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We study the interior of a charged, nonrotating distorted black hole. We consider static and axisym-

metric black holes, and focus on a special case when an electrically charged distorted solution is obtained

by the Harrison-Ernst transformation from an uncharged one. We demonstrate that the Cauchy horizon of

such a black hole remains regular, provided the distortion is regular at the event horizon. The shape and

the inner geometry of both the outer and inner (Cauchy) horizons are studied. We demonstrate that there

exists a duality between the properties of the horizons. Proper time of a free fall of a test particle moving

in the interior of the distorted black hole along the symmetry axis is calculated. We also study the property

of the curvature in the inner domain between the horizons. Simple relations between the 4D curvature

invariants and the Gaussian curvature of the outer and inner horizon surfaces are found.
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I. INTRODUCTION

In this paper, we study how the distortion of a charged,
static black hole generated by axisymmetric, static matter
distribution in its exterior region affects its interior. This
paper is a direct generalization of a similar study for the
distorted neutral black hole interior performed in [1].

Structure and properties of the charged and/or rotating
black hole interior is a subject that has attracted a lot of
interest during the past 30 years (see, e.g., [2] and refer-
ences therein). Analytic continuation of the Reissner-
Nordström (RN) and Kerr solutions results in the existence
of infinitely many new ‘‘universes’’ in the black holes
interior. However, the region containing these new uni-
verses lies in the future of the Cauchy horizon, a null
hypersurface beyond which predictability breaks down. A
natural question is whether these universes are accessible
to an observer traveling in the interior of the black hole.
That is why the issue of the Cauchy horizon stability is so
important. Observers traveling along a timelike world line
receive an infinitely blueshifted radiation when they ap-
proach the horizon. Penrose [3] used these facts to argue
that small perturbations produced in the black hole exterior
grow infinitely near the Cauchy horizon. The evolution of
small perturbations inside charged black holes was ana-
lyzed in [4–6]. These results confirm Penrose’s intuitive
arguments.

If one considers ingoing radiation only and neglects
backscattered radiation, then the resulting Cauchy horizon
singularity is weak. Namely, the Kretschmann invariant
calculated on the Cauchy horizon is finite. A freely falling
observer detects an infinite increase of energy density, but
tidal forces remain finite as the observer crosses the
Cauchy horizon [7,8]. Such singularity is called the whim-

per singularity. However, in a realistic situation, when both
incoming and outgoing radiation are present, the curvature
grows infinitely near the Cauchy horizon. This was dem-
onstrated by Poisson and Israel [9] who considered the
outgoing and ingoing radiation simulated as two noninter-
acting radial streams of ingoing and outgoing lightlike
particles following null geodesics. Poisson and Israel
showed that such radiation results in an infinite growth of
the black hole internal mass parameter and divergence of
the Weyl scalar. They called this effect the mass inflation.
Mass inflation for a slowly rotating, charged black hole was
discussed in [10]. Later, Ori constructed an exact, simpli-
fied solution describing this effect [11]. Using his solution
Ori showed that the mass inflation singularity is weak
enough. Namely, the tidal forces calculated at the
Cauchy horizon diverge in the reference frame of a freely
falling observer, but their integral along the world line of
the observer remains finite. It means that freely falling
observers might in fact cross the Cauchy horizon. For a
more detailed discussion, see, e.g., [12–16]. Early numeri-
cal analysis of the Cauchy horizon stability predicted its
destruction as a result of classical instability [17]. Later,
analytical [18–20], and numerical [20] discussions did not
confirm this result. The mass inflation phenomenon may
shed light on the Cauchy horizon stability problem.
However, further investigation is necessary.
Although rotating black holes are of real astrophysical

interest, charged black holes are often considered in the
publications. The reason for this is simple: a charged black
hole also has a Cauchy horizon, but its spherical geometry
makes an analysis easier. However, even in this case such a
model is very simplified, for in the realistic world there
always exists some matter outside the black hole. This
matter distorts the gravitational field of the black hole.
What is important is that this distortion generated by the
matter distribution in the exterior of the black hole occurs
not only outside the black hole, but also affects its interior.
Since the region near the Cauchy horizon is ‘‘fragile’’ and
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‘‘vulnerable,’’ it is interesting to analyze how such external
matter affects the properties of the black hole Cauchy
horizon. This is one of the questions we address in our
paper. We shall make several assumptions simplifying the
analysis. Namely, we assume that the distortions of the
black hole are static and axisymmetric. Moreover, we
consider a special class of charged distorted black hole
solutions which can be generated by the Harrison-Ernst
transformation [21,22] from a neutral distorted black hole
metric. This class includes a large variety of solutions
which can be presented in an explicit form.

We always assume that in the vicinity of the black hole
and in its interior the Einstein-Maxwell equations are
satisfied, and the matter disturbing the black hole is located
in the black hole exterior. The matter sources are described
by the corresponding energy-momentum tensor which has
to be included in the Einstein-Maxwell equations. To avoid
this one can ‘‘move’’ these sources to infinity. The ‘‘price’’
for this is that the corresponding space-time is not asymp-
totically flat anymore. In our description of a distorted
black hole we follow [23] and adopt that approach.

Our main problem is to study how the black hole interior
is distorted by the external fields. In particular, we shall
study distortion of the inner (Cauchy) horizon and its
relation to the distortion of the outer (event) horizon. Let
us emphasize that our consideration is completely classi-
cal, and we do not consider quantum effects which may
play an important role in the charged black hole interior.
Discussion of these effects can be found, e.g., in [24–27].

It should be emphasized that the study of the black hole
interior is a dynamical problem. The geometry of the black
hole interior is similar to the geometry of a contracting,
anisotropic, homogeneous universe. To study how the evo-
lution of this universe is modified by an external influence,
one must study first the modification of the external ge-
ometry of the black hole and use these results to find the
corresponding modification of the geometry of the event
horizon. This gives the initial data which determines the
evolution of the black hole interior. In this paper, we study
a simple case when the distortion of the black hole in the
exterior region is both stationary and axisymmetric. A
similar problem for the neutral black hole was studied
earlier in [1].

This paper is organized as follows. Section II collects the
results concerning the charged distorted black hole solu-
tion generated by the Harrison-Ernst transformation tech-
nique. We remind the reader of these results mainly in
order to fix the notations we use in the main part of the
paper. In Sec. III, we establish special duality relations
between properties of the inner and outer horizons for the
charged distorted black hole. In Secs. IV and V, we study
the Gaussian curvature of the horizon surfaces and present
their isometric embedding diagrams. In Sec. VI, we discuss
how the black hole distortion affects the maximal proper
time of a free fall of a test particle moving along the axis of

symmetry in the black hole interior. In Sec. VII, we estab-
lish a relation between the space-time curvature invariants
near the horizons and their Gaussian 2D curvatures. We
summarize and discuss our results in Sec. VIII. Necessary
details are included in the Appendix. In this paper, we use
the units where G ¼ c ¼ 1, and the sign conventions
adopted in [28].

