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Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are

generalized in two ways, namely, we take these theorems into d spacetime dimensions (d � 4), and

we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with

nonzero pressure. In particular within the Newton-Coulomb theory of charged gravitating fluids, a

theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary ðd� 1Þ> 3 space

dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the

condition that the charge density and the matter density should obey. Within general relativity coupled to

charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetime is rendered

into arbitrary d > 4 dimensions. Then a theorem, new in d ¼ 4 and d > 4 dimensions, for Weyl-Guilfoyle

systems, is stated and proved, in which we find the condition that the charge density, the matter density,

the pressure, and the electromagnetic energy density should obey. This theorem comprises, in particular

cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999).

Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-

Nordström solution in d dimensions), one is able to give a general definition for gravitational mass for this

kind of relativistic systems and find a mass relation with several quantities of the interior solution. It is also

shown that for sources of finite extent the mass is identical to the Tolman mass.
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I. INTRODUCTION

A. Weyl type systems: Definition and overview

Oddly, there is no noticeable mention of results for
charged fluids in Newtonian gravitation in the 19th century,
an epoch when such studies could certainly be performed
with ease. Not even the useful monograph of Ramsey of
1940 ‘‘Newtonian attraction’’ [1] attempts such an incur-
sion. The first work treating charged fluids in Newtonian
gravitation we are aware of is Bonnor’s work [2], which is
inspired in relativistic gravitational works. This work [2] is
divided into two distinct parts. The first one deals with
charged matter theorems in Newtonian gravitation, and
some interesting singular solutions are displayed. The
second one studies axisymmetric solutions for charged
systems in general relativity. Although the displaying of
exact solutions with matter for axisymmetric systems in
general relativity is of great interest, here we are only
interested in the first part of Bonnor’s work. In the study
of Newtonian systems, Bonnor was inspired by previous
works in general relativity; indeed no previous paper in

Newtonian theory is cited. Bonnor [2] observed that in
Newtonian mechanics and classical electrostatics an en-
semble of N particles of masses and chargesmj and qj will

be in equilibrium in any configuration if qj ¼ �
ffiffiffiffi
G

p
mj (j ¼

1; . . . ; N), where � ¼ �1 and G is the Newton’s gravita-
tional constant. In the case of continuous distributions of
charged matter, with mass density �m and charge density

�e, there will be equilibrium everywhere if �e ¼ �
ffiffiffiffi
G

p
�m.

Such a neutral equilibrium is possible due to the exact
balancing of the gravitational and electric forces on every
fluid particle. Thus, a static distribution of charged dust,
i.e., a perfect fluid with zero pressure, of any shape can in
principle be built. Using the properties of the Newton-
Coulomb system of equations, Bonnor showed that all
Newton-Coulomb nontrivial solutions with closed equipo-

tentials not satisfying the relation �e ¼ �
ffiffiffiffi
G

p
�m are singu-

lar. As a byproduct he showed that a relation between the
Newtonian gravitational potential V and the electric poten-
tial �,

V ¼ Vð�Þ; (1)

should have a simple form, namely,
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V ¼ ��
ffiffiffiffi
G

p
�þ const: (2)

These types of general theorems and results for the
coupling between charged matter and gravitation were
originally attempted within the theory of general relativity.
It was Weyl [3], while studying electric fields in vacuum
Einstein-Maxwell theory in four-dimensional spacetime,
who first perceived that it is interesting to consider a func-
tional relation between the metric component gtt � W2ðxiÞ
and the electric potential �ðxiÞ (where xi represent the
spatial coordinates, i ¼ 1, 2, 3) given by the ansatz

W ¼ Wð�Þ: (3)

Systems, either vacuum or matter, in which the ansatz (3)
holds generically will be called Weyl type systems. If it is
assumed the system is vacuum and axisymmetric then
Weyl [3] found that such a relation must be of the form

W2 ¼ ð��
ffiffiffiffi
G

p
�þ bÞ2 þ c; (4)

where b and c are arbitrary constants, and we use units
such that the speed of light equals unity. The metric may be
written as

ds2 ¼ �W2dt2 þ hijdx
idxj; i; j ¼ 1; 2; 3; (5)

where hij is also a function of the spatial coordinates xi

only and it was assumed by Weyl [3] to represent an
axisymmetric space. Majumdar [4] extended this result
by showing that it holds for a large class of static space-
times with no particular spatial symmetry, axial or other-
wise. Moreover, by choosing c ¼ 0 in which case the
potential W2 assumes the form of a perfect square and so

W ¼ ��
ffiffiffiffi
G

p
�þ b; (6)

Majumdar [4] was able to show that the Einstein-Maxwell
equations in the presence of charged dust, i.e., a perfect
fluid with zero pressure, imply exactly the same condition

of the Newtonian theory, namely, �e ¼ �
ffiffiffiffi
G

p
�m, with both

the gravitational potential W and the electric potential �
satisfying a Poisson-like equation. As in the Newtonian
case, the relativistic solutions are static configurations of
charged dust and need not have any spatial symmetry.
Majumdar [4] also showed that in the case W is as in
Eq. (6) the metric of the three-space is conformally flat
with the conformal factor given by 1=W2, and in such a
case all the stresses in the charged matter vanish. Similar
results were found independently by Papapetrou [5], who
assumed as a starting point a perfect square relation among
W and �, in a dust filled spacetime, and showed further
that the charge density �e and the relativistic energy den-

sity �m are related by �e ¼ �
ffiffiffiffi
G

p
�m. Relation (6) is called

the Majumdar-Papapetrou relation. Solutions in which the

condition �e ¼ �
ffiffiffiffi
G

p
�m and the relation (6) hold are called

Majumdar-Papapetrou solutions. These kinds of charged
dust fluids were studied by other authors. For instance, Das

[6] showed that if the ratio �e=�m ¼ �
ffiffiffiffi
G

p
holds, then the

relation between potentials must be as in Eq. (6). De and
Raychaudhuri [7] generalized this by showing that if there
is a closed equipotential within the charged dust fluid with
no singularities, holes, or alien matter inside it, where alien
matter was an expression used to indicate anything other
than charged dust, then the charged dust fluid corresponds
to a Majumdar-Papapetrou solution.
A further advance was performed by Gautreau and

Hoffman [8]. They investigated the structure of the sources
that produce Weyl type fields, which satisfy the Weyl
quadratic relation (4), in the case the matter stresses, i.e.,
the pressures, do not vanish. They found that when there is
pressure, for W being given by the Weyl relation then the

fluid obeys the condition b�e ¼ �
ffiffiffiffi
G

p ð�m þ d�1
d�3pÞW þ

�
ffiffiffiffi
G

p
��e, or equivalently �eð�

ffiffiffiffi
G

p
�� bÞ ¼ ��

ffiffiffiffi
G

p ð�m þ
d�1
d�3pÞW, in the same spirit of the Majumdar-Papapetrou

condition. If, instead of a Weyl relation, one has a
Majumdar-Papapetrou relation, but still keeping the pres-

sure, then the condition is simpler, �e ¼ �
ffiffiffiffi
G

p ð�m þ
d�1
d�3pÞ.
Another interesting study was performed by Guilfoyle

[9] who considered charged fluid distributions and made
the hypothesis that the functional relation between the
gravitational and the electric potential, W ¼ Wð�Þ, is
slightly more general than the one given in (4). This
Weyl-Guilfoyle relation has the form

W2 ¼ að��
ffiffiffiffi
G

p
�þ bÞ2 þ c; (7)

where a, b, and c are arbitrary constants. Guilfoyle [9]
investigated several general properties of such systems. In
particular, he showed that if the fields satisfy the
Majumdar-Papapetrou perfect square relation, then the
fluid pressure is proportional to the gravitational potential
p ¼ kW2. In addition, a set of exact spherically symmetric
solutions were also analyzed.
Now, global analyses are important. To connect these

general local results just mentioned to general global re-
sults one needs an exterior solution. For Weyl and Weyl-
Guilfoyle relations, fluids which respect spherical symme-
try can be joined to an exterior Reissner-Nordström solu-
tion [10,11] characterized by a mass m and charge q.
Guilfoyle [9] by applying junction conditions found how
the global mass m and the global charge q are linked to the
interior fluid parameters. In these spacetimes, whose fluids
obey a Weyl-Guilfoyle relation, the total mass m is not, in
general, proportional to the total electric charge of the
system q. In the perfect square case of the Majumdar-
Papapetrou relation, it can be shown that the mass m of

the solution is equal to its charge q,
ffiffiffiffi
G

p
m ¼ �q, and the

exterior is extremal Reissner-Nordström. One can also
follow the approach of Gautreau and Hoffman [8], an
approach which does not use junction conditions. These
authors have showed that, for a source of finite extent, not
necessarily spherically symmetric, whose fluid admits
pressure and a Weyl relation, and whose spacetime is
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asymptotically Reissner-Nordström, the total gravitational
mass is proportional to the total electric charge of the
source, and the ratio between them is equal to the constant
b. Here, in this approach, the mass definition follows from
Tolman [12] and can be applied to charged spacetimes (see
Whittaker [13] and Florides [14,15], see also [16]). We
further note that the complete global understanding of a
single Majumdar-Papapetrou particle, i.e., the extremal
Reissner-Nordström vacuum solution, was achieved by
Carter [17], through a Carter-Penrose diagram, and the
generalization to the vacuum solution with many extremal
black holes scattered around was performed by Hartle and
Hawking [18].

All the theorems and results mentioned above were
performed in four dimensions. It is important nowadays
to have results in d dimensions. Indeed, string theory, the
AdS/CFT conjecture, brane world scenarios, and many
other instances, point to the possible existence of a
d-dimensional world, with d � 4. For charged fluids a first
attempt in the study of d-dimensional spacetimes was
performed by Lemos and Zanchin [19] where the beautiful
four-dimensional results of Majumdar [4] were put into
higher dimensions. It is thus of interest to render the
general theorems and results mentioned above into d di-
mensions. We will see that some of the theorems are
trivially extended, but in the process, we will get really
new interesting theorems and results. For instance, when
connecting the Gautreau-Hoffman work [8] to Guilfoyle’s
[9] we step upon a nontrivial generalization and find an
important new relation for the matter and field quantities
for charged fluids with pressure, which obey the Weyl-
Guilfoyle relation, both in Newtonian gravitation and gen-
eral relativity. In this setting the notion of alien matter has
to be generalized to indicate anything other than a charged
fluid of Weyl type, guaranteeing that when the pressure is
zero one recovers the definition in [7]. Wewill also connect
the general local results to general global results, using as
exterior solution the d-dimensional Reissner-Nordström
solution, also called the Tangherlini solution [20]. We
find the d-dimensional version of the mass relation found
by Guilfoyle [9] as well as the generalization of the
Gautreau-Hoffman mass [8]. Summing up, we will
enounce 12 theorems and two corollaries and analyze
some global issues.

The literature in charged fluids in general relativity is
vast and we can only mention some works more related to
our paper. Inspired in the work of De and Raychaudhuri
[7], some papers dealt with scalar charge rather than
Maxwell charge, see, e.g., [21–24]. For fluids with pressure
of Majumdar-Papapetrou type it is worth mentioning here a
study by Ida [25]. By assuming a linear equation of state
for the fluid, i.e. �m ¼ const� pð¼ const���2Þ, he
found that the resulting equation for the electric potential
is simply a Helmholtz equation in a space of constant
curvature, and he investigated some particular solutions

in that case. In four dimensions, many other works have
been performed for charged fluids with nonzero pressure
without considering Weyl or other types of relations, see,
e.g., [26] for a list of references. For a study of
d-dimensional Majumdar-Papapetrou fluids and related
Bonnor stars, with a thorough review of the subject, see
[27].

B. Nomenclature

We consider a d-dimensional spacetime, both in
Newtonian gravitation and general relativity. The number
n of space dimensions is then n ¼ ðd� 1Þ. Throughout the
paper we set the speed of light equal to unity. For the
d-dimensional spacetime gravitational constant we write
Gd, see, e.g., [27] for the definition of Gd. In d ¼ 4
dimensions we write G4 � G.

1. Newton-Coulomb charged fluids

Here we set out the nomenclature related to the poten-
tials for the Newton-Coulomb theory with charged matter.
This nomenclature is inspired in the nomenclature for the
general relativity theory with charged matter.
(i) The gravitational Newtonian potential is represented

by V, and the electric Coulombian potential is de-
noted by �. �m is the mass density, p is the fluid
pressure, and �e is the electric charge density.

