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We find a unique way of realizing inflation through cyclic phases in a universe with negative vacuum

energy. According to the second law of thermodynamics entropy monotonically increases from cycle to

cycle, typically by a constant factor. This means that the scale factor at the same energy density in

consecutive cycles also increases by a constant factor. If the time period of the oscillations remains

approximately constant then this leads to an ‘‘overall’’ exponential growth of the scale factor, mimicking

inflation. A graceful exit from this inflationary phase is possible as a dynamical scalar field can take us

from the negative to a positive energy vacuum during the last contracting phase.
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I. INTRODUCTION

Inflation is one of the most popular paradigms which
explains large scale homogeneity as well as structures
within our Universe by an epoch of accelerated expansion
in the early Universe. Inflation requires a large positive
vacuum energy density, i.e. it effectively gives rise to a
de Sitter (dS) space-time. On the other hand the superstring
theory which is considered to be one of the most funda-
mental theories of nature, and makes a robust claim to
combine both gauge theory and gravity, naturally allows
anti–de Sitter (AdS) vacua, i.e. a negative cosmological
constant [1]. It is believed that various nonperturbative and
supersymmetry breaking effects would eventually lift the
AdS into dS in such a way that it would be consistent with
the current cosmological observations [2]. Nevertheless,
realizing such an uplifting mechanism seems extremely
nontrivial, and it is perhaps much more likely that most
of the string vacua have ‘‘large’’ negative energies. Is there
a way to come out of these negative energy vacua and be
consistent with the standard model of inflationary and
�CDM cosmology?

Another aspect of a dS inflation is that it naturally dilutes
all matter and therefore a graceful exit of inflation also
requires a successful reheating of the Universe with the
observed standard model (SM) degrees of freedom.
However, there are only few notable examples where the
identity of the inflaton can be made successfully within the
minimal supersymmetric standard model or within models
with modified gravity and standard model Higgs, thereby
ensuring successful reheating of the standard model de-
grees of freedom [3,4].

The aim of the present paper is to realize inflation in an
AdS space-time, or more precisely when the vacuum en-
ergy is negative. At first glance the idea of realizing
inflation with a negative cosmological constant seems
rather paradoxical. However as we shall show here, if we
give up the idea that the Universe began in a cold state

devoid of any thermal entropy, but rather consider the
possibility that it begins in a hot thermal state consisting
of relativistic species and nonrelativistic particles, then we
have a chance to realize ‘‘cycling inflation.’’ An advantage
in our case is that it lends the possibility of identifying the
thermal state with the Hagedorn phase in string theory.
We will obtain inflation in a cyclic universe1 involving

nonsingular bounces2 over a time scale which is much
larger compared to the cycle time period. The cosmologi-
cal evolution in our model will consist of two distinct
phases (see Fig. 1):
(i) An inflationary phase where the Universe undergoes

cycles of expansion and contraction, but it contracts
less than it expands in each cycle in accordance with
the second law of thermodynamics. The time periods
of these cycles are ‘‘short,’’ approximately constant,
and ‘‘on an average’’ the Universe seems to be
experiencing exponential expansion.

(ii) This above cyclic inflationary phase ends via suit-
able scalar field dynamics, the Universe bounces one
last time, and then ‘‘exits’’ into an everlasting ex-
panding phase resembling our current Universe.

In the following section we will discuss how we can obtain
the inflationary phase in the presence of a negative cosmo-
logical constant. In Sec. III, we will elaborate on the last
bounce and how one can exit the inflationary phase when
one includes the dynamics of a scalar field with an appro-

1Cyclic cosmologies have been considered in many references,
see [5–15]; for a review see [16].

2The readers are referred to several attempts in this regard
mostly involving nonlocal and/or nonperturbative physics, such
as string inspired nonlocal modifications of gravity [17], stringy
toy models using AdS/CFT ideas [18], tachyon dynamics [19],
mechanisms involving ghost condensation [20], fermion con-
densations (both classically [21] and via quantum BCS-like gap
formation [22], brane-world scenarios with extra timelike direc-
tions [23] and in loop quantum cosmology [24].
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priate potential. In Sec. IV we will conclude by briefly
summarizing the cosmological scenario we have pre-
sented, and discuss some of its advantages as well as
open issues that need to be addressed further. Some com-
putational details are provided in two appendixes A and B.

