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The amplification of the primordial magnetic fields and the gravitational baryogenesis, a mechanism

that allows one to generate the baryon asymmetry in the Universe by means of the coupling between the

Ricci scalar curvature and the baryon current, are reviewed in the framework of the nonlinear electro-

dynamics. To study the amplification of the primordial magnetic field strength, we write down the gauge

invariant wave equations and then solve them (in the long wavelength approximation) for three different

eras of the Universe: de Sitter, the reheating, and the radiation-dominated era. Constraints on parameters

entering the nonlinear electrodynamics are obtained by using the amplitude of the observed galactic

magnetic fields and the baryon asymmetry, which are characterized by the dimensionless parameters r�
10�37 and �B & 9� 10�11, respectively.
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I. INTRODUCTION

With the aim to build up a classically singularity-free
theory of the electron, that is a theory in which infinite
physical quantities are avoided, Born and Infeld [1] pro-
posed a model in which additional terms or modifications
of the standard electrodynamics were included. To prevent
the infinite self energy of point particles (as follows from
standard electrodynamics), they introduced an upper limit
on the electric field strength and considered the electron as
an electric particle with finite radius. In successive inves-
tigations, other examples of nonlinear electrodynamic
Lagrangians were proposed by Plebanski, who also showed
that the Born-Infeld model satisfies physically acceptable
requirements [2]. Consequences of nonlinear electrody-
namics have been studied in many contexts, for example,
cosmological models [3], black holes and wormhole phys-
ics [4,5], and astrophysics [6].

Recently, the nonlinear electrodynamics has been also
invoked as an available framework for generating the
primordial magnetic fields in the Universe [7,8]. The latter,
indeed, is a still open problem of the modern cosmology,
and although many mechanisms have been proposed, this
issue is far from being solved. Seeds of magnetic fields
may arise in different contexts, e.g. cosmological phase
transitions of the early Universe [9], string cosmology [10],
inflationary models of the Universe [11,12], nonminimal
electromagnetic-gravitational coupling [13–15], gauge in-
variance breakdown [12,13,16], density perturbations [17],
gravitational waves in the early Universe [18], lorentz
violation [19], cosmological defects [20], electroweak
anomaly [21], temporary electric charge nonconservation
[22], trace anomaly [23], parity violation of the weak
interactions [24], and Biermann type battery seed effect
[25]. Once these seeds are generated, they must be ampli-

fied by means of some mechanism. Promising candidates
are the dynamo mechanism [26,27] and the protogalactic
collapse and differential rotation [28]. The first mechanism
allows an enhancement of the (preexisting) magnetic
strength from �10�20 G to �10�6–10�5 G, the present
(observed in galaxies and galaxy clusters) strength, the
second one instead allows an amplification from
�10�10 G to �10�6–10�5 G. For a review, see [29].
Moreover, the presence of magnetic fields in the
Universe has important cosmological consequences as,
for example, the generation of anisotropies in CMB [30],
and the primordial abundances of the light elements [big
bang nucleosynthesis (BBN)] [31].
In this paper, besides studying the amplification of pri-

mordial magnetic fields in the context of nonlinear electro-
dynamics, we also discuss the possibility that nonlinear
electrodynamics might provide a framework for the so-
called gravitational baryogenesis. The latter is related to
the origin of the baryon number asymmetry, which is, as is
well known, a still open problem of the particle physics and
cosmology [32]. BBN [33] and measurements of CMB
combined with the large structure of the Universe [34]
indicate that the order of magnitude of such an asymmetry
is

�B � nB � n �B

s
& 9 10�11;

where nB (n �B) is the baryon (antibaryon) number density,
and s the entropy of the Universe. Conventionally, the
necessary requirements for a (CPT invariant) theory able
to generate the baryon asymmetry are dictated by
Sakharov’s conditions [35]: (1) there must exist processes
that violate the baryon number; (2) the discrete symmetries
C and CP must be violated; (3) departure from thermal
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equilibrium. However, none of the Sakharov’s conditions
are obligatory [36]. In fact, as shown in [37], a dynamical
violation of CPT (which implies a different spectrum of
particles and antiparticles) may give rise to the baryon
number asymmetry also in a regime of thermal
equilibrium.

The paper is organized as follows. In next section we
study the amplification of the primordial magnetic fields in
the framework of the nonlinear electrodynamics. We shall
investigate the case in which the Lagrangian is of the form
L� X þ �X�, where X ¼ F��F

��=4, and � and � are

free parameters. In Sec. III, after a short review of the
gravitational baryogenesis mechanism [38], we investigate
the possibility to generate, during the radiation-dominated
era, the observed baryon asymmetry if effects of nonlinear
electrodynamics are taken into account. Section IV is
devoted to the analysis of the amplification of primordial
magnetic fields and of the gravitational baryogenesis for
the nonlinear electrodynamics whose Lagrangian is of the
form L� X þ �=X. Conclusions are shortly discussed in
Sec. V.

