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In considering the gravitational collapse of matter, it is an important problem to clarify what kind of

conditions leads to the formation of naked singularity. For this purpose, we apply the 1þ 3 orthonormal

frame formalism introduced by Uggla et al. to the spherically symmetric gravitational collapse of a perfect

fluid. This formalism allows us to construct an autonomous system of evolution and constraint equations

for scale-invariant dynamical variables normalized by the volume expansion rate of the timelike

orthonormal frame vector. We investigate the asymptotic evolution of such dynamical variables towards

the formation of a central singularity and present a conjecture that the steep spatial gradient for the

normalized density function is a characteristic of the naked singularity formation.
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I. INTRODUCTION

The investigation of the end states of gravitational col-
lapse of sufficiently massive stars is a long-standing prob-
lem to be pursued in general relativity. One of the
remarkable results is the naked singularity formation, and
this is one of the possible end states in spherically sym-
metric gravitational collapse starting from regular initial
data sets with nonzero measure. This was firstly shown by
the detailed analysis of the Lemaı̂tre-Toleman-Bondi
(LTB) solution describing the inhomogeneous dust gravi-
tational collapse and has been subsequently confirmed in
several other matter models including perfect fluid models
[1–6]. In relation to the cosmic censorship conjecture,
much attention therefore has been paid to the generality
and the physical reasonability of the initial data sets lead-
ing to the naked singularity formation in the various matter
models (see [7–11], for example).

Besides the initial data analysis, dynamical aspects of
spherically symmetric gravitational collapse at later stages
have been studied in terms of the shear function associated
with the velocity vectors of the collapsing matter near the
center [12–14], and it has been suggested that the shear can
contribute to the delay of the apparent horizon formation.
This role of the shear function may be important in con-
sidering the dynamical mechanism of the naked singularity
formation. In this paper, however, we would like to focus
on another dynamical approach to the end-state problem in
spherically symmetric gravitational collapse. Our main
concern is the relationship between asymptotic behavior
of dynamical variables towards the formation of a central
singularity and the causal structure of the arising
singularity.

As a useful method to analyze such dynamical proper-
ties, we adhere to the 1þ 3 orthonormal frame formalism

which was originally proposed by Elst and Uggla et al.
[15,16] to study the dynamical behavior of the gravita-
tional field variables such as the shear �ab and the expan-
sion � associated with the timelike orthonormal frame
vectors near the spatially inhomogeneous cosmological
initial singularity. This formalism is based on the coordi-
nate independent representation of Einstein’s field equa-
tions in the form of an autonomous system of the first order
evolution equations and constraints with the scale-invariant
dimensionless variables normalized by the Hubble scalar
H � �=3. By virtue of this Hubble normalization of dy-
namical variables, it is possible to remove the time-
dependent factors due to the volume contraction given by
the rate � measured in the local reference frame. As will
be shown in this paper, the Hubble normalized density
function � can approach zero or remain finite with the
lapse of time towards singularity formation in the spheri-
cally symmetric inhomogeneous perfect fluid collapse,
even though the central proper density becomes divergent
at this final stage.
Our main purpose in this paper is to discuss the relation

between the asymptotic behavior of � and the causal
structure of the singularity. For the LTB solution, using
the causal structure classified by the papers [1,2], we find
that the growth of the steep spatial gradient of the profile of
� near the center in the case � ! 0 is a characteristic
property leading to the naked singularity formation. If the
density function� remains finite at the final stage, the end-
state problem becomes more subtle. Nevertheless, we can
discuss the critical value of the density contrast which
gives a threshold of the transition from the black hole
formation to the naked singularity formation.
This paper is organized as follows: In Sec. II, we begin

with a brief review of the 1þ 3 orthonormal frame formal-
ism with the Hubble normalized variables and apply it to a
spherically symmetric perfect fluid system. In this formal-
ism, we adopt the separable volume gauge, which specifies
the lapse function to be equal to the inverse of the Hubble
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scalar H. In Sec. III, considering the inhomogeneous dust
gravitational collapse described by the marginally bound
LTB solution, we show that this gauge condition is useful
to examine the asymptotic behavior of the Hubble normal-
ized variables towards the central singularity formation.
Then, we relate the asymptotic behavior of the Hubble
normalized density function � to the arising causal struc-
ture of the end states of collapse. We propose a conjecture
that the larger spatial gradient of the asymptotic profile of
� is essential to the naked singularity formation. In
Sec. IV, to support this conjecture, the asymptotic analysis
is extended to gravitational collapse of perfect fluid with
pressure. Taking account of the causal structure of spheri-
cally symmetric self-similar spacetimes which has been
clarified by previous works [17–19], we numerically esti-
mate the critical value of the density contrast using the
asymptotic profile of � for the naked singularity forma-
tion. The results are summarized in Sec. V. Throughout this
paper, the units in which 8�G ¼ c ¼ 1 are used.

II. BASIC EQUATIONS FOR HUBBLE
NORMALIZED VARIABLES

In this section, following the 1þ 3 orthonormal frame
formalism developed in [15,16], we present an autonomous
system of evolution equations and the constrains for the
scale-invariant variables in a spherically symmetric system
with a perfect fluid source. We express an orthonormal
frame as fe0; e�g (where � ¼ 1, 2, 3) with the unit vectors
e0 and e� representing the timelike reference congruence
and the rest of 3-spaces, respectively. The frame metric is
given by ��� ¼ diag½�1; 1; 1; 1�. For simplicity, we spec-

ify the timelike frame vector e0 to be hypersurface orthogo-
nal, and the spacelike frame vectors e� to be nonrotating
Fermi-propagated along the integral curves of e0.

