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We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and

isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next,

we analyze the spectrum of cosmological perturbations which result from this model. Unless either the

potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain

background solutions which have a sufficiently long period of inflation after the bounce. More interest-

ingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created

from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-

invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is non-

singular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze

the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The

spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is

also scale-invariant, and the tensor to scalar ratio is not suppressed.
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I. INTRODUCTION

Recently, ideas originally due to Lee and Wick [1] were
used to propose [2] a ‘‘Lee-Wick standard model,’’ a
modification of the standard model of particle physics in
which the Higgs mass is stabilized against quadratically
divergent radiative corrections and which in this sense is an
alternative to supersymmetry for solving the hierarchy
problem. The Lagrangian includes new higher derivative
operators for each field. These operators can be eliminated
by introducing a set of auxiliary fields, one for each field of
the original model. The higher derivative terms have op-
posite signs for both the kinetic and mass terms, which
indicates how the quadratic divergences in the Higgs mass
can be cancelled.

Fields with opposite signs of the kinetic term in the
action have recently been invoked in cosmology to provide
models for dark energy. Fields with negative kinetic energy
but positive potential energy are called ‘‘phantom fields’’
[3] and were introduced to provide a possible mechanism
for obtaining an equation of state of dark energy with an
equation of state parameter w<�1, where w ¼ p=�, p
and � being pressure and energy density, respectively. In
addition to the conceptual problems of having phantom
fields (see, e.g., [4]), phantom dark energy models lead to
future singularities. To avoid these problems, the ‘‘quintom
model’’ [5] was introduced. This model contains two scalar
fields, one of them with a regular sign kinetic term, the
second with an opposite sign kinetic term. This model
allows for a crossing of the ‘‘phantom divide,’’ i.e., a
transition of the equation of state from w<�1 to w>
�1. When applied to early universe cosmology, quintom

models can lead to nonsingular cosmological backgrounds
which correspond to a bouncing universe [6,7].
The Higgs sector of the Lee-Wick standard model has

similarities with the Lagrangian of a quintom model: the
Higgs field has a regular sign kinetic term but the auxiliary
field has a negative sign kinetic term. Thus, it is logical to
expect that the Lee-Wick model might give rise to a
cosmological bounce and thus solve the cosmological
singularity problem, in addition to solving the hierarchy
problem. In this article we show that this expectation is
indeed realized.
Given that the Lee-Wick model leads to a cosmological

bounce, the cosmology of the very early universe may be
very different from what is obtained by studying the cos-
mology of the standard model. It is possible to introduce a
potential for the scalar field in order to obtain a sufficiently
long period of inflation after the bounce in order to solve
the problems of standard big bang cosmology and to obtain
a spectrum of nearly scale-invariant cosmological fluctua-
tions. However, this requires fine-tuning of the potential.
On the other hand, given a bouncing cosmology it is
possible that the cosmological fluctuations originate in
the contracting phase, as in the pre–big bang[10] or ekpyr-
otic [11] scenarios. In this article, we study the generation
and evolution of fluctuations in our Lee-Wick type model.
We consider both vacuum and thermal initial conditions for
the fluctuations in the contracting phase and follow the
perturbations through the bounce, a process which can be
done unambiguously since the bounce is nonsingular.
We find that initial quantum vacuum fluctuations in the

contracting phase have the right spectrum to develop into a
scale-invariant spectrum in the expanding phase. What is
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responsible for this result is the fact that there is a coupling
of the growing mode in the contracting phase to the domi-
nant (constant in time) mode in the expanding phase, and
that this coupling scales with comoving wave number as
k2. The Lee-Wick model thus leads to a concrete realiza-
tion of the proposal of [12] (see also [8,9,13] and more
recently [14]) to obtain a scale-invariant spectrum of fluc-
tuations from a matter-dominated contracting phase (see
also [15] for an analysis of gravitational wave evolution in
this background).

The outline of this article is as follows. In the following
section we introduce the Lee-Wick scalar field model
which we will study in the rest of the article. In Sec. III
we study the background solutions of this model, taking
initial conditions in the contracting phase. We show that, at
least at the level of homogeneous and isotropic cosmology,
it is easy to obtain a bouncing cosmology. In Sec. IV we
study how cosmological fluctuations set up in the initial
contracting phase pass through the bounce. The evolution
of the fluctuations is well behaved. Section V contains the
computation of the spectrum of gravitational waves, start-
ing from quantum vacuum fluctuations in the contracting
phase. We end with a discussion of our results.

II. A LEE-WICK SCALAR FIELD MODEL

We will take our starting Lagrangian for the scalar field

�̂ to be

L ¼ 1

2
@��̂@��̂� 1

2M2
ð@2�̂Þ2 � 1

2
m2�̂2 � Vð�̂Þ; (1)

where m is the mass of the scalar field and V is its
interaction potential. The second term on the right-hand
side is the higher derivative term, involving a new mass
scale M.

As discussed in [2], by introducing an auxiliary field ~�
and redefining the ‘‘normal’’ scalar field as

� ¼ �̂þ ~�; (2)

the Lagrangian takes the form

L ¼ 1

2
@��@��� 1

2
@� ~�@� ~�þ 1

2
M2 ~�2

� 1

2
m2ð�� ~�Þ2 � Vð�� ~�Þ: (3)

We thus see that M is the mass of the new scalar degree of
freedom, the ‘‘Lee-Wick scalar’’ which comes from the
extra degrees of freedom of the higher derivative theory.
Note that both the kinetic term and the mass term of the
Lee-Wick scalar have the opposite sign compared the signs
for a regular scalar field. One may worry that the theory is
unstable because of the wrong sign of the kinetic term of
the Lee-Wick scalar [16–18]. However, as was argued in
[19], the perturbative expansion can be defined in a con-
sistent way and the theory is unitary. Building on these
works, a recent study shows that Lee-Wick electrodynam-

ics can be defined consistently as a ghost-free, unitary and
Lorentz invariant theory [20].
By rotating the field basis, the mass term can be diago-

nalized. However, the coupling between the two fields in
the interaction term remains. To be specific, we consider a
quartic interaction term. Thus, the Lagrangian we study is

L ¼ 1

2
@��@��� 1

2
@� ~�@� ~�þ 1

2
M2 ~�2 � 1

2
m2�2

� �

4
ð�� ~�Þ4: (4)

III. BACKGROUND COSMOLOGY

In this section we study the background cosmological
equations which follow from coupling the matter
Lagrangian (4) to Einstein gravity. For a homogeneous,
isotropic and spatially flat universe the metric of space-
time is

ds2 ¼ dt2 � aðtÞ2dx2; (5)

where t is physical time, and x denote the comoving spatial
coordinates. The system of equations of motion consists of
the Klein-Gordon equations

€�þ 3H _�þm2� ¼ ��ð�� ~�Þ3
€~�þ 3H _~�þM2 ~� ¼ ��ð�� ~�Þ3

(6)

for the two scalar fields and the Einstein expansion equa-
tion

H2 ¼ 8�G

3

�
1

2
_�2 � 1

2
_~�
2 þ 1

2
m2�2 � 1

2
M2 ~�2

þ �

4
ð�� ~�Þ4

�
; (7)

where H ¼ _a=a is the Hubble expansion rate and G is
Newton’s gravitational constant. An overdot denotes the
derivative with respect to t. Combining these equations
leads to the following expression for the change in the
Hubble expansion rate:

_H ¼ �4�Gð _�2 � _~�
2Þ; (8)

from which we immediately see that it is possible for the
background cosmology to cross the ‘‘phantom divide’’
_H ¼ 0.
Let us take a first look at how it is possible to obtain a

bouncing cosmology in our model. We assume that the
universe starts in a contracting phase and that the contri-
bution of � in the equations of motion dominates over that
of the Lee-Wick scalar. This will typically be the case at
low-energy densities and curvatures. As the universe con-
tracts and the energy density increases, the relative impor-

tance of ~� compared to � will grow. From (7) it follows
that there will be a time when H ¼ 0–this is a necessary
condition for the bounce point. From (8) it follows that at
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the bounce point _H > 0. Hence, we indeed have a transi-
tion from a contracting phase to an expanding phase, i.e., a
cosmological bounce.

Let us now consider the above argument in a bit more
detail. For the moment we will set the interaction
Lagrangian to zero, i.e., we will assume � ¼ 0. We begin
the evolution during the contracting phase when the energy
density is sufficiently low so that we expect the contribu-
tion of the Lee-Wick scalar to the total energy density to be
small. For these initial conditions, both matter fields will be
oscillating, and the equation of state will hence be that of a
matter-dominated universe. In fact, as follows from the
Klein-Gordon Eqs. (6) which in this case reduce to

€�þ 3H _�þm2� ¼ 0 €~�þ 3H _~�þM2 ~� ¼ 0 (9)

both scalar fields will be performing oscillations with

amplitudes AðtÞ and ~AðtÞ which are blue-shifting (i.e.,
increasing) at the same rate

A ðtÞ � ~AðtÞ � aðtÞ�3=2: (10)

Eventually, the oscillations of the field� will freeze out.
From studies of chaotic inflation [21] it is well known that
this happens when the amplitude A becomes of the order
of the Planck mass mpl, more specifically when

A ¼ ð12�Þ�1=2mpl: (11)

After freeze-out,� will slowly roll up the potential and the
equation of state will shift from w ¼ 0 to w ’ �1 (where
w ¼ p=�, p and � denoting pressure and energy density,
respectively) leading to a deflationary phase during which
the scale factor is decreasing almost exponentially. This
phase is the time reversal of a period of slow-roll inflation.