II. CYCLING AND INFLATING

In order to realize the first phase, let us assume a
simplified model where the ‘‘matter content’’ consists of
nonrelativistic and relativistic degrees of freedom and a
negative cosmological constant. Let us also assume that
both relativistic and nonrelativistic species are in thermal
equilibrium above a certain critical temperature Tc, but
below this temperature the massive nonrelativistic degrees
of freedom fall out of equilibrium and consequently at later
stages when they decay into radiation thermal entropy is
generated.

The above picture is inspired by the well known stringy
Hagedorn phase where all the states, massless and massive,
are in thermal equilibrium close to the Hagedorn tempera-
ture [25–27]; but below some critical temperature (not too
small compared to the string scale) some of the massive
states are expected to fall out of equilibrium. The important
implications of the Hagedorn phase in string-gas-
cosmology [25,27–32] (see [33] for recent reviews) has
been discussed in the past, and more recently in the context
of cyclic models [5,15]. In particular, in the cyclic models
production of entropy has been found to be a key ingredient
in determining the cosmology.

Essentially, production of thermal entropy makes the
cycles asymmetric; in our simple toy model we will find
that in any given cycle the Universe expands more than it
contracts, and this is what allows us to mimic inflation. To
make the picture clearer, let us call the scale factor at the
transition from thermal to nonthermal phase in the nth
cycle as ac;n. Then the average Hubble expansion rate in

the nth cycle3 is given by

hHi �
R
HdtR
dt

¼ 1

�n
ln

�
ac;nþ1

ac;n

�
� N n

�n
; (1)

where �n is the time period of the nth cycle. Let us now
imagine that the time periods and the average growth
factors are approximately constant, �n � � and
ac;nþ1=ac;n � expN , respectively. In this case it is clear

that although the Universe undergoes oscillations, on an
average it maintains a constant Hubble expansion rate.
Through the course of many, many oscillations the
Universe can become exponentially large thereby address-
ing almost all the standard cosmological puzzles (except
possibly the monopole problem) in much the same way as
standard inflationary scenarios do. A more detailed dis-
cussion on these issues and also on generation of scale-
invariant perturbations is presented in the concluding
section.
Let us therefore now see how the above ingredients can

be achieved in our simple toy model. Our aim is to calcu-
late � and N , and check whether they really remain
constants over cycles. Let us divide the dynamics in a
given cycle into a thermal bounce phase and a nonthermal
turnaround phase. Without specifying the physics of the
bounce, we are here going to assume that it is nonsingular
(for recent progress in this direction the readers are referred
to [5,17–20,24,34]), and also for simplicity that it occurs at
some fixed energy density �b in every cycle.
Since during the bounce phase the Universe is assumed

to be in thermal equilibrium,4 no entropy is produced and
the evolution is going to be symmetric. Thus, for our
purposes the thermal bounce phase is rather uninteresting,
there is no overall growth, and we have to look into the
nonthermal phase to realize inflation.
In the nonthermal phase the Hubble equation reads

H2 ¼ T4
c

3M2
p

�
�r

a4
þ�m

a3
� �

T4
c

�
; (2)

where �� is the negative cosmological constant, and the

FIG. 1 (color online). Qualitative evolution of the scale factor:
After the initial cyclic/inflationary phase, the Universe enters an
everlasting expanding phase following the last bounce.

3We are defining our cycle to ‘‘start’’ from the transition point
ac;n and end at the next transition point ac;nþ1.