(ii) V ¼ Vð�Þ is, inspired in the relativistic theory, the
Weyl ansatz for the Newton-Coulomb theory.
Systems bearing this hypothesis are Newton-
Coulomb Weyl type systems, or simply Newtonian
Weyl type systems.

(iii) V ¼ ���
ffiffiffiffiffiffi
Gd

p
�þ � is, inspired in the relativistic

theory, what we call the original Weyl relation in the
Newton-Coulomb theory, or simply Weyl relation.
The Weyl relation is, in the Newtonian theory, the
same as the Weyl-Guilfoyle relation.

(iv) V ¼ ��
ffiffiffiffiffiffi
Gd

p
�þ � is, inspired in the relativistic

theory, what we call the Majumdar-Papapetrou rela-
tion for the Newton-Coulomb theory (see [27]). The
Majumdar-Papapetrou relation is a particular case of
the Weyl-Guilfoyle relation, one sets � ¼ 1.

Here we set out the nomenclature related to the fluid
quantities. For the densities the nomenclature is more
complicated than for the potentials, since it depends on
whether there is pressure or not in the fluid.
(i) When there is no pressure, the only static solutions

for Vð�Þ are of the form of the Majumdar-
Papapetrou relation, which for the Newton-
Coulomb theory is a particular case of the Weyl-
Guilfoyle relation with � ¼ 1. In such a case, the
fluid densities obey the Majumdar-Papapetrou con-
dition, �e ¼ �

ffiffiffiffiffiffi
Gd

p
�m.

(ii) When there is pressure, for V obeying the Weyl-
Guilfoyle relation, the fluid densities obey the con-
dition ��e ¼ �

ffiffiffiffiffiffi
Gd

p
�m, a condition given here for
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the first time. Inspired in the relativistic case, we call
it the Gautreau-Hoffman condition for the Newton-
Coulomb theory. Now, in the particular case where
� ¼ 1 the potential V obeys the Majumdar-
Papapetrou relation for the Newton-Coulomb theory,
the pressure vanishes, and the densities are related by
the Majumdar-Papapetrou condition for the Newton-
Coulomb theory.

2. Relativistic charged fluids

Here we set out the nomenclature related to the poten-
tials for relativistic fluids.

(i) In d spacetime dimensions, we use the same notation
for the metric as in four dimensions, cf. Eq. (5), and
the symbols for electric and fluid quantities are the
same as in the Newton-Coulomb case. So, W is the
metric potential related to the time coordinate, which
can be interpreted as the relativistic gravitational
potential, � is the relativistic electric potential, i.e.,
the only nonzero component of the electromagnetic
gauge potential, �m is the relativistic mass-energy
density, p is the fluid relativistic pressure, and �e is
the relativistic electric charge density.

(ii) W ¼ Wð�Þ is the Weyl ansatz. Systems bearing this
hypothesis are Weyl type systems.

(iii) W2 ¼ að��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c is the Weyl-Guilfoyle

relation, where a, b, and c are constant parameters.
(iv) W2 ¼ ð��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c is the original Weyl re-

lation, or simply Weyl relation. The Weyl relation is
a particular case of the Weyl-Guilfoyle relation.

(v) W2 ¼ ð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2, or W ¼ ��

ffiffiffiffiffiffi
Gd

p
�þ b, is

the Majumdar-Papapetrou relation, a particular case
of the Weyl relation.

Here we set out the nomenclature related to the fluid
quantities. For the densities the nomenclature is more
complicated than for potentials, since it depends on
whether there is pressure or not in the relativistic fluid.

(1) When there is no pressure, the only possible static
solutions satisfy the Majumdar-Papapetrou relation,
and the fluid variables are related by the equation
�eð��

ffiffiffiffiffiffi
Gd

p
�þ bÞ ¼ �

ffiffiffiffiffiffi
Gd

p
�mW, which can be

cast into the form �e ¼ �
ffiffiffiffiffiffi
Gd

p
�m. This equation

between the densities is called the Majumdar-
Papapetrou condition.

(a) When there is pressure, for W obeying the Weyl-
Guilfoyle relation, the fluid quantities satisfy the
condition ab�e ¼ �

ffiffiffiffiffiffi
Gd

p ½ð�m þ d�1
d�3pÞW þ��e� þ

�
ffiffiffiffiffiffi
Gd

p ða� 1Þð��e �W�emÞ, or equivalently,
a�eð��

ffiffiffiffiffiffi
Gd

p
�þ bÞ ¼ �

ffiffiffiffiffiffi
Gd

p ½�m þ d�1
d�3pþ ð1�

aÞ�em�W, which is given here for the first time. This
condition can be considered as an equation of state.

(b) When there is pressure, in the particular case where
a ¼ 1, W obeys the original Weyl relation and the
fluid quantities are related by b�e ¼ �

ffiffiffiffiffiffi
Gd

p ½ð�m þ
d�1
d�3pÞW þ��e�, or equivalently, �eð��

ffiffiffiffiffiffi
Gd

p
�þ

bÞ ¼ �
ffiffiffiffiffiffi
Gd

p ð�m þ d�1
d�3pÞW. This is called the

Gautreau-Hoffman condition.
(c) When there is pressure, in the particular case where

a ¼ 1 and c ¼ 0, W obeys the Majumdar-
Papapetrou relation, W ¼ ��

ffiffiffiffiffiffi
Gd

p
�þ b, and the

fluid variables are related by �eð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ ¼

�
ffiffiffiffiffiffi
Gd

p ð�m þ d�1
d�3pÞW, or equivalently, �e ¼

�
ffiffiffiffiffiffi
Gd

p ð�m þ d�1
d�3pÞ. This equation is a particular

case of the Gautreau-Hoffman condition.
In [7] the expression alien matter was used to indicate

anything other than charged dust. Here, since we treat
charged fluids with pressure, the expression alien matter
is generalized to indicate anything other than a charged
fluid of Weyl type. When the pressure is zero one recovers
the definition of [7].
The nomenclature will become clearer during the paper.

C. Structure of the paper

In Sec. II a self-gravitating static charged fluid in
Newtonian physics is analyzed. We set up the Eulerian
formulation of fluid dynamics in n ¼ ðd� 1Þ-dimensional
Euclidean space. We then analyze the general properties of
a charged static Newton-Coulomb zero pressure fluid, or
charged dust, and state two theorems rendering into higher
dimensions previous results in three-dimensional spaces by
other authors. We perform an analysis of charged Newton-
Coulomb fluids with nonzero pressure reporting new re-
sults and stating and proving four theorems. We define the
total mass and total electric charge in terms of the respec-
tive densities and find a mass-charge relation for Newton-
Coulomb Weyl type fluids in (d� 1)-dimensional
Euclidean spaces.
In Sec. III a self-gravitating static charged fluid in

general relativity is analyzed. The general formalism and
setup is presented, followed by a study of a zero pressure
charged fluid, or charged dust, where two theorems are
stated and proved, rendering into higher dimensions results
by Majumdar [4], Papapetrou [5], Das [6], and De and
Raychaudhuri [7]. The study of a relativistic charged pres-
sure fluid of Weyl type is divided into six parts. In the first
part the basic equations are written and general results are
reported. A theorem rendering into higher dimensions
some results obtained in d ¼ 4 by Guilfoyle [9] is stated
there. In the second part the Weyl ansatz is imposed and its
consequences to the relativistic fluid are analyzed. Another
theorem rendering into higher dimensions some other re-
sults obtained in d ¼ 4 by Guilfoyle [9] is stated in this
part. For a Weyl-Guilfoyle relation, a generalized condi-
tion obeyed by the mass density, pressure, electric charge
density, and electromagnetic energy density of a fluid in
four and higher dimensions is found. This is done in the
third part where a new theorem is proved. The fourth part
contains the same new theorem on Weyl type fluids in
d-dimensional spacetimes, the proof being now inspired
in the work by De and Raychaudhuri [7]. In the fifth part
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we study spherically symmetric Weyl type systems and
compare with the work in four dimensions done by
Guilfoyle [9]. In the sixth part an analysis is performed
where we show that the relativistic Weyl type charged
pressure fluids have a correct Newtonian limit consistent
with what was found in Sec. II. Then closing Sec. III, the
mass and charge definitions for relativistic Weyl type fluids
in asymptotically Tangherlini spacetimes are given, and the
particular case of spherical symmetry is studied in some
detail.

In Sec. IV we finally state our conclusions.

II. NEWTON-COULOMB CHARGED FLUID WITH
PRESSURE IN d ¼ nþ 1 SPACETIME

DIMENSIONS

A. Basic equations

Consider a d-dimensional Newtonian spacetime, with
the number of space dimensions n being n ¼ d� 1. Let us
study the dynamics of a gravitating Newtonian charged
pressure fluid in a (d� 1)-dimensional Euclidean space
according to the Euler description. The basic equations are
the continuity and the Euler equations, which may be
written as

@�m

@t
þrið�mv

iÞ ¼ 0; (8)

�m

@vi

@t
þ �mv

jrjv
i þrip ¼ ��mriV � �eri�; (9)

where t is the time coordinate, ri is the (d� 1)-
dimensional gradient operator. The fluid quantities appear-
ing in the above equations are the (d� 1)-dimensional
fluid velocity vi, the matter density �m, the electric charge
density �e, and the fluid pressure p. Finally, V and � are,
respectively, the Newton gravitational and the Coulomb
electric potentials, given by the respective Poisson equa-
tion

r2V ¼ Sd�2Gd�m; (10)

r2� ¼ �Sd�2�e; (11)

where the operator r2 is the Laplace operator in (d� 1)-

dimensional Euclidean space, Sd�2 ¼ 2�ðd�1Þ=2=�ððd�
1Þ=2Þ is the area of the unit sphere Sd�2, � is the usual
gamma function, and Gd is the Newton’s gravitational
constant in d dimensions. Sd�2 reduces to 4� in three
space (four spacetime) dimensions, and Eqs. (10) and
(11) are the natural generalizations of the corresponding
three-dimensional Poisson equations for the potentials V
and � to (d� 1)-dimensional space.

We will consider only static systems, so all of the
quantities are functions of the space coordinates only,
and the fluid’s velocity can be made equal to zero, vi ¼
0. Then, the continuity equation is identically satisfied and
the Euler equation for the charged pressure fluid in static

equilibrium reads

�mriV þ �eri�þrip ¼ 0: (12)

The important equations for the problem are
Eqs. (10)–(12). Equations (10) and (11) are the field equa-
tions that determine the gravitational and the electric po-
tentials once the mass and charge densities are given, while
Eq. (12) is the equilibrium equation for the system. Some
particular cases of these equations are considered below.

B. Zero pressure: Weyl type systems in the
Newton-Coulomb theory and the Bonnor theorem in

higher dimensions

A special but very interesting case of charged matter is
the dust fluid, for which p ¼ 0, where Eq. (53) reduces to

riV þ �e

�m

ri� ¼ 0: (13)

From Eq. (13) we can render into (d� 1)-dimensional
spaces a theorem by Bonnor in d ¼ 4. Bonnor himself
was inspired in the relativistic analysis by De and
Raychaudhuri [7].
Theorem II.1. (Bonnor 1980).
For any charged static dust distribution in the Newton-

Coulomb theory, the (d� 2)-dimensional hypersurfaces of
constant V coincide with the (d� 2)-dimensional hyper-
surfaces of constant �, and V is a function of � alone.
Proof. Note that V and � are scalar functions in a

(d� 1)-dimensional Euclidean space, so any one of the
conditions of constant V or � defines a (d� 2)-
dimensional space. Now contracting Eq. (13) with dxi it
gives �mðriVÞdxi þ �eðri�Þdxi ¼ 0, which means
�mdV þ �ed� ¼ 0. This equation implies that if any one
of dV or d� is null, then both of them are. In other words, it
results in dV=d� ¼ ��e=�m, which means that
dV=d� ¼ @V=@�. h
This results means that for a Newton-Coulomb charged

dust fluid in which p ¼ 0 there is a functional relation
between the gravitational potential V and the electric po-
tential �:

V ¼ Vð�Þ: (14)

Equation (14) is theWeyl ansatz which tells also that� and
V share the same equipotential surfaces. Theorem (II.1) is
the (d� 1)-dimensional version of a theorem by Bonnor
[2] in three-dimensional space. The theorem by Bonnor [2]
is the Newtonian version of a theorem stated by De and
Raychaudhuri for four-dimensional relativistic charged
dust fluids [7] (see Sec. III B). The inclusion of pressure
for relativistic fluids was done by Guilfoyle [9] (see
Sec. III C 1).
We then work out the basic equations for the dust fluid

case using the general form (14). To begin with, let us
rewrite Eq. (10) by taking the Weyl ansatz (14) into ac-
count. It assumes the form
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V 0r2�þ V 00ðri�Þ2 ¼ Sd�2Gd�m; (15)

where the primes stand for derivatives with respect to �.
Of course, Eq. (11) does not change form. On the other
hand, the equilibrium equation (12) now reads

�mV
0 þ �e ¼ 0: (16)

Substituting �m from the last equation, Eq. (16), into
Eq. (15), we find ðV0Þ2r2�þ V0V00ðri�Þ2 ¼
�Sd�2Gd�e: Then with the help of Eq. (11) we find

½V02 �Gd�r2�þ V0V00ðri�Þ2 ¼ 0: (17)

This equation can be cast into the form

ZriðZri�Þ ¼ 0; (18)

where we have assumed V 02 >Gd and defined

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V02 �Gd

q
; (19)

and, otherwise, if V 02 �Gd < 0, one just needs to redefine
Z as Z ¼ Gd � V02. Now we can state a theorem rendering
into higher dimensions a theorem by Bonnor [2] in three-
dimensional space. The analysis by Bonnor is inspired in
the relativistic analysis of Papapetrou [5], Das [6], and De
and Raychaudhuri [7].