Defining the four-velocity u � e0 for the unit timelike
vector e0 tangent to the reference congruence, we can
introduce the basic geometrical quantities ( _u�, �, ���,
a�, n��) through the commutator relations as follows

½e0; e�� ¼ _u�e0 �
�
�

3
��

� þ ��
�

�
e�; (2.1)

½e�; e�� ¼ ð2a½����
	 þ 
���n

�	Þe	; (2.2)

where the square brackets denote the antisymmetric part of
a tensor, and 
��	 is the totally antisymmetric three-

dimensional permutation tensor. The scalar function � is
the volume expansion rate, the vector _u� and the tensor
��� (the trace-free symmetric tensor) are the acceleration
rate and the shear rate of the frame vector e0, respectively.
They are calculated from the equations

� ¼ r�u
�; (2.3)

_u � ¼ u�r�u�; (2.4)

��� ¼ rð�u�Þ ��

3
ð��� þ u�u�Þ þ _uð�u�Þ; (2.5)

where the round brackets denote the symmetric part of a
tensor. (See [15] for the definition of the covariant deriva-
tive in the orthonormal frame formalism.) In addition, the
quantities a� and n�� (the symmetric tensor) determine the
connection on the one-parameter family spacelike hyper-
surfaces which can be defined by the assumption of the
hypersurface-orthogonality of the timelike frame vector e0.
Now let us turn our attention to the introduction of the

basic variables characterizing the matter field. We consider
a perfect fluid as the collapsing matter in this paper. We
assume the equation of state to be

~p ¼ ð	� 1Þ ~� (2.6)

with the constant 	 lying in the range 1 � 	 � 2. The
pressure ~p and the energy density ~� are measured by a
comoving observer who has the same velocity as the fluid
four-velocity ~u. In general, the fluid four-velocity ~u is not
equal to the four-velocity u defined by the timelike frame
vector e0, thus we introduce the basic matter variables �
and v by decomposing the energy-momentum tensor of the
perfect fluid with respect to u into the form

T�� ¼ �fu�u� þ 	G�1ð2vð�v�Þ þ v<�v�>Þg
þ pðg�� þ u�u�Þ; (2.7)

where the angle brackets denote the symmetric trace-free
part of a tensor. We have the following relations

� ¼ �2G ~�; p ¼ G�1

�
	� 1þ

�
1� 2

3
	

�
v�v

�

�
�

(2.8)

with the scalar functions G and � are defined by

G � 1þ ð	� 1Þv�v
�; � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v�v
�

p : (2.9)

The vector v represents the peculiar fluid velocity relative
to the rest 3-spaces of e0, and defined through the relations

~u � � �ðu� þ v�Þ; u�v
� ¼ 0 (2.10)

with the fluid four-velocity ~u normalized as ~u�~u
� ¼ �1.

An important procedure of the formalism developed in
[16] is to introduce the scale-invariant dimensionless var-
iables by normalizing the geometrical and matter variables
using the Hubble scalar

H � �

3
: (2.11)

We denote the Hubble normalized quantities as

@ 0 � e0
H
; @ � � e�

H
; (2.12)
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f _U�;���; A
�; N��g � 1

H
f _u�; ���; a

�; n��g; (2.13)

� � �

3H2
; (2.14)

where � is the Hubble normalized density function. The
vector v is a dimensionless variable and the Hubble nor-
malization is not necessary for this variable. To introduce a
local coordinate system, we also define the Hubble nor-
malized components of the frame vectors as

E�
â � e�

â

H
: (2.15)

As expressed in Eq. (2.15), we hereafter attach the hat ^ to
spacetime indices in order to distinguish them from the
orthonormal frame indices. As physically interesting addi-
tional scale-invariant variables, we introduce the decelera-
tion scalar q and the spatial Hubble gradient �� defined by

q � �1� 1

H
@ 0H; (2.16)

�� � � 1

H
@ �H: (2.17)

They will be used to eliminate the Hubble scalarH appear-
ing in the evolution equations and the constraints.1

Some gauge choice is still allowed within the framework
of the 1þ 3 orthonormal frame formalism, and in [15,16],
the evolution equations and the constraints for the Hubble
normalized variables have been given with the so-called
separable volume gauge, which simplifies the temporal
frame derivative @ 0 to

@ 0 ¼ �@t (2.18)

using a nondimensional time coordinate t.2 Further, the
additional gauge constraint

_U � ¼ �� (2.19)

is required for the separable volume gauge (see [16] for its
details). Owing to this specification of the gauge, the
matching of the four-velocity u ¼ e0 of the reference con-
gruence with the fluid four-velocity ~u (i.e., v ¼ 0) as in
[20] is not always permitted. The important geometrical

result of Eq. (2.18) with the commutator equation (2.1) is
that the volume densityV defined byV�1 � detðe�iÞ has
the form

V ¼ V 0 � e�3t; (2.20)

where V 0 is an arbitrary function of spatial coordinates.
From Eq. (2.20), in the limit t ! 1, the volume density
approaches zero to form a singularity. This is a useful
property of the separable volume gauge to investigate the
asymptotic dynamical behavior just before the singularity
formation in gravitational collapse.
Now let us study spherically symmetric gravitational

collapse with a perfect fluid using the Hubble normalized
scale-invariant variables. By virtue of the Hubble normal-
ization, the Hubble scalar H becomes the only variable
carrying a physical reference scale and the analysis of the
evolution equations and the constraints for these variables
will allow us to observe dynamical behavior deviated from
the time dependence of the volume contraction of the
reference congruence. We consider the spherically sym-
metric line element of the form

ds2 ¼ �I2ðt; rÞdt2 þ J2ðt; rÞdr2
þ R2ðt; rÞðd�2 þ sin2�d2Þ: (2.21)

The coordinate expressions for the orthonormal frame
derivatives can be given by

e 0 ¼ I�1@t̂; er ¼ J�1@r̂;

e� ¼ R�1@�̂; e ¼ R�1sin�1�@̂:
(2.22)