4In a singular big crunch/bang scenario the interaction rates
which can potentially maintain thermal equilibrium among the
different species cannot possibly keep up with the diverging
Hubble rate. However in a nonsingular bouncing scenario the
Hubble rate is bounded from above and therefore it is possible to
maintain thermal equilibrium. This point has been discussed in
more details in [5] in the context of a Hagedorn physics.
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�’s are related to the energy densities via

�m ¼ T4
c

�m

a3
and �r ¼ T4

c

�r

a4
: (3)

For definiteness, we consider a compact universe5 with a
volume V � T�3

c a3. Let us define the ratio of the equilib-
rium energy densities of the nonrelativistic (massive) and
relativistic (massless) species at the transition point to be
given by

� � �m;c

�r;c

: (4)

We are going to be interested in a special case when � �
1, and the decay rate of the massive particles to radiation is
small compared to the time period we are interested in.
This means that the nonthermal phase is dominated by
matter density, and we can ignore radiation in the Hubble
equation. We also want T4

c � � to ensure that the turn-
around happens in the nonthermal phase once the matter
energy density becomes comparable to �.

In order to understand the dynamics, it is instructive to
first look into the evolution when nonrelativistic and rela-
tivistic species are noninteracting. Then �’s would just be
constants yielding an Friedmann-Robertson-Walker
(FRW) cosmology where the Universe enters the nonther-
mal expansion phase at the transition temperature Tc, turns
around due to the presence of the negative cosmological
constant, and then contracts again to the temperature Tc,
whereafter it enters the thermal (still contracting) phase. If
we neglect radiation in the Hubble equation one can com-
pute the time period of the cycles quite precisely, and it is
given by a rather simple expression6 (see Appendix A for
details):

� � 3:6Mpffiffiffiffi
�

p : (5)

This is a constant and does not change from cycle to cycle
as it does not depend on �r, �m (�’s will increase from
cycle to cycle with the production of entropy). This is
crucial to realizing our scenario and only works because
the turnaround is provided by the negative cosmological
constant. If for instance, the turnaround is due to spatial
curvature, the time period keeps increasing. Such an
‘‘emergent cyclic phase’’ [5] can in fact precede the infla-
tionary phase providing geodesic completeness to our in-
flationary model, but we certainly need the negative
cosmological constant to realize the inflationary
mechanism.

Let us now turn our attention to the average growth
factor, which is best expressed in terms of entropy growth
from cycle to cycle. The usual thermodynamic entropies
associated with matter and radiation are given by

Sr ¼ 4�rV

3T
¼ 4

3
g1=4�3=4

r ; Sm ¼ �mV

M
¼ �m: (6)

HereM � Tc corresponds to the mass of the nonrelativistic
particles, and in our convention g ¼ ð�2=30Þg�, where g�
is the number of ‘‘effective’’ massless degrees of freedom.
From the above equations we find that at the transition
point the ratio of the two entropies is just given by

Sm
Sr

¼ 3�

4
: (7)

Thus one can express all the quantities in terms of the total
entropy S ¼ Sm þ Sr of the system

�m ¼ 3�

4þ 3�
S; �r ¼

�
3

g1=4ð4þ 3�Þ
�
4=3

S4=3 (8)

and

ac ¼
�

3

ð4þ 3�Þg4
�
1=3

S1=3; (9)

where to arrive at the last relation we have used the
thermodynamic relation �r ¼ gT4. This illustrates how
all the different quantities grow with the increase in en-
tropy from cycle to cycle. In particular if we can find by
how much the entropy increases in a single cycle we will
know by how much ac increases.
Now below Tc, entropy is generated via energy ex-

change between nonrelativistic matter and radiation.7

Phenomenologically, such energy exchanges can be cap-
tured by generalizing conservation equations [5,9,10] for
the two fluids to

_� r þ 4H�r ¼ T4
cs; _�m þ 3H�m ¼ �T4

cs (10)

which now includes an energy exchange term. We can
easily compute the net entropy increase

_S ¼ _Sr þ _Sm ¼ a3s

�
3brTc

4�1=4
r

� Tc

M

�
¼ a3s

�
Tc

Tr

� 1

�
:

(11)

Since, we want to consider matter converting into radia-
tion, wewill assume s > 0. Consistency with second law of
thermodynamics then means that the quantity within
brackets must be positive. This is nothing but the condition
that the temperature of the nonrelativistic species be
greater than that of the relativistic species, so that energy
flows from the hotter nonrelativistic species to colder

5For an open or a flat universe one just has to rephrase all the
arguments in terms of entropy density rather than the total
entropy and volume of the universe.