Theorem II.2. (Bonnor 1980).
(i) In the Newton-Coulomb theory, if the surfaces of any

static charged dust distribution are closed equipotential
hypersurfaces and inside these hypersurfaces there are no
singularities, holes, or alien matter, then the function Vð�Þ
must satisfy the relation

V ¼ ��
ffiffiffiffiffiffi
Gd

p
�þ �; (20)

with � being an integration constant, and in such a case it
follows that

�e ¼ �
ffiffiffiffiffiffi
Gd

p
�m: (21)

(ii) In the Newton-Coulomb theory, if the ratio �e=�m

equals a constantK, and there are no singularities, holes, or
alien matter in that region, then it follows the relation (20)
for the potentials, and also K ¼ �

ffiffiffiffiffiffi
Gd

p
.

Proof. The proof of (i) is as follows: Assuming Z � 0,
one obtains riðZri�Þ ¼ 0. Then define a new field c by
ric ¼ Zri�, which due to Eq. (18) is divergenceless, i.e.,
r2c ¼ 0. Now integrate the quantity riðcric Þ over a
finite volume VS in (d� 1)-dimensional space to getZ

VS

riðcric ÞdV ¼
Z
VS

ðric Þ2dV

¼
Z
S
c ðric ÞnidS; (22)

S being the boundary of VS , n
i being the unit vector

normal to S, and we have used the Gauss theorem. If there
exists a closed surface which is an equipotential surface for
�, then by identifying such a surface with S one finds

Z
VS

ðric Þ2dV ¼
Z
VS

Z2ðri�Þ2dV ¼ 0: (23)

Since the integrand is a positive definite function in which
ri� � 0, the integral in Eq. (23) gives zero only if Z ¼ 0
everywhere within the region bounded by S. The condition
Z ¼ 0 implies in V0 ¼ ��

ffiffiffiffiffiffi
Gd

p
, with � ¼ �1. This result

substituted into Eq. (16) furnishes Eq. (21) and after in-
tegration it gives Eq. (20), completing the proof of (i). The
given proof follows standard proofs in potential theory
where the uniqueness of the solutions of the Poisson equa-
tion under Dirichlet or Neumann boundary conditions is
discussed. The proof of (ii) is as follows: Assuming the
ratio �e=�m is constant, then Eq. (16) implies V 0 ¼
constant and from (18) one gets Zr2� ¼ 0. Since, in
view of Eq. (11), r2� � 0, this leads to Z ¼ 0, or V 02 ¼
Gd, resulting in the same relations among V and �, and
among �m and �m as in Eqs. (20) and (21) above. h
The results just presented generalize the theorem by

Bonnor [2] to (d� 1)-dimensional spaces, which is the
Newtonian version of the results found in part by
Papapetrou [5], in part by Das [6], and fully by De and
Raychaudhuri [7] (see Sec. III B). Equations (20) and (21)
are called the Majumdar-Papapetrou relation and the
Majumdar-Papapetrou condition, respectively.

C. Nonzero pressure: Weyl type systems in the
Newton-Coulomb theory and new theorems in higher

dimensions

1. Static charged pressure fluid: General properties

Equation (12) can bewritten in terms of total derivatives.
For contracting it with dxi yields �mðriVÞdxi þ
�eðri�Þdxi þ ðripÞdxi ¼ 0, or �mdV þ �ed�þ dp ¼
0. This implies that V, �, and p are functionally related,
viz., p ¼ pðV;�Þ, with �m ¼ �ð@p=@VÞ� and �e ¼
�ð@p=@�ÞV . With this, we can state a theorem, whose
relativistic version in four dimensions can be found in
Guilfoyle [9].
Theorem II.3. (Newtonian version of Guilfoyle 1999).
For any static charged pressure fluid in the Newton-

Coulomb theory, if any two of the (d� 2)-dimensional
hypersurfaces of constant V, �, or p coincide, then the
third also coincides.
Proof. First observe that V,�, and p are scalar functions

in a (d� 1)-dimensional Euclidean space, so any one of
the conditions of constant V, �, or p defines a (d� 2)-
dimensional space. Moreover, from the continuity equation
one gets �mdV þ �ed�þ dp ¼ 0. This equation implies
that if any two of dV, d�, or dp are simultaneously null,
then all of them are null. h
Theorem II.3 generalizes theorem II.1, since one is now

including pressure. For d ¼ 4 it corresponds to the
Newtonian version of a theorem by Guilfoyle on relativis-
tic charged pressure fluids of Weyl type (see Sec. III C).
Further consequences of this theorem are explored next.

JOSÉ P. S. LEMOS AND VILSON T. ZANCHIN PHYSICAL REVIEW D 80, 024010 (2009)

024010-6



2. Weyl and Majumdar-Papapetrou relations for generic
pressure in the Newton-Coulomb theory in higher

dimensions

Doing for d-dimensional Newtonian gravitation what
Weyl did for general relativity [3] even in the presence of
matter with pressure, assume a functional relation between
the gravitational and the electric potential, as in Eq. (14),
V ¼ Vð�Þ. With this ansatz that we call here the Weyl
ansatz, Weyl originally worked out the Einstein-Maxwell
vacuum equations that would follow and found that the
relativistic potential is a quadratic function of the electric
potential. Doing the same here in Newtonian gravitation,
we find that the ansatz (14), when substituted into Eqs. (11)
and (10), gives in vacuum, �m ¼ 0, p ¼ 0, and �e ¼ 0,
that, V00 ¼ 0, i.e.,

Vð�Þ ¼ ���
ffiffiffiffiffiffi
Gd

p
�þ �; (24)

where � and � are arbitrary constants. This is the Weyl
relation for the Newton-Coulomb theory in vacuum. When
� ¼ 1 one has Vð�Þ ¼ ��

ffiffiffiffiffiffi
Gd

p
�þ �, which is the

Majumdar-Papapetrou relation, see Eq. (20). In [27] it
was stated that the Weyl and the Majumdar-Papapetrou
relations are the same in the Newton-Coulomb theory, but
this is only true for � ¼ 1. In fact, � � 1 is important
when one considers systems with pressure.

Let us now work out the basic equations for matter with
nonzero pressure using the Weyl ansatz (14). It is conve-
nient to analyze first Eq. (12), which now reads ð�mV

0 þ
�eÞri�þrip ¼ 0. It follows that p is also a function of
�, p ¼ pð�Þ. So, the two fields V and � have the same
equipotential surfaces, which are also surfaces of constant
pressure. Since we consider ri� � 0, Eq. (12) is then
equivalent to

�mV
0 þ �e þ p0 ¼ 0; (25)

where again the prime stands for the derivative with respect
to �. Let us now state these results in a compact form.

Theorem II.4. (Newtonian version of Guilfoyle 1999).
(i) If the Newton-Coulomb charged pressure fluid is of

Weyl type and is in equilibrium, then the equipotentials are
also hypersurfaces of constant pressure, and vice versa.

(ii) If the Newton-Coulomb charged pressure fluid is of
Weyl type and is in equilibrium, then either the pressure
gradient vanishes at the surface of the fluid or the surface is
an equipotential.

Proof. Using the Weyl ansatz V ¼ Vð�Þ and the equi-
librium equation (12) we have ð�mV

0 þ �eÞd�þ dp ¼ 0.
Then the hypersurfaces of constant � and V coincide, and
theorem II.3 implies that the third, of constant p, also
coincides. On the other hand, a surface of constant p
implies d� ¼ 0, and thus it is also a surface of constant
� and of constant V. This proves (i). To prove (ii) we note
that continuity conditions establish that the pressure is zero
at the surface of the fluid, which means it is a surface of
constant pressure, dp ¼ ðripÞdxi ¼ 0. Then, unless the

pressure gradient vanishes at the surface,rip ¼ 0 for all i,
by (i) the surface of the fluid is an equipotential surface.h
Guilfoyle [9] has shown an analogous theorem for rela-

tivistic charged pressure fluid of Weyl type in four-
dimensional spacetimes. The above theorem II.4 is the
Newtonian version of Guilfoyle’s theorem extended to
higher dimensional spaces (see Sec. III C 2).
Now we rewrite the basic equation on the basis of

theorems II.3 and II.4. From Eqs. (10) and (11), together
with (25), we can find an equation for � in terms of V 0 and
p0:

½ðV 0Þ2 �Gd�r2�þ V0V00ðri�Þ2 ¼ �Sd�2Gdp
0: (26)

Once Vð�Þ and pð�Þ are supplied, this is the final equation
to be solved for �. Such an analysis, however, is not done
in the present work.

3. New theorem in four and higher dimensions and the
Weyl-Guilfoyle relation: Following Gautreau-Hoffman

We turn once again to Eqs. (10) and (11) and observe
that multiplying the second of those equations by
���

ffiffiffiffiffiffi
Gd

p
, with � ¼ �1 and � being an arbitrary parame-

ter, and subtracting the result form the first equation we get

r2ðV þ ��
ffiffiffiffiffiffi
Gd

p
�� �Þ ¼ Sd�2

ffiffiffiffiffiffi
Gd

p ð ffiffiffiffiffiffi
Gd

p
�m � ���eÞ;

(27)

where � is a constant. Now, if V þ ��
ffiffiffiffiffiffi
Gd

p
�� � ¼ 0

everywhere inside matter, it follows that �e is proportional
to �m, and, conversely, assuming the right-hand side of Eq.
(27) is zero, i.e., if �e is proportional to �m, then r2ðV þ
��

ffiffiffiffiffiffi
Gd

p
�Þ ¼ 0. Thus one can state the following theorem:

Theorem II.5. (New).
(i) In a Newton-Coulomb charged pressure fluid, if the

potentials are such that V þ ��
ffiffiffiffiffiffi
Gd

p
�� � ¼ 0, with con-

stant � and �, then it follows the condition

��e ¼ �
ffiffiffiffiffiffi
Gd

p
�m: (28)

(ii) In a Newton-Coulomb charged pressure fluid, if the
ratio �e=�m equals a constant and there is a closed surface,
with no singularities, holes, or alien matter inside it, where
V þ ��

ffiffiffiffiffiffi
Gd

p
�� � vanishes, then it follows

V ¼ ���
ffiffiffiffiffiffi
Gd

p
�þ � (29)

everywhere.
Proof. The proof of (i) follows straightforwardly from

Eq. (27), because the hypothesis of the theorem implies
that the right-hand side of such an equation must be zero.
For (ii), we take �e=�m ¼ �

ffiffiffiffiffiffi
Gd

p
=�, with constant �, and

then Eq. (27) implies in r2ðV þ ��
ffiffiffiffiffiffi
Gd

p
�� �Þ ¼ 0. Let

F ¼ V þ ��
ffiffiffiffiffiffi
Gd

p
�� �, so that r2F ¼ 0. Hence, in view

of this condition one has riðFriFÞ ¼ ðriFÞ2. Integrate
this equation over a volume VS in (d� 1)-dimensional
space to get
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Z
VS

riðFriFÞdV ¼
Z
VS

ðriFÞ2dV

¼
Z
S
FðriFÞnidS; (30)

S being the boundary of VS , n
i being the unit vector

normal to S, and the Gauss theorem has been used. If there
exists a closed surface on which F vanishes, then by
identifying such a surface with S one findsR
VS

ðriFÞ2dV ¼ 0, which is satisfied only if riF ¼ 0

everywhere inside S. This means F ¼ constant every-
where in the region bounded by S and the stated result
follows. h

Our theorem II.5 is a Newtonian version of the results
we find in the relativistic section (see Sec. III C 3). Our
relativistic theorem for fluids obeying a Weyl-Guilfoyle
relation, in turn, was inspired on the analysis by Gautreau
and Hoffman [8], who studied relativistic charged pressure
fluids obeying a Weyl relation in four-dimensional space-
times. Equation (28) may be thought as the most general
condition relating the densities and the pressure in the
Newton-Coulomb theory with matter for fluids obeying a
Weyl type relation. We call it the Gautreau-Hoffman con-
dition for the Newtonian theory. Note also that Eq. (29) is
identical to the Weyl relation for the Newton-Coulomb
theory in vacuum, given by Eq. (24). However, upon
comparison with the relativistic case, it is found that it is
also a Weyl-Guilfoyle relation, so, in the case of pressure,
it can be said that the Weyl and the Weyl-Guilfoyle rela-
tions coincide in the Newtonian case. Unlike the relativis-
tic case, the most general relation between potentials in the
Newton-Coulomb theory coincides with the relation ob-
tained in vacuum. When one puts � ¼ 1 in Eqs. (28) and
(29) one gets the Majumdar-Papapetrou condition and
relation, respectively. As we will see � ¼ 1 means no
pressure, while arbitrary �, � � 1, implies fluids with
nonzero pressure.

