study the dynamics of a neutral particle
in this background.

III. RELATIVISTIC DYNAMICS

Now, let us study the dynamics of a spin one half neutral
particle in the cosmic string background where the observ-
ers are associated to the rotating frame. The Dirac equation
of a neutral particle with a permanent magnetic dipole
moment interacting with an external electric field arises
due to the introduction of a nonminimal coupling [41]. In
that way, the Dirac equation in curved spacetime with the
interaction of the magnetic dipole moment of the neutral
particle with an external electric field is given by the
following expression [31]:

i
ae�a@�c þ i
���c þ�

2
F���

��c ¼ mc ; (16)

with �� being the spinor connection of the form [36,37]

�� ¼ i

4
!�ab�

ab; (17)

and �ab ¼ i
2 ½
a; 
b�, and the indices (a, b, c ¼ 0, 1, 2, 3)

indicate the local reference frame. The 
a matrices are
defined in the local reference frame and are identical to the
Dirac matrices in the flat spacetime, i.e.,


0 ¼ �̂ ¼ 1 0

0 �1

 !
; 
i ¼ �̂�̂i ¼ 0 �i

��i 0

 !
;

�i ¼ �i 0

0 �i

 !
; (18)

with ~� being the spin vector and �i are the Pauli matrices
satisfying the relation ð�i�j þ �j�iÞ ¼ 2�ij, where
�ab ¼ diagð� þþþÞ is the Minkowski metric tensor
and the index i, j, k ¼ ð1; 2; 3Þ denotes the spacial index
of the local reference frame. With the one-form connection
given in (12) we obtain the following spinor connections

�t ¼ � 1

2

!2�2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �̂1 � i

2

!�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �3; (19)
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�� ¼ 1

2

!�

ð1� �2Þ �̂
2; (20)

�’ ¼ � 1

2

!�2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �̂1 � i

2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �3: (21)

In this way, when the charges are concentrated in the
symmetry axis of the cosmic string, the Dirac equation in a
cosmic string background with rotating frames has the
form

mc ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p 
0 @c

@t
þ i
2 !��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p @c

@t

þ i
1

�
@� ���̂E� þ 1

2�

�
c þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p 
2

��

@c

@’

� i
2 !2��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p @c

@’
þ i
3 @c

@z

� 1

2

�

ð1� �2Þ

0 ~! � ~�c : (22)

For the Dirac equation in cosmic string spacetime given by

the equation above, we obtain the term ~! � ~� which is
related to the spin-rotation coupling as pointed out in [23].
The relativistic quantum phase acquired by the wave func-
tion of the particle is given by the Dirac phase factor
[42,43]

c ¼ ei
c 0 (23)

Substituting the ansatz above into the Dirac Eq. (22), we
find that the wave function of the neutral particle acquires
four independent contributions for the relativistic geomet-
ric quantum phase. The first contribution is generated by
the topology of the cosmic string space-time, and is given
by

�R1 ¼
I 1

2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �3d’; (24)

this term is related to the parameter � that characterize the
cosmic string spacetime. Notice that in the limit � ! 1,
absence of topological defect, the contribution (24) is due
rotating frame in a Minkwoski spacetime. The second
contribution is generated by the interaction between the
permanent magnetic moment and the external electric field
and is given by


R2 ¼ ���̂
I ð ~�� ~EÞ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p d’: (25)

This contribution is due the relativistic Aharonov-Casher
[2] coupling in rotating frame in the presence of a topo-
logical defect. In the limit � ! 1 we obtain the relativistic
Aharonov-casher effect in a rotating frame in a flat space-
time. The contributions given by (24) and (25) are identical
to the relativistic phase obtained in [31] up to the correc-

tion term ð1� �2Þ1=2 corresponding to rotation of the local
reference frame of the observers. If we take ! ¼ 0, we
recuperate the same relativistic geometric phase obtained
in the rest frame of the observers in cosmic string space-
time as in [31]. The third contribution for the relativistic
quantum phase is given by the spin-rotation coupling


R3 ¼ ��

2

I ~! � ~�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p dt; (26)

where the correction term ð1� �2Þ1=2 again arises due to
the rotation of the local reference frame, and the depen-
dence on the parameter � characterize the influence of
topological defect also in this phase shift. The last contri-
bution for the relativistic quantum phase will be