6We have ignored the time spent in the thermal bounce phase,
because approximately it is given by: �b �Mp=T

2
c , which is

much shorter than � as long as T4
c � �.

7This is also realizable in the context of a Hagedorn phase as
discussed in Refs. [5,15].
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radiation in accordance with the first law of
thermodynamics.

Since in our picture the two species have the same
temperature Tc, at the transition point, where after Tr

decreases, while the matter ‘‘temperature’’ Tm ¼ M stays
fixed, and Eq. (11) is consistent with both the first and
second laws of thermodynamics. Further note that the
modified continuity equations (10) obviously satisfy con-
servation of the total stress energy tensor. However, the
energy exchange term breaks the time-reversal symmetry
which is ultimately responsible for providing the arrow of
time in the direction of an increasing entropy.

The energy-exchange function s typically depends on
the different energy densities, Hubble rate, and the scale
factor and takes different forms depending upon the differ-
ent processes that one is interested in [35]. Here we will
consider the standard massive particle decay process into
radiation where s is just given by

s ¼ ��m

T4
c

; (12)

� being the decay rate. In this case, the matter continuity
equation can be trivially integrated to give

�m ¼ �m;c

�
ac
a

�
3
e��t: (13)

Before proceeding further we are going to specialize to the
case when the decay time is much larger than the time

period of the cycle, or technically, ��1 � Mp=
ffiffiffiffi
�

p � �.

The entropy generation formula then simplifies to

_S ¼ ��m;ca
3
ce

��t

T4
c

�
a

ac
� 1

�
¼ 3�Sc�e

��t

4þ 3�

�
a

ac
� 1

�
;

(14)

where by Sc we denote the entropy at the beginning of the
cycle at the transition temperature Tc. Since we are con-
sidering ��1 � �, only small amounts of entropy are
produced and to obtain a leading order estimate �Oð��Þ
of the entropy production we can treat�m to be a constant
in the Hubble equation (2). Using the approximations �,
T4
c=� � 1, one can integrate the above equation to obtain

a rather simple result for the entropy growth (see
Appendix A for details):

�S � 0:71Scð��Þ
�
�gT4

c

�

�
1=3

: (15)

Thus, we approximately have

Snþ1

Sn
¼ 1þ �; where � � 0:71� ð��Þ

�
�gT4

c

�

�
1=3

;

(16)

and N ¼ �=3. Therefore, if �� is sufficiently small, the
entropy only increases by a small factor which does not

vary as we go from cycle to cycle, and this is exactly what
we wanted.

III. GRACEFUL EXIT

If we are stuck with a negative cosmological constant,
then the above inflationary phase persists forever and one
can never obtain a universe like ours. However, one can
exit the inflationary phase if instead of a negative cosmo-
logical constant we have a dynamical scalar field whose
potential interpolates between a negative and a positive
cosmological constant asymptotically (see Fig. 2). Since
Vð�Þ ! �� as � ! 1, we can realize the inflationary
phase, but the scalar field keeps rolling toward smaller �
and eventually there comes a (last) cycle when in this last
contraction phase the scalar field can gain enough energy
to zoom through the minimum and reach the dS (positive
vacuum energy) phase. In the context of a multidimen-
sional string landscape [36] one can think of the infla-
tionary phase as scanning of the minima’s with negative
energies before finally transiting to positive energies and
eventually reaching the vacuum where we are sitting right
now, namely, the standard model or minimal supersym-
metric standard model vacuum [37].
To see this in greater details, let us consider a potential

of a scalar field � with the property that it has a minimum
at � ¼ 0 and Vð�Þ ! �� as � ! 1, while Vð�Þ !
�0 � ðmeVÞ4 as � ! �1. For simplicity we will further
assume that the potential increases monotonically on either
side of the minimum.8 Our assumptions also mean that
V0ð�Þ ! 0 as � ! 1, the slope V 0ð�Þ increases as �
decreases, reaches a maximum at some point �> 0, and
then decreases to zero at the minimum, � ¼ 0.
Now, during the inflationary phase which occurs in the

flat negative plateau region,�will slowly roll down, it will
pick up kinetic energy during contractions, and slow down
during expansions. The important point to note here is that
the amount by which the kinetic energy increases during
contraction depends on the slope of the potential. We also
know that in a contracting phase with the increase in
kinetic energy, the total energy density also increases.
This can be seen by simply rewriting the Klein-Gordon
equation