4. The same new theorem as the last subsection:
Following Bonnor-De-Raychaudhuri

We now proof in a different way the theorem stated in
the last subsection. Here we follow Bonnor [2], who in turn
followed the relativistic theorem of De and Raychaudhuri
[7]. Indeed, the result found above can also be obtained
following the Bonnor approach [2], in which the equilib-
rium equation is used as a subsidiary condition. As we shall
see below, this strategy brings the pressure into play and,
after some hypotheses concerning the relation among the
pressure gradient and mass and charge densities, a result
that is similar to theorem II.5 is found.

Notice that Eq. (25) displays explicitly an analogy be-
tween the pressure gradient p0 and the charge density �e, in
fact �e can be considered as some sort of pressure gradient,
both act to balance the gravitational attraction. Such a
similarity becomes even more striking by substituting �m

from the last equation, Eq. (25), into Eq. (10), to find
r2V ¼ ðV 0Þ2r2�þ V 0V 00ðri�Þ2 ¼ �Sd�2ð�e þ p0Þ.
Thus, the derivative of the pressure with respect to the
electric potential � acts as a source for the electric field,
in much the same way as the charge density does. It is then
natural to assume a relation in the form p0 ¼ ��e.
However, since the Weyl ansatz (14) tell us that the poten-
tials V and � are related to each other, so are the charge
and mass densities. It is then reasonable to try a more
general relation among p0, �e, and �m. Namely,

p0 ¼ ��e þ �V 0�m; (31)

� and � being arbitrary functions of the coordinates. After
this definition, using Eqs. (11), (15), and (26) one finds
½ð1þ�ÞV02 � ð1þ�ÞGd�r2�þ ð1þ�ÞV0V00ðri�Þ2 ¼ 0.
This equation can be cast into the form

ZpriðZpri�Þ ¼ �1
2ðV 02�0 �Gd�

0Þðri�Þ2; (32)

where we have defined

Zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �ÞV 02 � ð1þ �ÞGd

q
: (33)

Since a complete analysis of the general solutions to
Eq. (32) for arbitrary � and � is not an easy task, here
we will study some particular cases and leave the general
case to be considered in future work.
Consider thus the particular case of a charged pressure

fluid satisfying (31) with constant � and �. This condition
implies �0 ¼ 0 and �0 ¼ 0, and from Eqs. (25) and (32) we
get

V 0 ¼ � ð1þ �Þ�e

ð1þ �Þ�m

; (34)

ZpriðZpri�Þ ¼ 0: (35)

From this we can prove statements that generalize theorem
II.2 to include pressure, and whose results are equivalent to
what was found in connection to theorem II.5.
Theorem II.6. (Same as theorem II.5, following other

path).
(i) If the surfaces of any Newton-Coulomb charged

pressure fluid distribution are closed equipotential hyper-
surfaces and inside these hypersurfaces there are no singu-
larities, holes, or alien matter, and the fluid is of Weyl type,
whose pressure satisfies the condition given in Eq. (31)
with constant � and �, then the relations

V ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

1þ �
Gd

s
�þ �; (36)

�e ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

1þ �
Gd

s
�m; (37)

with constant �, �, and �, hold everywhere inside the fluid
distributions.
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(ii) In a Newton-Coulomb charged pressure fluid, if
the relation between mass and charge densities is as in
Eq. (37), with constant � and �, and there are no singular-
ities, holes, or alien matter in the considered region, then
the relation (36) holds.

Proof. First we show that, with the above conditions, Zp

must be zero. This is done by following the same reasoning
as in the case of theorem II.2, where now the new field c is
defined by ric ¼ Zpri�, with Zp given by Eq. (33).

Once it is proved that Zp ¼ 0, which means ð1þ �ÞV 02 ¼
Gdð1þ �Þ, Eq. (36) is obtained by direct integration of this
result, while Eq. (37) follows from this and from Eq. (34).
This proves (i). The proof of (ii) is equivalent to theorem
II.2 (ii) and we do not give it here. h

This theorem II.6 is inspired in the analysis of a relativ-
istic charged dust fluid in four-dimensional spacetimes by
De and Raychaudhuri [7] (see Sec. III B). It generalizes
theorem II.2 to include pressure, which in turn generalizes
results by Bonnor [2] for a charged pressureless Newton-
Coulomb fluid in d ¼ 4.

As seen above, in order to have nonsingular solutions of
Weyl type in (d� 1)-dimensional Euclidean spaces filled
by charged matter with pressure satisfying the condition
dp=d� ¼ ��e þ �V 0�m, with constant � and �, the func-
tion Vð�Þ must be a linear function of �. Moreover, the
ratio between mass and charge densities is a constant. As
expected from theorem II.2, the case � ¼ � gives �e ¼ffiffiffiffiffiffi
Gd

p
�m and the result is the dust fluid p ¼ 0. These results

are essentially the same as what was found in connection
with theorem II.5, but now we have a two parameter
solution, one of them connecting the pressure to the charge
density and the other one relating the pressure to the mass

density. To see that explicitly define � ¼
ffiffiffiffiffiffiffiffi
1þ�
1þ�

q
to find that

the relations (36) and (37) reproduce, respectively,
Eqs. (28) and (29), the corresponding results of theorem
II.5. The two parameters � and � are convenient for the
comparison of the present results with the relativistic case.

A consequence of the above analysis is that the pressure
gradient p0 is proportional to the charge density (or to the
mass density). Moreover, if the fluid satisfies the
Majumdar-Papapetrou relation for the potentials, the pres-
sure is zero. This can be stated as a corollary to theorems
II.5 and III.6.

Corollary II.7. (New).
For any static charged pressure fluid distribution in the

Newton-Coulomb theory, if the potentials V and � satisfy
the relation (29), or equivalently, the relation (36), then the
pressure is given by

p ¼ �

ffiffiffiffiffiffi
Gd

p
�

ð1� �2Þ
Z

�mð�Þd�þ p0

¼ �
�� �

1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

1þ �
Gd

s Z
�mð�Þd�þ p0; (38)

p0 being an integration constant, and in the case�
2 ¼ 1, or

equivalently, in the case � ¼ �, the pressure is zero.
Proof. Consider the equilibrium equation in the form of

Eq. (25) and use the fact that from theorem II.5 one has

V0 ¼ ���
ffiffiffiffiffiffi
Gd

p
and �e ¼ ��

ffiffiffiffiffiffi
Gd

p
�m, to find p0 ¼ ð�2 �

1Þ�e ¼ ��

ffiffiffiffiffi
Gd

p
� ð�2 � 1Þ�m, which integrates to (38). h

In the case �2 ¼ 1 the pressure equals a constant, which
in the Newtonian theory is equivalent to zero pressure, in
accordance to theorem II.2. This result corresponds to the
Newtonian limit of the relativistic relation between pres-
sure and the metric potential for a charged fluid satisfying
the Majumdar-Papapetrou relation for the potentials, cf.
Corollary III.7.
All of the fluid quantities can now be given in terms of

only one variable, the mass density, for instance, and with
only one free parameter. Once the mass density �m is
specified, the gravitational potential is determined by the
Poisson equation, r2V ¼ Sd�2G�m and all of the other
quantities follow from V and �m.

D. The mass and charge, and the mass-charge relation
of the global solution

For completeness and for comparison with the relativis-
tic theory let us define mass and charge in the Newton-
Coulomb theory. These quantities are obtained by integra-
tion of the respective densities over the whole volume of
the source VS

m ¼ Sd�2

Z
VS

�mdV ; (39)

q ¼ Sd�2

Z
VS

�edV : (40)

For zero pressure, Eq. (21) implies that the total mass and
total charge of the source are proportional to each other.
For Weyl type fluids with nonzero pressure, m and q are
proportional only in the case where dp=d� is constant. In
such a case, one has the mass-charge relation

�q ¼ �
ffiffiffiffiffiffi
Gd

p
m; (41)

which follows from Eq. (28).

III. GENERAL RELATIVISTIC CHARGED FLUID
WITH PRESSURE IN d SPACETIME DIMENSIONS

A. Basic equations

Einstein-Maxwell equations in d spacetime dimensions
are written as

G	
 ¼ d� 2

d� 3
Sd�2GdðT	
 þ E	
Þ; (42)

r
F
	
 ¼ Sd�2J

	; (43)

where Greek indices	, 
, etc., run from 0 to d� 1.G	
 ¼
R	
 � 1

2 g	
R is the Einstein tensor, with R	
 being the
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Ricci tensor, g	
 the metric, and R the Ricci scalar. Sd�2

and Gd have the same definitions as in the Newton-
Coulomb theory (See Sec. II A, see also [27]). We have
put the speed of light equal to unity throughout. Note the
singular behavior of the lower dimensional cases, d ¼ 2
and d ¼ 3, which shall not be treated here. E	
 is the

electromagnetic energy-momentum tensor, which can be
written as

Sd�2E	
 ¼ F	
�F
� � 1

4g	
F��F
��; (44)

where the Maxwell tensor is

F	
 ¼ r	A
 �r
A	; (45)

r	 being the covariant derivative, and A	 the electromag-

netic gauge field. In addition,

J	 ¼ �eU	 (46)

is the current density, �e is the d-dimensional electric
charge density, and U	 is the fluid velocity. T	
 is the

material energy-momentum tensor given by

T	
 ¼ ð�m þ pÞU	U
 þ pg	
; (47)

where �m is the fluid matter energy density in the
d-dimensional spacetime, and p is the fluid pressure.

We assume the spacetime is static and that the metric can
be written in the form

ds2 ¼ �W2dt2 þ hijdx
idxj; i; j ¼ 1; . . . :; d� 1;

(48)

a direct extension of the Majumdar-Papapetrou metric to
extra dimensions. The gauge field A	 and four-velocityU	

are then given by

A	 ¼ ���0
	; (49)

U	 ¼ �W�0
	: (50)

The spatial metric tensor hij, the metric potential W, and

the electrostatic potential � are functions of the spatial
coordinates xi alone. Initially, we are interested in the
equations determining the metric potential W and the
electric potential �. These are obtained, respectively,
from the tt component of Einstein equations (42) and
from the t component of Maxwell equations (43). Such
equations give

r2W ¼ Gd

W
ðri�Þ2 þ Sd�2GdW

�
�m þ d� 1

d� 3
p

�
; (51)

r2�� 1

W
riWri� ¼ �Sd�2W�e; (52)

where ri denotes the covariant derivative with respect to
the coordinate xi, with connection coefficients given in
terms of the metric hij.