R4 ¼ 1

2

I ð ~�� ~EÞ’
ð1� �2Þ3=2 d’; (27)

where ~E ¼ ð!2�2�Þ�̂, with �̂ being the unit vector in the
�-direction. If we integrate the last relativistic quantum
phase (27), we have

�R4 ¼ !2�2

ð1� �2Þ3=2
~A � ~�; (28)

where ~A ¼ An̂, with A being the area perpendicular to the
symmetry axis of the cosmic string and n̂ the unitary vector
perpendicular to the area A. In this way, we have obtained
the relativistic phase shift associated a rotating frame in a
cosmic string background without make the weak field
approximation. We can see, in the limit of � ! 1, that
we obtain a phase shift due to the rotation frame analogous
to that one obtained by Anandan and Suzuki in [25]
without make the weak field approximation, up to the

correction term ð1� �2Þ3=2 arising due to the rotation of
the local reference frame of the observers.
In this way, in this section we have obtained a similar

coupling term in the Dirac equation discussed in Ref. [23],
for a flat space case, in the quantum dynamics of a neutral
particle in a rotating frame in a cosmic string background.
We can see that all contribution depends on the parameter
� and the! fact that indicate the influence of a topology of
the spacetime and the rotating frame. We can see that each
independent contribution for the relativistic quantum phase
is independent of the velocity of the neutral particle, which
characterizes a nondispersive quantum phases in the terms
established in [44–46].

IV. THE NON-RELATIVISTIC LIMIT

In this section we study the nonrelativistic behavior of
the neutral particle with a permanent magnetic dipole mo-
ment interacting with an external electric field in rotating
frame. We start this section writing the Dirac equation in
cosmic string background (22) in the form
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i
@c

@t
¼ Hc : (29)

Thus, the Dirac Eq. (22) becomes

i
@c

@t
þ i��̂2 @c

@t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
m�̂c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
~� � ~�c

þ 1

2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ~! � ~�c ; (30)

where we defined ~� ¼ ~pþ i��̂ ~E�i ~� as in [31], with

pi ¼ �ie	i@	, and the components of the vector ~� are

�k ¼ i

2
e’k!’ij�

ij ¼ � i

2�
�3�k2: (31)

The nonrelativistic dynamics of the neutral particle can
be obtained when we extract the temporal dependence of
the wave function through the ansatz

c ¼ e�imt �
X

� �
; (32)

so, from the Dirac Eq. (30) we have

i
@�

@t
þm�þ i��2 @X

@t
þm��2X

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
½mþ ~� � ð ~pþ i� ~E� i ~�Þ�X

þ 1

2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ~! � ~��

i
@X

@t
þmX þ i��2 @�

@t
þm��2�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
½mþ ~� � ð ~p� i� ~E� i ~�Þ��

þ 1

2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ~! � ~�X: (33)

We find that !�� � 1, thus, we make the approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p � 1� 1
2�

2 þ . . . and rewrite (33) as

i
@�

@t
þ 1

2
m�2�� �

2
~! � ~��þ 1

4
�2!��2�

¼ ~� � ð ~pþ i� ~E� i ~�ÞX� 1

2
�2 ~� � ð ~pþ i� ~E� i ~�ÞX

�m��2X� i��2 @X

@t
; (34)

where we considering X being the ‘‘small’’ components of
the wave function, so, we have

X ¼ 1

2m

�
~� � ð ~p� i� ~E� i ~�Þ � 1

2
�2 ~� � ð ~p� i� ~E� i ~�Þ

�m��2

�
�� i

2m
��2 @�

@t
: (35)

In this way, substituting the expression (35) into (34),
one can obtain the nonrelativistic Hamiltonian which de-
scribes the interaction between a neutral particle with a
permanent magnetic dipole moment and an external elec-
tric field in the rotating frame in the cosmic string space-
time:

HNR ¼ 1

2m
ð ~pþ ~�Þ2 þ �

2m
~r � ~E��2E2

2m
�mA0

� �

2
~! � ~�þ�	e�!

