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We find topological (charged) black holes whose horizon has an arbitrary constant scalar curvature 2k

in Hořava-Lifshitz theory. Without loss of generality, one may take k ¼ 1, 0, and �1. The black hole

solution is asymptotically anti–de Sitter with a nonstandard asymptotic behavior. Using the Hamiltonian

approach, we define a finite mass associated with the solution. We discuss the thermodynamics of the

topological black holes and find that the black hole entropy has a logarithmic term in addition to an area

term. We find a duality in Hawking temperature between topological black holes in Hořava-Lifshitz

theory and Einstein’s general relativity: the temperature behaviors of black holes with k ¼ 1, 0, and�1 in

Hořava-Lifshitz theory are, respectively, dual to those of topological black holes with k ¼ �1, 0, and 1 in

Einstein’s general relativity. The topological black holes in Hořava-Lifshitz theory are thermodynamically

stable.
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I. INTRODUCTION

Recently a field theory model for a UV complete theory
of gravity was proposed by Hořava [1], which is a non-
relativistic renormalizable theory of gravity and reduces to
Einstein’s general relativity at large scales. This theory is
named Hořava-Lifshitz theory in the literature since at the
UV fixed point of the theory space and time have different
scalings. Since then much attention has been attracted to
this gravity theory [2–9], including its implications in
cosmology [3–5,7–9]. In [7] the authors find some static
spherically symmetric black hole solutions in Hořava-
Lifshitz theory.

In the (3þ 1)-dimensional Arnowitt-Deser-Misner for-
malism, where the metric can be written as

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (1.1)

and for a spacelike hypersurface with a fixed time, its
extrinsic curvature Kij is

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (1.2)

where a dot denotes a derivative with respect to t and
covariant derivatives defined with respect to the spatial
metric gij. The action of Hořava-Lifshitz theory is [1]

I ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ

þ �2�2ð�R� 3�2Þ
8ð1� 3�Þ þ �2�2ð1� 4�Þ

32ð1� 3�Þ R2

� �2�2

8
RijR

ij þ �2�

2!2
�ijkRilrjR

l
k �

�2

2!4
CijC

ij

�
;

(1.3)

where �2, �, �, !, and � are constant parameters and the
Cotten tensor, Cij, is defined by

Cij ¼ �iklrkðRj
l � 1

4R�
j
l Þ ¼ �iklrkR

j
l � 1

4�
ikj@kR: (1.4)

In (1.3), the first two terms are the kinetic terms, while the
others give the potential of the theory in the so-called
‘‘detailed-balance’’ form.
Comparing the action to that of general relativity, one

can see that the speed of light, Newton’s constant, and the
cosmological constant are

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1� 3�

s
; G ¼ �2c

32�
; ~� ¼ 3

2
�; (1.5)

respectively. Let us notice that when � ¼ 1, the first three
terms in (1.3) could be reduced to the usual ones of
Einstein’s general relativity. However, in Hořava-Lifshitz
theory, � is a dynamical coupling constant, susceptible to
quantum correction [1]. In addition, we see from (1.5) that
when � > 1=3, the cosmological constant�must be nega-
tive. However, the cosmological constant can be positive if
we make an analytic continuation � ! i�, w2 ! �iw2

[7]. In this paper, we consider the former case with nega-
tive cosmological constant.
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For later convenience, we rewrite the action (1.3) as
follows [7]:

I ¼
Z

dtd3xðL0 þL1Þ;

L0 ¼ ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ þ �2�2ð�R� 3�2Þ
8ð1� 3�Þ

�
;

L1 ¼ ffiffiffi
g

p
N

�
�2�2ð1� 4�Þ
32ð1� 3�Þ R2 � �2

2!4

�
Cij ��!2

2
Rij

�

�
�
Cij ��!2

2
Rij

��
: (1.6)

The equations of motion for the action are given in [5,7],
but they are very lengthy and we will not reproduce them
here.