II. METRIC OF A DISTORTED RN BLACK HOLE

A. Static, axisymmetric Einstein-Maxwell space-time

In this section following [29–31], we present a solution
for a static, axisymmetric distorted charged black hole.
This solution is obtained by applying the Harrison-Ernst
transformation [21,22] to the Weyl metric of a distorted
vacuum black hole. Here we reproduce the basic relations,
mainly in order to explain notations we shall use later.
The metric of a charged distorted black hole is a special

solution of the Einstein-Maxwell equations

R�� ¼ 8�T��; (1)

r�F
�� ¼ 0; r½�F��� ¼ 0; (2)

8�T�� ¼ 2F�
�F�� � 1

2g��F��F
��: (3)

Here, F�� ¼ r�A� �r�A�, and A� is the electromag-

netic 4-potential. The nabla stands for the covariant de-
rivative defined with respect to the metric g��.

Before we proceed with the description of a charged
distorted black hole, let us make a few remarks about the
charged black hole solution in the absence of distortions.
This is the well-known Reissner-Nordström solution (see,
e.g., [32])

ds2 ¼ �Fdt2 þ F�1dr2 þ r2ðd�2 þ sin2�d�2Þ; (4)

F ¼ 1� 2M

r
þQ2

r2
; A� ¼ ��0��

t; �0 ¼ Q

r
:

(5)

Here,M is the black hole mass, andQ is its electric charge.
We shall consider nonextremal black holes with jQj<M.
The space-time is static and asymptotically flat. It has a
timelike singularity at r ¼ 0. The black hole horizons are

defined by r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
, where the upper sign

stands for the event horizon, and the lower sign stands for
the Cauchy horizon. Correspondingly, we denote these

horizons as H ð�Þ.
It is convenient to make the following coordinate trans-

formation

r¼Mð1þp�Þ; p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
M

; �2 ð�1=p;1Þ;
(6)

and to rewrite the Reissner-Nordström solution in the
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following form

ds2 ¼ �p2ð�2 � 1Þ
ð1þ p�Þ2 dt2 þM2ð1þ p�Þ2

�
�

d�2

�2 � 1
þ d�2 þ sin2�d�2

�
; (7)

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
ð1þ p�Þ : (8)

In these new coordinates, � ¼ �� ¼ �1 corresponds to
the horizons of metric (7), and � ¼ �1=p corresponds to
the black hole singularity.

The general form of the static, axisymmetric metric in
prolate spheroidal coordinates ð�; cos�Þ reads

ds2 ¼ �e2Udt2 þM2p2e�2U

�
e2Vð�2 � cos2�Þ

�
�

d�2

�2 � 1
þ d�2

�
þ ð�2 � 1Þsin2�d�2

�
; (9)

where the metric functions U and V depend on ð�; �Þ
coordinates. The corresponding electrostatic 4-potential is

A� ¼ ��ð�; �Þ��
t: (10)

B. The Harrison-Ernst transformation

The Einstein-Maxwell equations for U and � are the
Ernst equations [22], which in our case of static space-time
(9) take the following form:

rðe�2UrEÞ ¼ 0; rðe�2Ur�Þ ¼ 0: (11)

Here, E ¼ e2U ��2 is the Ernst potential, and r is the
nabla operator defined with respect to the 3D flat metric

dl2 ¼ ð�2 � cos2�Þ
�

d�2

�2 � 1
þ d�2

�

þ ð�2 � 1Þsin2�d�2: (12)

There exists a special class of solutions where the Ernst
potential E is an analytic function of �. Under this as-
sumption Eqs. (11) imply

d2E
d�2

¼ 0: (13)

If space-time is asymptotically flat, we chooseU ¼ � ¼ 0
at infinity. In this case a general solution of (13) can be
written as

E ¼ 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p �: (14)

We shall keep this relation in our consideration. Following
[22] it is convenient to parametrize E and � as follows:

E ¼ 	� 1

	þ 1
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
	þ 1

; (15)

where 	 is the auxiliary Ernst potential. Using (11) one
obtains the following equation for 	

ð	2 � p2Þr2	� 2	r	 � r	 ¼ 0: (16)

In the absence of an electric field, � ¼ 0, the Ernst
equation (11) is

�Er2 �E ¼ r �E � r �E; (17)

where �E ¼ e2
�U, and �U corresponds to the vacuum un-

charged solution. In this case one can also use parametri-
zation (15) which gives

�E ¼
�	� 1
�	þ 1

; (18)

and the Ernst equation (17) takes the form

ð �	2 � 1Þr2 �	� 2 �	r �	 � r �	 ¼ 0: (19)

Comparing (16) and (19) we can derive the relation be-
tween the vacuum and the electrostatic Ernst potentials.
This is the Harrison-Ernst transformation:

	 ¼ p �	: (20)

Thus, if we know a solution to vacuum Einstein equations
�U, we can apply (20) and (15) to obtain the corresponding
solution U, and the electrostatic potential � obeying the
Einstein-Maxwell equations. Namely, using expressions
(20), (18), and (15) we derive

e2U ¼ 4p2e2
�U

½1þ p� ð1� pÞe2 �U�2 ;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p ð1� e2
�UÞ

1þ p� ð1� pÞe2 �U
:

(21)

These expressions determine the charged version of an
electrically neutral, vacuum static solution. For example,
starting with the Schwarzschild black hole solution, we can
derive the Reissner-Nordström black hole. If the
Schwarzschild black hole is distorted by neutral exterior
matter, these expressions electrically charge both, the
black hole and the matter.
In the next subsection, we apply this ‘‘charging’’ proce-

dure to the Weyl static metric describing a vacuum, axi-
symmetric distorted black hole, and obtain an electrically
charged distorted black hole. We discuss the corresponding
metric in the next subsection.

C. Charged distorted black hole

Now we are ready to present a solution for a charged,
axisymmetric distorted black hole. Following the proce-
dure presented in the previous subsection, we start with the
vacuum solution representing an axisymmetric distorted
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Schwarzschild black hole, which we write in the form
[1,33]

ds2 ¼ �e2
�Udt2 þM2e�2 �U

�
e2

�Vð�2 � cos2�Þ

�
�

d�2

�2 � 1
þ d�2

�
þ ð�2 � 1Þsin2�d�2

�
; (22)

e2
�U ¼ �� 1

�þ 1
e2Û; e2

�V ¼ �2 � 1

�2 � cos2�
e2V̂ : (23)

For an undistorted Schwarzschild solution Û ¼ V̂ ¼ 0. For

the distorted metric, the vacuum Einstein equations for Û

and V̂ distortion fields imply

ð�2 � 1ÞÛ;�� þ 2�Û;� þ Û;�� þ cot�Û;� ¼ 0; (24)

V̂;� ¼ Nð�½ð�2 � 1ÞÛ2
;� � Û2

;�� þ 2ð�2 � 1Þ cot�Û;�Û;�

þ 2�Û;� þ 2 cot�Û;�Þ; (25)

V̂;� ¼ �Nðð�2 � 1Þ cot�½ð�2 � 1ÞÛ2
;� � Û2

;��
� 2�ð�2 � 1ÞÛ;�Û;� þ 2ð�2 � 1ÞÛ;� � 2�Û;�Þ:

(26)

Here, N ¼ sin2�ð�2 � cos2�Þ�1, and the comma stands
for a partial derivative. Once the solution to Eq. (24) is

found, V̂ can be determined by integration of (25) and (26).