Equations (51) and (52) determine the potentials W and
� in terms of a set of unknown quantities. Namely, the
ðd� 1Þðd� 2Þ=2 spatial metric coefficients hij and the

fluid variables, energy density �m, electric charge density
�e, and pressure p. There are exactly ðd� 1Þðd� 2Þ=2
additional equations that come from the Einstein equa-
tions, which in principle determine the hij metric compo-

nents in terms of �m, p, and �e. Hence, to complete the
system of equations it is necessary to provide the energy
and charge density functions, �m and �e, and also to
specify the pressure p or an equation of state for the fluid.
In the present analysis, we will not need the explicit form
of the space metric hij and so the corresponding Einstein

equations will not be written here. Additional equations
that can be used are the conservation equations, r
T

	
 ¼
0, which are sometimes useful in replacing a subset of
Einstein’s equations. In the present case the conservation
equations yield

ð�m þ pÞ riW

W
þ �e

ri�

W
þrip ¼ 0: (53)

This is the relativistic analogue to the Euler equation and
carries the information of how the pressure gradients bal-
ance the equilibrium of the system. It also shows that p,W,
and � are functionally related, e.g., p ¼ pðW;�Þ or W ¼
Wðp;�Þ.

B. Zero pressure: Weyl type systems in the
Einstein-Maxwell theory and the De-Raychaudhuri

theorem in higher dimensions

A special interesting case of charged matter is the dust
fluid, for which p ¼ 0 and Eq. (53) reduces to

riW þ �e

�m

ri� ¼ 0: (54)

Given Eq. (54), we can render into d dimensions a theorem
stated in four dimensions, in part by De and Raychaudhuri
[7], and fully by Guilfoyle [9] where pressure is included.
The theorem is the relativistic version of our Newtonian
theorem II.1, which in turn generalizes a theorem by
Bonnor [2].
Theorem III.1. (De-Raychaudhuri 1968, Guilfoyle

1999).
For any charged static dust distributions in the Einstein-

Maxwell theory, the (d� 2)-dimensional hypersurfaces of
constant W coincide with the (d� 2)-dimensional hyper-
surfaces of constant �, and W is a function of � alone,
W ¼ Wð�Þ.
Proof. First observe that even thoughW and� are scalar

functions in a d-dimensional spacetime, since they do not
depend upon time, each one of the conditions of constant
W and � indeed defines a (d� 2)-dimensional hypersur-
face. Moreover, from the conservation equation (54) one
gets �mdW þ �ed� ¼ 0. This equation implies that if any
one of dW or d� is null, then both of them are. It also
results in dW=d� ¼ ��e=�m and the theorem follows. h
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The result just stated ensures that in the presence of
static dust fluid distributions the Weyl ansatz (14) is not
necessary; it is a consequence of the equilibrium equations.

It is now convenient to rewrite the preceding equations
taking the condition W ¼ Wð�Þ into account. With this,
Eqs. (51) and (52) read, respectively,

W 0r2�þ
�
W 00 �Gd

W

�
ðri�Þ2 ¼ Sd�2GdW�m; (55)

r2��W 0

W
ðri�Þ2 ¼ �Sd�2W�e; (56)

where we have defined W 0 ¼ dW
d� and W 00 ¼ d2W

d�2 .

Substituting the functional relation W ¼ Wð�Þ into the
conservation equations (54) it follows

W 0 ¼ � �e

�m

: (57)

The basic system of equations to be solved is now com-
posed of Eqs. (55)–(57). Such a system can be thought of as
determining the fluid variables �m, and �e once the poten-
tials and metric functions are known. On the other hand,
�m and �e may be eliminated from Eqs. (55)–(57), to
obtain

�Zrið �Zri�Þ ¼ 0; (58)

where

�Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 02 �Gd

q
: (59)

Equation (58) has the same form of Eq. (18) (see [7] and
also [2]). Hence the conditions of theorem II.2 hold here,
and we can render into d dimensions a theorem initiated in
part by Papapetrou [5] and stated in part by Das [6] and in
part by De and Raychaudhuri [7].

Theorem III.2. (Das 1962, De-Raychaudhuri 1968).
(i) In the Einstein-Maxwell theory, if the surfaces of any

charged dust distribution are closed equipotential hyper-
surfaces and inside these hypersurfaces there are no singu-
larities, holes, or alien matter, then the functionWð�Þmust
satisfy the relation

W ¼ ��
ffiffiffiffiffiffi
Gd

p
�þ b; (60)

with b being an integration constant, � ¼ �1 as before,
and in such a case it follows

�e ¼ �
ffiffiffiffiffiffi
Gd

p
�m: (61)

(ii) In the Einstein-Maxwell theory, if in a spacetime
region the ratio �e=�m equals a constant K, and there are
no singularities, holes, or alien matter in that region, then
the relation (60) for the potentials follows, and also K ¼
�

ffiffiffiffiffiffi
Gd

p
.

Proof. The proof of (i) is obtained by defining a new
variable c , such that ric ¼ �Zri�, with �Z given by
Eq. (59). Following the same steps as in the case of the

Newtonian theorem II.2 (i) it can be shown that �Z must be
zero. Then Eqs. (60) and (61) are obtained immediately.
The proof of (ii) follows once we assume that the ratio
�e=�m is constant and use Eqs. (57) and (59). Then �Z ¼ 0,
resulting in the same relations amongW and�, and among
�m and �e as in Eqs. (60) and (61) above. h
Papapetrou found the relation (61) by assuming a priori

the relation between the potentials to be a perfect square,

W2 ¼ ð��
ffiffiffiffi
G

p
�þ 1Þ2. The theorem stated by Das [6]

assumes a priori that the level surfaces are the same W ¼
Wð�Þ, which is not necessary according to [7]; see also our
theorems II.1 and II.2 for the Newton-Coulomb theory.

C. Nonzero pressure: Weyl type systems in the
Einstein-Maxwell theory and new theorems in higher

dimensions

1. Relativistic static charged pressure fluid:
General results

As in the Newton-Coulomb case, Eq. (53) can be written
in terms of total derivatives. For contracting it with dxi

yields ð�m þ pÞðriWÞdxi þ �eðri�Þdxi þWðripÞdxi ¼
0, or ð�m þ pÞdW þ �ed�þWdp ¼ 0. This implies that
W, �, and p are functionally related, and we can state a
theorem rendering into d spacetime dimensions a result by
Guilfoyle in d ¼ 4 [9]:
Theorem III.3. (Guilfoyle 1999).
For any static charged pressure fluid in the Einstein-

Maxwell theory, if any two of the (d� 2)-dimensional
hypersurfaces of constant W, �, or p coincide, then the
third also coincides.
Proof. As shown above (see theorem III.1) the condi-

tions of constant W, �, or p define a (d� 2)-dimensional
hypersurface. Moreover, from the conservation equation
(53) one gets ð�m þ pÞdW þ �ed�þWdp ¼ 0. This
equation implies that if any two of dW, d�, or dp are
simultaneously null, then all the three are. This proves the
theorem. h
A further interesting consequence of the conservation

equation is that, thinking of p as a function of W and �,
and observing that Eq. (53) implies dp ¼ �ð�m þ
pÞdW=W � �ed�=W; we find ð@p=@WÞ� ¼ �ð�m þ
pÞ=W, and ð@p=@�ÞW ¼ ��e=W. Comparing to the
Newton-Coulomb case, these relations confirm the fact
that in relativistic theory the pressure itself acts against
the pressure gradient, as the energy density, and that there
are extra couplings between energy and charge densities to
the gravitational (metric) field.

2. Weyl and Majumdar-Papapetrou relations for charged
pressure fluids in higher dimensions

Doing in d-dimensional spacetimes what Weyl did in
four-dimensional general relativity [3] even in the presence
of matter with pressure, we make the assumption on
Einstein-Maxwell charged fluids in d-dimensional space-
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times of being Weyl type fluids, where the metric potential
gtt � �W2 is a functional of the gauge potential �, W ¼
Wð�Þ, that we call here the Weyl ansatz. With such an
ansatz, Eqs. (51) and (52) read, respectively,

W 0r2�þ
�
W 00 �Gd

W

�
ðri�Þ2

¼ Sd�2GdW

�
�m þ d� 1

d� 3
p

�
; (62)

r2��W 0

W
ðri�Þ2 ¼ �Sd�2W�e: (63)

For completion, and for comparison to the Newton-
Coulomb case, let us write here the result of the
d-dimensional Weyl ansatz in vacuum (see [19,27]).
Taking into account the conditions �m ¼ 0, p ¼ 0, and
�e ¼ 0, Eqs. (51) and (52) give WW 00 þW 02 �Gd ¼ 0,
i.e.,

W2ð�Þ ¼ ð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c; (64)

where b and c are constant parameters. This is the
d-dimensional version of the original Weyl relation, which
is the analog of Eq. (24) in the Newton-Coulomb theory.
For c ¼ 0 one gets W ¼ ��

ffiffiffiffiffiffi
Gd

p
�þ b which is the

Majumdar-Papapetrou relation, see Eq. (60). We shall
now work out the basic equations for relativistic matter
with nonzero pressure using the Weyl ansatz W ¼ Wð�Þ.
From Eq. (53) one has p ¼ ðW;�Þ and, by assuming
further that W is a function of � alone, it follows from
theorem III.3 that the pressure p is also a function of the
electric potential only, p ¼ pð�Þ. Hence, Eq. (53) may be
written as

ð�m þ pÞW
0

W
þ �e

W
þ p0 ¼ 0: (65)

We may now state more formally these results. In d ¼ 4
this was shown by Guilfoyle [9].

Theorem III.4. (Guilfoyle 1999).
(i) If the Einstein-Maxwell charged pressure fluid is of

Weyl type and is in equilibrium, then the equipotentials are
also hypersurfaces of constant pressure, and vice versa.

(ii) If the Einstein-Maxwell charged pressure fluid is of
Weyl type and is in equilibrium, then either the pressure
gradient vanishes at the surface of the fluid or the surface is
an equipotential.

Proof. A relativistic Weyl type fluid satisfies the relativ-
istic Weyl ansatzW ¼ Wð�Þ and Eq. (65) holds. From that
equation we have ð�m þ pÞdW þ �ed�þWdp ¼ 0.
Then since the hypersurfaces of constant W and � coin-
cide, theorem III.3 implies the third, the one of constant p
also coincides. Conversely, a surface of constant p implies
d� ¼ 0, and thus it is also a surface of constant � and of
constant W. This proves (i). To prove (ii) we first note that
junction conditions establish that the pressure is zero at the
surface of the fluid, which means it is a surface of constant

pressure, dp ¼ ðripÞdxi ¼ 0. Then, unless the pressure
gradient vanishes at the surface,rip ¼ 0 for all i, by (i) the
surface of the fluid is an equipotential surface. h
We now go back to Eqs. (62)–(65) and use them to

eliminate �m and �e in terms of the other quantities. The
resulting equation, which can be thought of as an equation
for p, may be cast into the form

�Zrið �Zri�Þ ¼ �Sd�2GdW
2ðd�2Þ=ðd�3ÞðW�2=ðd�3ÞpÞ0;

(66)

where �Z is given by (59). Usually, a relativistic charged
fluid problem is completely set out once we furnish the
energy and charge densities and an equation of state for the
fluid. However, as it can be seen from Eq. (66), for a Weyl
type system, the problem is in a position to be solved once
the pressure gradient p0 and the metric potential W are
given in terms of �. In such a case, Eq. (66) can in
principle be integrated for �, from what all of the other
fluid variables would follow. We shall analyze some par-
ticular cases of this system next.

3. New theorem in four and higher dimensions and the
Weyl-Guilfoyle relation: Following Gautreau-Hoffman

Here we follow the approach by Gautreau and Hoffman
[8] in order to find the general properties of a charged
pressure fluid satisfying a Weyl-Guilfoyle relation, rather
than the Weyl relation alone as assumed in [8]. The results
found in this section generalize previous results in two
ways. First, we render the theorem given in [8] to higher
dimensions, and, second, we find, for d ¼ 4 and d > 4, the
conditions that source matter distributions must obey in
order to satisfy the most general quadratic form for the
potentials W2 ¼ að��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c, with arbitrary

constants a, b, and c.
By defining the electromagnetic energy density as

�em ¼ 1

Sd�2

ðri�Þ2
W2

; (67)

one may cast Eqs. (51) and (52) into the form

r2W ¼ Sd�2GdW

�
�m þ d� 1

d� 3
pþ �em

�
; (68)

ri

�
1

W
ri�

�
¼ �Sd�2�e: (69)

Also, using the identities rið 1WriW2Þ ¼ 2r2W and

rið 1Wri�2Þ ¼ 2 �
Wr2�� 2 �

W2 riWri�þ 2Sd�2W�em,

we see that Eqs. (68) and (69) may be rearranged as

ri

�
1

W
riW2

�
¼ 2Sd�2GdW

�
�m þ d� 1

d� 3
pþ �em

�
;

(70)
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ri

�
1

W
ri�2

�
¼ �2Sd�2ð�e�� �emWÞ: (71)

Then, multiply (69) by �2ab�
ffiffiffiffiffiffi
Gd

p
and add to (71) multi-

plied by aGd, with constant a and b, and subtract the result
from Eq. (70) to find

ri

�
1

W
ri½W2 � að��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 � c�

�

¼ 2Sd�2Gd

��
�m þ d� 1

d� 3
pþ �em

�
W

þ að��e �W�emÞ � �
abffiffiffiffiffiffi
Gd

p �e

�
: (72)

On the basis of this equation some interesting conclusions
can be drawn.