In this note we are interested in black hole solutions in
the action (1.6). Considering the static, spherically sym-
metric solutions with the metric ansatz

ds2 ¼ �N2ðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d�2Þ: (1.7)

Without the term L1, the solution is the just the
(anti–)de Sitter Schwarzschild black hole solution with
metric functions [7]

N2ðrÞ ¼ fðrÞ ¼ 1� �
2r

2 � m
r : (1.8)

With the term L1, a general static, spherically symmetric
black hole solution with an arbitrary � is also found in [7],
but the solution is elusive. We discuss the general solution
in the appendix. Of particular interest is the case with � ¼
1, on which we focus in the following. The solution is then
given by

N2 ¼ f ¼ 1þ x2 � 	
ffiffiffi
x

p
; (1.9)

where x ¼ ffiffiffiffiffiffiffiffiffi��
p

r and 	 is an integration constant. This
solution is asymptotically AdS4 and has a singularity at
x ¼ 0 if 	 � 0. The singularity could be covered by black
hole horizon at xþ; the largest root of the equation f ¼ 0 if
	> 0. The Hawking temperature of the black hole horizon
is easily given by [7]

T ¼ 3x2þ � 1

8�xþ

ffiffiffiffiffiffiffiffiffi
��

p
: (1.10)

Note that here we have corrected a typo in [7]. One can see

from (1.10) that there exists an extremal limit, xþ ¼ 1=
ffiffiffi
3

p
,

where the temperature vanishes. Another remarkable point
one can see by comparing the solution (1.8) and (1.9) is
that general relativity is not always recovered at large
distance [7]. In addition, one may naively expect that the
mass of the black hole solution (1.9) is divergent due to the
square root term.

The black hole solution (1.9) is obtained from the action
(1.6) in the detailed balance [1]. The authors in [7] also
considered black hole solution in Hořava-Lifshitz theory

without the condition of the detailed balance, namely, in
the theory given by

L ¼ L0 þ ð1� �2ÞL1; (1.11)

where � is a constant. In this theory, the black hole solution
they found turns to be

N2 ¼ f ¼ 1þ x2

1� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2ð1� �2Þxþ �2x4

p
1� �2

: (1.12)

In the large distance limit, the solution reduces to

f ¼ 1þ x2

1þ �
� 	2

2�x
þOðx�4Þ: (1.13)

The authors in [7] suggest that the solution has a finite mass
for nonvanishing �, while it becomes divergent as � ¼ 0. In
the latter case, the solution goes back to the one (1.9).
Furthermore, when � ¼ 1, the solution becomes the
(anti–)de Sitter Schwarzschild black hole solution (1.8).
In this note we are going to discuss thermodynamics of

the black hole solutions (1.9) and (1.12), which have not
been studied in [7]. Since the solutions (1.9) and (1.12) are
asymptotically AdS, we will generalize those solutions to
the case of topological black holes with any constant scalar
curvature horizon [10–13]. We will also discuss the topo-
logical charged black holes in Hořava-Lifshitz theory by
including Maxwell field.

II. TOPOLOGICAL BLACK HOLES AND
THERMODYNAMICS

In this section we first generalize the spherically sym-
metric black hole solution (1.9) to the topological black
hole case with arbitrary constant scalar curvature horizon.
The black hole solution is of the metric ansatz

ds2 ¼ � ~N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2d�2
k; (2.1)

where d�2
k denotes the line element for a two-dimensional

Einstein space with constant scalar curvature 2k. Without
loss of generality, one may take k ¼ 0, �1, respectively.
Following [7], substituting the metric (2.1) into (1.6), we
find

I ¼ �2�2��k

8ð1� 3�Þ
Z

dtdr ~N

�
�3�r2 � 2ðf� kÞ

� 2rðf� kÞ0 þ ð�� 1Þf02
2�

þ ð2�� 1Þðf� kÞ2
�r2

� 2�ðf� kÞ
�r

f0
�
; (2.2)

where a prime denotes the derivative with respect to r and
�k is the volume of the two-dimensional Einstein space.
Again, we consider the solution in the case of � ¼ 1. In
that case, we have
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I¼ �2�2
ffiffiffiffiffiffiffiffiffi��

p
�k

16

Z
dtdx ~N

�
x3 � 2xðf� kÞþ ðf� kÞ2

x

�0
:

(2.3)

Note that here x ¼ ffiffiffiffiffiffiffiffiffi��
p

r and a prime becomes the de-
rivative with respect to x. From the action, we obtain the
equations of motion