As is used in Eq. (2.22), hereafter we substitute the letters
r, �,  (instead of the numbers 1,2,3) into the spacetime

spatial indices î and the orthonormal frame spatial indices

� (i.e., i ¼ r̂, �̂, ̂ and � ¼ r, �,). The gauge conditions
(2.18) and (2.20) are reduced to

I ¼ �H�1 (2.23)

and

Jðt; rÞ ¼ CðrÞR�2e�3t; (2.24)

where C is an arbitrary function of r.
An autonomous system of evolution equations and con-

straints for the Hubble normalized variables presented in
[15,16] has been expressed with the orthonormal frame
derivatives applicable to any spacetimes. It is a straightfor-
ward to apply the formalism to the spherically symmetric
metric (2.21) with the separable volume gauge. The quan-

tities (Er
r̂, E�

�̂, Ar, �r, �rr, �, vr, q) are independent

Hubble normalized variables to be analyzed here and we
arrive at the following evolution equations for these vari-
ables

_E r
r̂ ¼ �ðq� �rrÞEr

r̂; (2.25)

1Although the spatial Hubble gradient was expressed as r� in
[16], we have changed its notation in order to prevent readers
from confusing it with the radial coordinate r, which will be
introduced later.

2While the lapse function is the positive definite function equal
to the Hubble scalar H in the separable volume gauge of [16], in
this paper we specify the lapse function to be �H in order to
keep the positivity of the lapse function. The minus sign in the
right-hand side of Eq. (2.18), which does not appear in the
corresponding equation in [16], comes from this gauge specifi-
cation, which may be referred to as the separable volume gauge
for gravitational collapse.
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_E �
�̂ ¼ �ðqþ 1

2�
rrÞE�

�̂; (2.26)

_A r ¼ �ðq� �rrÞAr � 1
2Er

r̂ð�rrÞ0; (2.27)

_� r ¼ �ðq��rrÞ�r � Er
r̂q0; (2.28)

_�rr ¼ �ðq� 2Þ�rr þ 2
3Er

r̂ðArÞ0 � 2
3Er

r̂ð�rÞ0
� 4

3�
rAr � 2

3ðE�
�̂Þ2 � 2	G�1�ðvrÞ2; (2.29)

_� ¼ �ð2q� 1Þ�þ 3G�1f	� 1þ ð1� 2
3	ÞðvrÞ2g�

þ 	Er
r̂ðG�1�vrÞ0 þ 	G�1�vrðvr�rr � 2ArÞ;

(2.30)

and the constraints

1þ 1
3f2Er

r̂ðArÞ0 � 2�rAr � 3ðArÞ2
þ ðE�

�̂Þ2g � 1
4ð�rrÞ2 �� ¼ 0; (2.31)

Er
r̂ð�rrÞ0 þ 2�r ��rr�r � 3Ar�rr þ 3	G�1�vr ¼ 0;

(2.32)

Er
r̂ðE�

�̂Þ0 � ðAr þ �rÞE�
�̂ ¼ 0; (2.33)

where the dot and the prime mean the partial derivatives @t
and @r, respectively. These equations correspond to the
Einstein equations, the Jacobi identities and the contracted
Bianchi identities. In addition to these equations, we can
use the following Raychaudhuri equation for the decelera-
tion scalar q:

q ¼ 1
2ð�rrÞ2 � 1

3Er
r@r�

r þ 2
3�

rAr

þ 1
2½1þ 3G�1f	� 1þ ð1� 2

3	ÞðvrÞ2g��: (2.34)

It is remarkable that no time derivative of the radial veloc-
ity vr appears in these set of the evolution equations and
the constraint equation (2.32) can be used to determine vr.
We can also check that the remaining two constraints
(2.31) and (2.33) are consistent with other six evolution

equations for (Er
r̂, E�

�̂, Ar, �r, �rr, �).

Finally, let us explicitly present the Hubble normalized
variables using the metric functions and the matter fields:

Er
r̂ ¼ � I

J
; E�

�̂ ¼ � I

R
; (2.35)

�rr ¼ � 2

3

� _J

J
� _R

R

�
; (2.36)

Ar ¼ I@rR

JR
; (2.37)

�r ¼ �@rI

J
; q ¼ �1� _I

I
; (2.38)

vr ¼ ~ur

~ut
; (2.39)

� ¼ f1þ ð	� 1ÞðvrÞ2gI2 ~�
3f1� ðvrÞ2g : (2.40)

These relations are useful to analyze the asymptotic be-
havior of dynamical variables. Although the description of
time evolution with the Hubble normalized variables and
the separable volume gauge is available until the singular-
ity is formed at t ¼ 1, the spacetime region covered by the
radial coordinate r may be too restricted to determine the
nakedness of the arising singularity. Thus we will restrict
our investigations to the models of gravitational collapse of
which causal structure of the end states is already known.
An example of such a model is the LTB solution, which is
well known as a generic model of the inhomogeneous dust
gravitational collapse. In the next section, we will examine
the dynamical behavior of the Hubble normalized variables
in the marginally bound LTB spacetime to discuss their key
feature relevant to the naked singularity formation.