II. FIELD EQUATIONS IN NONLINEAR
ELECTRODYNAMICS AND THE PRIMORDIAL

MAGNETIC FIELD

In this section we shall study the amplification of the
primordial magnetic field for the case in which the elec-
tromagnetic field is described by a nonlinear electrody-
namics. The Lagrangian density we consider is [39]

LðXÞ ¼ �CX � �X�: (2.1)

where � and � are free parameters that with the appropriate
choice reproduce the well know Lagrangian already

studied in the literature. � has dimensions ½energy�4ð1��Þ.
The case C ¼ 1 and � ¼ 0 corresponds to the standard
linear electrodynamics. The primordial magnetic field in
nonlinear electrodynamics has been studied recently by
Kunze [7] and Campanelli et al. [8]. Their study refers
mainly to the inflationary era of the Universe’s evolution.
Our approach follows the paper [12], in which the electro-
magnetic field evolution is analyzed during the de Sitter,
reheating, and radiation-dominated eras. Moreover, we
derive a wave equation for the electromagnetic field
strength tensor F��.

In the seminal paper by Turner and Widrow [12], it was
suggested that a magnetic field might be generated by
quantum fluctuations during an inflationary epoch, and it
could be sustained after the wave length of interest crossed
beyond the horizon giving the observed field today [12].
This model invokes a coupling among the electromagnetic
field and the scalar (R) and (Ricci and Riemann) tensor
curvatures, which break the conformal invariance.
According to Turner and Widrow’s paper, since the
Universe is a good conductor (during its evolution), one
expects that the magnetic flux is preserved even if the

primordial magnetic field evolves. This physical behavior
suggests the definition of the parameter r ¼ �B=��, which

remains (with good approximation) constant and provides
an invariant measure of the magnetic field strength. Here
�B is the energy density of the magnetic field, and �� ¼
�2T4=25 is the energy density of the cosmic microwave
background radiation. In order to explain the present value
of r � 1 for galaxies, one needs a pregalactic magnetic
field to which corresponds to r ’ 10�37 if dynamo ampli-
fications are invoked, and r ’ 10�8 if the galactic magnetic
fields are generated, in the collapse of the protogalactic
cloud, by means of the compression of the primordial
magnetic field. In the last case, the dynamo processes are
not necessary (see, for example, Refs. [7,12]).
The action we consider is the electromagnetic field

minimally coupled to gravity

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
þ 1

4�
LðXÞ

�
: (2.2)

The nonlinearity breaks the conformal invariance, which is
the necessary condition for amplifying the primordial
magnetic fields (in fact, the minimal coupling of electro-
magnetic fields to a four-dimensional background is in-
variant under conformal transformations of the metric;
therefore, the time evolution of the conformally flat metric,
as the Friedamn-Robertson-Walker metric, does not affect
the electromagnetic fluctuations, and no amplifications
occur).
The field equations for the electromagnetic fields are

r�F
�� ¼ �r�LX

LX

F��; (2.3)

r�F�	 þr�F	� þr	F�� ¼ 0: (2.4)

Equation (2.4) is the Bianchi identities and LX ¼
dL=dX. The wave equation for F�� follows by applying

r	 to Eq. (2.4) and then using Eq. (2.3). One gets

hF�	 þ ½r�;r��F	� � ½r�;r	�F��

¼ �r�

�r
LX

LX

F

	

�
þ ð� $ 	Þ; (2.5)

where h ¼ r�r� and ½:; :� is the commutator.

Using (1) the cyclic identities of the Riemann tensor
R�
�� þ R��
� þ R���
 ¼ 0, (2) the Ricci identity

½r�;r��F
� ¼ R�
��F
�� þ R�

�F
�, (3) the fact that

the Riemann tensor can be written in terms of the Ricci
tensor and the scalar curvature R as (this is true because in
a system of coordinates in which the metric is conformal to
the Minkowski one, the Weyl tensor C	��� vanishes [40])

R	��� ¼ 1

2
ðg	�R�� � g	�R�� � g��R	� þ g��R	�Þ

� R

6
ðg	�g�� � g	�g��Þ;
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one can rewrite Eq. (2.5) as

hF
	 � R

3
F
	 ¼ 1

a2
h�F
	

¼ �r


�r�LX

LX

F�
	

�
þ ð
 $ 	Þ; (2.6)

where h� ¼ ���@�@� is the D’Alambertian in the

Minkowski spacetime. Equation (2.6) is gauge invariant.
We work in the conformal Friedman-Robertson-Walker

metric

g�� ¼ a2ð�Þdiagð1;�1;�1;�1Þ; (2.7)