0 ¼ ~N0; 0 ¼
�
x3 � 2xðf� kÞ þ ðf� kÞ2

x

�0
: (2.4)

From the first equation, we have ~N ¼ N0, a constant. One
can setN0 ¼ 1 by rescaling the time coordinate t. From the

second one, one can obtain x3 � 2xðf� kÞ þ ðf�kÞ2
x ¼ c0;

here c0 is an integration constant. Solving this yields

fðrÞ ¼ kþ x2 � ffiffiffiffiffiffiffi
c0x

p
: (2.5)

Note that c0 should be positive here. When k ¼ 1, the
solution reduces to the one given by [7]. Thus we general-
ize the solution in [7] to the case of topological black holes
with arbitrary k. In addition, let us stress here that although
we have obtained the black hole solution through the
minisuperspace approach, it has been checked that the
solution (2.5) with N0 ¼ 1 indeed satisfies the equations
of motion given in [7].

A remarkable property of black holes is that they are
associated with thermodynamics. Now we are going to
discuss thermodynamics of the black hole solution (2.5),
which has not yet been discussed. Comparing to the AdS
Schwarzschild black hole solution, one may naively expect
that the mass of the solution (2.5) is divergent and one
could not define a finite mass for this solution. However,
this conclusion is not true. In fact, such nonstandard
asymptotic behavior also appears for the black hole solu-
tions in the so-called dimensionally continued gravity
[13,14]. For the dimensionally continued black hole solu-
tions, a finite mass can be obtained by using the
Hamiltonian approach. We find that this approach also
works for the Hořava-Lifshitz theory. Note that the action
(2.3) can be written as

I ¼ �2�2
ffiffiffiffiffiffiffiffiffi��

p
�k

16
ðt2 � t1Þ

Z
dx ~N

�
x3 � 2xðf� kÞ

þ ðf� kÞ2
x

�0 þ B; (2.6)

where B is a surface term, which must be chosen so that the
action has an extremum under variations of the fields with
appropriate boundary conditions. One demands that the
fields approach the classical solutions at infinity. Varying
the action (2.6), one finds the boundary term

�B ¼ �ðt2 � t1ÞN0�M: (2.7)

The boundary term B is the conserved charge associated to
the ‘‘improper gauge transformations’’ produced by time
evolution [15]. Here M and N0 are a conjugate pair.

Therefore when one varies M, N0 must be fixed. Thus the
boundary term should be in the form

B ¼ �ðt2 � t1ÞN0Mþ B0; (2.8)

where B0 is an arbitrary constant, which should be fixed by
some physical consideration; for example, mass vanishes
when black hole horizon goes to zero. For details, see [14].
According to this Hamiltonian approach, we get the mass
of the solution (2.5) as

M ¼ �2�2
ffiffiffiffiffiffiffiffiffi��

p
�k

16
c0: (2.9)

Note that here � is negative, therefore the black hole mass
is always positive because we have already set c0 > 0. One
can easily obtain the Hawking temperature of the black
hole, either by directly calculating the surface gravity at the
horizon, or by requiring the absence of the conical singu-
larity at the horizon of the Euclidean black hole. Both
methods give the same result:

T ¼ 3x2þ � k

8�xþ

ffiffiffiffiffiffiffiffiffi
��

p
: (2.10)

The next step is to get the entropy associated with the
topological black hole. In Einstein’s general relativity,
entropy of black hole is always given by one quarter of
black hole horizon area. But in higher derivative gravities,
in general, the area formula breaks down. Here we will
obtain the black hole entropy by using the first law of black
hole thermodynamics with assumption that as a thermody-
namical system [11–14], the first law always keeps valid:
dM ¼ TdS. Integrating this relation yields

S �
Z

T�1dMþ S0 ¼
Z

T�1 dM

dxþ
dxþ þ S0; (2.11)

where S0 is an integration constant, which should be fixed
by physical consideration. Through (2.11), we obtain