However, during this period the Lee-Wick field ~� is still
oscillating with rapidly increasing amplitude. Hence, its
contribution to the energy density will rapidly catch up to
that of �.

Let us give a rough estimate of the duration of the
deflationary phase. It will depend crucially on the initial

ratio of the energy density of the Lee-Wick scalar ~� to that
of the regular scalar�. Let us denote this ratio byF . In the
absence of coupling between the two scalar fields, i.e., for
� ¼ 0, the ratio will be unchanged during the period of
matter domination when both fields are oscillating.
However, once � enters the slow-rolling phase, the ampli-

tude ~Awill increase exponentially according to (10) while
that of � will remain virtually unchanged. Thus, the con-
dition on the duration �t of the deflationary phase is

jHj�t � N ¼ 1

3
logðjF j�1Þ: (12)

Thus, to obtain a deflationary phase with N > 50 (which in
the expanding phase will correspond to a period of inflation
of sufficient length to solve the cosmological problems of
the standard big bang model) required severe fine-tuning of

the initial conditions. As we will discuss below, this prob-
lem may be even worse if coupling between the two fields
is allowed.
Once the contribution of the Lee-Wick scalar to the

energy density catches up to that of the original scalar
field, the deflationary phase will end and a cosmological
bounce will occur. Note that once H ¼ 0, the Lee-Wick
scalar is still oscillating whereas � is slowly rolling. Thus,
_H > 0 and we indeed have a transition from contraction to
expansion. This is a behavior which is not possible for
Einstein gravity coupled to matter satisfying the weak
energy condition. However, due to the negative sign of
the kinetic term in the Lagrangian, the weak energy con-
dition is violated in our model. Note that in bouncing
cosmologies obtained in higher derivative gravity models
such as [22], it is the higher derivative gravitational terms
which, when interpreted as matter, lead to a violation of the
weak energy condition.
The duration of the bounce can be estimated as follows:

The maximal amplitude Hm of jHj before and after the
bounce is set by

Hm �m; (13)

since it is determined by the potential energy at the field
value where the slow-rolling of� begins. The amplitude of
_H at the bounce, denoted by _Hb, can in turn be estimated
by

_H b � 4�G _~�
2 � 4�Gm2m2

pl �m2; (14)

where in the first step we have used the fact that the kinetic
energy of � is negligible at the bounce, and in the second
step the fact that the bounce is determined by having the

same absolute value of energy densities of � and ~�, and
that the field value of � at the bounce is about mpl. The

bounce time �tb can now be determined via

_H b�tb ¼ 2Hm: (15)

This gives

�tb �m�1: (16)

Note from the above that the value of Hm is set by the

mass of�, not the mass of ~�. Similarly, the bounce time is
determined by the mass of the original scalar field and not
of its Lee-Wick partner.
After the bounce, the amplitude of the oscillations of the

Lee-Wick scalar exponentially decreases while � is now
slowly rolling down the potential. This is a phase of
inflation which is time-symmetric to the phase of deflation
before the bounce. As we have seen, without fine-tuning of
the initial contribution of the Lee-Wick scalar to the energy
density, the period of inflation will be too small for infla-
tion to solve the various problems of standard cosmology
which inflation was invented to solve [23] (see also [24])
(such as the horizon and flatness problems).
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Let us add some comments on the effects of allowing a
coupling between the two scalar fields. We expect that this
will lead to a gradual flow of energy between the regular
scalar and the Lee-Wick scalar such that at an energy
density corresponding to the scale of the Lee-Wick scalar,
the energy density in the Lee-Wick scalar will begin to
dominate. Thus, allowing for � � 0 will lead to a shorter
deflationary phase and may completely eliminate the pe-
riod of deflation. Complete elimination of the deflationary
phase will occur if the energy density in� is larger thanM4

at � ¼ ð12�Þ�1=2mpl, where G � m�2
pl . This is the case if

(making use of (11))

M< ðð12�Þ�1=2mmplÞ1=2: (17)

The approximate analytical analysis summarized above
is supported by exact numerical results. We have solved the
coupled equations of motion for the scale factor and the

two scalar fields � and ~� numerically. Figure 1 presents
the results in the base of a noninteracting model. We plot
the time evolution of the scalar field � (denoted �1 in the

figure), its Lee-Wick partner ~� (denoted by �2) and the
equation of state parameter w. As is evident, there is a
nonsingular cosmological bounce, there is no deflationary
phase, but the equation of state parameter w crosses the

phantom divide around the bounce point. Note that the
scalar field � stops oscillating near the bounce, whereas
the Lee-Wick scalar continues to oscillate and therefore
increases in magnitude by a large factor during the latter
stages of the contracting phase (which is why we have

plotted the time evolution of ~� on two different scales).
Note that in the noninteracting model, the bounce is

symmetric. In Fig. 2 we present the corresponding figure
in the case of an interacting model with the value of �
chosen to be � ¼ 1:64� 10�15. In this case, the bounce is
clearly asymmetric. As a second major difference com-
pared to the simulation of Fig. 1, the ratio of masses was
chosen to be almost 100 in this case as opposed to only 2 in
the first simulation. Because of the large ratio of the masses
(and the corresponding initial conditions for which the

energy in � greatly dominates over than in ~�), the back-
ground evolution enters a brief deflationary phase at the
end of the contraction phase. However, due to the presence
of interactions, the energy density in � does not come to
dominate again right after the bounce and hence the period
of inflation which would be the time reversal of the phase
of delation is absent.
Finally, in Fig. 3 we plot the number of e-foldings of the

deflationary phase as a function of the ratio of �� to � ~�, in

FIG. 1 (color online). Evolution of the background fields �, ~� and of the background equation of state parameter w in a
noninteracting model as a function of cosmic time (horizontal axis). The background fields are plotted in dimensionless units by
normalizing by the mass Mrec ¼ 10�6mpl. Similarly, the time axis is displayed in units of M�1

rec . The mass parameters m and M were

chosen to be m ¼ 5Mrec and M ¼ 10Mrec. The initial conditions were �i ¼ 1:74� 103Mrec, _�i ¼ 1:44� 104M2
rec, ~�i ¼ 8:98Mrec,

_~�i ¼ �14:08M2
rec.
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the model without interactions between the two scalar
fields. As predicted by our analytical approximations, the
scaling of the period of deflation as a function of the ratio is
roughly logarithmic.

IV. COSMOLOGICAL FLUCTUATIONS

A. General considerations

It is useful to first consider the space-time sketch (4) of
our nonsingular bouncing cosmology. We choose the
bounce time to correspond to t ¼ 0. Long before the
bounce, the equation of state is that of matter. During
this period, the Hubble radius is decreasing linearly and
_H < 1. At a time denoted �tR (in analogy with the nota-
tion in inflationary cosmology) there is a transition to a
period of deflation during which the Hubble radius jHj�1 is
constant. However, as argued in the previous section, this
period will be of short duration and ends at a time�ti when
a brief bouncing phase covering the time interval �ti <
t < ti begins. During this period _H > 0. After the bouncing
phase there is a short period of inflation lasting from ti to
tR, after which the universe enters a matter-dominated
expansion phase with _H < 0.
In Fig. 4 we also plot the evolution of the physical length

corresponding to a fixed comoving scale. This scale is the
wavelength of the fluctuation mode k (k standing for the
comoving wave number) which we want to follow. The
wavelength begins in the matter-dominated phase of con-
traction on sub-Hubble scale, exits the Hubble radius dur-
ing this phase at a time which we denote �tHðkÞ, and
reenters the Hubble radius during the matter-dominated
phase at the time tHðkÞ.

FIG. 3 (color online). Plot of the duration of the deflationary
phase as a function of the ratio of energy densities of � and ~�
(horizontal axis). The duration (vertical axis) is shown in terms
of the e-folding number of deflation.

FIG. 2 (color online). Evolution of the background fields �, ~� and of the background equation of state parameter w in a
noninteracting model as a function of cosmic time (horizontal axis). The background fields are plotted in dimensionless units by
normalizing by the mass Mrec ¼ 10�6mpl. Similarly, the time axis is displayed in units of M�1

rec . The mass parameters m and M were

chosen to be m ¼ 1:4� 10�1Mrec and M ¼ 10Mrec. The initial conditions were �i ¼ �3:57� 103Mrec, _�i ¼ 5:56� 102M2
rec, ~�i ¼

2:98� 10�6Mrec,
_~�i ¼ �1:39� 10�6M2

rec.
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Note that if the energy density at the bounce point is
given by the scale � of Grand Unification (�� 1016 GeV),
then the physical wavelength of a perturbation mode cor-
responding to the current Hubble radius is of the order of
1 mm, i.e., in the far infrared. In this sense, the evolution of
fluctuations in this bouncing cosmology is free of the trans-
Planckian problem [25,26] which effects the evolution of
fluctuations in all inflationary models in which the period
of inflation lasts more than about 70 e-foldings (this num-
ber assumes that the scale of inflation is of the order of
Grand Unification).

