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We construct an axion model for generating isocurvature fluctuations with blue spectrum, niso ¼ 2–4,

which is suggested by recent analyses of admixture of adiabatic and isocurvature perturbations with

independent spectral indices, nad � niso. The distinctive feature of the model is that the spectrum is blue at

large scales while scale invariant at small scales. This is naturally realized by the dynamics of the Peccei-

Quinn scalar field.
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I. INTRODUCTION

Large-scale structures of the Universe, such as galaxies
and clusters of galaxies, have formed through gravitational
instabilities, initiated by the primordial seed density fluc-
tuations, which were created during inflation. The simplest
initial condition seeded these inhomogeneities is the (al-
most) scale-invariant adiabatic curvature perturbations.
They can fit to very precise measurements of the cosmic
microwave background temperature and polarization an-
isotropies, large-scale structures, and supernovae [1–3]. It
is usually realized by the single-field inflation where the
inflaton fluctuations are responsible for the adiabatic
perturbations.

Generally, there will exist other light fields whose fluc-
tuations during inflation become isocurvature perturba-
tions [4]. Therefore, the admixture of isocurvature and
adiabatic fluctuations could be what really happened in
the early Universe. Observational analyses with the as-
sumption that the spectral indices of the adiabatic and
isocurvature fluctuations are the same, nad ¼ niso ’ 1,
have revealed that the contributions from the isocurvature
perturbation should be small [1,5].

However, there is a priori no reason for the isocurvature
fluctuations to have (almost) scale-invariant spectrum. In
fact, more general analyses with independent spectral in-
dices of adiabatic and isocurvature modes based on recent
observations result in the favor of much more contribution
of the isocurvature component with an extremely blue tilt
(niso ’ 2–4) [6–8].

In this article, we provide a concrete model for generat-
ing isocurvature fluctuations with an extremely blue spec-
trum for the first time.1 It is the axion model in
supersymmetry (SUSY) [10]. Since the axion is a good
candidate of the cold dark matter of the Universe, and has
nothing to do with radiation, it gives rise to uncorrelated
isocurvature fluctuations. The axion isocurvature fluctua-

tion is usually expressed as �a=a ’ H=ð2�Fa�Þ, where H
is the Hubble parameter during inflation, Fa the axion
decay constant, and � a misalignment angle. The key to
produce the blue spectrum is that we promote Fa as a
dynamical field’ � “Fa”, which initially has a large value
’ MP, evolves toward smaller values, and stops at ’ Fa

during inflation. It is realized very simply and naturally in
the SUSY axion model, and we can obtain extremely blue
spectrum such as niso ’ 4 at large scales, which is con-
nected to the scale-invariant spectrum at small scales.
The structure of the article is as follows: In the next

section, we explain the essence to generate the extremely
blue spectrum in a simple model, reduced from the con-
crete model that we provide based on SUSY in Sec. III. We
then show the dynamics of the fields, which leads to the
favorable spectrum in Sec. IV. Our conclusions are given in
Sec. V.

II. HOW TO GET THE BLUE SPECTRUM

Let us consider a toy model of a complex scalar field�,
whose energy density is negligible during inflation.
Fluctuations in the phase direction give rise to an isocur-
vature perturbation, while fluctuations in the radial direc-
tion are negligibly small due to large effective mass in that
direction as shown shortly. Thus, the isocurvarture fluctua-
tion is given by

��

�
’ H

2�’�
; (1)

where we denote� ¼ ’ei�=
ffiffiffi
2

p
. Since the Hubble parame-

ter during inflation is (almost) constant, it is the decreasing
amplitude of ’ that makes the isocurvature perturbation
blue tilted. When the field ’ has mass of OðHÞ, it can roll
down in the potential during inflation, and, in addition, its
fluctuation �’ is suppressed. The reduced potential is
given by

V ’ 1
2cH

2’2; (2)

when ’ has a large field value, and c�Oð1Þ is a constant.
1The possibility to obtain isocurvature fluctuations with some

deviation from scale-invariant was investigated in Ref. [9].
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Then the ’ field obeys the equation