S ¼ ��2�2�k

4
ðx2þ þ 2k lnxþÞ þ S0

¼ c3

4G

�
A� k�k

�
ln
A

A0

�
; (2.12)

where the Newton’s constant and speed of light are given in
(1.5), A ¼ �kr

2þ is the black hole horizon area, and A0 is a
constant of dimension of length squared. The leading term
is just one quarter of horizon area in units of c ¼ G ¼ 1,
which should be the contribution from the L0 term. The
second term is a logarithmic function, therefore we cannot
fix the integration constant S0 or A0, unfortunately, by
some physical consideration, for example, black hole en-
tropy should vanish when black hole horizon goes to zero.
The integration constant S0 could be fixed by counting
micro degrees of freedom in some quantum theory of
gravity like string theory. An interesting fact is that such
a term often appears in the quantum correction of black
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hole entropy. In addition, when k ¼ 0, namely, for black
hole with Ricci flat horizon, the logarithmic term disap-
pears. Thus, the area formula of black hole entropy is
recovered in this case. It might be a universal result that
the area formula still holds for Ricci flat black holes in
higher derivative gravity theories [11–13].

Two additional points are worth stressing here. One is on
the temperature (2.10). For k ¼ 1, as pointed out in [7],

there is an extremum at xþ ¼ 1=
ffiffiffi
3

p
, where the temperature

vanishes, and it corresponds to an extremal black hole. For

k ¼ 0, the temperature T ¼ 3xþ
ffiffiffiffiffiffiffiffiffi��

p
=8�. In these two

cases, the temperature always monotonically increases as
the horizon xþ grows. For k ¼ �1, the inverse temperature
starts from zero at xþ ¼ 0, monotonically increases and

reaches a maximal value, 
 ¼ 1=T ¼ 4�=
ffiffiffiffiffiffiffiffiffiffiffi�3�

p
at xþ ¼

1=
ffiffiffi
3

p
, then monotonically decreases as xþ grows. It is

interesting to compare these temperature behaviors of the
topological black holes in Hořava-Lifshitz theory with
those for topological black holes in Einstein’s general
relativity [the latter could be obtained by replacing 1 by
k in (1.8))]. The temperature for the topological black holes
in Einstein’s general relativity is

TTSch ¼
ffiffiffiffiffiffiffiffiffi��

p
8�xþ

ð3x2þ þ 2kÞ: (2.13)

We see that except for the coefficient difference in front of
the horizon curvature constant k, there is a duality relation
in these two temperatures: the temperature behaviors of
black holes in Hořova-Lifshitz theory in the cases of k ¼ 1,
0, and �1, are dual to the cases of k ¼ �1, 0, and 1 in
Einstein’s general relativity, respectively. Note that for
topological black holes in Einstein’s general relativity
[10], in the cases of k ¼ 0 and k ¼ �1, the black holes
are always thermodynamically stable, while in the case of

k ¼ 1, the small black hole with xþ <
ffiffiffiffiffiffiffiffi
2=3

p
is thermody-

namically unstable and it becomes thermodynamically

stable for large horizon radius xþ >
ffiffiffiffiffiffiffiffi
2=3

p
.

However, a close check tells us that in the case of k ¼
�1, there exists a minimal horizon at xþ ¼ 1 for the
topological black hole in Hořava-Lifshitz theory, which
can be seen from the metric function fðrÞ in (2.5), namely,
for the case of c0 ¼ 0. This is just the massless black hole
in AdS space. Thus in the range xþ 2 ½1;1Þ, the tempera-
ture of the topological black hole is also a monotonically
increasing function of xþ. Thus the unstable phase for the
topological black hole with k ¼ �1 in Hořava-Lifshitz
theory does not appear, and the black hole is always
thermodynamically stable.

To see this more clearly, let us calculate heat capacity of
black hole, defined as C ¼ dM=dT. The heat capacity of
the black hole in Hořava-Lifshitz gravity is

C ¼ ��2�2�k

2

ð3x2þ � kÞðx2þ þ kÞ
3x2þ þ k

: (2.14)

We see that for the cases k ¼ 1 and k ¼ 0, the heat
capacity is always positive, which implies that the black
hole is locally thermodynamically stable, while in the case
of k ¼ �1, if xþ > 1, it is also positive. For comparison,
we give the heat capacity for the topological AdS black
hole in Einstein’s general relativity

CTSch ¼ ��2�2�k

2

3x2þ þ 2k

3x2þ � 2k
x2þ: (2.15)