Theorem III.5. (New).
(i) In any Einstein-Maxwell charged pressure fluid, if the

potentials are such that W2 � að��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2 � c van-

ishes everywhere, i.e., if W2 ¼ að��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c,

then the charged pressure fluid quantities satisfy the con-
straint

ab�e ¼ �
ffiffiffiffiffiffi
Gd

p ��
�m þ d� 1

d� 3
p

�
W þ��e

þ ða� 1Þð��e �W�emÞ
�
; (73)

or

a�eð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ ¼ �

ffiffiffiffiffiffi
Gd

p �
�m þ d� 1

d� 3
p

þ �ð1� aÞ�em

�
W; (74)

which can be considered the equation of state satisfied by
the charged fluid.

(ii) Conversely, in any Einstein-Maxwell charged pres-
sure fluid, if the fluid quantities are such that Eq. (73) holds
and there is a closed surface, with no singularities, holes, or
alien matter inside it, where W2 � að��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 � c

vanishes, then

W2 ¼ að��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c (75)

holds everywhere inside the surface.
Proof. The proof of this theorem is obtained in the exact

sameway as for the Newton-Coulomb case of theorem II.5.
h

Theorem III.5 establishes that the generalized quadratic
Weyl-Guilfoyle relation, i.e., Eq. (75) with a � 1, leads to
a constraint among the fluid quantities which includes the
electromagnetic energy density �em and also the binding
energy density ��e. It generalizes the analysis by
Gautreau and Hoffman [8] in two ways. First it holds for
arbitrary values of constant a, while in [8] a ¼ 1, and
second it holds in an arbitrary number of spacetime dimen-
sions d � 4, rendering into higher dimensions the results

of Gautreau and Hoffman [8]. When a equals unity, the
d-dimensional Weyl relation is recovered and, further-
more, if c ¼ 0, Eq. (73) is reduced to the form found in
[19]. Moreover, for a ¼ 1 and in d ¼ 4 it results in what
was found by Gautreau and Hoffman [8]. Comparing our
theorem to the theorem by Gautreau and Hoffman we see
that in their analysis only the binding energy was taken into
account, and hence the constant awas forced to be equal to
unity. Furthermore, all the solutions found by Guilfoyle in
[9] obey the equation of state, a constraint, provided by
Eq. (73).
The functional form (75) is more general than the origi-

nal quadratic Weyl type form. As pointed out by Guilfoyle
[9], a reparametrization of the metric potential as W !ffiffiffi
a

p
W, with a > 0 enables us to write Eq. (75) as W2 ¼

ð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c=a, which is indeed the original Weyl

quadratic form. However, one needs to observe that this
reparametrization, which corresponds to rescaling the time
coordinate as t ! t=

ffiffiffi
a

p
, leads to a new system where the

mass density, the pressure, and the electric charge density
of the fluid are rescaled as �e ! �e=a, p ! p=a, and
�e ! �e=

ffiffiffi
a

p
, respectively, which changes the balancing

relation among the mass and charge densities and the
pressure gradient. We explore this fact in the next section.

4. The same new theorem as the last subsection:
Following De-Raychaudhuri

We shall analyze here the Weyl type charged pressure
fluid now following the strategy of De and Raychaudhuri
[7], in which the conservation equation is used to try to find
a differential equation for the potentials, by eliminating all
the fluid quantities from the system. This strategy has
already been adopted in the Newton-Coulomb case of
Sec. II C 4. The strategy is different from the Gautreau-
Hoffman one, but the results are similar. Nevertheless it is
interesting to see where this strategy leads.
A comparison between Eqs. (26) and (66) reveals that

the quantity W�2=ðd�3Þp plays, in the Einstein-Maxwell
with matter theory, a similar role to the one played by
the fluid pressure p alone in the Newton-Coulomb with
matter theory. Hence, in order to write the relativistic
equations in a form that resembles the Newton-Coulomb
case, we shall define an effective matter density ��m and an
effective pressure �p, respectively, by ��m ¼ �m þ d�1

d�3p

and �p ¼ W�2=ðd�3Þp: With these definitions, Eq. (65) as-

sumes the form ��mW
0 þ �e þWðd�1=d�3Þ �p0 ¼ 0. This re-

sult suggests that the product of the effective pressure
gradient �p0 and some power of the metric potential W,
such as W�p, for some number �, plays the role of the
charge density analogously to the Newtonian case. Notice,
however, that in the relativistic case the electromagnetic
energy density �ðri�Þ2 is also a source to the gravita-
tional field W (cf. Eq. (51)). Then, it is seen that the
pressure gradient �p0, besides being connected to the charge
and mass densities, is also connected to the electromag-
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netic energy density. In fact, after a careful analysis, one
finds that by defining two new quantities �� and �� through

the relationWðd�1=d�3Þ �p0 ¼ ��
W2 �e þ ��W0ð ��m þ �emÞ, with

�em defined in Eq. (67), it is possible to put Eq. (66) into a
similar form to Eq. (32). Going back to the original quan-
tities, �m, p, �e, and �em, we find the equation�

p0 � 2

d� 3

W 0

W
p

�
W ¼ ��

W2
�e þ ��W0

�
�m

þ d� 1

d� 3
pþ �em

�
; (76)

which is similar in form to the corresponding equation,
Eq. (31), of the Newtonian theory. Here �� and �� are
arbitrary functions of � alone. Then, Eq. (66) assumes
the form

�Z prið �Zpri�Þ ¼ Gd

2

�
W 02 ��0 � ��0

W2

�
ðri�Þ2; (77)

where we have defined

�Z p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ��ÞW 02 �

�
1þ ��

W2

�
Gd

s
: (78)

As mentioned above, the study done in the present section
was inspired in the work by De and Raychaudhuri [7] on
the relativistic charged dust fluid in four-dimensional
spacetimes. Besides performing the analysis in arbitrary
dimensions, we have also generalized the analysis by in-
cluding nonzero pressure and found that the pressure gra-
dient plays the role of electric charge density. Then
Eq. (77) is the fundamental equation to be solved for �,
noting that it is still needed to furnish the functions Wð�Þ,
��ð�Þ, and ��ð�Þ. There is, however, a particularly interest-
ing case that deserves further analysis. In fact, as in the
Newton-Coulomb case, for constant �� and ��, results that
are equivalent to those stated in the theorem III.5 can be
found.

Theorem III.6. (Same as theorem III.5, following another
path).

(i) If the surfaces of any Einstein-Maxwell charged
pressure fluid distribution are closed equipotential hyper-
surfaces and inside these hypersurfaces there are no singu-
larities, holes, or alien matter, and the fluid is of Weyl type,
whose pressure satisfies the condition given in Eq. (76)
with constant �� and ��, then the functionWð�Þmust satisfy
the relation

W2 ¼ 1

1þ ��
ð��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 � ��; (79)

b being an arbitrary integration constant, and it follows

b�e ¼ �ð1þ ��Þ ffiffiffiffiffiffi
Gd

p ��
�m þ d� 1

d� 3
p

�
W þ��e

�
��

1þ ��
ð��e �W�emÞ

�
; (80)

or equivalently

�eð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ ¼ �ð1þ ��Þ ffiffiffiffiffiffi

Gd

p �
�m þ d� 1

d� 3
p

þ
��

1þ ��
�em

�
W: (81)

(ii) If condition (80) holds everywhere inside the
Einstein-Maxwell charged pressure fluid, with constant ��
and ��, and there are no singularities, holes, or alien matter
in that region, then the function W is of the form given in
Eq. (79).
Proof. The proof of (i) may be given by defining a new

variable c by ric ¼ �Zpri�, with �Zpri� given by (78),

and then following the same steps as done in the case of
theorem II.2. In the end, it is found that �Zpri� vanishes

everywhere in the fluid, which means
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��

p
W 0 ¼

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ��=W2ÞGd

p
: By integrating this equation one

gets the relation (79), and then using this result and
Eqs. (65) and (76) one gets the constraint (80). On the
other hand, part (ii) follows straightforwardly from
Eqs. (76), (77), and (80). h
Even though we have followed different strategies in

each case, the results stated in theorem III.6 are equivalent
to what is stated in theorem III.5. Namely, the obtained
relations among fluid quantities and potentials given in
Eqs. (79) and (80) (or (81)) are equivalent to the relation
given by Eqs. (73) and (75), respectively. This can be
shown explicitly through the appropriate identifications
of the arbitrary constants, namely, a ¼ 1=ð1þ ��Þ and c ¼
� ��. Let us now comment on three interesting particular
cases: (i) �� ¼ 0, �� � 0, (ii) �� � 0, �� ¼ 0, and (iii) �� � 0
and �� ¼ 0. In the case (i) �� ¼ 0, for arbitrary ��, the metric
potential is a perfect square function of the electric poten-

tial, W ¼ ð��
ffiffiffiffiffiffi
Gd

p
�þ bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ��Þp

. This is closely re-
lated to the Newton-Coulomb case studied in Sec. II C 4,
as it can be seen from its Newtonian limit. Case (ii)
corresponds to the Weyl original quadratic form between
the potentials, for which several studies in d ¼ 4 have been
done. The particular case (iii) in which both of the free
parameters are zero, �� ¼ 0 and �� ¼ 0 reproduce the result
found in [19], and in [9] in four-dimensional spacetimes.
This is a special case where the conditions for theorem III.2
hold even for nonzero pressure.
As seen above, Eq. (66) is the fundamental equation and

its validity is guaranteed also in the case �� ¼ �� ¼ 0. In
fact, from Eq. (76) one gets

W2=ðd�3ÞðW�2=ðd�3ÞpÞ0 ¼ p0 � 2

d� 3
p
W 0

W
¼ 0; (82)

and then the right-hand side of Eq. (66) vanishes identi-
cally so that the conditions of theorem III.2 hold. In other
words, if �� ¼ 0 and �� ¼ 0 the Majumdar-Papapetrou re-
lation holds. So one may state the following corollary,
which was shown as a theorem for four-dimensional space-
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time by Guilfoyle [9], see also Lemos and Zanchin [19] for
the d-dimensional generalization. We repeat it here for
completeness and because it follows as corollary of the
previous theorems, rather than being a theorem itself.

Corollary III.7. (Guilfoyle 1999, Lemos-Zanchin 2005).
In a region of a static spacetime, filled by a charged

pressure fluid of Weyl type, the relation

p ¼ kW2=ðd�3Þ (83)

holds if and only if

W ¼ ��
ffiffiffiffiffiffi
Gd

p
�þ b; (84)

and there is a closed equipotential surface in that region of
the spacetime with no singularities, holes, or alien matter
inside it. In such a case it follows the relation

�e ¼ �
ffiffiffiffiffiffi
Gd

p �
�m þ d� 1

d� 3
p

�
: (85)

Proof. The proof is given by observing that if the relation
(83) holds, the right-hand side of Eq. (66) vanishes, and
then from theorem III.2 the results (84) and (85) follow. On
the contrary, if (84) holds, Eq. (83) follows directly from
Eq. (66), clearly there is no need for a closed surface here,
and the result given in Eq. (85) follows from Eq. (81) when
one puts �� ¼ 0. h

The Newtonian limit of this relativistic solution is a
pressureless fluid, as will be shown below.