Since our bounce is nonsingular, the computation of the
evolution of fluctuations is free of the matching condition
ambiguities which affect the study of fluctuations in sin-
gular bouncing cosmologies such as the epyrotic scenario
(see [27–32] for some early papers on the problem of
matching fluctuations through the bounce in ekpyrotic
cosmology).

There is another important difference in the study of
cosmological fluctuations between nonsingular bouncing
cosmologies and the inflationary scenario. It is usually
argued that the exponential expansion of space during
inflation red-shifts any preexisting matter and the related
matter fluctuations, leaving behind a vacuum matter state.

Thus, perturbations in this setup are quantum vacuum
fluctuations [33]. On the other hand, in a bouncing cos-
mology the fluctuations are set up at low densities and
temperatures in the contracting phase. There is no mecha-
nism that red-shifts initial classical fluctuations. Thus,
there is no reason to prefer vacuum over thermal initial
perturbations. In the following, we will consider both
choices.

B. Equations for cosmological perturbations

We begin by writing the metric including cosmological
fluctuations in longitudinal gauge, assuming that there is
no anisotropic stress (see [34] for a comprehensive dis-
cussion of the theory of cosmological perturbations and
[35] for a briefer survey)

ds2 ¼ að�Þ2½ð1þ 2�Þd�2 � ð1� 2�Þdx2�; (18)

where �ðx; tÞ is the generalized Newtonian gravitational
potential which represents the metric fluctuations. It is
convenient to write the equations in terms of conformal
time � defined via dt ¼ aðtÞd�.
The Einstein equations linearly expanded in � lead to

the following equation of motion for the Fourier mode of�
with comoving wave number k:

�00 þ 2

�
H ��00

�0

�
�0 þ 2

�
H 0 �H

�00

�0

�
�þ k2�

¼ 8�G

�
2H þ�00

�0

�
~�0� ~� (19)

where the derivative with respect to conformal time is

denoted by a prime, H � a0=a, and � ~� is the fluctuation

in ~�. In deriving this equation, we have assumed that the
background is dominated by the field �. This will be the
case except at the bounce.
In inflationary cosmology, it has proven to be convenient

to use the variable � , the curvature fluctuation in comoving
gauge, which in terms of � is given by

� ¼ �þ H
H 2 �H 0 ð�0 þH�Þ: (20)

In any eternally expanding universe in which 1þ w � 0,
the variable � is conserved on super-Hubble scales in the
absence of entropy fluctuations [36–38], since—neglecting
terms of the order k2—the equation of motion (19) for� is
equivalent to

ð1þ wÞ _� ¼ 0: (21)

When considering the quantum theory of cosmological
perturbations, it is important to identify the fluctuation
variable which has a canonical kinetic term. It is with
respect to this variable, commonly denoted by v, that the
canonical commutation relations must be imposed (see
[39,40] for the quantum theory of cosmological perturba-
tions). It turns out that the variable is simply related to �

| | 1

Xx

B+

B

B-

1/k

FIG. 4 (color online). A sketch of the evolution of scales in a
bouncing universe. The horizontal axis is a comoving spatial
coordinate, the vertical axis is conformal time. Plotted are the
Hubble radius jH j�1 and the wavelength � of a fluctuations
with comoving wave number k.
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v ¼ z�; (22)

where the background variable z is the following combi-
nation of the background metric and the background matter
field � (for simplicity we are assuming here only one
matter field):

z ¼ a�0

H
: (23)

If the equation of state is constant in time, then zð�Þ is
proportional to að�Þ.

The equation of motion for v is

v00 þ
�
k2 � z00

z

�
v ¼ 0: (24)

On sub-Hubble scales, it follows from (24) that v is per-
forming harmonic oscillations as a function of conformal
time. On the other hand, on super-Hubble scales v is frozen
in and vð�Þ � zð�Þ.

In terms of the variable z, the relationship between the
metric fluctuation � and the canonical field v takes the
form [34]

� ¼ 4�G

k2
�02
H

�
v

z

�0
: (25)

The variable � has proven to be a convenient variable to
use in inflationary cosmology. It was therefore taken for
granted that it would also be a useful variable in bouncing
cosmologies, and that it would remain conserved between
when the mode k exits the Hubble radius during the period
of contraction at the time �tHðkÞ and the time tHðkÞ of
reentry in the expanding phase. In the context of singular
bouncing cosmologies, the Hwang-Vishniac [41]
(Deruelle-Mukhanov [42]) matching conditions for fluctu-
ations across the singularity lead to the conclusion that �
should be conserved. However, as pointed out in [32], the
applicability of these matching conditions is questionable
since the matching conditions are not satisfied by the
background.

Nonsingular bouncing cosmologies do not require ad-
hoc matching conditions—the fluctuations can be followed
through the bounce (as long as their amplitude remains
sufficiently small such that linear perturbation theory does
not break down). As has recently been shown in several
examples of nonsingular bounces, the equation of motion
for � develops singularities around the bounce point [43–
45], whereas the equation of motion for � remains well
defined. One of the reasons for the singularities in the
equation of motion for � is that the comoving gauge has
a singularity at a cosmological bounce. Thus, in the follow-
ing we will follow the evolution of the fluctuations in terms
of �.

If the initial fluctuations in the contracting phase are due
to thermal matter, then the initial values of � and its
derivative follow from the perturbations in the energy

density of matter. If, on the other hand, we assume vacuum
initial fluctuations, then the initial inhomogeneities are
given in terms of the canonical variable v,and the initial

values of� and _� must be induced from v via the relation
(25).

C. General solutions

Let us briefly review the general solution of the equation
of motion (19) for� on super-Hubble scales. We will keep
the discussion quite general in this subsection and assume
that the equation of state parameter is given by some w. In
this case, aðtÞ scales as

aðtÞ � tp (26)

with

p ¼ 2

3ð1þ wÞ : (27)

From the definition of conformal time� it then follows that

�� t1�p: (28)

The condition for the Hubble radius crossing time tHðkÞ
for a mode with comoving wave number k is

aðtHðkÞÞk�1 ¼ H�1ðtHðkÞÞ � tHðkÞ: (29)

Hence

�HðkÞ � k�1: (30)

As is well known, one of the two modes of � on super-
Hubble scales is constant, whereas the other is decaying in
an expanding universe and growing in a contracting one.
Specifically we have (see, e.g., [12])

�ðk; �Þ ¼ DðkÞ þ SðkÞ��2	; (31)

where

2	 ¼ 5þ 3w

1þ 3w
; (32)

and whereDðkÞ and SðkÞ are independent of time and carry
the information about the spectra of the two modes. In the
following, we will determine the spectra of these two
modes for various thermal and vacuum initial conditions.

D. Thermal initial conditions

Here we assume that the initial fluctuations are given by
thermal matter perturbations. As was done in the case of
string gas cosmology [46,47] (see [48] for a recent com-
prehensive review), we follow the matter perturbations up
to Hubble radius crossing and then convert to metric
fluctuations by making use of the perturbed Einstein con-
straint equation (the time-time component of the perturbed
Einstein equations) which reads

� 3H ðH�þ�0Þ þ r2� ¼ 4�Ga2�T0
0 : (33)
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In the above, �T0
0 is the fluctuation in the energy density,

and r is the comoving spatial gradient. At Hubble radius
crossing all three terms on the left-hand side of the above
equation are of the same order of magnitude. Hence,
modulo a constant of the order 1, the Fourier space corre-
lation function of � becomes

hj�ðkÞj2i ¼ 16�2G2k�4a4hj�T0
0ðkÞj2i; (34)

where the pointed brackets indicate ensemble averaging.
The energy density fluctuations are determined by ther-

modynamics. First, we express the momentum space en-
ergy density correlation function for comoving wave
number k in terms of the rms position space mass fluctua-
tion

�MðRÞ2 ¼ R3hj�T0
0ðkÞj2i; (35)

where R ¼ ak�1 is the physical radius of the region cor-
responding to the wave number k. The mass fluctuations
are determined by the specific heat capacity CV

�MðRÞ2 ¼ T2CVðRÞ; (36)

where T is the temperature of the system. For a gas of point
particles, the heat capacity is proportional to R3, i.e.,

CVðRÞ ¼ cVT
3R3; (37)

where cV is a constant. Note that this result is in agreement
with the intuition that on scales larger than the thermal
correlation length T�1, the heat capacity scales as a ran-
dom walk.