€�þ 3H _� ¼ �V 0ð�Þ � ��3; (17)

) _�� ¼ �3H _�2 > 0 as long as H < 0: (18)

We can try to estimate by how much the total energy

8If we want to mimic the stringy landscape then we should
perhaps add many ripples to the flat parts of the potential. As
long as these ripples are small the dynamics should qualitatively
be the same as we discuss here, but it would be interesting to
study them in future. Also, the overall shape of the potential that
is proposed here is not the only one which will work. Slight
variations, as depicted in Fig. 3, should also be fine.
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density increases in a single contraction phase for a con-
stant slope �3 � V0ð�Þ.

In the constant slope approximation we find (see
Appendix B for details)

��� *
6�6M2

p

5�

�
�gT4

c

�

�
5=3

: (19)

At the start of the turnaround the scalar energy density is
��� and therefore in order for the total energy density to
become positive we require ��� >� which gives us a

rather mild constraint on �:

� *

�
�

Mp

�
1=3

�
�

�gT4
c

�
5=18 � �cr: (20)

Thus we note that if there is a sudden transition from the
nearly flat negative scalar potential with slope �inf � �cr,
to a steeply falling valley region with a slope that is large
enough, �val > �cr, the kinetic energy can overcome the
negative potential energy, so that the total scalar energy
becomes positive.

Once the total scalar energy density is positive, since the
energy density can only increase in the contracting phase,
the scalar field cannot turn back in the negative potential
region (at the turning point this would imply negative total
energy). This is a well known result; see for instance [38].
In the absence of a bounce, the scalar field will continue to
evolve toward left, enter the positive flat part of the poten-
tial, and will become completely dominated by its kinetic
energy, blue shifting as a�6. Eventually � will go all the
way out to�1 leading to the big crunch singularity at t ¼
0.

However, in our scenario before the singularity is
reached the Universe will bounce one last time when the
energy density reaches��b. As long as the bounce occurs
when the scalar field is already in, or is ‘‘sufficiently near
to’’, the flat positive part of the potential, the present
Universe will emerge dynamically with a positive cosmo-
logical constant after the graceful exit from the cycling
inflationary phase. Note, that the Universe cannot turn

around anymore as the scalar energy density is no longer
negative. Moreover, after the bounce since the kinetic
energy of scalar starts to redshift as a�6, even if it domi-
nates matter/radiation, it will quickly become subdominant
ensuring the entry into a matter/radiation dominated uni-
verse. We do not need any additional reheating mechanism.
We are assuming that the matter/radiation phase in our
model contains SM particles.
Finally, one may be worried that since the positive

potential region has an upward slope, after the bounce
the scalar field may be able to turn around and fall into
the negative potential region spoiling the standard cosmo-
logical �CDM cosmological scenario. The reason why we
should be able to avoid this problem quite easily is because
the energy density in the positive flat part is very small
�ðmeVÞ4, and therefore so should be the slope. Therefore,
once the scalar crosses over to the positive part of the
potential, it will essentially not see the potential at all.
Initially the dynamics will be completely dominated by
its kinetic energy, which will redshift as a�6, as in the free
case. This will continue until the kinetic energy becomes
comparable to the potential energy, after which � will
indeed turn around, but it will essentially be completely
Hubble damped until matter density also catches up. At
this point we will enter the ‘‘current’’ acceleration phase,
thus reproducing approximately the standard �CDM cos-
mology. This part of the evolution is similar to the ekpyr-
otic scenario [8].
What happens after the current dark energy phase?