III. ASYMPTOTIC BEHAVIOR IN
INHOMOGENEOUS DUST COLLAPSE

A. Brief review of the LTB solution

Let us begin with a brief review of the LTB solution
describing inhomogeneous dust gravitational collapse (see
[1–3] for its details). This solution includes the two arbi-
trary functions of radial coordinate usually denoted as F
and f, which are related to the Misner-Sharp mass and the
initial velocity, respectively. In this paper, we consider only
the solution with f ¼ 0, which is called the marginally
bound solution. Using the comoving coordinate system
f�; �; �;g, the line element for this solution is

ds2 ¼ � 4

9B
d�2 þ ð@�RÞ2d�2 þ R2ðd�2 þ sin2�d2Þ;

(3.1)

Rð�; �Þ ¼ �

�
1�

ffiffiffiffiffiffiffiffiffiffi
Fð�Þ
B�3

s
ð1þ �Þ

�
2=3

; (3.2)

where B is an arbitrary positive constant.
The time � ¼ �1 is usually interpreted as the initial

time at which the area radius R becomes equal to the
coordinate radius �. In addition, without loss of generality,
we can choose � ¼ 0 to be the time of the central singu-
larity formation by specifying the leading order term of the
arbitrary function Fð�Þ near the regular center � ¼ 0 as
F ’ B�3. In the comoving coordinate system, the compo-
nents of the dust four-velocity are given by

~u �̂ ¼ � 3
ffiffiffiffi
B

p
2

; ~u�̂ ¼ ~u�̂ ¼ ~û ¼ 0; (3.3)

and from the Einstein equations we obtain the proper
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energy density ~� measured by a comoving observer as

~�ð�; �Þ ¼ @�F

R2@�R
: (3.4)

The approximate form of the function F near the regular
center � ¼ 0 can be written as

Fð�Þ ¼ B�3ð1� 2Fn�
n þOð�nþ1ÞÞ (3.5)

with a positive integer n. The subleading term Fn�
n in

Eq. (3.5) represents the dominant inhomogeneity of an
initial dust distribution near the center, and we assume n �
2 and Fn > 0 to require the regularity of the proper energy
density at the center (i.e., @� ~� ¼ 0 at � ¼ 0 and at � ¼
�1). The causal structure of the end states of the collapse is
closely related to the inhomogeneity given by the term
Fn�

n. For n ¼ 2, the shell-focusing naked singularity
appears at the center � ¼ 0 at the time � ¼ 0. For n � 4,
the arising singularity is hidden behind the event horizon.
For n ¼ 3, using the parameter

b � F3

B3=2
; (3.6)

the condition for the naked singularity formation is given
by [1,2]

b > bc; bc ¼ 26þ 15
ffiffiffi
3

p
4

: (3.7)

B. Asymptotic behavior of the Hubble normalized
variables

In this subsection, we would like to clarify how the
asymptotic behavior of the Hubble normalized variables
leading to the naked singularity formation depends on the
initial density inhomogeneity characterized by the integer
n. With the help of the relation between the causal structure
of the end states and the choice of n obtained in [1,2], we
discuss what asymptotic behavior of the Hubble normal-
ized variables characterize the causal structure of the sin-
gularity. As the formation of the central singularity occurs
at the point � ¼ � ¼ 0 in the comoving coordinate system
f�; �; �;g, our strategy is to analyze the asymptotic
t-dependence of the Hubble normalized variables in the
limit t ! 1 by using the coordinate system ft; r; �; gwith
the separable volume gauge condition. For this purpose, we
consider the coordinate transformation between the two
coordinate systems, which leads to the following partial
differential equations for �ðt; rÞ, �ðt; rÞ, Iðt; rÞ, and Jðt; rÞ

4

9B
_�2 � ð@�RÞ2 _�2 ¼ I2; (3.8)

ð@�RÞ2�02 � 4

9B
�02 ¼ J2; (3.9)

ð@�RÞ2 _��0 ¼ 4

9B
_��0: (3.10)

We also have Eq. (2.24) as the separable volume gauge
condition. As will be shown, the four Eqs. (3.8), (3.9), and
(3.10) with (2.24) demand that timelike curves with r ¼
const to converge to the singular point � ¼ � ¼ 0. The
behavior of these coordinates is schematically shown in
Fig. 1.
In particular, the exponential t-dependence of the func-

tion JR2 in Eq. (2.24) significantly affects the asymptotic
relation between the two coordinate systems f�; �g and
ft; rg, and the converging behavior of the r ¼ const time-
like curves is useful to analyze the asymptotic dynamical
features just before the central singularity formation. In
this subsection, we analyze the asymptotic t-dependence of
the Hubble normalized variables on such a congruence of
the timelike curves. When the coordinate variables �ðt; rÞ
and �ðt; rÞ approach zero in the limit t ! 1 with a fixed
value of r, the metric function Rðt; rÞ also goes to zero as

Rð�; �Þ ’ �ðFn�
n � �Þ2=3: (3.11)

The key issue to be analyzed here is which of the terms
Fn�

n and � in Eq. (3.11) becomes dominant in the limit
t ! 1 along the timelike curves.
From Eq. (2.24), we assume that the metric functions J

and R have exponential t-dependence in the limit t ! 1.
This assumption turns out to be compatible with Eqs. (3.8),
(3.9), and (3.10) under the relations

R� J � �� I � expð�tÞ; (3.12)

if the exponential t-dependence of � is also derived from
Eq. (3.11). To check this, we first assume that the ratio
Fn�

n=j�j approaches zero. In this case, Eq. (3.11) leads to

FIG. 1. A schematic diagram describing the relation between
the comoving coordinate systems f�; �g and the separable vol-
ume gauge coordinates ft; rg. In the limit t ! 1, all the timelike
curves labeled r ¼ const (solid curves) converge to the onset
point � ¼ � ¼ 0 of the singularity formation.
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�� expð�t=3Þ, which is consistent with the assumption
Fn�

n=j�j ! 0 only for n � 4. If the ratio Fn�
n=j�j is

assumed to blow up, we have �� expf�3t=ð3þ 2nÞg. It
is easy to check that this is allowed only for n ¼ 2, which
gives the exponential t-dependence as �� expð�3t=7Þ.
For the remaining case n ¼ 3, we obtain �� expð�t=3Þ
and the ratio Fn�

n=j�j remains finite.
Now let us see the asymptotic behavior of the Hubble

normalized variables using the asymptotic exponential
forms of the metric functions I, J, R and the coordinate
variables �, �. Because we have the relation Eq. (3.12)
irrespective of the choice of n, Eqs. (2.35), (2.36), (2.37),
and (2.38) mean that the Hubble normalized variables (Er

r̂,

E�
�̂, Ar, �r) become finite and their values can only depend

on r. On the other hand, variables�rr and q approach zero.
Using the condition ~u�̂ ¼ 0 for the comoving coordinate
system, the radial velocity vr given by (2.39) can be
rewritten into the form