5. Spherically symmetric spacetimes

The presence of the constant �� � 0, or, in the notation of
Sec. III C 3, the presence of the constant a � 1, in the
formula for the potentials is related to the work by
Guilfoyle [9] in four-dimensional spacetimes. In fact, it
can be shown that the Weyl type solutions found in [9]
satisfy the conditions given by Eqs. (73) and (75), or
equivalently, by Eqs. (79) and (81). To show that, and
also to verify that for d ¼ 4 our results are consistent
with previous work, let us analyze one of the spherical
solutions of [9]. The spacetime metric, in Schwarzschild

coordinates, is taken in the form ds2 ¼ �W2ðrÞdt2 þ
dr2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=R2

p þ r2d�2, with r being the radial coordi-
nate and R being a constant. Take, for instance, the solution
found in [9] for A ¼ 3=2, which corresponds to �� ¼ 1=2,
or a ¼ 2=3, according to our notation,

W2ðrÞ ¼ 3 ��3F2ðrÞ
3 ��2F2ðrÞ � 2

; (86)

8��mðrÞ ¼ 3

R2
� 9 ��2k2r2

ð3 ��2F2ðrÞ � 2Þ2 ; (87)

QðrÞ ¼ �3� ��kr3

3 ��2F2ðrÞ � 2
; (88)

8�pðrÞ ¼ � 1

R2
þ 9 ��2k2r2

ð3 ��2F2ðrÞ � 2Þ2

� 4k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

q
FðrÞð3 ��2F2ðrÞ � 2Þ ; (89)

where k is an integration constant, and FðrÞ and QðrÞ are
defined by

FðrÞ ¼ c0 � kR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
; (90)

QðrÞ ¼ 4�
Z r

0
�eðrÞ r2drffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

R2

q ¼ r2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s �
d�ðrÞ
dr

�
2
;

(91)

with c0 being another integration constant, and we have put
G4 � G ¼ 1.
From Eqs. (88) and (91) we get both the electric charge

density �e and the electromagnetic energy density �em,

8��eðrÞ ¼ �18� ��k

3 ��2F2ðrÞ � 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
� 2 ��2kr2FðrÞ

3 ��2F2ðrÞ � 2

�
;

(92)

8��emðrÞ ¼ 18 ��2k2r2

ð3 ��2F2ðrÞ � 2Þ2 : (93)

In the case d ¼ 4 and �� ¼ 1=2, Eq. (81) reads

�e ¼
ffiffiffi
3

2

s �
�m þ 3pþ �em

3

�
�Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ ��
p : (94)

Hence, in order to check if the solution satisfies this con-
straint, we use Eqs. (87), (89), and (93) to obtain

8�

ffiffiffi
3

2

s �
�m þ 3pþ �em

3

�
¼ � 12k

ffiffiffiffiffiffiffiffi
3=2

p
3 ��2F2ðrÞ � 2

�
1

FðrÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
� 2 ��2kr2

3 ��2F2ðrÞ � 2

�
;

(95)

where we have multiplied both sides of the last equation by

8�. Now, from Eq. (86) we find Wffiffiffiffiffiffiffiffiffiffiffi
W2þ ��

p ¼
ffiffi
3
2

q
��FðrÞ, and

then the right-hand side of Eq. (94) corresponds to

8�

ffiffiffi
3

2

s �
�m þ 3pþ �em

3

�
�Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ ��
p

¼ � 18� ��k

3 ��2F2ðrÞ � 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
� 2 ��2kr2FðrÞ

3 ��2F2ðrÞ � 2

�
; (96)

agreeing with the solutions for �eðrÞ as in Eq. (92), and
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showing that this particular solution by Guilfoyle [9] really
matches the conditions established in the present work.
With confidence we can state that all Guilfoyle’s solutions
[9] obey the condition (73) or the other equivalent ones.

6. The Newtonian limit

The Newtonian limit can be obtained from the relativ-
istic quantities by considering Eq. (66) with the following
approximations: (i) Write W ¼ 1þ F and consider F ¼
Fð�Þ small compared to unity, F is to be compared to the
Newtonian potential V; (ii) Neglect p with respect to �m;
(iii) The product p0W ¼ p0ð1þ FÞ is approximated by p0
since p0F is also a second order term; (iv) Neglect pW0
when compared to p0W, because it gives pW0 ¼ pF0
which is a second order term too; (v) The product �eW ¼
�eð1þ FÞ is approximated to �e. It then follows that
Wp0 � 1

d�3pW
0 ’ p0 � 1

d�3pF
0, and from Eq. (59), that

�Z ¼ F02 �Gd. Therefore, Eq. (66) reduces toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F02 �Gd

q
rið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F02 �Gd

q
ri�Þ ¼ Sd�2Gdp

0; (97)

which, with the identifications F ¼ V and �Z ¼ Z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F02 �Gd

p
, gives exactly Eq. (18), that is the basic equa-

tion for the Newton-Coulomb theory (see also [2]). From
this result one then finds the corresponding results for zero
pressure, cf. Eqs (20) and (21). The Newtonian results for
nonzero pressure in which p0 ¼ ��e þ �V 0�m, with con-
stant � and �, also follow immediately (cf. Eqs (36)–(38)).

Alternatively, one may obtain the Newtonian limit di-
rectly from the relativistic solutions found above. For
instance, considering the case of Sec. III C 4 the
Newtonian limit can be found by writing Eq. (75) in the
form W2 ¼ aGd�

2 � 2�ab
ffiffiffiffiffiffi
Gd

p
�þ ab2 þ c, so that to

first order approximation in � one gets W2 ¼ ab2 þ c�
2�ab

ffiffiffiffiffiffi
Gd

p
�. Now writing W ’ 1þ 2V and redefining ap-

propriately the constants a, b, and c in terms of �, �, and �,
Eq. (36) follows. Also, the two remaining Newtonian
relations, Eqs. (37) and (38), are immediately obtained as
the Newtonian limit of the corresponding relativistic equa-
tions. Namely, Eq. (37) follows from Eq. (80), withW2 � 1
and neglecting the pressure pwhen compared to the matter
density �m, and Eq. (38) is obtained after integration of the
Newtonian approximation of Eq. (76), which is p0 ¼
���e þ ��V 0�m. Note that the relation among the constants

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þ=ð1þ �Þp
and � used in the Newton-

Coulomb theory and the constants a ¼ 1=ð1þ ��Þ, b and
c ¼ � �� used in the Einstein-Maxwell theory is not unique,
since it depends on how the Newtonian limit is calculated.
By takingW2 ¼ 1þ 2V, we find � ¼ ab and � ¼ ðab2 þ
c� 1Þ=2.

Additionally, the relativistic relation p ¼ kW2=ðd�3Þ
found in Sec. III C 4, which to first order approximation
is p ¼ k ¼ constant, and so p0 ¼ 0, corresponds to the
zero pressure Newton-Coulomb fluid studied in Sec. II B
(cf. Corollary II.7). In fact, in the Eulerian description of a

Newton-Coulomb charge fluid the conditions p ¼ 0 and
p ¼ constant are equivalent.

D. Asymptotically Tangherlini spacetimes: The mass
and charge, and the mass-charge type relation of the

global solution

Here we particularize the analysis to asymptotically
Tangherlini spacetimes, i.e., Reissner-Nordström
d-dimensional spacetimes, filled by charged fluids of
Weyl-Guilfoyle type. Such spacetimes have an asymptoti-
cally electrovacuum region, which implies strong con-
straints on the fluid distributions. Namely, the source
fluid has to be of finite extent with a well-defined boundary,
or the fluid quantities must approach zero in a sufficiently
fast form, in such a way to guarantee the existence of an
asymptotically vacuum region. We show below that in the
case the fluid distribution has no definite boundary, or
whenever aWeyl-Guilfoyle type relation of the formW2 ¼
að��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c is imposed in the whole spacetime,

the existence of an asymptotically electrovacuum region
requires that a ¼ 1, cþ b2 ¼ 1 throughout, and the mass
and electric charge are related by bq ¼ �

ffiffiffiffiffiffi
Gd

p
m.

The case of a fluid distribution with a boundary is more
interesting, since different Weyl-Guilfoyle type relations
may be assumed in each region of the spacetime. In fact,
solutions of this kind were studied by Guilfoyle himself
[9], who had found a more general mass to charge relation.
Below we extend the Guilfoyle analysis to d-dimensional
spacetimes. Following Gautreau and Hoffman [8] we also
give a more formal definition of mass and charge for
d-dimensional asymptotically Reissner-Nordström space-
times of Weyl-Guilfoyle type. Finally, we show that in
asymptotically Reissner-Nordström spacetimes the mass
definition given here is identical to the Tolman mass [12].

1. Spherically symmetric interiors joined to an exterior
Tangherlini spacetime: Relation between the mass,

charge, and other parameters

Let us consider the case of spherically symmetric fluid
distributions (see Guilfoyle [9] for solutions in d ¼ 4). The
metric is written as

ds2 ¼ �WðrÞ2dt2 þUðrÞ2dr2 þ r2d�d�2; (98)

where r is the radial coordinate in (d� 1) spatial dimen-
sions, W and U are a function of r only, and d�d�2 is the
metric of the unit sphere Sd�2. The charged pressure fluid
is bounded by a spherical surface of radius r ¼ a, and for
r > a the metric is given by the Tangherlini solution [20]

ds2 ¼ �
�
1� 2Gd

d� 3

m

rd�3
þ Gd

ðd� 3Þ2
q2

r2ðd�3Þ

�
dt2

þ dr2

1� 2Gd

d�3
m

rd�3 þ Gd

ðd�3Þ2
q2

r2ðd�3Þ
þ r2d�d�2: (99)
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Furthermore, in the asymptotic region the electric potential
is given by

� ¼ 1

d� 3

q

rd�3
þ�0; (100)

�0 being an arbitrary constant which defines the zero of the
electric potential. Notice that no Weyl type relation of any
kind is imposed to the potentials in the exterior region.

Our aim here is to find the explicit relation between q
and m. This can be done, for instance, by direct integration
of Eq. (73). However, in such a case we need to know the
explicit form of the solution. Alternatively, such a relation
can be obtained considering appropriate junction condi-
tions on the boundary surface r ¼ a. In fact, in the spheri-
cally symmetric case, we can integrate the Maxwell
equation (71), which furnishes

QðrÞ ¼ rd�2 �0

WU
; (101)

where the prime denotes the derivative with respect to the
radial coordinate r. We then use the Weyl-Guilfoyle rela-
tion to write � in terms of W,

ffiffiffiffiffiffi
Gd

p
� ¼ �b� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

a
� c

a

s
; (102)

where � ¼ �1. With this, Eq. (101) reads

QðrÞ ¼ �
1ffiffiffiffiffiffi
Gd

p rd�2W 0

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aW2 � ac

p : (103)

Now we use the fact that Qðr ¼ aÞ ¼ q, and that the
continuity of the metric coefficients on the surface r ¼ a

implies in WðaÞ2 ¼ 1=UðaÞ2 ¼ 1� 2Gd

d�3
m

ad�3 þ Gd

ðd�3Þ2 �
q2

a2ðd�3Þ . With this, Eq. (103) yields

ac ¼ a

�
1�Gdm

2

q2

�
þ ða� 1Þ

�
m

q
� q

ðd� 3Þad�3

�
2
Gd;

(104)

which for d ¼ 4 coincides with Eq. (25) of [9] and holds
for all spherically symmetric charged pressure fluid distri-
bution whose boundary is the spherical surface of radius
r ¼ a. The proportionality between q and m is recovered
whenever a ¼ 1, and, moreover, if one imposes further that

c ¼ 1� b2 it gives
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
q ¼ bq ¼ �

ffiffiffiffiffiffi
Gd

p
m. From

Eq. (104) one sees there is also the possibility mad�3 ¼
q2=ðd� 3Þ, for a � 1, and still holding q / m, more pre-

cisely
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
q ¼ �

ffiffiffiffiffiffi
Gd

p
m. The extremal relation q ¼ffiffiffiffiffiffi

Gd

p
m holds when the relation among W2 and � is a

perfect square, for which the parameter cmust vanish, c ¼
0, besides a ¼ 1, implying also in b ¼ 1:

2. Relation between the mass and charge for a fluid
distribution with no symmetry a priori, linked to a
vacuum that asymptotes the Tangherlini solution

Let us assume that the charge fluid distribution is such
that the spacetime is asymptotically Tangherlini. This is the
case, e.g., of sources of finite extent with a boundary, or of
fluid distributions without a boundary in which the fluid
quantities vanish smoothly in the asymptotic region in a
sufficiently fast way. For these kinds of spacetimes, the
metric in the asymptotic region can be taken as the
Tangherlini metric (99), and the electric potential is given
by Eq. (100).
Assuming that in the asymptotic region the relation

between the gravitational potential W and the electric
potential � is of Weyl-Guilfoyle type (cf. Eq. (75)),W2 ¼
�að��

ffiffiffiffiffiffi
Gd

p
�þ �bÞ2 þ �c, where a bar here means we are

working in the asymptotic region, we find the conditions

�a ¼ 1; �að��
ffiffiffiffiffiffi
Gd

p
�0 þ �bÞq ¼ �

ffiffiffiffiffiffi
Gd

p
m;