Actually, we have not been completely honest when we
claimed that in our model there is a ‘‘last bounce’’ after
which the Universe enters an everlasting expansion phase.
For a potential such as Fig. 2 after � turns around, it will
again inevitably enter the negative potential region which
therefore causes the Universe to turn around again! The
time scale of such a turnaround is obviously going to be
much larger, at least comparable to our current Hubble
rate, so there is no conflict with current cosmological
observations. Once the Universe starts to contract, its
energy density increases, and it can go past the minimum
again, now moving to the right. At some point the Universe
will bounce again. If by this time the scalar field has
climbed up the negative flat plateau, the whole ‘‘big cycle’’
can begin all over again. Thus in this context when we say
that after the exit from cycling inflation we have the last
expanding phase, we really mean the last in a given big
cycle. We note in passing that if one wishes to avoid these
interesting complications, one can consider slightly differ-
ent potentials such as the ones depicted in Fig. 3.
It is clear that the cosmology with the kind of potentials

that we have been discussing has rich possibilities and
needs a more complete treatment. It is also clear that apart
from �inf , �val, the success of the exit mechanism (for
instance, whether the bounce happens when the scalar field
has already reached the positive potential region) will

Inflation

Exit

Last Bounce

FIG. 2 (color online). Shape of a typical potential.
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depend on �b, and other parameters governing the poten-
tial, such as the mass and depth of the minimum, how
sudden the transition is from the plateau to the fall region,
etc. A detailed numerical exploration of the parameter
space will be provided in the future.

IV. CONCLUSION

We have presented a unique way of realizing inflation
with a negative cosmological constant in a cyclic universe.
Although in each cycle the Universe expands only a little
bit, one can obtain a large number of total inflationary e-
foldings,N tot over many, many cycles. As long asN tot �
60 it is clear that we can explain the present causally
connected large and flat universe, however the issues re-
lated to isotropy and homogeneity are more subtle. For
instance, one may worry that during the bounce when
anisotropies grow it may be lead to a mixmaster type
chaotic behavior. However, the scale factor at the bounce

point grows as S1=3, as the bounce occurs at the same
energy density �b in each cycle. Since anisotropy decays
as �a�6 (see for instance a discussion in [39]), it is clear
then that once the cyclic behavior starts we are going to be
safe from any chaotic mixmaster evolution in subsequent
bounces.

It requires a much more systematic and involved analy-
sis to check that the inhomogeneities do not become non-
linear and spoil the homogeneity of the Universe, and we

are presently studying these issues in details [40].
However, one can make some general arguments which
suggest that we may be safe from such problems in our
model. In general relativity the matter fluctuations � �
��=� can only grow as long as their wavelengths are larger
than the Jean’s length �J given by

�J � cs
Mp

�
where c2s � @p

@�
(21)

is the sound velocity square. Now, in our scenario even in
the matter dominated phase we have some amount of
radiation. In the matter phase the Jean’s length is shortest9

precisely at the transition from radiation to matter

�Jmin �
Mp

�T2
c

: (22)

Thus during matter phase only perturbations with physical
wavelengths larger than �Jmin can grow. On the other hand,
once the wavelengths become large enough that their
wavelengths become larger than the cosmological time

scale, �cos �Mp=
ffiffiffiffi
�

p
, they become super-Hubble fluctua-

tions and evolve according to the Poisson equation

�k ¼ k2�k

a2�
; (23)

where �k is the Newtonian potential characterizing the
metric perturbations. Now, in the super-Hubble phase �k

becomes a constant10 while � oscillates between a mini-
mum and a maximum energy density. Thus we have

�k <
k2�k

a2�min

� k2�kMp

a2
ffiffiffiffi
�

p :

In other words �k falls as a�2 in the super-Hubble phase
just as in ordinary inflation. Physically what is happening is
that although the matter fluctuations can grow, they are
getting diluted over the course of many, many cycles. The
energy density on the other hand is getting created at every
cycle. The overall effect is that � � ��=� keeps decreas-
ing. Thus what the above arguments suggest is that fluctu-
ations on a given comoving scale can only grow when their
physical wavelengths lie between �Jmin < �< �cos and
therefore can only grow a finite amount. Thus as long as
the initial fluctuations are small enough, we should be safe

FIG. 3. Shape of different potentials in the �< 0 region
(de Sitter part of the potential) which can realize a graceful
exit from cycling inflation. The curve with a rising plateau
corresponds to the potential in Fig. 2. The other two curves
correspond to alternatives where either one approaches Vð�Þ !
0 as � ! �1 like in usual quintessence scenarios, or has a
minimum with a small�ðmeVÞ4 positive cosmological constant.