ðvrÞ2 ¼ J2 _�2

I2�02 : (3.13)

Hence, the radial velocity vr remains finite in the limit t !
1 irrespective of n. From Eqs. (3.8), (3.9), and (3.10), we
have

1� ðvrÞ2 ¼ 9BI2

4 _�2
(3.14)

and using this relation, the Hubble normalized density �
given by Eq. (2.40) becomes

� ¼ 4 _�2�2

9R2@�R
: (3.15)

Applying the approximate form (3.11) of R and the asymp-
totic relation _� ’ ��, we have the following asymptotic
form of the density function

�asym ¼ 4

3f3þ ð2nþ 3ÞFn�
n=j�jgf1þ Fn�

n=j�jg :
(3.16)

Owing to the term Fn�
n=j�j contained in Eq. (3.16), an

interesting difference of the asymptotic behavior of �
appears according to the choice of n and this will be shown
in the next subsection.

C. Relation between the asymptotic Hubble normalized
density and the causal structure of the end state

We rewrite the term Fn�
n=j�j in Eq. (3.16) as a function

of t and r. In the limit t ! 1, the metric functions can be
written as I ¼ I0ðrÞ expð�tÞ, J ¼ J0ðrÞ expð�tÞ and R ¼
R0ðrÞ expð�tÞ. Because the choice of the spatial coordinate
r remains arbitrary within the framework of the separable
volume gauge, the arbitrary function CðrÞ is included in
Eq. (2.24) for J. To remove this ambiguity, we introduce
the new spatial coordinate � by

� Er
r̂ d�

dr
¼ 1; (3.17)

where the Hubble normalized variable Er
r̂ ¼ �I0=J0

should be regarded as a function of r. This specification
of the spatial coordinate � leads to the line element

ds2 ¼ e�2t½�I20ð�Þðdt2 � d�2Þ
þ R2

0ð�Þðd�2 þ sin2�d2Þ�: (3.18)

1. The n � 4 case: Approach to homogeneous dust
dynamics and black hole formation

The n � 4 case corresponds to the black hole formation
and the ratio Fn�

n=j�j approaches zero towards the singu-
larity formation. From Eq. (3.16), we have

�asym ¼ 4
9: (3.19)

In addition, from Eqs. (3.8), (3.9), and (3.10), we obtain the
solution for n � 4 as

I0 ¼ Bl3

12
cosh2

�
�

3

�
; R0 ¼ Bl3

4
cosh2

�
�

3

�
sinh

�
�

3

�
;

(3.20)

where l is an arbitrary constant and

� ¼ l sinhð�=3Þ � expð�t=3Þ;
�2=3 ¼ ðBl2=4Þcosh2ð�=3Þ � expð�2t=3Þ: (3.21)

Although the metric tensor written by Eqs. (3.20) is derived
as an asymptotic form in the limit t ! 1, it is identical
with an exact solution of the Einstein equations describing
spherically symmetric homogeneous dust collapse. This
unfamiliar form of the metric tensor is due to the separable
volume gauge; the timelike congruence parametrized by
the coordinates ðt; rÞ (or �) covers only a limited region of
the spacetime (see Fig. 1). In fact, from Eq. (3.14), the
radial velocity is vr ¼ tanhð�=3Þ and this family of the
timelike curves has the null boundary jvrj ¼ 1 at � ¼ 1
(r ! 1).

2. The n ¼ 2 case: Growth of the central density gradient
and naked singularity formation

For n ¼ 2, the ratio F2�
2=j�j grows with the lapse of

time and the inhomogeneity due to the term Fn�
n is sig-

nificantly involved in the central naked singularity forma-
tion. Under the approximation F2�

2=j�j � 1, we obtain
the metric functions

I0 ¼ l; R0 ¼ l sinhð�Þ (3.22)

and

F1=3
2 �7=3 ¼ l sinh� � expð�tÞ;

�2 ¼ ð9Bl2=4Þcosh2� � expð�2tÞ: (3.23)
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This asymptotic form of I0 and R0 represents a flat metric
written in the accelerating coordinate system ft; �g. Using
Eq. (3.14), we have vr ¼ tanh� . The spacetime region
covered by the accelerating coordinate system also has
the null boundary at � ¼ 1.

The timelike congruence parametrized by ðt; �Þ con-
verges to the point � ¼ � ¼ 0 with the four-velocity u ¼
e0. The spatial distance between the two neighboring time-
like curves � and � þ d� changes in proportion to
expð�tÞd� . This change of the reference congruence may
be larger than that of the matter contraction effect which
increases the proper energy density ~�. Thus, the effect of
matter on the metric becomes weak and we have the flat
metric (3.22) as the dominant asymptotic behavior. We can
find from Eq. (3.16) that the Hubble normalized density�
asymptotically takes the form

�asym ¼ 3B

7
F�6=7
2 l2=7cosh2�ðsinh�Þ�12=7e�2t=7 ! 0:

(3.24)

This exponential decay of�asym is a remarkable feature of

the asymptotic evolution for the n ¼ 2 case. As the con-
tribution of matter to the metric is negligible, one can call
the behavior represented by Eq. (3.24) as the ‘‘vacuum-
dominated’’ evolution [16].