Details of derivation of Û can be found, for example, in
[1,32]. Regularity of the distorted black hole horizon im-

plies that Û can be decomposed over the Legendre poly-
nomials of the first kind

Û ¼ X
n�0

anPnð�ÞPnðcos�Þ: (27)

Thus, Û and its derivatives are everywhere regular. Using
this decomposition one can write the distortion field in
equivalent form [29,30]

Û ¼ X
n�0

cnR
nPn; (28)

Pn ¼ Pnð� cos�=RÞ; R ¼ ð�2 � sin2�Þ1=2: (29)

Here, the constant coefficients cn’s define the distortion
field. We call these coefficients the multipole moments
[35]. The multipole moments uniquely characterize the
distortion. Later we discuss some examples illustrating
the nature of distortion defined by the lowest multipole
moments.

The distortion field V̂ can be written in a closed form as a

sum of two terms V̂ ¼ V̂1 þ V̂2 (see, e.g., [29,30]). The

first term, V̂1, is linear, and the second one, V̂2, is quadratic
in cn’s

V̂ 1 ¼
X
n�1

cn
Xn�1

l¼0

½cos�� �� ð�1Þn�lð�þ cos�Þ�RlPl;

(30)

V̂ 2 ¼
X

n;k�1

nkcnck
nþ k

RnþkðPnPk � Pn�1Pk�1Þ: (31)

An equilibrium of the black hole with respect to the dis-

tortion fields means that the distortion field Û takes the
same values at the points of the symmetry axis on the black
hole outer horizon (see, e.g., [23]),

Ûð� ¼ 1; � ¼ 0Þ ¼ Ûð� ¼ 1; � ¼ �Þ � u0: (32)

We can rewrite this condition in terms of the multipole
moments. Using (28) and (29) and the property of the
Legendre polynomials,

Pnð�1Þ ¼ ð�1Þn; (33)

the equilibrium condition reads

X
n�0

c2nþ1 ¼ 0; (34)

and one has

u0 ¼
X
n�0

cn ¼
X
n�0

c2n: (35)

Thus, a static, axisymmetric, distorted black hole is at
equilibrium if the sum of odd multipole moments of the
distortion vanishes. The equilibrium condition implies the
local flatness (absence of conical singularities) along the
symmetry axis of the black hole. Namely,

V̂ð�; � ¼ 0Þ ¼ V̂ð�; � ¼ �Þ ¼ 0: (36)

To obtain a charged version of the distorted black hole it
is sufficient to derive U and � from �U [see, (23) and (28)]
using the Harrison-Ernst transformation (21). We have

e2U ¼ 4p2ð�2 � 1Þe2Û
½ð1þ pÞð�þ 1Þ � ð1� pÞð�� 1Þe2Û�2 ; (37)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p ½�þ 1� ð�� 1Þe2Û�
ð1þ pÞð�þ 1Þ � ð1� pÞð�� 1Þe2Û : (38)

Remarkably, the Harrison-Ernst transformation does not
alter Eqs. (25) and (26). Thus, U and �, given by (37) and
(38), and �V, which is determined by (23), (30), and (31),
solve the corresponding Einstein-Maxwell equations. The
axisymmetric distorted RN solution is given by (9) and
(10) with (37) and (38) and V ¼ �V. A more general case of
a distorted, electrically charged, rotating black hole is
considered in [30].
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D. Dimensionless form of the metric

The black hole metric contains only one essential di-
mensional parameter, say its mass, while all other parame-
ters can be presented in dimensionless form. It is
convenient to write metric (9) in the following dimension-

less form adopted to the black hole horizons H ð�Þ:

ds2 ¼ �2�dS2�; (39)

dS2� ¼ ��2 � 1

��
e2UdT2� þ ��

�2 � 1
e�2Uþ2V̂d�2

þ��e�2Uðe2V̂d�2 þ sin2�d�2Þ; (40)

�� ¼ Mð1� pÞe�u0 ¼ M0ð1� p0Þ: (41)

For the dimensionless metric dS2� we defined T� ¼

�t, where 
� is the surface gravity, which is given by


� ¼ ð1þ p0Þeu0 � ð1� p0Þe�u0

2M0ð1� p0Þ2 : (42)

We also use the following expressions for the metric func-
tions �� and U

�� ¼ ��1

4�
½�þ 1� �e2Uð�� 1Þ�2; (43)

U ¼ Û� u0; � ¼ �0e
2u0 ¼ 1� p

1þ p
e2u0 ¼ 1� p0

1þ p0 :

(44)

Together with the original parameters M and p it is con-
venient to use the related parameters

M0 ¼ M

2
½ð1þ pÞe�u0 þ ð1� pÞeu0�; (45)

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02 �Q2

p
M0 : (46)

In the absence of distortion M0 ¼ M is the Komar mass of
the RN black hole measured at asymptotic infinity. In the
case Q ¼ 0, M0 is the local mass of a distorted
Schwarzschild black hole defined in [23].

The coordinate � changes from � ¼ 1 (a spatial infin-
ity) to the region of �<�1 where the space-time singu-
larity is located (see, subsec. II E). As in the case of the RN
black hole (7), the horizons of metric (40) are defined by
� ¼ �� ¼ �1. As we mentioned earlier, we shall use the

notation H ð�Þ for the outer (þ ), and for the inner (� )
horizons. To indicate that a dimensional quantity ( . . . ) is

calculated at the black hole horizons H ð�Þ, we shall use a
superscript (� ), and denote this quantity as ð. . .Þð�Þ [40].

As we shall see in the next section, the form of metric
(39) is convenient for the analysis and comparison of the
properties of the inner and outer black hole horizons. 2D
metrics on the horizon surfaces can be obtained by taking

T ¼ const, and � ¼ �� ¼ �1 in the metric. In the next
section, we show that the surface area of the outer (event)
horizon calculated for the dimensionless metric dS2þ is
equal to 4�. Similarly, the surface area of the inner
(Cauchy) horizon calculated for the metric dS2� is also
equal 4�. These normalization conditions specify the
form of the conformal factor �� in (39). The ‘‘real’’
(dimensional) areas of the horizon surfaces are

A ð�Þ ¼ 4��2�; (47)

and the ratio of these areas is

A ðþÞ=Að�Þ ¼ ð�þ=��Þ2 ¼
�
1þ p0

1� p0

�
2 � ��2: (48)

In what follows, we shall discuss different geometrical
objects, such as the Kretschmann invariant K, the Weyl
scalar C2,

K ¼ R����R
����; C2 ¼ C����C

����; (49)

and the Gaussian curvature of the 2D horizon surface K.
We shall use the same notations with an index � for an
object calculated for the metric dS2�. One has

K ¼ ��4� K�; C2 ¼ ��4� C2�; K ¼ ��2� K�:
(50)

To study the interior region we can use any of these two
forms of the dimensionless metric dS2�. Certainly, the
‘‘physical’’ result, calculated for the metric ds2 will be
the same.
The dimensionless electrostatic potential for metric (40)

is given by

�� ¼
ffiffiffiffi
�

p
��1=2

�
ðe2u0 � �Þ ½�þ 1� ð�� 1Þe2Uþ2u0�: (51)

It is related to the electrostatic potential (38) as follows

� ¼ ��
���: (52)

The nonvanishing dimensionless components of the elec-
tromagnetic field F�� are defined by

F�T�� ¼ ��;� ¼ ��1=2

��
e2U½ð1� �2ÞU;� � 1�; (53)

F�T�� ¼ ��;� ¼ ��1=2

��
e2Uð1� �2ÞU;�: (54)

E. Singularities

In this paper, we mainly focus on the study of the

horizons H ð�Þ, and the inner domain located between
the horizons. Since one cannot trust the metric obtained
by the analytical continuation of the exterior metric beyond
the inner (Cauchy) horizon, it is reasonable to postpone
study of the regions close to the space-time singularity
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until the classical and quantum (in)stability will be proved.
For this reason, we give only a couple of remarks about
properties of the singularities in the analytic continuation
of the charged distorted black hole solution.