2

4m
þO

�
�2

2m

�
; (36)

where the vector ~� has the following components

�k ¼ �ð ~�� ~EÞk � 1

2

�

��
�3�k2 �mAk � 1

2
ð ~�� ~EÞk:

(37)

Here we have used the same notations of the Ref. [25] to

define the 4-vector A� and the vector ~E, whose nonzero
components are

A 0 ¼ 1

2
�2ð ~!� ~rÞ2 ¼ 1

2
!2�2�2;

A’ ¼ �ð ~!� ~rÞ’; E� ¼ !2�2�:

(38)

The Hamiltonian (36) describes the nonrelativistic be-
havior of a neutral particle with a permanent magnetic
dipole moment interacting with an external electric field
in a rotating frame with the presence of a topological
defect. The influence of the rotating frame in this non-
relativistic dynamics can be viewed easily in the expres-
sion (36) through the spin-rotation coupling given by the
term ~! � ~�, which is known as Mashhoon effect [22], and

by the terms mA0 and m ~A in (37), which arise directly
from the construction of the local reference frame of the
observers and is pointed out as a component of a gauge
field for rotating frame in [25]. The influence of the topol-
ogy of the defect can be observed in the spin-orbit coupling

and in the terms mA0 and m ~A. The other contribution
due to the topology of the defect is given by the second
term of the expression (37). If we take the limit � ! 1, we
can recuperate the spin-rotation coupling in flat spacetime
given in [22] and the gauge field built in the weak field
approximation given in [25]. The last term of the non-

relativistic Hamiltonian which we observe, is ( ~�� ~E),
which corresponds to the interaction between the magnetic
dipole moments of the neutral particle with the external
electric field.
The nonrelativistic geometric phases can be obtained via

the ansatz given by

c ¼ ei
c 0 (39)

which corresponds to the application of the Dirac phase

factor [42,43]. Since the terms ~r � ~E, E2 and mA0 are
local terms, they do not contribute to the geometric phase
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[26,27]. Hence, the terms which contribute to the non-

relativistic geometric phase are ~� and the spin-rotation
coupling ~! � ~�, with c 0 being the solution of the equation

� 1

2m
r2c 0 ��2E2

2m
þmA0c 0 ¼ 0: (40)

In this way, the wave function of the neutral particle
acquires five independent contributions to the nonrelativ-
istic geometric phase. The first contribution is given by the
topology of the spacetime, that is, this contribution is given
by the angle deficit of the topological defect,


NR1 ¼
I
ð�i�kÞek’d’ ¼ � 1

2

I 1

�
�3�2ke

k
’d’

¼ ����3; (41)

where we have neglected the terms of order �2, The
expression (41) gives us a quantum phase identical to
that one obtained in [31] in a nonrotating reference frame.
If we add 2� in (41) to remove the effects arisen due to an

arbitrary rotation of �̂2 ¼ e2’d’, when we transport the

local reference frame around a closed path, this contribu-
tion to the phase shift becomes


0
NR1 ¼

1

2
�3

�
�
I �

��
�2ke

k
’d’þ 2�

�
¼ ð1� �Þ��3

¼ 1

2
ð8�G��3Þ; (42)

which gives us the half-value of the flux generated by the
gravitational Aharonov-Casher effect obtained in
Refs. [47,48] for cosmic string case without making the
weak field approximation. The second contribution is

given by the gauge field m ~A from (38)


NR2 ¼ �m
I

Ake
k
’d’ ¼ �2m� ~! � ~A (43)

where A ¼ ���2 is the area enclosed by the path of the
neutral particle, perpendicular to the angular velocity !.
This phase shift is originated from the rotation frame and
give us the same impact as the Sagnac effect [15,16,25] in
the presence of the topological defect.

The third contribution is obtained by the vector ~E de-
fined in (38)


NR3 ¼ � 1

2

Z
ð ~�� ~EÞ’d’ ¼ �!2�2 ~A � ~�; (44)

this phase shift is due the to the rotating frame of the
observers and to the presence of the topological defect.
Notice that in limit � ! 1 we obtain similar result pointed
out in [25] through the weak field approximation being an
analog to the phase shift in neutron interferometry due to
the interaction between the effective electric E field and the
magnetic dipole moment. Here, we obtained this phase
shift without making the weak field approximation.