€’þ 3H _’þ cH2’ ¼ 0; (3)

which has a solution of the form ’ / e��Ht with

� ¼ 3

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
c

s
(4)

for 0 � c � 9=4.2 Since the isocurvature fluctuation is
estimated as

�2
iso /

�
�a

’

�
2 �

�
H

’

�
2 / e2�Ht; (5)

its spectral index is given by

niso � 1 � d ln�2
iso

d lnk
¼ 2� ¼ 3� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
c

s
: (6)

Therefore, we obtain the blue spectrum, even extremely
blue such as niso ¼ 4 for c ¼ 9=4. As shown explicitly in
the following sections, the field ’ eventually settles down
in the minimum of the potential placed at ’ ’ Fa.
Thereafter the isocurvature flucutation becomes scale
invariant.

III. AXION MODEL IN SUSY

The axion [11,12] is a Nambu-Goldstone boson associ-
ated with the Peccei-Quinn (PQ) symmetry breaking, and
is the most natural solution to the strong CP problem in
QCD [13]. The PQ symmetry breaking scale Fa is astro-
physically and cosmologically constrained within the
range of 1010–1012 GeV [14]. The axion can be cold
dark matter for the higher values.

Let us consider a concrete model of the axion in SUSY.
We take the following superpotential [10]:

W ¼ hð�þ�� � F2
aÞ�0: (7)

Here, �þ, ��, and �0 are chiral superfields with PQ
charges þ1, �1, and 0, respectively, and h is a constant
of Oð1Þ. The scalar potential is obtained as

VSUSY ¼ h2j�þ�� � F2
aj2 þ h2ðj�þj2 þ j��j2Þj�0j2;

(8)

where we denote the scalar components with the same
symbols as the superfields. One can easily see the existence
of the flat direction, which satisfies

�þ�� ¼ F2
a; �0 ¼ 0: (9)

In addition, SUSY breaking effects lift the flat direction by
soft mass terms

Vm ¼ m2þj�þj2 þm2�j��j2 þm2
0j�0j2; (10)

at low energy scales, where mþ, m�, and m0 are of
OðTeVÞ, as well as the so-called Hubble-induced mass
terms during inflation,

VH ¼ cþH2j�þj2 þ c�H2j��j2 þ c0H
2j�0j2; (11)

where cþ, c�, and c0 are positive constants of Oð1Þ, which
stem from the supergravity effects [15,16].3 Notice that no
Hubble-induced A terms will appear due to PQ symmetry.
We assume H � Fa in order not to destroy the flat direc-
tion (9). Taking into account the fact that �0 ¼ 0 and
mi � Hði ¼ �; 0Þ during inflation, we only consider the
potential of the form

V ¼ h2j�þ�� � F2
aj2 þ cþH2j�þj2 þ c�H2j��j2:

(12)

Owing to the Hubble-induced mass terms, the minimum of
the potential is given by

j�minþ j ’
�
c�
cþ

�
1=4

Fa; j�min� j ’
�
cþ
c�

�
1=4

Fa: (13)

Since it is symmetric between �þ and ��, we consider
j�þj> j��j without loss of generality.4
Nowwemust identify the axion field a. Rewriting�� as

�� � 1ffiffiffi
2

p ’� expði��Þ; �� � a�ffiffiffi
2

p
’�

; (14)

we can define the fields a and b as

a ¼ ’þ
ð’2þ þ ’2�Þ1=2

aþ � ’�
ð’2þ þ ’2�Þ1=2

a�; (15)

b ¼ ’�
ð’2þ þ ’2�Þ1=2

aþ þ ’þ
ð’2þ þ ’2�Þ1=2

a�: (16)

From Eqs. (8) or (12), the potential VðbÞ for the field b is
obtained as

VðbÞ ¼ �h2F2
a’þ’� cos

�ð’2þ þ ’2�Þ1=2
’þ’�

b

�
; (17)

which implies that the mass of b is given by �hð’2þ þ
’2�Þ1=2. Since the field value is ’þ ’ MP initially, and
decreases until it reaches to Fa, as shown in the next
section, mb � H during inflation and hence the b field
quickly settles down into the minimum of the potential. On
the other hand, the potential for the a field is flat, and we
can regard it as the axion. During inflation, the quantum

2One obtains the damping oscillating solution for c > 9=4.
Since it does not suit for our purpose, we only consider for c �
9=4.