Inserting (35)–(37) into (34) we obtain the following
power spectrum for �:

k3hj�ðkÞj2i ¼ 16�2G2k�1T5cV: (38)

We need to evaluate this expression at Hubble radius
crossing tHðkÞ since we will be using the corresponding
value as the initial condition for the evolution of � on
super-Hubble scales:

k3hj�ðkÞj2iðtHðkÞÞ ¼ 16�2G2k�1T5ðtHðkÞÞcV: (39)

We now use (39) to infer the power spectra of the S and
D modes in the case of thermal matter initial conditions.
We are assuming that the initial value of � at Hubble
radius crossing gets distributed equally among the two
modes The power spectrum PDðkÞ of the constant mode
D is the same as that of � at Hubble radius crossing

PDðkÞ � k�1þð5p=ð1�pÞÞ (40)

where the second exponent comes from making use of

TðtHðkÞÞ � a�1ðtHðkÞÞ � tHðkÞ�p � kp=ð1�pÞ: (41)

The power spectrum of S is the spectrum of� at Hubble
radius crossing modulated by the factor �HðkÞ2	:

PSðkÞ � k�1þð5p=ð1�pÞÞ�4	: (42)

In the example we are interested in, fluctuations leave
the Hubble radius in the matter epoch and hence p ¼ 2=3
and w ¼ 0. Thus, from the above we see that the spectra of
D and S scale as

PDðkÞ � k9 PSðkÞ � k�1: (43)

The spectrum of the D mode is extremely blue. The blue
tilt is due to the thermal suppression of the spectrum at
large wavelengths. It is also easy to understand why the
spectrum of the S mode is less blue than that of the D
mode: the Smode grows on super-Hubble scales, and large
wavelength modes experience the growth for a longer
period of time. Our calculation shows that the difference
in growth on super-Hubble scales dominates over the
thermal suppression of long wavelength modes.

E. Vacuum initial conditions

Vacuum initial conditions are given in terms of the
canonically normalized variable vk being in its quantum
vacuum state [34]

vkð�Þ � k�1=2ei�k: (44)

Inserting this into (25) and making use of the fact that on
sub-Hubble scales the derivative of the oscillating factor
dominates over the derivative of other terms leads to the
following initial conditions in terms of �:

�kð�Þ � i
4�G

k3=2
�02
zH

; (45)

i.e., a spectrum which is proportional to k�3=2. The same
conclusion can be reached [28] by starting with vacuum
fluctuations in the matter field � and inserting the result

into the equations expressing � and _� in terms of the
matter field. Making use of (23) to eliminate z and of the

background Friedmann equation to eliminate _� in favor of
H, we find the following result for the power spectrum of
�:

P�ðk; �Þ � 1

2�2
k3j�kð�Þj2 ’ 3

�

�
Hð�Þ
mpl

�
2
: (46)

Making use of the definition of z from (23) it follows that
the time-dependent terms in (45) scale as H�1. Thus,

�kðtÞ � k�3=2t�1; (47)

which allows us to evaluate the result at Hubble radius
crossing

�kðtHðkÞÞ � k�ð3=2Þþð1=ð1�pÞÞ: (48)

The above result (48) allows us to compute the spectra of
both D and S modes of � on super-Hubble scales, assum-
ing—as we did in the previous subsection—that�kðtHðkÞÞ
sources both modes equally:

�DðkÞ � k�ð3=2Þþð1=ð1�pÞÞ (49)
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�SðkÞ � k�ð3=2Þþð1=ð1�pÞÞ�2	: (50)

In the case we are interested in p ¼ 2=3, w ¼ 0 and 2	 ¼
5 we obtain

�DðkÞ � k3=2 (51)

�SðkÞ � k�7=2: (52)

Note that, as pointed out in [12], the S mode leads to a
scale-invariant spectrum of fluctuations of � in the con-
tracting phase.

This compares to the results obtained for ekpyrotic type
contraction [28] where p ¼ 0, w ¼ 1 and 2	 ¼ 1 and
therefore

�DðkÞ � k�1=2 (53)

�SðkÞ � k�3=2; (54)

which leads to a scale-invariant spectrum for the S mode
which is growing in the phase of contraction.

As we expect from the Hwang-Vishniac (Deruelle-
Mukhanov) matching conditions, the S mode in the con-
tracting phase will couple with a k2 suppression to the
dominant mode in the expanding phase. If this is realized,
we will obtain a scale-invariant spectrum of curvature
fluctuations in the expanding phase. In the following sub-
section we will evolve the fluctuations through the non-
singular bounce and infer the spectrum at late times. We
indeed find a late-time scale-invariant spectrum.

F. Evolution of the fluctuations through the bounce

Let us step back and write down the equation of motion
for � in a slightly modified form (which is equivalent to
(19) except that we allow for a general speed of sound cs
which is equal to 1 in our scalar field model)

�00
k þ 2
H�0

k þ k2c2s�k ¼ 0; (55)

where


 � � €H

2H _H
: (56)

1. Contracting phase

In the contracting phase Eq. (55) takes the form

�00
k þ

1þ 2	c

�� ~�B�
�0

k þ k2c2s�k ¼ 0; (57)

with

	c � 5þ 3wc

2ð1þ 3wcÞ ; (58)

where the subscript ‘‘c’’ indicates that we are discussing
the contracting phase. The general analytical solution is

�k ¼ ð�� ~�B�Þ�	cfk�	cD�J	c
½cskð�� ~�B�Þ�

þ k	cS�J�	c
½cskð�� ~�B�Þ�g; (59)

where the coefficientsD� and S� can be determined by the
initial condition of the gravitational potential as described
in the two previous subsections for different sets of initial
conditions. In the above, �B� is a fixed time that corre-
sponds to when the singular bounce would occur if the
universe were to remain matter-dominated.
Note that, when the wavelength of the perturbation is

larger than the Hubble radius with k � jH j, the asymp-
totical form of �k can be written as

�c
k ¼ �D� þ

�S�
ð�� ~�B�Þ2	c

; (60)

where we define

�D� � c	c
s D�

2	c�ð1þ 	cÞ ;
�S� � 2	cS�

c	c
s �ð1� 	cÞ : (61)

As discussed in previous subsections, the �D� mode is
constant and the �S� mode is growing in a contracting
universe. Note from the definition of �k we have to leading
order in k

�ck ¼ 5þ 3wc

3ð1þ wcÞ
�D�: (62)

Thus, to this order, in the contracting phase �k is deter-
mined by the constant mode of �k which is subdominant.
As discussed in detail in [28] the S mode does affect �
when k2 corrections to the solutions are taken into account.
If we match the asymptotic form for� (60) to the initial

power spectrum of � (see (46)) at the Hubble radius
crossing and assume that the initial power is equally dis-
tributed into the two modes, we obtain

1

2�2
k3jS�ðkÞj2 ’ 3

�
m2

pltHðkÞ�2�HðkÞ4	c ; (63)

where the subscript H stands for the time of Hubble radius
crossing.

2. Bouncing phase

As we have shown in the section on the background
dynamics, the contribution of the higher derivative terms in
the Lee-Wick model becomes more and more important as
the universe contracts and will lead to a nonsingular
bounce. Thus, the universe will exit from the phase of
matter-dominated contraction at some time tB�, and then
the equation of state (EoS) of the universe will cross �1
and fall to negative infinity rapidly. Correspondingly, the
Hubble parameter reaches zero and leads to a bounce of the
universe at the time �B. After the bounce, the Lee-Wick
field will recover its normal state with the higher derivative
terms rapidly decreasing in importance.
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It is rather complicated to solve the perturbation equa-
tion directly from Eq. (55). In order to solve the equation
analytically, we need to make some approximations to
simplify it. Our approximation consists of choosing a
convenient modelling of the Hubble parameter near the
bounce of the form

H ¼ �t (64)

with some positive constant � which has dimensions of k2

and whose magnitude is set by the microphysics of the
bounce, in our case by the massM of the Lee-Wick scalar.
The time of the bouncewas chosen to be t ¼ 0. In this case,
we can obtain an analytical form for the comoving Hubble
parameter in the bouncing phase:

H ¼
y
3 ð�� �BÞ

1� y
6 ð�� �BÞ2

; y ¼ 12

�
�a2B; (65)

where aB denotes the value of the scale factor at the bounce
point �B.

Since the above parametrization should be valid only in
the neighborhood of the bounce point, the quadratic and
higher order terms of j�� �Bj can be neglected.
Consequently, the perturbation equation takes the follow-
ing form:

�00
k þ 2yð�� �BÞ�0

k þ
�
c2sk

2 þ 2

3
y

�
�k ¼ 0: (66)

The solution of this equation can be written as

�k ¼
�
EkHl½ ffiffiffi

y
p ð���BÞ�þFk1F1

�
� l

2
;
1

2
; yð���BÞ2

��
� exp½�yð���BÞ2�; (67)

which is constructed from the l-th Hermite polynomial and
a confluent hypergeometric function with

l � � 2

3
þ c2sk

2

2y
(68)

and two undetermined coefficients Ek, Fk. These two
functions are linearly independent, and their asymptotical
behaviors are mainly determined by the parameter l.

When c2sk
2 � y, i.e., the wave number of the mode is

larger than the mass scale of the bounce, then both func-
tions are oscillating. This case was already studied in
Ref. [45].