It must be noted, however, that the approximation
F2�

2=j�j � 1 breaks down near the center � ¼ 0 (� ¼
0) which is regular during � < 0 (t <1). Let us denote the
asymptotic value of� at the center as�0. Then, we obtain
�0 ¼ 4=9 even for n ¼ 2. Note that Eq. (3.24) shows an
infinite increase of� in the limit � ! 0. This increase of�
with respect to the spatial coordinate � should be sup-
pressed if the ratio F2�

2=j�j becomes smaller than unity
in the vicinity of the regular center. Unfortunately, it is
difficult to see analytically the smooth decrease of � from
the central value �0. Nevertheless, it is sure that the
gradient of � near the center increases infinitely as t
increases. Hence, the exponential decay (3.24) of �asym

should be rather regarded as the growth of the density
contrast between the central region near � ¼ 0 and the
outer region � � 1. We expect such a profile of �asym

with a large gradient with respect to the coordinate � is
essential to the naked singularity formation.

3. The n ¼ 3 case: Existence of the critical density
gradient between naked singularity formation and black

hole formation

In this case, the ratio F3�
3=j�j remains finite in the limit

t ! 1. As �� �3 � expð�tÞ for this case, by introducing
the ratio

k � F3�
3

j�j (3.25)

as a function of the spatial coordinate � , we obtain from
Eq. (3.16) the asymptotic profile of � as follows

�asymð�Þ ¼ 4

9ð1þ 3kÞð1þ kÞ : (3.26)

By using Eq. (3.14), the radial velocity vr can be written as

vr ¼ � k1=3ð1þ 3kÞ
2b1=3ð1þ kÞ1=3 ; b ¼ F3

B3=2
: (3.27)

Then, using Eqs. (3.8), (3.9), and (3.10), the equation
determining k is given by

dk

d�
¼ kf1� ðvrÞ2g

vr : (3.28)

Imposing the boundary condition k ¼ 0 at � ¼ 0, we
obtain the solution k ¼ kð�Þ containing the parameter b.
For n ¼ 3 case, we also have jvrj ! 1 in the limit � ! 1,
and the value of k remains finite at � ¼ 1. It is clear from
Eq. (3.26) that �asym decreases monotonically as k in-

creases. Let us denote the values of k and �asym in the

limit � ! 1 as k1 and �1, respectively. These limiting
values depend on the value of the parameter b. The profile
of �asym as a function of � is shown in Fig. 2.

Although �asym ¼ 4=9 at the center � ¼ 0 irrespective

of the parameter b, the value �1 decreases as b increases.

For b � 1, we have k1 ’ 2
ffiffiffi
b

p
=3 and �1 ’ 1=3b. Recall

that b > bc gives the condition for the naked singularity
formation. The numerical calculation shows that this in-
equality corresponds to �1 <�c ’ 0:03. Using the cen-
tral value �0 ¼ 4=9 of �asym, the density contrast defined

by the ratio � ¼ �0=�1 has a critical value �c : � < �c

corresponds to the black hole formation and � > �c corre-
sponds to the naked singularity formation. For � � �c, the
density contrast becomes very large and this leads to the
naked singularity formation. This behavior is consistent
with the asymptotic profile of � discussed in the case
n ¼ 2.3

We finally comment on the self-similar evolution in dust
collapse in terms of the Hubble normalized variables. The
spherically symmetric self-similar solutions are defined as
solutions of the Einstein equations reduced to a set of the
ordinary differential equations with respect to a dimen-
sionless variable (see [22] for its details). For n ¼ 3, the
Hubble normalized density �, as well as the other Hubble

normalized variables (vr, �r, Ar, Er
r̂, E�

�̂) is given as the

function of the single coordinate r in the limit t ! 1.
Although we have derived the asymptotic behavior of vr

3Although the naked singularity formation occurs both for n ¼
2 and for n ¼ 3 with the parameter b > bc, its strength is known
to be different in the sense of Tipler [21]. Namely, the arising
central singularity is called gravitationally weak for the former
case but strong for the latter one [2]. This difference of the
strength can also be interpreted from the viewpoint of the
asymptotic behavior of �, which claims that the ‘‘vacuum-
dominated’’ evolution under the condition � ! 0 around the
central region results in the formation of ‘‘weak’’ naked
singularity.
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and � through the coordinate transformations (3.8), (3.9),
and (3.10), it is possible to obtain all the asymptotic forms
of these variables directly from an autonomous system of
the evolution equations (2.25), (2.26), (2.27), (2.28), (2.29),
and (2.30) and the constraints (2.31), (2.32), and (2.33) for
	 ¼ 1. As �rr and q approach zero in the limit t ! 1, if
these two variables in addition to variables with partial
derivatives with respect to t are neglected in the equations,
we arrive at a closed system of the ordinary differential
equations for (�, vr, �r, Ar, E�

�) using the dimensionless

coordinate �(see the next section for the details). This
closed system will be equivalent to the Einstein equations
with the requirement of self-similarity.4 The result ob-
tained in this subsection means that such a self-similar
behavior should develop at the final stage t ! 1, even if
the initial distribution function Fð�Þ given by Eq. (3.5)

contains the higher order inhomogeneous terms with �n0

for n0 � 4 in addition to the term F3�
3.

D. Condition for the naked singularity formation

Combining the result of our analysis for the asymptotic
behavior of the Hubble normalized density function � in
the LTB solution, we propose the following conjecture for
the condition of the naked singularity formation:

The development of the large spatial gradient or density
contrast in the asymptotic profile of the Hubble normalized
density parameter� in the separable volume gauge gives a
sufficient condition of the naked singularity formation.

We have confirmed this conjecture holds for the dust
case. In the next section, we examine whether this con-
jecture can be extended to the gravitational collapse of
perfect fluid with pressure.