The curvature and the electromagnetic field invariants
diverge for �� ¼ 0, i.e., for

� ¼ � 1þ �0e
2Û

1� �0e
2Û

; (55)

indicating the space-time singularity. For the RN black
hole, the singularity is located at � ¼ �1=p, p 2 ð0; 1�,
corresponding to r ¼ 0. Analyzing expression (55) we see

that for Û 	 0 the singularity is located in the region �<

�1, whereas for Û > 0 the space-time singularity is naked
and located outside the outer horizon, �> 1. Thus, if the

distortion field Û satisfies the strong energy conditions,

i.e., Û 	 0, the space-time outside the black hole outer
horizon is regular, and the singularity is located behind the
inner (Cauchy) horizon.

III. DUALITY RELATIONS BETWEEN THE INNER
AND OUTER HORIZONS

In this section, we describe special symmetry relations
between the inner and outer horizons. Consider a 2D sub-
space T� ¼ const, � ¼ const orthogonal to the corre-
sponding Killing vectors. In the coordinates

� ¼ cosc ; c 2 ½0; �� (56)

the subspace metric is

d�2� ¼ ��e�2Uþ2V̂½�dc 2 þ d�2�: (57)

Figure 1 illustrates the Carter-Penrose diagram for these
metrics. Lines c � � ¼ const are null rays propagating
from the outer to the inner horizon within the 2D subspace.
One of such null rays is shown in the figure. It starts at

point A on the outer horizon H ðþÞ, goes through the
‘‘north pole’’ at � ¼ �, and reaches point B at the inner

horizon H ð�Þ.
Consider a transformation RC representing the reflection

of coordinates ðc ; �Þ with respect to the ‘‘central point’’ C
in the interior region

RC: ðc ; �Þ ! ð�� c ; �� �Þ: (58)

This transformation determines a map R

C between func-

tions defined in the inner domain and on its boundaries

f
 ¼ R

CðfÞ; f
ðc ; �Þ ¼ fð�� c ; �� �Þ: (59)

Using the relations (28)–(31) we obtain

U 
ðc ; �Þ � Uð�� c ; �� �Þ ¼ Uðc ; �Þ; (60)

V̂ 

1ðc ; �Þ � V̂1ð�� c ; �� �Þ ¼ �V̂1ðc ; �Þ; (61)

V̂ 

2ðc ; �Þ � V̂2ð�� c ; �� �Þ ¼ V̂2ðc ; �Þ: (62)

It is easy to see that points A and B connected by a null
ray (see Fig. 1) are related by the reflection RC. Thus, the
transformation R


C determines a map between functions on

the inner and outer horizons. Now we demonstrate that for

U and V̂ this is a symmetry transformation. In other words,

the values of U and V̂ on the inner horizon, c ¼ �, are
determined by their values on the outer horizon, c ¼ 0.
Using (60), (28), and (29) and the properties of the

Legendre polynomials (33) we derive

U ð�;�� �Þ ¼ Uð0; �Þ ¼ X
n�0

cncos
n�� u0: (63)

Expressions (29)–(31) and (33) give

V̂1ð0; �Þ ¼ �ð1� cos�ÞX
n�1

cn
Xn�1

l¼0

cosl�

� ð1þ cos�ÞX
n�1

ð�1Þncn
Xn�1

l¼0

ð� cos�Þl

¼ 2Uð0; �Þ;
V̂2ð0; �Þ ¼ 0: (64)

Thus, using (61) and (62) we have

V̂ð�;�� �Þ ¼ �V̂ð0; �Þ ¼ �2Uð0; �Þ: (65)

The above expressions (63) and (65) allow one to establish
special symmetry relations between the geometric proper-
ties of the inner and outer horizons. We call relations (63)
and (65) the duality relations.
Let us denote

u�ð�Þ ¼
X
n�0

ð�1Þncncosn�� u0: (66)

As we shall see below, this function defines boundary
values of the distortion fields, and as a result, the metric

FIG. 1. The Carter-Penrose diagram for ðc ; �Þ subspace of the
charged distorted black hole interior. The arrows illustrate
propagation of future directed null rays. Points A and B are
symmetric with respect to the central point Cð�=2; �=2Þ.
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on the black hole horizons. It is easy to check that

u�ð�Þ ¼ u�ð�� �Þ; u�ð0Þ ¼ u�ð�Þ ¼ 0: (67)

Expression (66) implies that the functions uþð�Þ and u�ð�Þ
transform into each other under reflection with respect to
the point � ¼ �=2. This transformation property is directly
related to the properties of the distortion field U. Namely,
using (63), (67), (28), and (29) we derive the following
boundary values of U

U ð0; �Þ ¼ uþð�Þ; Uð�; �Þ ¼ u�ð�Þ; (68)

U ðc ; 0Þ ¼ uþðc Þ; Uðc ; �Þ ¼ u�ðc Þ: (69)

Analogously, using (65), (68), (67), and (36) we derive the

boundary values of V̂

V̂ð0; �Þ ¼ 2uþð�Þ; V̂ð�; �Þ ¼ �2u�ð�Þ; (70)

V̂ðc ; 0Þ ¼ 0; V̂ðc ; �Þ ¼ 0: (71)

Thus, the distortion fields calculated on the inner horizon
are expressed through those calculated on the outer hori-
zon. This fact allows one to make important conclusions
about the distortion of the Cauchy horizon.

The boundary values of the distortion fields U and V̂
define symmetry properties of the metrics on the black hole
horizon surfaces. The surface of the outer and the inner
horizon is defined by T� ¼ const and � ¼ �� ¼ �1,
respectively. The corresponding dimensionless metrics de-
rived from metric (40) by applying (56) and the boundary
conditions (68) and (70) are

d
2� ¼ e�2u�d�2 þ e�2u�sin2�d�2: (72)

The dimensional metrics on the horizon surfaces are [see
(39)]

d
ð�Þ2 ¼ �2�d
2�: (73)

Here, and in what follows u� � u�ð�Þ. The metric d
2þ
coincides with the metric on the distorted Schwarzschild
black hole horizon surface [1]. The dimensionless areas of
the horizon surfaces are

A ðþÞ ¼ Að�Þ ¼ 4�: (74)

The metrics d
2þ and d
2� are related to each other by the
transformation

uþ $ �u�; (75)

which according to (66) implies the following duality
relations between the outer and the inner horizons

c2n $ �c2n; c2nþ1 $ c2nþ1: (76)

Thus, the metrics dS2� are identical for distortions which
have only odd multipole moments. The derived duality
relations imply, in particular, that the inner (Cauchy) hori-
zon of a distorted charged black hole solution obtained by
the Harrison-Ernst transformation is regular, if the outer
horizon is regular. This conclusion and its generalization to
the case of rotating and charged black holes was proven
recently in [41,42].