9Although the abundance of radiation (and with it the sound
velocity) decreases as the Universe expands, the energy density
decreases even faster, the net result being an increase in the
Jean’s length.
10There is actually a mode of�k that grows during contraction,
but the same mode starts to decay during expansion after the
bounce [41], and since in our scenario the Universe expands
more than it contracts, we should have a net decaying mode.
There may also be some corrections coming from new physics
which resolve the singularity at the bounce, but for a nonsingular
bouncing solution, we do not expect any drastic behavior for the
perturbations. Moreover, the bounce time scale is much shorter
than the time period of the cycle. Again, this is something we are
trying to study currently in more details.
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from these inhomogeneities. Whether this constitutes a
fine-tuning problem is something that requires a much
more detailed investigation which is currently underway
[40].

Analyzing the detail spectrum of inhomogeneities is
however a much more involved task. It may be tempting
to argue that if the time period of the cycle is much shorter
as compared to the average Hubble expansion rate, then as
a first approximation the perturbations may not see the
effect of the cycles which would then lead to the usual
generation of near scale-invariant perturbations. One can
see that since the Universe is experiencing an overall infla-
tionary growth, for any given mode there will come a time
when the wavelength becomes much larger than the cos-
mological time scale and therefore freeze. Similarly, going
back in the past there comes a time when the wavelength is
in the far ultraviolet and hence just oscillate as in the sub-
Hubble phase in standard inflation. The transition from sub
to super-Hubble phase however is going to be more ex-
tended and complex to understand in our scenario and only
a detailed analysis can determine whether we can retain
approximate scale-invariance of the spectrum.

Finally, we would like to end our discussion by mention-
ing that we have provided a unique example of realizing
inflation through cyclic phases in an anti–de Sitter universe
in a regime where massless and massive nonrelativistic
degrees of freedom are also interacting. Inflation ends via
a transition from a negative cosmological constant to a
positive cosmological constant and this also marks the
graceful exit from the cyclic phase. Our scenario therefore
opens up the possibility of scanning the negative potential
region in the string landscape before finally making the
transition to the Universe as we observe it now.

As emphasized before, whether one can generate a near
scale-invariant spectrum of fluctuations in our model re-
mains a crucial open issue, but at the very least the cycling
inflationary phase may be able to provide ideal initial
conditions for a subsequent low scale inflation.
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APPENDIX A: � AND �S

Here we calculate the approximate time period and the
increase in entropy in a given cycle. We will calculate this
under the approximation that radiation can be neglected as

� � 1 and treat � as a constant as the amount of matter
decay in a given cycle is negligible.
To calculate the time period we start by rewriting the

Hubble equation

dt ¼ da

_a
¼

ffiffiffi
3

p
Mpda

T2
ca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

a3
� �

T4
c

q (A1)

so that the time period is given by

� � 2
ffiffiffi
3

p
Mp

T2
c

Z aT

ac

da

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

a3
� �

T4
c

q ; (A2)

where we have neglected the duration in the thermal
bounce phase as it is going to be much shorter than the
above integral. Now at the transition point we have

�m;c ¼ ��r;c ¼ �gT4
c ) �m ¼ �ga3c (A3)

and the turnaround scale factor is given by

aT ¼
�
�mT

4
c

�

�
1=3 ¼ ac

�
�gT4

c

�

�
1=3 � ac

	
: (A4)