When k ¼ 0 and �1, it is always positive while when k ¼
1, it is negative for x2þ < 2=3, positive for x2þ > 2=3, and
diverges at x2þ ¼ 2=3.
Another interesting question is whether there exists the

Hawking-Page phase transition associated with the black
holes in Hořava-Lifshitz gravity. It is well known that there
is a Hawking-Page transition for static, spherically sym-
metric AdS-Schwarzschild black hole (the case of k ¼ 1)
between a large AdS black hole and thermal gas in AdS
space [16]. On the other hand, for the cases of k ¼ 0 and
k ¼ �1 topological black hole in Einstein’s general rela-
tivity, the Hawking-Page phase transition does not exist. To
discuss the Hawking-Page transition, one has to calculate
the Euclidean action or free energy of the black hole. The
Euclidean action has a relation to the free energy by I ¼

F, here 
 is the inverse temperature of the black hole. By
definition, the free energy F is given by F ¼ M� TS. By
using (2.9), (2.10), and (2.12), we find

F ¼ �2�2�k

ffiffiffiffiffiffiffiffiffi��
p

32xþ
ð�x4þ þ 5kx2þ þ 2k2

� 6kx2þ lnxþ þ 2k2 lnxþÞ � TS0: (2.16)

Because of the uncertainty of S0, we cannot determine the
signature of the free energy. However, if one can neglect
the term S0, we see the free energy is negative for large
enough horizon radius, which means that large black holes
in Hořava-Lifshitz gravity is thermodynamically stable
globally.
Now we turn to the case without the detailed balance

condition, namely, �2 � 0. Replacing (2.3) we have

I ¼ �2�2
ffiffiffiffiffiffiffiffiffi��

p
�k

16

Z
dtdx ~N

�
x3 � 2xðf� kÞ

þ ð1� �2Þ ðf� kÞ2
x

�0
: (2.17)

In this case, one has the solution

~N ¼ N0;

fðrÞ ¼ kþ x2

1� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x4 þ ð1� �2Þc0x

p
1� �2

:

(2.18)

Again, c0 is an integration constant and N0 could be set to
one. Similar to the case of �2 ¼ 0, we find the mass of the
solution is
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M ¼ �2�2�k

ffiffiffiffiffiffiffiffiffi��
p

16
c0; (2.19)

and c0 can be expressed in terms of black hole horizon
radius xþ,

c0 ¼ x4þ þ 2kxþ þ ð1� �2Þk2
xþ

: (2.20)

The Hawking temperature of the black hole is found to be

T ¼
ffiffiffiffiffiffiffiffiffi��

p
8�

3x4þ þ 2kx2þ � ð1� �2Þk2
xþðx2þ þ ð1� �2ÞkÞ : (2.21)

With the mass and temperature, we obtain the entropy of
the black hole

S ¼ ��2�2�k

4
ðx2þ þ 2kð1� �2Þ lnxþÞ þ S0

¼ c3

4G

�
A� ð1� �2Þ k�k

�
ln
A

A0

�
: (2.22)

When �2 ¼ 0, it goes back to (2.12), while it reduces to the
well-known area formula for �2 ¼ 1, as expected, since in
that case, the effect of higher derivative terms disappears.

Now let us discuss the behavior of the temperature
(2.21).

(i) When k ¼ 0, the temperature is independent of �2,
given by

T ¼ 3
ffiffiffiffiffiffiffiffiffi��

p
8�

xþ: (2.23)

Clearly it is a monotonically increasing function of
xþ

(ii) When k ¼ �1 and �2 < 1, an extremal black hole

with T ¼ 0 is obtained at x2þ ¼ ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ð1� �2Þp Þ=3. While to keep the denominator

in (2.21) positive, one has to have x2þ > ð1� �2Þ,
which is always smaller than ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ð1� �2Þp Þ=3. This indicates that there does

exist an extremal black hole in this case with

the minimal horizon radius x2þmin ¼ ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ð1� �2Þp Þ=3. When �2 > 1, according to

(2.18), the minimal horizon radius is x2þ ¼ 1þ �.
In both cases of �2 > 1 and <1, the temperature of
the black hole is a monotonically increasing func-
tion of xþ in the physical regime.