IV. GAUSSIAN CURVATURE

In this section we discuss geometry of the distorted
horizon surfaces. Gaussian curvature is a natural measure
of intrinsic curvature of a 2D surface. It is equal to 1=2 of
its scalar curvature. Gaussian curvature of a horizon sur-
face was studied by several authors (e.g., [43–46]). For the
metric (72) the Gaussian curvature is given by

K� ¼ e�2u�½1� u�;�� � 3 cot�u�;� � 2u2�;��: (77)

The dimensional Gaussian curvatures associated with met-
rics (73) are

Kð�Þ ¼ ��2� K�: (78)

(   ) (   )

FIG. 2. Regions of positive and negative Gaussian curvature for the outer horizon surface. Plot (a) illustrates the regions for different
values of the quadrupole moment. Plot (b) illustrates the regions for different values of the octupole moment. Curves separating these
regions correspond to zero Gaussian curvature.
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We shall illustrate our analysis of the charged distorted
black hole considering simple examples of the lowest order
multipole distortions. Namely, we shall consider quadru-
pole and octupole distortions for which the corresponding
functions u� read

u� ¼ �c2sin
2�; u� ¼ �c3sin

2� cos�: (79)

Here, c2 and c3 are the quadrupole and the octupole mo-
ments, respectively.

Regions of positive and negative Gaussian curvature for
different values of the quadrupole and octupole moments,
for the outer horizon surface, are presented in Fig. 2. From
the figure we see that for the quadrupole distortion regions
of negative Gaussian curvature near the black hole poles
(� ¼ 0, �) correspond to high positive values of c2, and
near its equator (� ¼ �=2) to high negative values of c2.
Using (77) and (35) and the auxiliary expressions

u�;�ð�Þ ¼ �X
n�0

ð�1Þncnn sin�cosn�1�; (80)

u�;��ð�Þ ¼
X
n�0

ð�1Þncnncosn�2�½nsin2�� 1�; (81)

we derive

K�j�¼0 ¼ 1� 4uð2Þ� ; K�j�¼� ¼ 1� 4uð2Þ� ; (82)

K�j�¼�=2 ¼ e�2ðu0�c0Þð1� 2c2 � 2c23Þ: (83)

Here,

uð2Þ� ¼ �X
n�0

ð�1Þncnn: (84)

Thus, the sign of the Gaussian curvature strictly depends
on the distortion field. Using these expressions, we derive
that for the quadrupole distortion Gaussian curvature of the
outer horizon surface is positive at the poles for c2 < 1=8,

and on the equator for c2 >�1=2. According to the duality
relations (76), regions of positive and negative Gaussian
curvature of the inner horizon surface can be constructed
by mirror reflection of Fig. 2 with respect to the line c2 ¼
0.
Figure 2(b) illustrates that there is a symmetry between

the regions of positive and negative Gaussian curvature and
signs of the octupole moment. Namely, the transformation
c3 ! �c3, � ! �=2� � leave the figure unchanged.
Using (82) we derive that for c3 > 1=8 Gaussian curvature
is negative on the ‘‘north’’ pole and positive on the ‘‘south’’
pole, whereas for c3 <�1=8 it is negative on the south
pole and positive on the north. In addition, there are the
regions of negative Gaussian curvature near the ‘‘tropics’’
(� 23�2602200 from the equator), i.e., near �� � 1:165
(corresponding to� 23�1603900 from the equator) for c3 <
�0:333, and �þ � 1:977 (corresponding to �
�23�1603900 from the equator) for c3 > 0:333. According
to the duality relations (76) Gaussian curvature of the inner
horizon surface is identical to that of the outer horizon
surface. Dimensionless Gaussian curvature of the outer
horizon surface for certain values of the quadrupole and
octupole moments is plotted in Fig. 3.
As we shall see in Sec. VII, the curvature and the

electromagnetic field invariants calculated on and at the
vicinity of the black hole horizons are expressed in terms
of the corresponding Gaussian curvatures and their
derivatives.

V. EMBEDDING

To visualize the distorted horizon surfaces, we present
their isometric embedding into a flat 3D space. To con-
struct the embedding we consider an axisymmetric 2D
surface parametrized as follows:

� ¼ �ð�Þ; z ¼ zð�Þ: (85)

(a) (b)

FIG. 3. Dimensionless Gaussian curvature Kþ of the outer horizon surface. (a) The quadrupole distortion: c2 ¼ �2=3 (line 1), c2 ¼
2=3 (line 2), and c2 ¼ 1=9 (line 3). (b) The octupole distortion: c3 ¼ �2=3 (line 1), and c3 ¼ 1=9 (line 2). Dashed horizontal lines of
Kþ ¼ 1 correspond to the RN black hole.
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Let us embed this surface into a flat 3D space with the
metric in cylindrical coordinates ðz; �;�Þ:

dl2 ¼ �dz2 þ d�2 þ �2d�2; (86)

where for Euclidean space � ¼ 1, and for pseudo-
Euclidean space � ¼ �1 [47]. The geometry induced on
the surface is given by

dl2 ¼ ð�z2;� þ �2
;�Þd�2 þ �2d�2: (87)

Matching metrics (72) and (87) we derive the following
embedding map:

� ¼ e�u� sin�; z ¼
Z �=2

�
Zd�; (88)

Z 2 ¼ �e�2u�½1� e�4u�ðcos�� u�;� sin�Þ2�: (89)

From (89) we see that if the expression in the square
brackets is negative, an isometric embedding into 3D
Euclidean space is not possible, and we should take � ¼
�1.

According to the duality relations (76) it is enough to
consider embedding of the outer horizon surface only. The
shape curves of the outer horizon surface are presented in
Fig. 4. The embedding diagrams for the outer horizon
surface can be obtained by rotation of the curves around
the vertical axis of symmetry lying in the plane of the
figure, parallel to the z axis. Note, that the change in sign
from ‘‘þ’’ to ‘‘�’’ of the quadrupole moment corresponds
to deformation of the rotational curve from oblate to
prolate and vice versa. This transformation corresponds
to the duality relations (76) between the outer and inner
horizon surfaces. The change in sign of the octupole mo-

ment corresponds to overturn of the rotational curve pre-
serving its shape.

VI. FREE FALL FROM THE OUTER TO THE
INNER HORIZON

It is interesting to check how the distortion changes the
maximal proper time of a free fall of a test particle from the
outer to the inner horizon. Let us consider motion of a test
particle of zero angular momentum which moves from the
outer to the inner horizon along the axis of symmetry. Free
fall from the north pole corresponds to � ¼ 0, and free fall
from the south pole corresponds to � ¼ �. We use metric
(39) with dS2þ. Using (36) we derive the proper time of the
free fall:

�ðEÞ ¼ �þ
Z þ1

�1

�1=2
þ e�Ud�

ð��2þ �þe�2UE2 þ 1� �2Þ1=2
���������¼0;�

;

(90)

where E is the energy of the particle,

E ¼ �2þ
�2 � 1

�þ
e2U

dTþ
d�

: (91)

The maximal proper time corresponds to E ¼ 0. Using the
coordinate transformation (56) and applying (69) we derive
the maximal proper time for the free fall

�max ¼ �ð0Þ ¼ �þ�þ; (92)

where the dimensionless time �þ is

�þ ¼
Z �

0

dc

2
½ðcosc þ 1Þe�uðc Þ � �euðc Þðcosc � 1Þ�:

(93)

(a) (b)

FIG. 4. The shape of the outer horizon surface. The shape curves are shown in the ð�; zÞ plane. (a) The quadrupole distortion:
c2 ¼ �2=3 (line 1), c2 ¼ 2=3 (line 2), and c2 ¼ 1=9 (line 3). (b) The octupole distortion: c3 ¼ �2=3 (line 1), and c3 ¼ 1=9 (line 2).
Regions embedded into pseudo-Euclidian space are illustrated by doted lines. Dashed circles of radius 1 correspond to the RN black
hole.
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Here, uðc Þ ¼ uþðc Þ for the fall from the north pole, and
uðc Þ ¼ u�ðc Þ for the fall from the south pole. For the RN
black hole we have �þ ¼ �=ð1þ pÞ, and �max ¼ �M, that
is exactly the same as the maximal proper time for a free
fall from event horizon to the singularity of the
Schwarzschild black hole of mass M ([28], p. 836).