�að��
ffiffiffiffiffiffi
Gd

p
�0 þ �bÞ2 þ �c ¼ 1

�a

Gdm
2

q2
þ �c ¼ 1:

(105)

From these results an interesting conclusion can be drawn:
If it is assumed that a Weyl-Guilfoyle relation between
potentials holds throughout an asymptotically Tangherlini
spacetime then the resulting relation is in fact a Weyl
relation, W2 ¼ ð��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c. A further simplifi-

cation can be done considering that the arbitrary constant
�0 in the electric potential can be put to zero without loss
of generality. With �0 ¼ 0 we find �b2 þ �c ¼ 1, and there-
fore

�bq ¼ �
ffiffiffiffiffiffi
Gd

p
m: (106)

That the charge to mass relation is given by Eq. (106) in
a four-dimensional asymptotically Reissner-Nordström
spacetime of Weyl type was first found by Gautreau and
Hoffman [8], using a formal method. Inspired in this work
[8], let us see how it can be generalized to d-dimensional
asymptotically Tangherlini spacetimes of Weyl-Guilfoyle
type. Following closely Gautreau and Hoffman [8] we
assume there is a fluid distribution of finite extent, not
necessarily spherically symmetric, linked to a vacuum
that faraway asymptotes to the Tangherlini solution, and
moreover, the parameters a, b, and c defining the Weyl-
Guilfoyle relation inside the fluid are the same as the
parameters of the vacuum region �a, �b, and �c, i.e., a ¼ �a,
b ¼ �b, and c ¼ �c. Since in the vacuum region �a ¼ 1, one
also has a ¼ 1. Take now the quantity rið 1WriW2Þ �
arið 1Wri�2Þwith a ¼ 1 (see Eqs. (70) and (71)), integrate

it over a volume V , and use the Gauss theorem to findZ
V

�
ri

�
1

W
riW2

�
�ri

�
1

W
ri�2

��
dV

¼
Z
S

�
1

W
ri½W2 �Gd�

2�
�
nidS; (107)
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where, as before, dV is the invariant volume element of
the (d� 1)-dimensional spatial section (t ¼ constant) of
the spacetime, S is the boundary of V , and ni is the unit
vector orthogonal to the hypersurface S pointing outwards.
Now we take S at infinity and denote S ¼ S1, so that V
stands for the whole space volume V1, and it results that
the surface integration on the right-hand side of Eq. (107)
is done at spatial infinity. Since the spacetime is asymptoti-
cally flat, the metric on S1 can be taken as the Tangherlini
metric (99), with the electric potential given by Eq. (100).
Under these conditions the right-hand side of Eq. (107)
gives 2Sd�2Gdm, i.e.,

Z
V1

�
ri

�
1

W
riW2

�
�ri

�
1

W
ri�2

��
dV

¼
Z
S1

�
1

W
ri½W2 �Gd�

2�
�
nidS ¼ 2Gdm: (108)

Now the field equations (70) and (71) are used to write the
first integral on the left-hand side of Eq. (108) in terms of
the fluid quantities and of the electromagnetic energy
density �em. In the case where the fluid distribution has
no boundary the analysis is straightforwardly performed

and it results in
R
V1½rið 1WriW2Þ � rið 1Wri�2Þ�dV ¼

2Sd�2Gd

R
V1ð�m þ d�1

d�3pþ �
W �eÞWdV . On the other

hand, if the source is of finite extent with a boundary, the
spacetime has two distinct regions: The interior region,
bounded by the surface Sb and whose volumewe denote by
V b; and the exterior region, whose volume we denote by

�V , so that we obtain
R
V1½rið 1WriW2Þ �

rið 1Wri�2Þ�dV ¼ 2Sd�2Gd

R
V b

ð�m þ d�1
d�3pþ

�
W �eÞWdV . Hence, using this result and Eq. (108) we

finally obtain

m ¼
Z
V

��
�m þ d� 1

d� 3
p

�
W þ��e

�
dV ; (109)

where V stands for the whole volume of the fluid distri-
bution. The parameter m is the total gravitational mass of
the spacetime.

We now turn attention to the charge definition, for which
one can always make use of the Maxwell equations. Hence,
integrating Eq. (69) over the volume of the source and
using the Gauss theorem it is found

Z
S

1

W
ri�nidS ¼ �Sd�2

Z
VS

�edV ; (110)

where S is the hypersurface bounding the volume VS .
Again the left-hand side integration can be done over an
infinitely large spherical surface, with the metric on S
being the Tangherlini metric (99), and with the electric
potential being given by Eq. (100). Then, the left-hand side
of Eq. (110) gives �Sd�2q. We may then identify the
quantity on the right-hand side of Eq. (110) to the total
charge of the source q,

q ¼
Z
VS

�edV ¼
Z
V1

�edV : (111)

Finally, the constraint (73) implies that the total charge of a
spacetime containing a charged pressure fluid distribution
of finite size satisfying the conditions of theorem III.5 is
proportional to the Arnowitt-Deser-Misner (ADM) mass of
the spacetime. This can be shown as follows: Integrating
Eq. (73) over the whole volume of the source, V b, and
using Eqs. (109) and (111), we find

bq ¼ �
ffiffiffiffiffiffi
Gd

p
m; (112)

which is the same as Eq. (106), since we are assuming b ¼
�b. This result shows that for a compact fluid distribution
with no symmetry a priori, in which the spacetime tends
asymptotically to the Tangherlini solution, with the poten-
tialsW and� being related byW2 ¼ að��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ

c, and with the mass density �m, the pressure p, the charge
density �e being related by b�e ¼ �

ffiffiffiffiffiffi
Gd

p ½ð�m þ
d�3
d�1pÞW þ��e�, the total mass and the total electric

charge of the spacetime are proportional to each other
with the proportionality constant being exactly b. For a
fluid mass distribution with spherical symmetry, the rela-
tion (106) can be derived directly from Eq. (104). Indeed,
under the Gautreau-Hoffman assumptions, one has b ¼ �b,
and thus �b2q2 ¼ Gdm

2, so that one finds immediately from
Eq. (104) that a ¼ 1 and b2 þ c ¼ 1 is a solution. So the
Gautreau-Hoffman mass relation is, in the spherically
symmetric case, a particular instance of the Guilfoyle
relation.
We can also show that the integral given by Eq. (109) is

the total gravitational energy, i.e., the total mass, of a
source and is equal to the Tolman mass [12]. Using the
Tolman formula we find

M ¼
Z
V1

�
�m þ d� 1

d� 3
pþ �em

�
WdV ; (113)

where we assumed that the charged fluid distribution is of
finite extent. Using Eqs. (109) and (113) we get

M�m ¼
Z
V b

ðW�em ���eÞdV þ
Z
�V

W�emdV ;

(114)

where �V stands for the volume outside the matter distri-
bution. We can get rid of the term containing the product
��e ontheright-handsideof Eq.(112).Multiplying Eq.(69)

by �, using the identity �rið 1Wri�Þ ¼ rið�Wri�Þ �
ðri�Þ2=W, integrating over a space volumeVS , and using

the Gauss theorem, it is obtained that
R
Sð�Wri�ÞnidS �R

VS

1
W ðri�Þ2dV ¼ �Sd�2

R
VS

��edV . Then, using

Eq. (67) to bring in the electromagnetic energy density,
ðri�Þ2=W ¼ Sd�2W�em, it is finally found that

Sd�2

R
V b

ð��e �W�emÞdV ¼ �R
Sb
ð�Wri�ÞnidS where

Sb is the boundary surface of the fluid distribution.
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Substituting this result into Eq. (114), it gives

M�m ¼ 1

Sd�2

Z
Sb

�
�

W
ri�

�
nidS þ

Z
�V

�emWdV ;

(115)

where Sb is the surface which bounds the source. It seems
that the mass m is in general different from the Tolman
mass M. However, as verified above, for d-dimensional
spherically symmetric systems of Weyl-Guilfoyle type it
results in m ¼ M. In fact, one can show that under certain
conditions the two integral terms on the right-hand side of
Eq. (115) cancel each other out. We use the vacuum field
equations and the Gauss theorem to transform the volume
integration over �V into a surface integration, viz.,

Sd�2

R
�V �emWdV ¼R

S�
ð�Wri�Þ �nidS, where S� is the

(closed) surface boundary to the volume�V and �ni stands
for the unit vector orthogonal to S� pointing outwards.
Note that the boundary S� is composed of two closed
surfaces. The external boundary S1 and inner boundary,
which coincides with the boundary of the source, Sb. The
unit vector �ni on Sb pointing outwards with respect to �V
is parallel to ni but points inwards with respect to V b,
namely, �ni¼�ni where ni is the same as in Eq. (115).

Therefore, we have the identity
R
S�
ð�Wri�Þ �nidS¼

�R
Sb
ð�Wri�ÞnidSþR

S1ð�Wri�Þ �nidS. Since the source

is of finite extent the spacetime is asymptotically
Tangherlini, cf. Eqs (99) and (100), the integral over S1
vanishes and, after substituting the result into Eq. (115), we
find

M ¼ m; (116)

i.e., the total mass is the Tolman mass [12] (for the Tolman
mass and mass in charged matter see [13–15], and also
[16]).

IV. FURTHER COMMENTS AND CONCLUSIONS

We have studied the structure of the sources that produce
Weyl type systems, including systems obeying a Weyl-
Guilfoyle relation, both in the Newton-Coulomb theory
with matter in d� 1 space dimensions and in the
Einstein-Maxwell theory with matter in d spacetime
dimensions.

In the Newton-Coulomb case, we have rendered theo-
rems by Bonnor for charged dust fluids into higher dimen-
sions and obtained new results for charged pressure fluids.
For zero pressure fluids, it follows that the gravitational
potential V is a function of the electric potential � alone,
V ¼ Vð�Þ. In the case of a nonzero pressure fluid, the
equations of fluid dynamics in Eulerian description to-
gether with the Poisson equations for the potentials with

the assumption of a Weyl type ansatz for the potentials,
V ¼ Vð�Þ, implies that the pressure is also a function of�
alone, and then all fluid quantities are given in terms of the
gravitational potential. If one assumes further that the
relation between the pressure gradient dp=d� is propor-
tional to the charge density, then the gravitational potential
is given by Vð�Þ ¼ ���

ffiffiffiffiffiffi
Gd

p
�þ �, with � and � being

arbitrary constants and � ¼ �1, with the matter and charge
densities being proportional to each other too.
In the case of the relativistic theory things are more

intricate and more interesting. First, with the Weyl ansatz
W ¼ Wð�Þ, the d-dimensional Einstein-Maxwell theory in
vacuum yields the Weyl quadratic relation between the
metric potential W2 and the electric gauge potential �.
Then, a series of results for the Einstein-Maxwell with
matter theory for fields of Weyl type in four spacetime
dimensions can be rendered into higher dimensional space-
times. The most important new result of our analysis is the
generalization of the Gautreau-Hoffman relation among
the fluid quantities when the potentials are related through
the Weyl-Guilfoyle relation (75). This analysis, done in
Sec. III C 4, shows that the most general charged pressure
fluid in which the metric gravitational potential W satisfy-
ing the Weyl-Guilfoyle quadratic relation W2 ¼
að��

ffiffiffiffiffiffi
Gd

p
�þ bÞ2 þ c, with constants a, b, and c, corre-

sponds to different systems when compared to the original
Weyl quadratic relation as Eq. (4), in which a ¼ 1. To see
that, consider the following reparametrization of the fields
W ! 0W, � ! 1�, with constant 0 and 1. Taking
these transformations into the system of equations given by
Eqs. (51)–(53), we can conclude that the Einstein-Maxwell
system of equations is invariant only if 0 ¼ 1, as ex-
pected (this corresponds to a rescaling of the time coor-
dinate, t ! t=0). Therefore, any rescaling of the
potentialsW and � for which 0 � 1 leads to a different
system. Hence, a new relation among fluid quantities and
the electromagnetic energy density is found in four and
higher dimensions, cf. Eq. (73). Upon connection of an
interior charged solution to an exterior Tangherlini solu-
tion, we found a relation between the mass, the charge, and
the several quantities of the interior solution. It was also
shown that for sources of finite extent the mass is identical
to the Tolman mass.
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