(iii) When k ¼ 1, let us first consider the case of �2 < 1.

A vanishing temperature happens at x2þmin ¼
ð�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3ð1� �2Þp Þ=3. When �2 > 1, there
does not exist an extremal black hole, but to keep
the temperature positive, a physical horizon radius
must obey x2þ > �2 � 1. As the case of k ¼ �1
with any �2, the temperature of the black hole is a

monotonically increasing function of xþ in the
physical regime, again.

In summary, the case with �2 � 0 is similar to the case
with �2 ¼ 0; the Hawking temperature of the black holes
with any k is always a monotonically increasing function
of horizon radius xþ in the physical regime. This implies
that the topological black holes in Hořava-Lifshitz theory
are thermodynamically stable. Note that when �2 ¼ 1, the
situation is reduced to the case of the well-known topo-
logical AdS Schwarzschild black holes [10].

III. TOPOLOGICAL CHARGED BLACK HOLES

In this section we consider the charged generalization of
the topological black hole found in Sec. II. To give a
universal result, we assume �2 � 0. Following [13,14],
the Hamiltonian action for the Maxwell field can be written
as

Iem ¼
Z

dtd3x

�
pi _Ai � 1

2
N

�
	g�1=2pipi þ g1=2

2	
FijF

ij

�

þ ’pi
;i

�
þ Bem; (3.1)

where pi is the momentum conjugate of the spatial com-
ponents of the Maxwell field Ai, ’ ¼ A0, Bem is a bound-
ary term,N is the lapse function, and 	 is a parameter to be
fixed shortly. Considering the static topological black hole
solution with the metric ansatz (2.1), the action (3.1) is
reduced to

Iem ¼ �k

	

Z
dtdr

�
� 1

2
~Nr2p2 þ ’ðr2pÞ0

�
þ Bem; (3.2)

where p ¼ 	pr=r2�1=2 and � is the determinant of the
two-dimensional Einstein space d�2

k. Note that here the

solution without magnetic charge Fij ¼ 0 has been as-

sumed. To be consistent with (2.17), we set x ¼ ffiffiffiffiffiffiffiffiffi��
p

r.
The action (3.2) then becomes

Iem ¼ �k

	
ffiffiffiffiffiffiffiffiffi��

p
Z

dtdx

�
� 1

2
~Nx2 ~p2 þ ’ðx2 ~pÞ0

�
þ Bem;

(3.3)

where a prime denotes derivative with respective to x and

~p ¼ p=
ffiffiffiffiffiffiffiffiffi��

p
. Now we set

	�1 ¼ ��2�2�

16
: (3.4)

Combining (2.17) and (3.4), we have

I ¼ �2�2
ffiffiffiffiffiffiffiffiffi��

p
�k

16

Z
dtdx

�
~N

�
U0 � 1

2
x2 ~p2

�
þ ’ðx2 ~pÞ0

�

þ B; (3.5)

where
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U ¼ x3 � 2xðf� kÞ þ ð1� �2Þ ðf� kÞ2
x

:

From the action (3.5) we obtain the equations of motion

U0 ¼ 1
2x

2 ~p2; ðx2 ~pÞ0 ¼ 0;

’0 ¼ � ~N ~p; ~N0 ¼ 0;
(3.6)

which have the solution

~N ¼ N0; ’ ¼ N0q

x
þ ’0;

~p ¼ q

x2
; U ¼ � q2

2x
þ c0:

(3.7)

Here N0, ’0, c0, and q are integration constants, their
physical meanings are clear. Physical electric charge and
mass of the solution are

Q ¼ �2�2�k

ffiffiffiffiffiffiffiffiffi��
p

16
q; M ¼ �2�2�k

ffiffiffiffiffiffiffiffiffi��
p

16
c0; (3.8)

respectively, and the metric function f is given by

fðrÞ ¼ kþ x2

1� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x4 þ ð1� �2Þðc0x� q2=2Þp

1� �2
;

(3.9)

while ~N ¼ N0 could be set to one. Taking the limit � ! 1,
the solution is reduced to

fðrÞ ¼ kþ x2

2
� c0

2x
þ q2

4x2
; (3.10)

as expected, it is just the AdS Reissner-Nordström black
hole solution. The Hawking temperature of the black hole
is