In the case of the quadrupole distortion (79) the integral
in (93) can be calculated analytically:

�þ ¼ �

2
I0ðc2=2Þ½ec2=2 þ �e�c2=2�; (94)

where I0ðxÞ is the modified Bessel function. Note, that
because of the reflection symmetry of the horizon surfaces
with respect to the plane � ¼ �=2 the proper time is the
same for the fall from the north and south poles. For the
octupole distortion we evaluate the integral numerically.
From expressions (79) and (93) we see that the change in
sign of the octupole moment corresponds to the change of
the poles as the starting points of the fall. The dimension-
less proper time calculated for p0 ¼ 1=2 is presented in
Fig. 5

VII. THE SPACE-TIME INVARIANTS

For distorted vacuum black holes there exists a remark-
able relation between the Kretschmann scalar calculated

on the surface of the event horizon KðþÞ and the Gaussian
curvature of the horizon KðþÞ calculated at the same point

K ðþÞ ¼ 12KðþÞ2 : (95)

The proof of this relation can be found in [1]. This relation
shows that the 4D curvature invariant of the space-time
calculated on the horizon is correlated with the shape of the

horizon surface. In a region where the horizon is sharper
the 4D curvature invariant is larger than in a region where
the horizon is smoothed out. In order to prove the property

(95) one uses the fact that the horizon H ðþÞ surface is a
totally geodesic surface.
The general analysis by Boyer [49], and, in particular,

his conclusion saying that a bifurcate Killing horizon con-
tains a totally geodesic 2D surface, which is in fact inde-
pendent of the field equations, can be applied to the case of
the charged distorted black hole. For this reason one can
expect the existence of a relation similar to (95) and gen-
eralizing the latter. In this section, we discuss this problem.
First of all, let us emphasize that in the presence of the

electromagnetic field F�� there exist an additional 4D

invariant F2 ¼ F��F
�� characterizing the strength of the

field. For the distorted black hole the calculations give the
following value of this invariant on the outer horizon [see
(53), (54), (52), (68), and (70)]

FðþÞ2 ¼ � 2

M02
ð1� p0Þ
ð1þ p0Þ3 : (96)

The minus sign on the right-hand side reflects the fact that
we are dealing with an electric (not magnetic) field. The
Kretschmann scalar K and the Weyl invariant C2 are
related as follows:

K ¼ C2 þ 2ðF2Þ2: (97)

In the presence of matter, in order to characterize the
‘‘strength’’ of the gravitational field, it is more convenient
to use the Weyl invariant. The calculations presented in the
Appendix give for the Weyl invariant on the event horizon
the following expression:

(a) (b)

FIG. 5. The free fall along the axis of symmetry from the outer to the inner horizon surface for p0 ¼ 1=2. (a) The dimensionless
proper time �þ for different values of the quadrupole moment c2. Here, the minimal value of the dimensionless proper time �þmin �
1:907 corresponds to c2min � �0:734. (b) The dimensionless proper time �þ for different values of the octupole moment c3, for the
fall from the north pole. Here, the minimal value of the dimensionless proper time �þmin � 1:804 corresponds to c3min � �2:292,
where c3min does not depend on the value of p0. For the RN black hole �þ ¼ 2�=3 � 2:094.
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C 2ðþÞ ¼ 12½KðþÞ � 1
2F

ðþÞ2�2: (98)

It is evident that in vacuum, when F2 vanishes and the
Kretschmann invariant coincides with the Weyl invariant,
this relation reduces to (95). The second term in the square
brackets is constant on the horizon [see the Appendix and
Eq. (102) below]. Hence, in the presence of the electro-
static field, the Gaussian curvature of the horizon surface
is, effectively, uniformly shifted by a positive value.

Similar relations are valid for the inner horizon

Fð�Þ2 ¼ � 2

M02
ð1þ p0Þ
ð1� p0Þ3 ; (99)

C 2ð�Þ ¼ 12½Kð�Þ � 1
2F

ð�Þ2�2: (100)

Using (97) we can calculate the ratio of the Kretschmann
invariants on the black hole horizons:

k ¼ KðþÞ

Kð�Þ ¼ �4 3ðKþ þ �Þ2 þ 2�2

3ðK� þ ��1Þ2 þ 2��2
: (101)

This ratio calculated for p0 ¼ 1=2 is presented in Fig. 6
below. The behavior of the curves is very similar to those
for the Gaussian curvature illustrated in Fig. 3.

Finally, we present the expressions for the curvature and
the electromagnetic field invariants at the vicinity of the
black hole horizons. We use the results of the Appendix
(A42), (A38), and (A43). The expansion of the electro-
magnetic field invariant near the black hole horizons reads

F2� ¼ �2��1 � 4��1e�2u�ðK� � ��1Þð�� 1Þ þ . . .

(102)

The expansion of the Weyl invariant near the black hole
horizons is

C 2� ¼ 12K2
e� � 4ð3K2

e�½3K� � 2��1�e�2u� � 2½K�;��2
þ 3Ke�½K�;�� þ cot�K�;��Þð�� 1Þ þ . . . ;

(103)

where Ke� ¼ ðK� � ��1Þ.

VIII. CONCLUSION

In this paper, we studied the interior of a distorted, static,
axisymmetric, electrically charged black hole. The corre-
sponding metric was derived by the Harrison-Ernst trans-
formation applied to the metric of a distorted, static,
axisymmetric vacuum black hole, whose interior was dis-
cussed in [1]. We established the special duality relations
between the properties of the inner and outer horizons of
the distorted charged black hole. These duality relations
allow one to make a conclusion about the inner (Cauchy)
horizon structure, which is based on the structure of the
outer (event) horizon of the black hole. In particular,
regions of positive and negative Gaussian curvature and
its values on the outer horizon surface are correlated with
those on the inner horizon surface. There is a correlation
between the shapes of the horizon surfaces as well.
We derived expansion of the curvature and electromag-

netic field invariants near the black hole horizons, which is
expressed in terms of the Gaussian curvature, electrostatic
field, and their derivatives calculated on the horizon sur-
faces. Thus, the established duality relations show that the
space-time geometry near the inner (Cauchy) horizon is
correlated with the space-time geometry near the outer
(event) horizon. This implies that if the distortion leaves
the outer horizon regular, the inner horizon remains regular
as well.
The duality between the outer and inner horizons seems

important. Apparently, according to the mass inflation
phenomenon [9] such duality breaks in the case of dynami-

(a) (b)

FIG. 6. The ratio k for p0 ¼ 1=2. Plot (a) illustrates the ratio for the quadrupole distortion of c2 ¼ �2=3 (line 1), c2 ¼ 2=3 (line 2),
and c2 ¼ 1=9 (line 3). Plot (b) illustrates the ratio for the octupole distortion of c3 ¼ �2=3 (line 1), and c3 ¼ 1=9 (line 2). The dashed
horizontal line corresponds to the RN black hole.
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cal perturbation of the RN black hole. Namely, due to the
presence of the outgoing flux the inner apparent horizon
and the Cauchy horizon become separated. The infinite
grow of the mass parameter induced by the blueshift of the
ingoing flux on the Cauchy horizon is not canceled by the
redshift of the ingoing flux on the apparent horizon. As a
result, the Cauchy horizon becomes singular. This does not
happen in the case of static, axisymmetric distortion. One
may think of the static distortion in the dynamical region
between the black hole horizons as represented by standing
waves. According to the duality relations between the
horizons, initial and boundary values of the waves should
be dual as well.