3The coefficients of the Hubble-induced mass terms are de-
termined as ci ’ 3ð1� yiÞði ¼ 0;�Þ for the nonrenormalizable
coupling in Kähler potential �K ¼ yij�ij2jIj2=M2

P, where I is
the inflaton and yi’s are the coupling constants.

4Notice that, as shown shortly, the amplitude of the isocurva-
ture fluctuation is determined by the larger between j�þj andj��j, so the spectrum cannot be red tilted.
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fluctuations of a develop as

�a ’ �aþ ’ H

2�
; (18)

where ’þ � ’�, while �b ’ 0 because it is very massive,
mb � H. Thus, �a� ’ �ð’�=’þÞ�aþ. Therefore, we
have

��� ¼ �a�ffiffiffi
2

p
’�

’ � H

2
ffiffiffi
2

p
�’þ

: (19)

The crucial point is that the amplitude of the fluctuation is
determined solely by the larger field value ’þ. Also notice
that the fluctuations in the radial directions �’þ and �’�
are both suppressed due to large curvatures in their poten-
tials, which stem from the first term in VSUSY [Eq. (8)] and
the Hubble-induced mass terms [Eq. (11)].

The axion isocurvature perturbation is given by5

S a � �na
na

� �n�
n�

¼ 2
�a

a
’ Hffiffiffi

2
p

�’þ�þ
; (20)

where na and n� denote the number densities of the axion

and photon, respectively, and we use Eqs. (14) and (18) in
the last equality. Therefore, the isocurvature fluctuation is
written as

�2
SðkÞ ¼ Aiso

�
k

k0

�
niso�1

; Aiso ’ H2

2�2’2þ�2þ

��������k¼k0

:

(21)

Recent analyses of the admixture of adiabatic and isocur-
vature perturbations with independent spectral indices,
nad � niso, reveal that the isocurvature contribution can
be as large as the adiabatic mode at the pivot scale k0,
and the blue spectral index of the isocurvature fluctuation
is favored such as niso � 4 [8].

IV. DYNAMICS OF THE FIELDS AND
ISOCURVATURE FLUCTUATIONS

As shown in the previous section, the amplitude of the
isocurvature fluctuation is solely determined by the larger
field value ’þ with the constant Hubble parameter during
inflation, H ’ const. We therefore need to investigate the
dynamics of ’þ only. It is reasonable to consider that the
fields slide only along the flat direction, so that ’� ¼
2F2

a=’þ, thus the potential can be approximated as

V ’ 1

2
cþH2’2þ þ 2c�H2F4

a

1

’2þ
’ 1

2
cþH2’2þ; (22)

where the last equality holds when ’þ has a large field
value.6 Now we must just follow the same argument dis-

cussed in Sec. II. Since the ’þ field obeys the equation

€’þ þ 3H _’þ þ cþH2’þ ¼ 0; (23)

whose solution is given by the form ’þ / e��Ht with

� ¼ 3

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
cþ

s
; (24)

the isocurvature fluctuation is obtained as

�2
iso /

�
�a

’þ

�
2 �

�
H

’þ

�
2 / e2�Ht; (25)

so that its spectral index becomes

niso � 1 � d ln�2
iso

d lnk
¼ 2� ¼ 3� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
cþ

s
: (26)

Therefore, we obtain the blue spectrum with 1< niso � 4
for 0< cþ � 9=4. The prominent feature of this model is
that ’þ eventually settles down to the minimum of the
potential,

’minþ ’ ffiffiffi
2

p �
c�
cþ

�
1=4

Fa; ’min� ’ ffiffiffi
2

p �
cþ
c�

�
1=4

Fa; (27)

and hence we have scale-invariant spectrum afterwards,
smoothly connected from the blue spectrum at large scales.
The e-folds during the field evolving from ’ MP to ’ Fa

are estimated as

Nblue ’ 1

�
ln

�
MP

Fa

�
; (28)

which gives Nblue ’ 10 for Fa ¼ 1012 GeV and � ¼ 3=2
(cþ ¼ 9=4), for example.
In order to confirm what we have obtained above, we

solve numerically the equations for �þ and �� with the
potential (12). For the sake of numerical calculations, we

decompose the field into real and imaginary parts as�� ¼
ð�R� þ i�I�Þ=

ffiffiffi
2

p
, which leads to the following equations:

€�Rþ þ 3H _�Rþ þ cþH2�Rþ

þ h2

2
½f�Rþ�R� ��Iþ�I� � 2F2

ag�R�

þ ð�Rþ�I� þ�Iþ�R�Þ�I�� ¼ 0; (29)

€�Iþ þ 3H _�Iþ þ cþH2�Iþ

þ h2

2
½�f�Rþ�R� ��Iþ�I� � 2F2

ag�I�

þ ð�Rþ�I� þ�Iþ�R�Þ�R�� ¼ 0; (30)

€�R� þ 3H _�R� þ c�H2�R�

þ h2

2
½f�Rþ�R� ��Iþ�I� � 2F2

ag�Rþ

þ ð�Rþ�I� þ�Iþ�R�Þ�Iþ� ¼ 0; (31)

5The actual observable is SCDM ¼ ð�a=�CDMÞSa / �þ,
where the axion density parameter is �a / �2þ.

6For large ’þ, kinetic terms are reduced to the
normal one as 1

2

P
i¼�@�’i@

�’i ¼1
2 ð1þ 4F4

a

’4
þ
Þ@�’þ@�’þ ’

1
2 @�’þ@�’þ.
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€�I� þ 3H _�I� þ c�H2�I�

þ h2

2
½�f�Rþ�R� ��Iþ�I� � 2F2

ag�Iþ

þ ð�Rþ�I� þ�Iþ�R�Þ�Rþ� ¼ 0: (32)

Some of the examples are shown in Fig. 1. Here, we set
the initial condition as j�þð0Þj ¼ MP. The initial values
for �� and the phases �� are taken so as to stay along the
flat direction (9). We also take h ¼ 1 and c� ¼ 9=4. In the
figure, we show the results for cþ ¼ 9=4, 2, and 5=4,
which correspond to niso ¼ 4, 3, and 2, respectively. One
can see that the amplitude of the field ’þ decreases ex-
ponentially, and eventually stays at the constant value,
which coincides to Eq. (27). This is very attractive, since
there is no blowup of the spectrum at smaller scales, while
having extremely blue tilt even as large as niso ¼ 4 at large
scales over a few orders of magnitude. Notice that the
results remain unchanged even if we vary the Hubble
parameter provided that H � Fa; here, we take a particu-
lar value as H=Fa ¼ 10�2.

Finally, we comment on the initial amplitude of the
fields. The ’þ should be at large field values in the begin-

ning. One of the simple mechanism to realize this situation
is to consider preinflation, where the preinflaton and the
�þ have nonrenomalizable coupling in the Kähler poten-
tial so as to give rise to a negative Hubble-induced mass
term during preinflation. In this case, the initial condition
will be ’þ ’ MP.

V. CONCLUSIONS

We have proposed the concrete model for generating
isocurvature fluctuations with extremely blue spectrum for
some range of the scale. It is based on the axion model in
supersymmetry. The supergravity effects raise the Hubble-
induced mass terms in the potential of the ’� fields. These
Hubble-induced mass terms play two roles. One is that they
suppress the fluctuations in the radial directions, �’�. The
other is to make the fields evolve during inflation. In
particular, the field value of ’þ determines the amplitude
of the axion isocurvature perturbation: the blue tilt is due to
the dynamics of ’þ moving from the large initial value
(�MP) down to the PQ symmetry breaking scale Fa

during inflation. Depending on the coefficient of the
Hubble-induced mass term, cþ, we can obtain 1< niso �
4. The prominent feature of this model is that the blue
spectrum is realized only while ’þ is evolving and after it
settles down into the potential minimum the spectrum
becomes scale invarinat.
The actual scale L where the spectrum is blue is deter-

mined by e-folds N0 after ’þ settles down to Fa. For
example, niso > 1 at L * 1 Mpc for N0 ’ 47 assuming
that the present Hubble radius corresponds to N ’ 55.
Observations of large-scale structures, or even PLANCK,
could see the existence of the isocurvature fluctuations
with a huge blue tilt, which may approve our model in
the near future.
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