IV. EFFECT OF PRESSURE ON THE HUBBLE
NORMALIZED DENSITY

In the previous section, we have discussed the asymp-
totic behavior of the Hubble normalized variables through
the coordinate transformation from the LTB solution of
dust collapse. Unfortunately, there does not exist such a
generic analytical solution of perfect fluid collapse for the
equation of state (2.6) with 1< 	 � 2. We therefore have
to analyze directly the asymptotic solutions of an autono-
mous system of the evolution equations (2.25), (2.26),
(2.27), (2.28), (2.29), and (2.30) and the constraints (2.31),
(2.32), and (2.23).
As was schematically shown in Fig. 1, under the sepa-

rable volume gauge (2.24) for the line element (2.21), we
can assume the timelike congruence parametrized by the
coordinates t and r converges to the central singularity
arising at t ¼ 1 and the possible asymptotic time depen-
dence can be assumed to be I � J � R� expð�tÞ. The
Hubble normalized variables q and �r

r then go to zero in

the limit t ! 1, while the other variables (Er
r̂, E�

�̂, Ar, �r,

�, vr) may become finite dependent only on r. We express
their asymptotic forms as (E, A, �, �, v) without the
indices r and �, and also introduce the coordinate � given
by Eq. (3.17). It is easy to obtain � ¼ �3	�v=2G from
Eq. (2.32) and dE=d� ¼ �ðAþ �ÞE from Eq. (2.33). The
assumptions for the timelike congruence and the possible
asymptotic time dependence of ðI; J; RÞ allow us to arrive
at the closed set of equations for (A, �, v) as follows

fð	� 1Þv2 þ 1gfv2 � ð	� 1Þg d�
d�

¼ 2	�v2Af2	� 3� ð	� 1Þv2g
� 3

2
	ð	� 2ÞG�1�2vf1� ð	� 1Þv2gð1� v2Þ

� 2�vfð3	� 4Þð	� 1Þ � ð2	2 � 5	þ 4Þv2g;
(4.1)

	fð	� 1Þv2 þ 1gfv2 � ð	� 1Þg
1� v2

dv

d�

¼ 2	ð	� 1ÞGvAþ 3

2
	2ð	� 2Þ�v2

�Gfð	� 1Þð3	� 2Þ þ ð	� 2Þv2g; (4.2)

dA

d�
¼ 3	G�1�vA� 3

2
G�1ð	� 1þ v2Þ�

� 3

2
�� A2 þ 1: (4.3)

From Eq. (4.2), we can find that there exists the null
boundary jvj ¼ 1 of the timelike congruence in the limit
� ! 1 just in the same way as dust collapse.
It should be noted that this set of equations for (A,�, v)

is derived under the assumption� � 0. If we consider the

FIG. 2. The profile of �asym as a function of the spatial
coordinate � . Each lines correspond to b < bc (the solid line),
b ¼ bc (the long-dotted line) and b > bc (the short-dotted line).
As the value of b increases, the density contrast � ¼ �0=�1
increases. For � > �c 	 15, the resulting singularity becomes
naked.

4In fact, we can check that the function �asym given by Eq.
(3.26) has the same form as Eq. (3.13) in [18] except for the
numerical factor.
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case � ! 0 in the limit t ! 1, we must use the equation

E2 � A2 þ 1 ¼ 0 (4.4)

instead of Eqs. (4.1) and (4.2). The similar equation can be
obtained for the case n ¼ 2 of the dust collapse. In fact,
under the requirement � ¼ � ¼ 0, we have the solution
E ¼ �1= sinh� , A ¼ coth� which corresponds to the flat
metric given by (3.22). It was shown in the previous section
that this ‘‘vacuum-dominated’’ evolution should break
down in the vicinity of the regular center due to the large
spatial gradient of�asym. For the perfect fluid collapse, the

effect of pressure should become important at least in the
subsonic region v2 < 	� 1 near the center and works to
suppress the development of the density contrast.
Nevertheless, it is plausible that the ‘‘vacuum-dominated’’
evolution leading to the decay � ! 0 is allowed in the
supersonic region v2 > 	� 1, where pressure becomes
ineffective. This means that a large gradient of �asym

generated in the supersonic region is in favor of the naked
singularity formation. Unfortunately, it is very difficult to
study in detail the perfect fluid collapse allowing the decay
of � with the lapse of time in the supersonic region and to
check the validity of our expectation. Therefore, in the
following, our discussion is restricted to the case that �
remains nonzero in the limit t ! 1 in 0 � � <1, and
Eqs. (4.1), (4.2), and (4.3) can be applied.

The set of the ordinary differential equations (4.1), (4.2),
and (4.3) with respect to the nondimensional coordinate �
describes the self-similar behavior of the Hubble normal-
ized variables such as �. Although in this paper, we
assume that they become asymptotically dominant equa-
tions as a result of gravitational collapse started from
general non self-similar initial conditions, they are equiva-
lent to the exact self-similar Einstein equations which have
been extensively studied in the comoving coordinate sys-
tem. We can see the existence of a singular point of the
differential equations at v2 ¼ 	� 1 where the coefficients
of the derivatives d�=d� and dv=d� in Eqs. (4.1) and (4.2)
vanish. This corresponds to the sonic point where the fluid
velocity relative to a tangent surface of a homothetic
Killing vector equals to the sound speed [17,23], and the
self-similar solutions may become singular.

We consider the self-similar solutions regular in 0 �
� <1 including the sonic point. The simplest example is
the so-called flat Friedmann solution with 	 > 1. It is well
known that the arising singularity becomes spacelike in the
homogeneous perfect fluid collapse. For this solution, the
asymptotic density function is given by

�asym ¼ 4

9	2

�
1þ 	sinh2fð3	� 2Þ�=3	g
1þ sinh2fð3	� 2Þ�=3	g

�
: (4.5)