However, in the current article we are interested in the
opposite limit, the limit in which the wavelength is much
larger than the inverse mass scale of the bounce, i.e., the
limit when

c2sk
2 � y: (69)

As we have argued in the section of our article on the
background evolution, the bounce takes place very fast and
thus the condition (69) will be satisfied for all wavelengths
we are interested in. In this case, we can expand the

solution of the perturbation equation in a power series in
terms of

ffiffiffi
y

p ð�� �BÞ. Then the solution is given by

�b
k ¼ F̂k þ Êk

ffiffiffi
y

p ð�� �BÞ þ ð�1� lÞF̂kyð�� �BÞ2
þOðy3=2ð�� �BÞ3Þ; (70)

with

Ê k � � 21þl
ffiffiffiffi
�

p
�ð� l

2Þ
Ek; (71)

F̂ k � 2l
ffiffiffiffi
�

p
�ð1�l

2 ÞEk þ Fk; (72)

and the subscript ‘‘b’’ represents the bouncing phase. In
this case, we have

�bk ’ F̂k

�
1þ c2sk

2

2
ð�� �BÞ2

�
: (73)

Therefore, the conservation of �k is realized by the mode

F̂k when the bounce is fast enough.

Now we study how to establish the coefficients Êk and

F̂k. We need to use the Hwang-Vishniac [41] (Deruelle-
Mukhanov [42]) matching condition to link the fluctua-
tions in contracting phase with those in the bouncing phase
at the momentum �B�. Note that since we are matching
two contracting universes across a nonsingular surface, the
background satisfies the matching conditions, unlike the
situation in the ekpyrotic scenario with a singular bounce,
Thus, it is justified to apply the matching conditions [32].
The matching conditions say that both �k and

�̂ k � �k þ c2sk
2

3

�k

H 2 �H 0 (74)

are continuous on the matching surface of constant energy
density. Taking use of matching conditions in the solutions
(60) and (70), we can obtain the following relations:

Êk

ffiffiffi
y

p ð�B� � �BÞ ¼ �
�
1

3
þ 2l

�
�c

k � �̂ckjB�;

F̂k ¼
�
4

3
þ 2l

�
�c

k þ �̂ckjB�: (75)

These relations show that the constant and growing modes
of gravitational potential get mixed during the bounce.
However, if we consider large wavelengths compared to
the duration of the bounce, the second relation shows that
�k is indeed conserved across the bounce.

3. Expanding phase

After the bounce, the higher derivative terms of the Lee-
Wick field rapidly decay. Therefore, a phase of matter-
dominated expansion starts at the time �Bþ. In the absence
of interactions between the two scalar fields, the back-
ground cosmology will be time-symmetric about the
bounce point. During the period after �Bþ the background
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evolution is the time reverse of the contracting phase. In the
case � � 0 an asymmetric bounce is possible. To render
our analysis more general, we assume that the equation of
state in the expanding phase is we which could be different
from that in the contracting stage which is wc.

The equation of motion for the gravitational potential is
similar as Eq. (57) but with the indexes

	e � 5þ 3we

2ð1þ 3weÞ (76)

and ‘‘Bþ’’ instead of 	c and ‘‘B�’’. Then the solution on
super-Hubble scales takes the form

�e
k ¼ �Dþ þ

�Sþ
ð�� ~�BþÞ2	e

; (77)

with

~�Bþ � �Bþ � 2

1þ 3we

1

H Bþ
: (78)

The �Dþ mode of the gravitational potential is constant in
time, as is the �D� mode in contracting phase. However, the
role of the Smode is very different. In the expanding phase
�Sþ is the subdominant decreasing mode, whereas in the
contracting phase �S� is the dominant expanding mode.
Therefore, the dominant mode of the curvature perturba-
tion in the period of expansion is �Dþ. As we will show in
the following, it inherits contributions from both �D� and
�S� since these modes mix during the bounce.
To determine the coefficients of the two modes in the

expanding phase, we need to apply the matching condition
again, this time at the surface �Bþ. A straightforward
calculation yields

Êk

ffiffiffi
y

p ð�Bþ � �BÞ ¼ �
�
1

3
þ 2l

�
�e

k � �̂ekjBþ;

F̂k ¼
�
4

3
þ 2l

�
�e

k þ �̂ekjBþ: (79)

Note again that it is justified to apply the matching con-
ditions since the universe is expanding on both sides of the
matching surface and thus the background also satisfies the
matching conditions.

By combining Eqs. (75) and (79), we can establish the
relation between the gravitational potentials in contracting
and expanding phases. Since �Sþ is a decaying mode, we
will not write down its expression and focus our attention
instead on the dominant mode �Dþ. In terms of the modes in
the contracting phase, it is given by

�Dþ ¼ ð5þ 3wcÞð1þ weÞ
ð1þ wcÞð5þ 3weÞ

�D� þ 3ð1þ weÞ
ð5þ 3weÞ c

2
sk

2

�
�
�Bþ � �B

�B� � �B

Mþ
�

2 �D�
3ð1þ wcÞ

�
�S�

ð�B� � ~�B�Þ2	c

�
� 5þ 3wc

3ð1þ wcÞMþ �D�

þM�
�
�D� þ

�S�
ð�B� � ~�B�Þ2	c

��
þOðk4Þ; (80)

where we defined the parameters

M� � 2

9H 2
B�ð1þ we

cÞ
þ 1

y
; (81)

which are independent of k.
From the above result we see that both the constant and

growing modes of gravitational potential in the contracting
phase affect the dominant mode after the bounce. However,
the growing mode is suppressed by k2 on large scales
whereas the constant one transfers through the bounce
without a change in the spectral index. These results agree
with what is obtained using the matching conditions at a
singular hypersurface between the contracting and the
expanding phase, as shown in [29].
Inspecting our result (80), we see that there are twoways

to obtain a scale-invariant spectrum of cosmological per-
turbations after the bounce. The first is to consider a model
in which theD�mode in the contracting phase has a scale-

invariant spectrum, i.e., D� ðkÞ � k�3=2, the other is to

take a scenario where S� ðkÞ � k�7=2. As follows from
(49), the first possibility is realized if p ¼ 1, i.e., in an
inflationary contracting phase. The second way is realized
in the case of a matter-dominated contraction, a possibility
already pointed out in [12] (see also [49]. The Lee-Wick
model yields a natural realization of this way.
Let us now come back to our Lee-Wick background, and

assume quantum vacuum fluctuations. We insert the values
wc ¼ we ¼ 0, cs ¼ 1 into (80) and assume a symmetric
fast bounce. Thus

�Dþ ¼ �D� þ
�
� 4

5
�D� þ 3

5

H 5
B�

24
�S�
�

2k2

9H 2
B�

: (82)

As discussed in the subsection on vacuum initial condi-
tions, then if the initial conditions are imposed at a time �
sufficiently early compared to the transition point B� , we

have �ini
k / k�ð3=2Þ and therefore obtain �D� / k3=2 and

�S� / k�ð7=2Þ. Substituting these relations into Eq. (82),
one can see that whereas the contribution of �D� to the
final spectrum of Dþ vanishes on large scales, the contri-
bution of �S� which starts out deep red is blue-tilted by
exactly the right amount to yield a final spectrum propor-

tional to k�ð3=2Þ which is the scale-invariant form.
To compute the amplitude of the spectrum, we insert the

values (81) and the expression (63) for the value of S� into

NONSINGULAR COSMOLOGY WITH A SCALE-INVARIANT . . . PHYSICAL REVIEW D 80, 023511 (2009)

023511-11



(82) and use the background Friedmann equation to re-
place the Hubble parameter by the energy density. This
yields

�Dþ ¼ �
ffiffiffiffiffiffiffiffiffi
�B�

p
10

ffiffiffi
2

p
M2

p

k�ð3=2Þ: (83)

Therefore, the power spectrum of the gravitational poten-
tial in this case can be expressed as

P� � k3

2�2
j �Dþj2 ¼ �B�

ð20�Þ2M4
p

: (84)

Note that as long as M � Mpl, the power spectrum of

metric fluctuations remains much smaller than 1, and thus
linear perturbation theory is applicable throughout the
bouncing phase.

G. Numerical analysis

Our analytical calculations involve approximations.
Specifically, in the contracting phase the scalar fields and
hence the equation of state are oscillating. But in our
analytical analysis we have replaced the time-dependent
equation of state parameter by its temporal average. It is
thus important to confirm the results by numerical integra-
tion of the full equations, namely, Eq. (19) coupled to the
equation for the scalar matter field fluctuation.

At first sight, it appears that Eq. (19) contains a singu-
larity at all turnaround points of �. Such singularities are
known from the study of the evolution of � during reheat-
ing taking into account the oscillatory nature of the inflaton
field [50,51]. However, this singularity is actually not
present. Let us consider in addition to the dynamical
perturbed Einstein Eq. (19) the perturbed Einstein con-
straint equation

�0 þH� ¼ 4�Gð�0��� ~�0� ~�Þ: (85)

Inserting (85) into (19) yields

�00 þ 6H�0 þ 2ðH 0 þ 2H 2Þ�þ k2�

¼ 8�G

�
2H þ�00

�0

�
�0��; (86)

from which it is clear that the singularity has disappeared.
Thus, we numerically solve (86) coupled to the perturbed
� equation

��00 þ 2H��0 þ ðk2 þ a2V��Þ��
¼ 4�0�0 � 2a2V��; (87)

where the subscripts on V indicate the variables with
respect to which the potential is differentiated.