The fourth contribution for the nonrelativistic geometric
phase is obtained through the spin-rotation coupling known
as Mashhoon effect [22]


NR4 ¼ �

2

Z
~! � ~�dt ¼ �T

2
~! � ~�; (45)

with T being the time which the particle spent to travel
along a closed path around the symmetry axis of the
topological defect. Notice that, this phase depend on pa-
rameter � that demonstrate the influence of cosmic string
in this contribution. The last contribution is given by the
interaction between the permanent magnetic dipole mo-
ment of the neutral particle and the external electric field
(15)


NR5 ¼ �
I
ð ~�� ~EÞ’d’ ¼ 2��	e�

3: (46)

This expression is identical to that one obtained in [26,27]
in flat spacetime and in [31,32]—in cosmic string space-
time. When we consider a linear distribution of electric
charges on the symmetry axis of the topological defect in
this rotating frame, the phase shift on the wave function
becomes


AC ¼ 2��	e�
3 þ ð1� �Þ��3 � 2m� ~! � ~A

�!2�2 ~A � ~�þ �

2
~! � ~�T; (47)

which is the result analogous to the Aharonov-Casher (AC)
effect with a rotating frame in the cosmic string back-
ground.We can see that if! ! 0, we recuperate the analog
of the AC effect in a topological defect spacetime as in
[31], and with � ! 1 and ! ¼ 0, we recuperate the AC
effect [2] in flat spacetime. However, if we consider � ! 1
and ! � 0, we have the analog of the AC effect in the flat
spacetime with a rotating frame. We can also observe that
each independent contribution for the nonrelativistic geo-
metric quantum phase is independent of the velocity of the
neutral particle, which is a characteristic of a nondispersive
quantum phase [44–46].

V. CONCLUSIONS

We studied the interference effects for the wave function
of a neutral particle with a permanent magnetic dipole
moment interacting with an external electric field in the
presence of a topological defect with rotating frames both
in relativistic regime and in nonrelativistic one. We built a
corotating frame for the observers where no torques act on
the magnetic dipole moment and consider a field configu-
ration in this corotating frame generated by a linear distri-
bution of electric charges on the symmetry axis of the
topological defect.
In the relativistic dynamics of the neutral particle in the

cosmic string spacetime we obtained four independent
contributions for the geometric quantum phase. The first
contribution was given by the topology of the defect. The
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second contribution arose due to the interaction between
the external electric field and the magnetic dipole moment.
The third and fourth contributions were generated by the
rotation of the local reference frame of the observers. In the
third contribution, we saw the effect due to the spin-
rotation coupling and the topology of the defect. In the
fourth contribution, we obtained a effect analogous to the
interaction between the effective field and the dipole mo-
ment. This effect is analogous Aharonov-Casher effect due
rotating frame. We saw that each of these contributions is
nondispersive because they are independent of the velocity
of the neutral particle. In the limit of � ! 1 we obtain the
results for the relativistic geometric phase for neutral in a
rotating frame in flat spacetime.

In the nonrelativistic dynamics of the neutral particle in
cosmic string background with rotating frame, we obtained
five independent contributions for the geometric quantum
phase and an effect analogous to the AC effect in the
rotating frame. The first contribution for the nonrelativistic
phase shift was generated by the topology of the defect and
gives us a flux similarly to the gravitational Aharonov-
Casher effect [47,48]. The second, third, and fourth con-
tributions were generated by the rotating frame and the
topology of the defect. In the second contribution we
obtained an analog of Sagnac effect, and in third contribu-
tion we obtained a phase shift analogous to the interaction

between the dipole moment and the electric field, without
making the weak field approximation. The fourth contri-
bution arises from the spin-rotation coupling which is
known as Mashhoon effect [22] and from the deficit angle.
The last contribution for the nonrelativistic geometric
phase was given by the interaction between the magnetic
dipole moment of the neutral particle and the external
electric field [2]. We also saw that each contribution of
the nonrelativistic geometric phases is nondispersive.
Finally, when we consider a linear charge distribution on

the symmetry axis of the topological defect in the non-
relativistic dynamics, we discussed the influence of the
rotating frame which generated an effect analogous to the
AC effect. We see that when ! ¼ 0, we recuperate the
same effect analogous to the AC effect in cosmic string
background as it was discussed in [31,32]. When we con-
sider � ! 1, we see the influence of the rotating frame in
the AC effect in flat spacetime.
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