Quite possibly, the axisymmetric, static distortion due to
remote charged masses and fields cannot affect much in-
terior of the charged black hole. In such a situation nothing
enters, or leaves (through the Cauchy horizon into other
‘‘universes’’) the black hole. Thus, the black hole inner
horizon remains regular due to such a type of distortion.
Nevertheless, as our analysis shows, such ‘‘serene’’ dis-
tortion can in fact deform the interior of the black hole to
create regions of high local curvature. Moreover, the dis-
tortion noticeably affects the maximal proper time of a free
fall of a test particle moving along the axis of symmetry in
the black hole interior. An important question if the
Cauchy horizon of an electrically charged black hole is
regular for an arbitrary static, external distortion remains
open.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada and by the
Killam Trust. We are grateful to A. J. S. Hamilton for his
useful remarks. We also thank J. Hennig for bringing our
attention to his papers [41,42].

APPENDIX: CALCULATION OF THE SPACE-TIME
INVARIANTS NEAR THE BLACK HOLE

HORIZONS

In this appendix, we obtain expressions for the curvature
and electromagnetic field invariants near the black hole
horizons. We start our construction in the regions where the
Killing vector is timelike, namely, outside of the horizons.
Final expressions of the invariants will be valid in the
region between the horizons as well.

The simplest curvature invariant is the Kretschmann
scalar, which for Einstein-Maxwell 4D space-time admits
the following decomposition

K ¼ R����R
���� ¼ C2 þ 2R��R

��; (A1)

where C2 ¼ C����C
���� is the Weyl scalar. The Weyl

invariant characterizes properties of a ‘‘pure’’ gravitational
field, while the square of the Ricci tensor R��R

�� is

determined in our case by the electrostatic field. In this

appendix, we derive an expansion of these invariants near
the black hole horizons for an arbitrary static, charged
distorted black hole. In the main text of the paper, we shall
use these results for a special case, when the static space-
time is axisymmetric. A similar analysis for a vacuum
distorted black hole can be found in [50].
It is convenient to start with the form of the metric

proposed in [51]. Namely, we consider static space-time
and denote timelike, hypersurface orthogonal Killing vec-
tor by �. We assume that in the region under consideration
r�ð�2Þ does not vanish. Following [51] we write our
metric, g�� (�;�; . . . ¼ 0; . . . ; 3) in this region in the form

ds2 ¼ �k2dt2 þ d�2;

d�2 ¼ �ABdy
AdyB ¼ 
�2ðk; �cÞdk2 þ habðk; �cÞd�ad�b:

(A2)

Here, k ¼ ð�	�	
�Þ1=2; A; B; . . . ¼ 1; 2; 3; a; b; c; . . . ¼

2; 3,


2 ¼ �1
2ðr�	�Þðr�	�Þ; (A3)

and hab is the metric on ‘‘equipotential’’ 2D surfaces k ¼
const spanned by �a coordinates. At the horizon of a static
black hole, that is for k ¼ 0, 
 coincides with the surface
gravity. In a static space-time the Weyl invariant can be
written as follows [52]:

C2 � C����C
����

¼ 8����
�� þ 8����

�� þ 4����
��

� ð�þ�Þ2 � 2R��R
��; (A4)

where

��� ¼ R�����
��; � � ��

� ¼ ����R
��; (A5)

��� ¼ R�� þ ����; � � ��
� ¼ Rþ�: (A6)

Here ��� ¼ �	�	�=�
2. For a static space-time �00 ¼

�0A ¼ 0. To calculate C2, it is convenient to use the
Gauss-Codazzi equations

RABCD ¼ RABCD þ "½SADSBC � SACSBD�; (A7)

n�R�BCD ¼ SBCjD � SBDjC; (A8)

kRA��Bn
�n� ¼ �k�AB

¼ �ACSB
C
;t þ "kjAB þ kSACSB

C: (A9)

Here n� ¼ 	�=k is the unit normal to hypersurface t ¼
const, " ¼ n2 ¼ �1, SAB is the extrinsic 3D curvature of a
hypersurface t ¼ const, RABCD is its 3D intrinsic curva-
ture defined with respect to the metric d�2, while R is the
3D scalar curvature. The stroke stands for a covariant
derivative with respect to this metric.
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Relations (A7)–(A9) imply

2G��n
�n� ¼ �"R� SABSAB þ S2; (A10)

R��n
�n� ¼ �SABSAB � "k�1kjA

jA � k�1S;t; (A11)

G�Bn
� ¼ R�Bn

� ¼ �S;B þ SB
C
jC; (A12)

RAB ¼ RAB � "SSAB � k�1kjAB � "k�1�ACSB
C
;t:

(A13)

Here S ¼ �ABSAB is twice the mean curvature. Since
metric (A2) is static, the extrinsic curvature defined as

S AB ¼ 1
2k

�1�AB;t (A14)

vanishes. Thus, (A7)–(A13) imply

�AB ¼ k�1kjAB; � ¼ k�1kjA
jA; (A15)

�AB ¼ RAB � k�1kjAB; � ¼ R� k�1kjA
jA; (A16)

�00 ¼ 0; �0A ¼ 0: (A17)

The Einstein equations G�� ¼ 8�T�� give

R ¼ 16k�2�T00; T0A ¼ 0;

GAB ¼ 8�TAB þ k�1kjAB � k�1�ABkjA
jA:

(A18)

Thus, the Weyl invariant (A4) written in terms of 3D
objects related to hypersurface t ¼ const is

C 2 ¼ 2k�2ðkjABkjAB � 3kjA
jAkjB

jBÞ þ 2ðRAB

þ 2k�1kjABÞRAB: (A19)

The next step is a ð2þ 1Þ decomposition. We use the
following expression for the 3D metric

d�2 ¼ 
�2ðk; �cÞdk2 þ habðk; �cÞd�ad�b: (A20)

We denote a covariant derivative with respect to the 2D
metric hab as ð. . .Þ:a. A unit vector orthogonal to the
equipotential 2D surface k ¼ const is nA ¼ 
�A

k, " ¼
n2 ¼ 1. The extrinsic curvature of the surface is

Sab ¼ 


2
hab;k: (A21)

Using (A20) we derive

kjkk ¼ 
�1
;k; kjka ¼ 
�1
:a; kjab ¼ 
Sab;

kjA
jA ¼ 
Sþ 

;k; S ¼ habSab: (A22)