Figures 5 and 6 show the results of our numerical
integration. The first figure shows the evolution in time
of the metric fluctuation � as a function of physical time
(left side) and conformal time (right side) for different
values of the comoving wave number k. We have chosen

the bounce point to correspond to physical and conformal
time 0. The initial conditions for � were set at the initial
time of the simulation according to the vacuum initial
condition prescription discussed earlier. We see from this
figure that before the bounce the perturbations are domi-
nated by the growing mode. When the universe enters the
bouncing phase, we see that the amplitude approaches a
constant and passes smoothly through the bounce. The
numerical evolution agrees well with the analytical solu-
tion (70) in the bouncing phase. After the bounce, the
perturbations are dominated by the constant mode. The

FIG. 6 (color online). Plot of the power spectrum of the
curvature perturbation � (lower panel) and of the spectral index
(upper panel) as functions of comoving wave numbers k in the
Lee-Wick bounce. The initial values of the background parame-
ters are the same as in Fig. 1.

FIG. 5 (color online). Result of the numerical evolution of the
curvature perturbations with different comoving wave numbers k
in the Lee-Wick bounce. The horizontal axis in the left panel is
cosmic time, and in the right panel it is comoving time. The
initial values of the background parameters are the same as in
Fig. 1. The units of the time axis are M�1

rec , the comoving wave
number k is unity for k ¼ Mrec, as in Fig. 2.
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numerical evolution demonstrates that this mode can be
inherited from the growing mode in contracting phase.

Figure 6 shows the power spectrum of � (lower panel)
and the spectral index ns (upper panel) as a function of
comoving wave number k. On large scales (small values of
k), the power spectrum tends to a constant. The rise of the
spectrum for large values of k is on scales which are
comparable to maximal value of the Hubble rate, i.e., for
modes which have not spent time outside of the Hubble
radius.

One may worry that the existence of the perturbations of
the Lee-Wick scalar could lead to an significant amplifi-
cation on the physical modes of the density perturbations.
However, in the case we considered, this amplification
effect is secondary and so can be neglected roughly. The
reason is as follows. In our background, the universe is
usually dominated by the field with the lower mass. This is
true in the periods far before and after the bounce. Thus,
the contribution of the normal scalar� dominates over that
of the Lee-Wick scalar in the contracting and expanding
phases. In these two phases, the perturbation of the ghost
mode only appears as an entropy mode. Since its mass is
heavy, the mode is hardly excited. Next, we argue that the
contribution from the Lee-Wick ghost mode is also
bounded in the bouncing phase. From the analysis in
previous sections of the article, we have already learned
that around the bounce the normal scalar has entered the
slow-rolling region as in inflation while the Lee-Wick
scalar still keeps oscillating. In this case we can use the

approximations _� ’ �m2�=3H and _~� ’ M ~�. Making
use of these two relations and the equation of motion for
�, we can further express the right-hand side of Eq. (19) as
follows:

�
2H þ�00

�0

�
~�0� ~� ¼ �a2m2�

_~�
_�
� ~� ’ 3a2HM ~�� ~�:

(88)

Since around the bounce the Hubble parameter goes
through zero, the above term also becomes very small in
this period. Therefore, we reach the conclusion that the
modes of the Lee-Wick scalar only make a secondary
contribution to the curvature perturbations in our model.
A more detailed analysis is performed in the Appendix.

In order to support this argument, we have numerically

calculated the perturbation � ~� exactly, and we show its
spectrum P� ~� in Fig. 7 which is normalized by the Planck

mass. For comparison, in Fig. 8 we also plot the evolution
of the ratio of theright-hand side to the term k2� in
Eq. (19). In both two figures we take k ¼ 10Mrec. The
numerical results also show that the contribution of the
Lee-Wick scalar is negligible.

As a side remark, it would be interesting to study the
effect of the perturbations of the Lee-Wick mode in other
Lee-Wick models. For example, if the Lee-Wick scalar

would dominate for a while in the expanding phase, its
perturbation might give rise to an amplification of the
physical mode, and so could not be neglected as in the
current article. We wish to give a complete analysis in
future works.

V. GRAVITATIONALWAVES

Now we turn to consider the evolution of gravitational
waves (tensor perturbations) in our background, assuming

FIG. 7 (color online). Power spectrum of the Lee-Wick modes
� ~� as a function of cosmic time in the Lee-Wick bounce model
(the blue dashed line). The comoving wave number is taken to be
k ¼ 10. The initial values of the background parameters are the
same as in Fig. 1.

FIG. 8 (color online). Plot of the evolution of the absolute
value of the ratio of the right-hand side to the k2� term in Eq.
(19). The comoving wave number is taken to be k ¼ 10. The
initial values of the background parameters are the same as in
Fig. 1.
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they start out in the vacuum state on sub-Hubble scales in
the contracting phase. Since at the level of linear perturba-
tion theory scalar metric fluctuations and gravitational
waves decouple, we can focus on a metric containing
only gravitational waves propagating in the background.
The standard form of this metric in a spatially flat
Friedmann-Robertson-Walker background is

ds2 ¼ að�Þ2½�d�2 þ ð�ij þ �hijÞdxidxj�; (89)

where the Latin indexes run over the spatial coordinates,
and the tensor perturbation �hij is real, transverse and trace-

less, i.e.,

�h ij ¼ �hji; �hii ¼ 0; �hij;j ¼ 0: (90)

Because of these constraints, we only have 2 degrees of
freedom in �hij which correspond to two polarizations of

gravitational waves. For each polarization state ( labeled
by r in the following), we can write �hijð�;xÞ as a scalar

field hrð�;xÞ multiplied by a polarization tensor erij which

is constant in space and time.
If matter contains an anisotropic stress tensor 
ij, there

is a nonvanishing source term in the equation of motion for
tensor perturbations, namely

�h 00
ij þ 2

a0

a
�h0ij �r2 �hij ¼ 16�Ga2
ij: (91)

If matter consists of a set of canonically normalized scalar
fields or a set of perfect fluids, there is no anisotropic stress
and thus no source term at linear order in perturbation
theory for gravitational waves.

As usual, we go to Fourier space. The Fourier trans-
formations of the tensor perturbations and anisotropic
stress tensor are given by

�h ijð�;xÞ ¼
X2
r¼1

Z d3k

ð2�Þ3=2 h
rð�;kÞerijeikx: (92)

In order to canonically quantize the gravitational waves, it
is important to identify the variable in terms of which the
action has a canonical kinetic term. This variable turns out
to be (see [52] for a derivation)

vr
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðerÞijðerÞji
32�G

s
ahrk (93)

(where hrk is a shorthand notation for hrð�;kÞ) in terms of

which the Einstein action expanded to second order in vr

becomes

S ¼ X2
r¼1

1

2

Z
½jðvr

kÞ0j2 �
�
k2 � a00

a

�
jvr

kj2�d�d3k: (94)

The resulting equation of motion for vr is

ðvrÞ00 þ
�
k2 � a00

a

�
vr ¼ 0: (95)

We are interested in computing the power spectrum of
the tensor modes. Making use of (93), it is related to the
power spectrum of v (which is the same for each polariza-
tion state) via

PT
k ðhÞ ¼ a�232�G

X2
r¼1

PkðvrÞ ¼ a�264�G
k3

2�2
jvkj2:

(96)

The tensor spectral index nT is defined by

nT � d lnPT

d ln k
: (97)

The evolution of tensor perturbations is very similar to
that of scalar perturbations. Initially the perturbations are
inside the Hubble radius in the far past. Since the Hubble
radius shrinks in the contracting phase, the modes with
small comoving wave number exit the Hubble radius. After
that the universe bounces to an expanding phase, so these
Fourier modes will return into the Hubble radius.
In the current article we focus on a mode with small k so

that it exits the Hubble radius in the contracting phase
(rather than the bounce phase), then passes through the
bounce and finally reenters the Hubble radius during the
expanding phase.
We divide the time interval into three periods like we did

for the analysis of scalar metric fluctuations. During the
phase when the universe is contracting with an equation of
state oscillating around w ¼ 0, we have

v ¼ ð�� ~�B�Þ1=2fAT
k J�ð3=2Þ½kð�� ~�B�Þ�

þ BT
k J3=2½kð�� ~�B�Þ�g; (98)

where ~�B� ¼ �B� � 2=H B�. Here, the parameters AT
k

and BT
k can be determined by the initial condition for

gravitational waves, which is taken as the Bunch-Davies
vacuum

v� e�ik�=
ffiffiffiffiffi
2k

p
: (99)

So we have

AT
k ¼ i

ffiffiffiffi
�

p
2

and BT
k ¼ �

ffiffiffiffi
�

p
2

: (100)

Therefore, the asymptotic form of the solution to the tensor
perturbation in the contracting phase is

vðk;�Þ¼
8<
:� iffiffi

2
p k�ð3=2Þð�� ~�B�Þ�1; outsideHubble radius

1ffiffiffiffi
2k

p e�ikð��~�B�Þ; insideHubble radius
:

(101)

During the bouncing phase, we have the approximate
relation

a00

a
’ 4

�
�a2B ¼ y

3
: (102)
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Solving Eq. (95), we have

vðk;�Þ¼
(
CT
k cos½lð���BÞ�þDT

k sin½lð���BÞ�; k2	 y
3;

CT
k e

lð���BÞþDT
k e

�lð���BÞ; k2<y
3 ;

(103)

where we define l2 ¼ jk2 � y
3 j. Since the Hubble parame-

ter approaches zero when the universe is transiting from the
contracting to the expanding phase, all fluctuation modes
return to the sub-Hubble region, but only for a very brief
time. However, from the above solution we interestingly
find that k2phð�k2=a2BÞ and _Hð��Þ are comparable.