T ¼
ffiffiffiffiffiffiffiffiffi��

p ð3x4þ þ 2kx2þ � ð1� �2Þk2 � q2=2Þ
8�xþðx2þ þ ð1� �2ÞkÞ : (3.11)

Putting the temperature (3.11) and mass (3.8) into the first
law of black hole thermodynamics, it is easy to check that
one reproduces the entropy (2.22), the charge q does not
appear explicitly in the expression of black hole entropy in
terms of horizon radius. This is consistent with the fact that
black hole entropy is a function of horizon geometry. The
behavior of the temperature can be analyzed as the case
without the electric charge, but we do not repeat here.
Instead we only point out that due to the appearance of
the electric charge, extremal black holes with vanishing
temperature always exist within reasonable parameter
regime.

IV. CONCLUSION

In this paper we found topological (charged) black hole
solutions with arbitrary constant scalar curvature horizon
in Hořava-Lifshitz theory, generalizing the static, spheri-
cally symmetric black hole solutions in [7]. Although there

is a square root term in the metric function fðrÞ, we can
define a finite mass associated with the black hole solution
by use of the Hamiltonian approach. We have calculated
the Hawking temperature of the black hole and the black
hole entropy by using the first law of black hole thermo-
dynamics, and found that, except for the well-known hori-
zon area term, the black hole entropy has a logarithmic
term. Such a logarithmic term often occurs on the occasion
of considering quantum corrections to black hole entropy.
In our entropy expression, there is an undetermined con-
stant S0. To fix the constant entropy S0, one has to invoke
quantum theory of gravity.
We find that the temperature behavior of the topological

black holes in Hořava-Lifshitz theory is very interesting.
Indeed there is a duality for temperature between topologi-
cal black holes in Hořava-Lifshitz theory and topological
black holes in Einstein’s general relativity. The tempera-
tures of topological black holes with k ¼ 1, 0, and �1 in
Hořava-Lifshitz theory are dual to those of black holes
with k ¼ �1, 0, and 1 in Einstein’s general relativity,
respectively.
In this paper we have only considered thermodynamics

of topological black holes in Hořava-Lifshitz theory with
� ¼ 1. It is of great interest to see whether one can find a
way to study thermodynamics for the general topological
black holes in the theory with � � 1.
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APPENDIX: TOPOLOGICAL BLACK HOLES FOR
GENERAL �

Here we briefly discuss topological black hole solution
with a general �. In terms of the new function F defined by

FðrÞ ¼ k��r2 � fðrÞ; (A1)

the action (2.2) takes the form

I ¼ �2�2�k

8ð1� 3�Þ
Z

dtdr ~N

�ð�� 1Þ
2

F02 � 2�

r
FF0

þ ð2�� 1Þ
r2

F2

�
: (A2)

The equations of motion are then

0 ¼
�
2�

r
F� ð�� 1ÞF0

�
~N0 þ ð�� 1Þ

�
2

r2
F� F00

�
~N;

(A3)

0 ¼ ð�� 1Þr2F02 � 4�rFF0 þ 2ð2�� 1ÞF2: (A4)
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The latter is easily solved to give [7]

FðrÞ ¼ 	rð2��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3��1Þ

p
Þ=ð��1Þ; (A5)

and then the first gives

~N ¼ 
r�ð1þ3��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3��1Þ

p
Þ=ð��1Þ; (A6)

where 	 and
 are both integration constants. When	 ¼ 0
or F ¼ 0, Eq. (A3) does not restrict ~N. Note that the
exponent of Eq. (A5) for the negative branch is always
less than 2 for positive �, and thus the r2 term in the metric

function (A1) dominates at large distances. The other
branch gives a power larger than 2. We are interested in
the solutions with asymptotic AdS behavior. In that case,
we should look at the negative branch with constant ~N. It
follows from Eq. (A3) that either � ¼ 1 or F00 ¼ 2

r2
F. The

latter leads to F� r2 or 1=r; the first one does not satisfy
(A4), and the second solution requires � ¼ 1=3, which
may be of some interest [1], but the action (1.3) appears
singular. So we discuss the � ¼ 1 case mainly in this paper.
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