The � dependence of this function is shown in Fig. 3. This
form can be obtained through the coordinate transforma-
tion from the comoving coordinate system to the coordi-
nate system ft; r; �; g as was performed in Sec. III. Of

course, it is also possible to derive this form directly from
Eqs. (4.1), (4.2), and (4.3) with vr ¼ � tanhfð3	�
2Þ�=3	g. This solution can be interpreted as an extension
of the case n � 4 of the dust collapse, for which we have
�asym ¼ 4=9. By virtue of the effect of pressure, we have

the density contrast � ¼ �0=�1 ¼ 1=	 < 1 in this homo-
geneous perfect fluid collapse. As the density contrast or
the spatial gradient is not so large, the evolution cannot
become ‘‘vacuum-dominated’’ and the resulting singular-
ity is not naked. This example supports our conjecture.
The effect of pressure becomes clearer if we consider the

general relativistic Larson-Penston (GRLP) solution [17].
This is the numerically obtained self-similar solution
which describes monotonic collapse of an inhomogeneous
perfect fluid with the regularity imposed at the sonic point.
This self-similar solution may correspond to the case n ¼
3 of the dust collapse provided that 	 is treated as a free
parameter instead of b. The central singularity of this
solution becomes naked for 	 < 	c ’ 1:0105 (weak pres-
sure), while it is hidden behind a horizon for 	> 	c

(strong pressure).
To obtain�asym corresponding to the GRLP solution, we

numerically solve the ordinary differential equations (4.1),

FIG. 4. The profile of the Hubble normalized density �asym

corresponding to the GRLP solution. Each lines correspond to
	 > 	c (the solid line), 	 ¼ 	c (the long-dotted line), 	 < 	c

(the short-dotted line). As the value of 	 decreases, the density
contrast � ¼ �0=�1 increases. For � > �c 	 24, the resulting
singularity becomes naked.

FIG. 3. The spatial profile of �asym for the flat Friedmann
solution with perfect fluid. Each lines correspond to 	 ¼ 1
(the solid line), 	 ¼ 3=2 (the dotted-line) and 	 ¼ 2 (the
short-dotted line).
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(4.2), and (4.3) by requiring the regularity of the solution
both at the center � ¼ 0 and the sonic point v2 ¼ 	� 1.
The result is shown in Fig. 4.

It is clear from Fig. 4 that �asym decreases monotoni-

cally as � increases, just in the same way as the case n ¼ 3
of the dust model (see Fig. 2). Further, we note that the
density contrast � ¼ �0=�1 in this self-similar perfect
fluid collapse increases with the decrease of 	. In particu-
lar, the critical value of 	 for the naked singularity for-
mation is 	 ¼ 	c ’ 1:0105 and using this value, we can
roughly estimate the corresponding critical density con-
trast to be �c ¼ �0=�1 ’ 24 � 1 (�1 ’ 0:04). Recall
that for the case n ¼ 3 of dust collapse, we have the critical
value �c ¼ �0=�1 ’ 15 � 1. Although the critical value
of the density contrast will slightly depend on the property
of collapsing matter, the asymptotic analysis of the perfect
fluid collapse also supports our conjecture that the very
steep change in the asymptotic spatial profile of � char-
acterizes the type of the arising singularity.

The asymptotic behavior of the Hubble normalized vari-
able with the separable volume gauge becomes self-similar
provided that the asymptotic value of � is not zero. This
may be interesting in relation to the so-called self-similar
hypothesis [24] which asserts that a self-similar behavior
should be dominant near the dense central region at the
final stage of collapse starting from general initial
conditions.

V. SUMMARYAND DISCUSSION

We have studied the asymptotic dynamics of the naked
singularity formation in spherically symmetric gravita-
tional collapse of perfect fluid. We first have examined
inhomogeneous dust gravitational collapse described by
the marginally bound LTB solution. As our main result,
we have revealed the different asymptotic behavior of the
Hubble normalized density� depending on the type of the
initial inhomogeneity. By comparing to the known causal
structure of singularity arising in the dust collapse, we
arrive at the important conjecture that the very steep de-
crease in the asymptotic spatial profile of � is the charac-
teristic of the naked singularity formation. The validity of
this conjecture has been also supported in the perfect fluid
collapse with pressure.

Let us remark on the ‘‘vacuum-dominated’’ case of the
dust collapse (the case n ¼ 2), for which� goes to zero in
the limit t ! 1 and the arising singularity becomes naked.
Because the central value �0 should remain nonzero, the
vacuum-dominated evolution leading to the naked singu-
larity formation has been interpreted as the development of
the steep spatial gradient in the profile of � with the lapse
of time. For the dust collapse, as was mentioned in Sec. III,
the asymptotic behavior � ! 0 with the naked singularity
formation is rather generic. Unfortunately, for perfect fluid
collapse with pressure, the dynamical evolution from an
initial state to the vacuum-dominated state � ! 0 is not
confirmed. One may find that � approaches zero only in
the outer supersonic region jvrj> ffiffiffiffiffiffiffiffiffiffiffiffiffi

	� 1
p

. The self-
similar behavior may be then dominant in the inner sub-
sonic region. To reveal the existence of the vacuum-
dominated evolution and the structural change from the
inner region to the outer one remains as an important
problem to be investigated, especially, in relation to the
criterion for the naked singularity formation.
If no symmetry is assumed in gravitational collapse, one

can assert that the generic singularity becomes spacelike
from the so-called BKL conjecture [25,26] that states the
Einstein equation becomes local near the singularity. In
terms of the 1þ 3 orthonormal frame formalism consid-
ered here, the BKL conjecture has been reformulated in
[16] and applied to various types of collapsing matter (e.g.,
the perfect fluid with 	 ¼ 2 [27]). Although the BKL
conjecture has been supported even in the vacuum-
dominated case, the arising singularity is known to be
null (see [1,28]) for spherically symmetric dust collapse
if � ! 0. In this paper, we have claimed that the naked
singularity is originated from the steep gradient in the
profile of �. For nonspherically symmetric collapse, of
course, the freedom of gravitational waves becomes im-
portant in the vacuum-dominated case and the long-
wavelength modes will be crucial to suppress such a steep
density gradient and avoid the naked singularity formation.
The BKL conjecture on the causal structure of singularity
is based on the assumption that the spatial gradient of
dynamical variables becomes negligible at the final stage
of collapse. This may not be valid for some models of
gravitational collapse including spherically symmetric
models.
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