After the bounce, an expanding phase with its EoS w ¼
0 takes place. So the solution to the gravitational waves is
given by

v ¼ ð�� ~�BþÞ1=2 � fET
k J�ð3=2Þ½kð�� ~�BþÞ�

þ FT
k J3=2½kð�� ~�BþÞ�g; (104)

where ~�Bþ ¼ �Bþ � 2=H Bþ. This solution takes on the
asymptotic form,

v ’
ffiffiffiffi
2

�

s
FT
k

3
k3=2ð�� ~�BþÞ2; (105)

when the modes are outside the Hubble radius.
Having obtained the solutions of the tensor perturbations

in the different phases, now we need to match these solu-
tions and determine the coefficients CT

k , D
T
k , E

T
k and FT

k

respectively. This procedure is analogous to the matching
process of scalar perturbations performed in the previous
section. For a nonsingular bounce scenario such as the
bounce we are considering, the continuity of the back-
ground evolution implies that both v and v0 are able to
pass through the bounce smoothly. So we match v and v0 in
(101) and (103) on the surface �B�, and those in (103) and
(104) on the surface �Bþ. With these matching conditions,
we can determine all the coefficients and finally get the
solution for v at late times.

Since in the specific model we considered in this article,
the evolution of the universe is symmetric with respective
to the bounce point, we can simply take H B� ’ �H Bþ.
In addition, we have shown that the bounce takes place
very fast on the time scale set by k�1, so we have lð�Bþ �
�B�Þ � 1. Therefore, we eventually obtain the approxi-
mate result

FT
k ’ i

ffiffiffiffi
�

p
H 3

Bþ
8k3

(106)

and the asymptotical form of v in the final stage can be
expressed as

vf ! i

ffiffiffi
2

p
24

H 3
Bþ

k3=2
ð�� ~�BþÞ2: (107)

Now we are able to derive the power spectrum of pri-
mordial gravitational waves. From the definition of

Eq. (96), the primordial power spectrum is given by

PTðkÞ ¼ G
32k3

�

��������v
f

a

��������2¼ 2�Bþ
27�2M4

p

: (108)

From Eq. (108), we can read that the spectrum are scale-
invariant on large scales (which is consistent with the result
in Ref. [53]).
Comparing our result of the tensor power spectrum with

the result (84) for the power spectrum of scalar metric
fluctuations, we obtain a tensor to scalar ratio of the order
of 30, which is in excess of the current observational
bounds. The exact value of the ratio, however, will depend
on the detailed modelling of the bounce phase [54].
However, the conclusion that the tensor to scalar ratio
will be rather large will be robust, and also agrees with
the analysis of [49] done in a different context.

VI. CONCLUSIONS AND DISCUSSION

Recently, the Lee-Wick standard model has been sug-
gested as an extension of the standard model of particle
physics providing an alternative to supersymmetry in terms
of addressing the hierarchy problems.
In this article, we have considered the cosmology of the

Higgs sector of the Lee-Wick standard model, an alterna-
tive to supersymmetry to solving the hierarchy problem.
We have found that homogeneous and isotropic solutions
are nonsingular. Thus, the Lee-Wick model provides a
possible solution of the cosmological singularity problem.
We then considered the spectrum of cosmological per-

turbations and find that quantum vacuum fluctuations es-
tablished in the contracting phase evolve into a scale-
invariant spectrum in the expanding phase. Note that these
results emerge without having to introduce any additional
features into the model, unlike the situation in inflationary
cosmology where the existence of a new scalar field sat-
isfying slow-roll conditions must be assumed, or the situ-
ation inekpyrotic models where once again a scalar field
with special features must be assumed.
Tuning the amplitude of the spectrum of scalar metric

fluctuations to agree with the amplitude inferred from
cosmic microwave background (CMB) observations [55],
we can determine the scale M of the new physics which is
present in the Lee-Wick model. The required value of M
turns out to be about 1017 GeV.
We have also computed the spectrum of gravitational

waves and also find a scale-invariant spectrum assuming
that the fluctuations are quantum vacuum in nature. The
tensor to scalar ratio may be in excess of the current
observational bounces, but the exact value will depend on
the detailed modelling of the bounce phase.
One of the main successes of cosmological inflation is

the solution of the horizon, homogeneity, size and flatness
problems of standard big bang cosmology which it pro-
vides. How does a bouncing cosmology such as our Lee-
Wick model measure up against these successes? First of
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all, if the universe starts out large and cold, there are no
horizon and size problems. If the spatial curvature at
temperatures in the contracting phase comparable to the
current temperature is not larger than the current spatial
curvature, then there will be no flatness problem either
because the deviation of �K from 0 decreases in the
contracting phase at the same rate that it increases in the
expanding phase. The key challenge for any bouncing
cosmology is to control the magnitude of the inhomoge-
neities and to provide a mechanism for preventing the
universe from collapsing into a gas of black holes at the
end of the phase of contraction. For an attempt to address
this issue in the case of string gas cosmology see [56].

We would like to explain more about the relation be-
tween the ‘‘horizon’’ problem and the initial condition
problem in the frame of bounce cosmology. Since for a
bounce model the horizon can only be broken at an infinite
time in the future if we start the cosmological evolution at
the infinite past, we can conclude that the horizon problem
does not exist in a bounce model, but it is transferred to
another problem, namely, the choice of the initial condition
as mentioned above. One may need to finely tune the initial
state of a bouncing universe in order to avoid itself to
collapse into a highly inhomogeneous one. Also we cannot
neglect the vector perturbations if a gauge field exists. To
alleviate this challenge, there have already been a few
attempts; for example, we may need an ekpyrotic phase
at the beginning of a collapsing universe to dilute classical
perturbations, or introduce a Hagedorn string gas period
near the bounce to wash out the classical instabilities. The
works on this issue will be investigated in the near future.

We would like to conclude this article by putting our
work in the context of previous work on perturbations in
bouncing cosmologies. The issue of the mixing of the S
and D modes at a cosmological bounce has been hotly
debated in the literature since the ekpyrotic scenario was
proposed. In the case of the ekpyrotic scenario, for vacuum
initial conditions the Smode of� inherits a scale-invariant
spectrum, whereas the D mode obtains a blue spectrum
with index n ¼ 3 [27–30] (see also the more recent analy-
sis of [57] and the recent review of [58]). This is also the
spectrum of � . According to the Hwang-Vishniac [41]
(Deruelle-Mukhanov [42]) matching conditions applied
at a hypersurface on which we glue the expanding to the
contracting universe, the mixing between the S�mode and
theDþmode is suppressed by a power of k2 (see, e.g., [29]
for a discussion of this point). Hence, the spectrum of
metric fluctuations after the bounce is not scale-invariant.
The pre–big bang scenario faces a similar problem [59].
These conclusions were confirmed in some specific models
in which the bounce was smoothed out by making use of
higher derivative gravity terms (see [60] in the case of the
pre–big bang model and [61,62] in the case of the ekpyrotic
scenario). However, the use of the matching conditions was
challenged in [32] where it was pointed out that if the

background solution does not satisfy the matching condi-
tions at the bounce, there is no reason to expect the
fluctuations to do so. In fact, in the case of the ekpyrotic
scenario (which is intrinsically a higher-dimensional cos-
mology), computations done in the higher-dimensional
framework yielded a successful transfer of the scale-
invariant spectrum of metric fluctuations from the contract-
ing to the expanding phase [63], a conclusion which was
confirmed in [64] and, in a slightly different setting, in
[65,66].
Calculations have also been done in some other non-

singular bouncing models [67]. For example, studies done
in models in which the bounce is induced by a negative
energy density scalar field found no unsuppressed match-
ing between the growing perturbation mode in the con-
tracting phase and the constant mode in the expanding
phase [68,69], in contrast to what was obtained in some
initial work [8,9]. Both studies in models in which a
bounce was generated by a curvature term in the Einstein
action [70] and analyses in some other bouncing models
[71,72] yielded unsuppressed matching of the dominant
modes of the contracting and expanding phases.
The upshot of these analyses is that the transfer of

fluctuations through a cosmological bounce can depend
quite sensitively on the physics of the bounce.
It was realized that the equation of motion for � has

singularities in the case of a nonsingular bounce, thus
casting doubt on the belief that in all cases � is conserved
at a bounce. It was shown that the � equation is free of
such singularities and is thus a safer equation to use
[43,44]. In our previous work [45] it was shown in the
case of the quintom bounce model that there is unsup-
pressed mixing between the Dþ and S� modes on length
scales which are small compared to the duration of the
bouncing period, whereas on longer length scales the mix-
ing is suppressed (but not completely absent). In the
present work, the bounce is short compared to the length
scales we are interested in.
Our work shows that the evolution of fluctuations

through the nonsingular bounce in the Lee-Wick model
is rather standard. There is no unsuppressed coupling
between the dominant modes of the contracting and ex-
panding phases, and � is conserved at the bounce.
In the current article we have not considered radiation.