To project the Einstein equations on the 2D surface we
have to define the stress-energy tensor of the electrostatic
field. The electrostatic potential is given by � ¼ �ðk; �aÞ.
The corresponding electric field vector defined with re-
spect to Schwarzschild time t on hypersurface t ¼ const
reads

EA ¼ �k�1F0A ¼ �k�1�;A: (A23)

We are interested in deformation of equipotential 2D sur-
faces. Thus, it is convenient to define orthogonal to the
surfaces component of the electric field vector separately.
The electric field vector components in an orthonormal
frame are

Ek̂ ¼ �
k�1�;k; Ea ¼ k�1�:a: (A24)

Thus, in our notations

~E 2 ¼ E2
k̂
þ k�2�:a�

:a: (A25)

The energy-momentum tensor of the field is

8�T�� ¼ 2	�	�k
�2 ~E2 � 2E�E� þ g�� ~E2: (A26)

Using relations (A10)–(A13) for metric (A20) together
with (A18) we derive the Einstein equations projected
onto 2D equipotential surfaces:


3Sa
b
;k ¼ 
2½K�E2

k̂
� k�2�:c�

:c��a
b �
3k�1Sa

b

þ

:a
:b � 2
:a


:b �
2SSa
b þ 2
2k�2�:a�

:b;

(A27)


3S;k ¼ 
2½
k�1S� Sa
bSb

a � 2k�2�:a�
:a�

þ 

:a
:a � 2
:a


:a; (A28)

k�1

;k ¼ �
k�1Sþ E2
k̂
þ k�2�:a�

:a; (A29)


2Ek̂;k ¼ �
SEk̂ � 
:ak
�1�:a þ 
k�1�:a

:a: (A30)

The corresponding constraints are

0 ¼ S2 � Sa
bSb

a � 2K þ 2½
k�1Sþ E2
k̂
� k�2�:a�

:a�;
(A31)

0 ¼ ½S:a � Sa
b
:b�kþ 2Ek̂�:a þ 
:a: (A32)

Here, K is the Gaussian curvature of a 2D equipotential
surface k ¼ const.
The square of the Ricci tensor R��R

�� is equal to the

squared electromagnetic field invariant

R��R
�� ¼ ðF2Þ2 ¼ ðF��F

��Þ2: (A33)

According to (A23) and (A25) F2 has the following form:

F2 ¼ �2 ~E2 ¼ �2½E2
k̂
þ k�2�:a�

:a�: (A34)

Using expressions (A18), (A24)–(A30) we derive
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R kk ¼ k�1
�1
:k þ 
�2½ ~E2 � 2E2
k̂
�;

Rak ¼ k�1
�1½
:a þ 2Ek̂�:a�;
Rab ¼ k�1
Sab þ hab ~E

2 � 2k�2�:a�:b;

R ¼ 2 ~E2 ¼ 2k�1
½Sþ 
:k�:

(A35)

Using (A19), (A1), and (A34) and expressions (A22)
and (A35) we have

1
8 C

2 ¼ ½
2Sa
bSb

a þ 2
:a

:a þ 
2S2 þ 2 ~E2�:a�

:a�k�2

þ 4Ek̂
:a�
:ak�2 � 2
½Sab�:b þ S�:a��:ak�3:

(A36)

The hypersurface orthogonal Killing vector field 	� by
definition is null on the Killing horizon which is bifurcate
(
 � 0). A bifurcate Killing horizon contains a 2D space-
like, totally geodesic surface [49]. In our coordinates this
equipotential surface is defined by t ¼ const and k ¼ 0. On
the other side, a necessary and sufficient condition that a
hypersurface is totally geodesic is its vanishing extrinsic
curvature defined in the corresponding enveloping space
[53]. Thus, for the equipotential surfaces t ¼ const, k ¼ 0
we have Sab ¼ 0. For a regular horizon its 2D surface has
everywhere finite Gaussian curvature, and the electrostatic
field on the surface is finite as well. Thus, we can deduce
from the constraints (A31) and (A32) that on the horizon
�:a ¼ 
:a ¼ 0. Hence, the electrostatic field potential �
and the surface gravity 
 are constant on the horizon, as it
has to be for a static black hole. This is nothing but the
zeroth law of black hole thermodynamics [54].

Projecting the first (A27), and the second (A28) of the
Einstein equations on the horizon, and using the first con-
straint (A31) we derive

2
Sa
bk�1jH ¼ �a

b½K � E2
k̂
�jH: (A37)

Here, ð. . .ÞjH means calculated on the horizon. Thus, from
(A33), (A34), and (A36) we derive the following expres-
sions for the space-time invariants calculated on the hori-
zon:

F4jH ¼ R��R
��jH ¼ 4E4

k̂
jH; (A38)

and

C 2jH ¼ 12½K � E2
k̂
�2jH: (A39)

This expression generalizes the relation between Gaussian
curvature and the Kretschmann scalar calculated on the

event horizon surface of an arbitrary distorted
Schwarzschild black hole [1,50].
We can expand the metric and the electrostatic field in a

series near the horizon and substituting these expansions
into (A34) and (A36) derive expressions of the space-time
invariants near the horizon. There are two types of quan-
tities, even and odd in k, which we denote by A ¼
f
; hab; K;�; Ek̂; F

2; C2g and B ¼ fSab; Sg, respectively.

The series expansions of A and B read

A ¼ X
n�0

A½2n�k2n; B ¼ X
n�0

B½2nþ1�k2nþ1: (A40)

The first term in A gives its value on the horizon. We can
express higher order coefficients in the expressions in
terms of these on the horizon substituting (A40) into the
Einstein equations (A27)–(A32). The necessary coeffi-
cients to calculate the first order expansion of the space-
time invariants are the following:


½2� ¼ 1

2
½0� ½2E½0�2
k̂

� K½0��; �½2� ¼ � E½0�
k̂

2
½0� ;

Sa
b½1� ¼ �a

b

2
½0� ½K½0� � E½0�2
k̂

�; S½1� ¼ 1


½0� ½K½0� � E½0�2
k̂

�;

Sa
b½3� ¼ 1

8
½0�2 ½2
½2�:b
:a þ 
½2�:a

:a �a
b � 
½0�S½1�2�a

b�

þ 1

16
½0�3 ½2E½0�
k̂:aE

½0�:b
k̂

� 3E½0�
k̂:cE

½0�:c
k̂

�a
b�;

S½3� ¼ 1

4
½0�2 ½2
½2�:a
:a � 
½0�S½1�2� � 1

4
½0�3 E
½0�
k̂:aE

½0�:a
k̂

;

E½3�
k̂

¼ � 1

4
½0�2 ½2
½0�S½1�E½0�
k̂

þ E½0�:a
k̂:a �: (A41)

Finally, we derive the first order expansions of the space-
time invariants near the horizon:

F2 � �2E2
k̂
jH þ 1

2
2
½4KeE

2
k̂
þ E2

k̂:a
:a � 3Ek̂:aEk̂

:a�jHk2;
(A42)

C 2 � 12K2
ejH � 1


2
½6K2

e½3Ke � 2E2
k̂
� � ½2Ke � E2

k̂
�:a

�½2Ke � E2
k̂
�:a þ 6Ke½Ke:a

:a � 2Ek̂Ek̂:a
:a��jHk2;

(A43)

where KejH ¼ ½K � E2
k̂
�jH.
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