Thus the above integral can be reexpressed as

� ¼ 2
ffiffiffi
3

p
Mpffiffiffiffi
�

p
Z aT

ac

da

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�T4

c

� ðaca Þ3 � 1
q

¼ 2
ffiffiffi
3

p
Mpffiffiffiffi
�

p
Z 1

	

ffiffiffi
y

p
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y3
p : (A5)

Since 	 � 1, we have

� � 2
ffiffiffi
3

p
Mpffiffiffiffi
�

p
Z 1

0
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

1� y3

s
� 3:6Mpffiffiffiffi

�
p : (A6)

In a similar manner we can proceed to calculate the ap-
proximate entropy increase. Firstly, since we have assumed
that �� � 1, we can approximate e��t � 1 in the expres-
sion for _S. From (2) and (14) we then find

dS

da
¼

ffiffiffi
3

p
�ScMp

T2
c

ð aac � 1Þ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

a3
� �

T4
c

q : (A7)

Thus the increase in entropy in a given cycle can be
calculated as

�S ¼ 2
ffiffiffi
3

p
�ScMp

T2
c

Z aT

ac

da

a

ð aac � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

a3
� �

T4
c

q

¼ 2
ffiffiffi
3

p
�ScMpffiffiffiffi
�

p
	

Z 1

	

dy
ffiffiffi
y

p ðy� 	Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y3

p
� 2

ffiffiffi
3

p
�ScMpffiffiffiffi
�

p
	

Z 1

0
dy

y3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y3

p :

Thus we finally have
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�S � 2:6�ScMpffiffiffiffi
�

p
	

� 0:71Scð��Þ
	

: (A8)

APPENDIX B: LAST CONTRACTION PHASE AND
ENERGY INCREASE

Here we will try to estimate by how much the energy
density increases in the last contraction phase when the
scalar field is steeply rolling down toward the valley,
approximately with constant slope �val. The Klein-
Gordon equation for the scalar field can be rewritten as

dðKa6Þ
da

¼ �3
vala

2

H

ffiffiffiffiffiffiffiffiffi
Ka6

p
where K ¼

_�2

2
: (B1)

Now, H is given by

H ¼ �
ffiffiffiffi
�

p
Mp

��
aT
a

�
3 þ ��

�

�
; (B2)

where �� is the energy density of the scalar field. At the

start of the contraction phase �� ��� and then it in-

creases toward zero. Our main aim is to check whether the
energy density can become positive in the contraction
phase. Integrating (B1) we have

ffiffiffiffi
K

p
a3 ¼ ffiffiffiffi

K
p

a3T þ �3
valMpffiffiffiffi
�

p
Z aT

a

daa2

½ðaTa Þ3 � ��

� 	1=2
T >

�3
valMpffiffiffiffi
�

p

�
Z aT

a

daa7=2

a3=2T

;

where the last inequality is valid as long as the scalar
energy density is negative, i.e. �� < 0. We can now per-

form the integration easily, and we have

K >
�6
valM

2
p

�

��
aT
a

�
3 �

�
a

aT

�
3=2

�
2
: (B3)

We are now ready to look at the increase in the total energy
density. Again we start by rewriting the Hubble equation as

d��

da
¼ � 6K

a
) ��� ¼ 6

Z aT

ac

daK

a
; (B4)

where��� is the amount of energy that can increase in the

nonthermal contracting phase. We can use the lower bound
on the kinetic energy derived above (B3) to obtain a lower
bound on the energy increase as well:

��� >
6�6

valM
2
p

�

Z aT

ac

da

a

��
aT
a

�
3 �

�
a

aT

�
3=2

�
2
; (B5)

¼ 6�6
valM

2
p

�

Z 1

	
dx½x�3 � x3=2	2; (B6)

¼ 3�6
valM

2
p

10�
½4	�5 � 5	4 � 80	�1=2 þ 81	: (B7)

Since 	 � 1 we have

��� *
6�6

valM
2
p

5�	5
: (B8)

At the start of the turnaround the scalar energy density is
��, and therefore in order for the total energy density to
become positive we require ��� >� which gives us a

rather mild constraint on �val,

�val *
�1=3	5=6

M1=3
p

: (B9)
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