Since the energy density in radiation increases faster than
that in matter, radiation would dominate at early times.
However, in the Lee-Wick standard model there is a Lee-
Wick partner to each field. In particular, there is a Lee-
Wick photon partner ~ of the radiation field . At high
energy densities, then as a consequence of interactions
between  and ~, we expect that energy will flow from 

into ~, like it flows from � to ~� in our scalar field model.
Then, a cosmological bounce would occur in a manner
similar to how it occurs in our model. Adding intermediate
phases of radiation between the bouncing phase and the
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contracting and expanding matter phases will not change
our results concerning the spectrum of fluctuations for
modes which exit the Hubble radius during the phase of
matter domination, which are the modes we are interested
in when trying to explain the large-scale structure of the
universe and the CMB anisotropies. A study of these issues
is left to a follow-up paper.

It would also be interesting to consider entropy fluctua-
tions and non-Gaussian signatures of our scenario. We
leave these topics for future research.

Note added: While this article was being prepared for
submission, a preprint appeared [73] pointing out that the
Lee-Wick model provides a realization of the quintom
scenario and could be applied to study the current accel-
eration of the universe. We find it more natural to consider
the corrections to the cosmological evolution which are
obtained in the very early universe.
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APPENDIX: ISOCURVATURE PERTURBATION
FROM THE LEE-WICK SCALAR

Under the longitudinal (conformal-Newtonian) gauge,
we recall the equation of motion for the Bardeen potential,

�00
k þ 2

�
H ��00

�0

�
�0

k þ 2

�
H 0 �H

�00

�0

�
�k þ k2�k

¼ 8�G

�
2H þ�00

�0

�
~�0� ~�k: (A1)

By varying the matter action with respect to the fluctuation

of Lee-Wick scalar � ~�, we obtain the equation of motion,

� ~�00
k þ 2H� ~�0

k þ k2� ~�k þ a2M2� ~�k

¼ �2a2M2 ~��k þ 4 ~�0�0
k; (A2)

which combined with Eq. (A1) can describe all the pertur-
bation modes consistently. Since the Lee-Wick scalar is
almost a subdominant field during the evolution, its fluc-
tuation seeds an isocurvature perturbation.

Note that we consider a model of Lee-Wick cosmology
with the potential being a mass term for simplicity. Until
now we have not used any approximations in deriving the
above two perturbation equations. In the following calcu-

lation we will follow one mode of � ~� along with the
cosmological evolution.

1. Contracting phase

In the initial stage of the background evolution when
t � tB�, the average value of the EoS is wc ¼ 0. The
universe behaves like a matter-dominated one, and the

scale factor evolves as aðtÞ � ðt� ~tB�Þ2=3. So we have
the expressions

~� ’ mplffiffiffiffiffiffiffi
3�

p sin½Mðt� ~tB�Þ�
Mðt� ~tB�Þ ; (A3)

which is valid when jHj � M. As we have analyzed in
Sec. III, the top value of the Hubble parameter jHj is of
order m which is much less than the mass of Lee-Wick
scalar M. Therefore, this expression can be used in the
contracting phase safely. Besides, one may notice that both

the average values of ~� and ~�0 are almost equal to 0. By
taking the average of Eq. (A2), one can simplify the
perturbation equation as follows:

� ~�00
k þ

4

�� ~�B�
� ~�0

k þ k2� ~�k þ a2M2� ~�k ’ 0: (A4)

We neglect the right-hand side of Eq. (A2) since a back-
ground parameter cannot be correlated with a perturbation
variable and the background parameters are vanishing in
average.
At the beginning with � ! �1 the scale factor is very

large, and thus the mass term dominates over. One can

impose an initial condition for � ~� as follows:

a� ~�k ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðk; �Þp ei

R
�
!ðk;�0Þd�0

; (A5)

where we define a frequency parameter

!ðk; �Þ2 � k2 þ að�Þ2M2: (A6)

Along with the background contraction, the scale factor
is decreasing and the comoving Hubble parameter is grow-

ing. A mode of Lee-Wick perturbation � ~�k is able to exit
the Hubble radius when k < jH j. However, as addressed
previously, the largest value of the Hubble parameter jHj is
of order m which is still much smaller than M. Therefore,
during the whole evolution, the perturbation equation is
dominated by the mass term which appears as the last term
of Eq. (A4). Consequently, we obtain an approximate
solution to Eq. (A4) on super-Hubble scales,

� ~�k ’ 1ffiffiffiffiffiffiffiffi
2M

p
a3=2

eð2i=3ÞðM=HÞ: (A7)

From this solution, one can read that the Lee-Wick fluc-
tuation is strongly oscillating and its amplitude is growing

proportional to a�ð3=2Þ in contracting phase. This is exactly
consistent with the numerical result as shown in Fig. 7
when t < 0.
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2. Bouncing phase

Since the contribution of the field ~� becomes more and
more important, the contraction will stop when w ¼ �1
and then the universe will enter the bouncing phase at some
moment tB�. Correspondingly the EoS of the universe will
fall to negative infinity rapidly. During this process, the
Hubble parameter will shrink soon and arrive at zero at t ¼
0.

In order to get some analytic insight into the evolution of
the Lee-Wick fluctuations in the bouncing phase, we use
the parametrization H ¼ �t which appeared in (64). As
investigated at the end of Sec. IVG, its effects on the
curvature perturbation � could be cancelled due to a
vanishing Hubble parameter. However, the Lee-Wick fluc-

tuation � ~� could be affected by the curvature perturbation
� conversely.

One can see that it is still the mass term dominated in the
left-hand side of Eq. (A2) for the Lee-Wick fluctuation on
large scales. The right-hand side plays a role of a source
term, of which the first term dominates over. This is

because around the bounce point, the Lee-Wick scalar ~�

reaches its maximal value ~�B ’ mmplffiffiffiffiffiffiffi
12�

p
M

(we expect the

energy densities of these two scalars can be cancelled at

the bounce point which requires m2�2 ’ M2 ~�2 and at that
moment the amplitude of the normal scalar � is about

mpl=
ffiffiffiffiffiffiffiffiffi
12�

p
). This is consistent with the numerical calcu-

lation shown in Fig. 3. Therefore, we have an approximate
solution

� ~�k ’ �2 ~��k ’ � mmplffiffiffiffiffiffiffi
3�

p
M

�k; (A8)

in the bouncing phase. This semianalytic solution indicates

that the amplitude of � ~� could be amplified in the bounc-
ing phase.

One can use the approximate solution (A8) to make an
estimate of the Lee-Wick fluctuation as follows:

P� ~� ¼ k3

2�2
j� ~�kj2 ’

m2m2
pl

3�M2
P�: (A9)

From the numerical calculation shown in Fig. 5, one reads
P� � 10�5 at the bounce point when t ¼ 0. Making use of

the values of background parameter provided in Fig. 3, we
obtain an approximate value of the amplitude to be P� ~� �
10�6mpl which is scale-invariant. One can check that this

estimate result is consistent with the numerical calculation
shown in Fig. 7 very well.

3. Expanding phase

After the bounce, the universe starts to expand. The Lee-
Wick scalar begins the oscillations again, and cannot
dominate over at late times in the specific models we
considered. The dynamics of its fluctuation is similar to
that in the contracting phase of which the amplitude is

proportional to a�ð3=2Þ. Therefore, the amplitude of � ~� is
decreasing after the bounce. However, as is shown previ-

ously, � ~� could be amplified by the curvature perturbation
during the bounce, and so its boundary value at the moment
tBþ is much larger than the value at the moment tB�. This
implies the decreasing of � ~� after the bounce is not
symmetric to the growth before that. Since the Lee-Wick
scalar is a subdominant field after the bounce, its fluctua-
tion seeds a scale-invariant spectrum of isocurvature
perturbation.
The numerical calculation is performed in Fig. 7. The

amplitude of � ~� initially grows in the contracting phase.
However, the slope of the curve is different from that for
the metric perturbation. Since in the bouncing phase the
metric perturbation is able to amplify the perturbation of

the subdominant field, � ~� reaches its peak around the
bounce point. After that, its amplitude decreases. The
oscillation behavior exists anywhere along with the whole
cosmological evolution.
As a side remark, the Lee-Wick scalar changes the

dynamics of the cosmological background, but its fluctua-
tion almost decouples from the scalar perturbation of the
metric due to a large ghost mass. This decoupling actually
depends on a critical comoving wave number of the per-
turbation, which is kM ¼ aM. For the modes with comov-
ing wave numbers smaller than kM, the decoupling could
take place. Moreover, since in our model there is kM �
H , all the possibly observable modes which are able to
exit the Hubble radius in the contracting phase satisfy this
decoupling condition.
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