where að�Þ is the scale factor. The field strength tensor F��

in a curved spacetime has components

F�� ¼ a2ð�Þ
0 �Ex �Ey �Ez

Ex 0 Bz �By

Ey �Bz 0 Bx

Ez By �Bx 0

0
BBB@

1
CCCA: (2.8)

We shall set Ei ¼ 0.
Equations (2.6) are very involved. To evaluate the mag-

netic field strength during the three eras we are interested
in, i.e. de Sitter (dS), reheating (RH), and radiation-
dominated (RD) phases of the Universe, we are concerned
with the evolution of the magnetic field fluctuations whose
wavelengths are well outside the horizon, Lphys ¼ aL �
H�1 or k� � 1 [12]. In this approximation, all spatial
derivatives will be neglected (long wavelength approxima-
tion). Moreover, we shall assume that the direction of the
magnetic field is fixed. Therefore, using the relations Fij ¼
"ijkða2BkÞ, and the notation jFð�Þj � F ¼ a2ð�ÞjBð�Þj,
the field equation (2.6) reduces to the form�
Cþ ��

�
F2

2a4

�
��1

�
F00 þ ��ð�� 1Þ

�
F2

2a4

�
��2

�
F2

2a4

�0
HF

¼ 0: (2.9)

The prime means derivative with respect to the confor-
mal time � and H ¼ a0=a is the Hubble parameter.

It turns out to be convenient to express Eq. (2.9) in terms
of the scale factor a. Since the scale factor varies as að�Þ ¼
að
Þ�
, where 
 ¼ �1, þ2, þ1 during the dS, RH, and

RD eras, respectively, while the constants að
Þ, that are
different for three eras, are explicitly specified in (2.12),
(2.15), and (2.18), we get

d2F

da2
þ

�
1� 1



þ 4ð�� 1ÞF

�
1

a

dF

da
� 8ð�� 1ÞF

a2
F ¼ 0;

(2.10)

where

F � ��ðF2

2a4
Þ��1

Cþ ��ðF2

2a4
Þ��1

:

The complex structure of the differential equation (2.10)
does not allow one to determine exact solutions. We there-
fore assume that during the dS, RH, and RD eras the
ðF2=a4Þ term is dominant, which means F � 1. In this
regime, a solution of (2.10) is of the form

Fð�Þ ¼ Fð�Þa�; (2.11)

where Fð�Þ, which is a constant, and � assume different

values for each different phase of the Universe evolution.

A. Inflationary de Sitter (dS) phase (� ¼ �1)

The scale factor for this epoch of the Universe is

að�Þ ¼ �adS�
�1 �� 1

HdS�
; (2.12)

where HdS � 3� 1024 eV. Equation (2.11) reads

F� a�dS : (2.13)

The exponent �dS is given by

�dS � p	 ¼ 3

2
� 2�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ 2�� 23

4

s
: (2.14)

B. Reheating (RH) phase (� ¼ 2)

The scale factor for this stage of the Universe is given by
[19]

að�Þ ¼ aRH�
2 � 1

4H
2
0R

3
0�

2; (2.15)

where R0 � 1026h�1
0 m is the present Hubble radius of the

Universe, and H0 � 100h0 km=s-Mpc is the Hubble pa-
rameter today. The solution (2.11) is of the form

F� a�RH ; (2.16)

where

�RH � q	 ¼ 9

4
� 2�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � �� 47

16

s
: (2.17)

C. Radiation-Dominated (RD) phase (� ¼ 1)

In this last case, the scale factor of the Universe is

a ¼ aRD��H0R
2
0�: (2.18)

The solution for F is

F� a�RD ; (2.19)

where

�RD ¼ 3

2
� 2�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � 2�� 7

4

s
: (2.20)

These solutions have been determined for F � 1. By
using (2.11) one infers that the regime we are concerned
with applies for amplitudes of the magnetic field such that
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jBð�Þj � B0; B0 �
ffiffiffi
2

p �
C

�j�j
�
1=ð2ð��1ÞÞ

;

or equivalently, in terms of the conformal time, it applies
for conformal time � larger than �
,

� � �
; �
 � 1

að
Þ

� ffiffiffi
2

p
Fð�Þ

�
C

�j�j
�
1=2ð��1Þ�1=ð
ð��2ÞÞ

;

where að
Þ ¼ adS, aRH, aRD are defined in Eqs. (2.12),

(2.15), and (2.18), and � ¼ �dS, �RH, �RD are given by
Eqs. (2.14), (2.17), and (2.20).

The above solutions for F ¼ FkðaÞ allow one to estimate
the strength of the primordial magnetic field. According to
Turner-Widrow’s model [12], if one assumes that the
Universe had gone through a period of inflation at the
grand unified theories (GUT) scale (MGUT � 1016 �
1017 GeV) and that fluctuations of the electromagnetic
field have come out from the horizon where the Universe
had gone through about 55 e-foldings of inflation, then [12]

r � ð7� 1025Þ�2ðpþ2Þ
�
MGUT

mPl

�
4ðq�pÞ=3

�
�
TRH

mPl

�
2ð2q�pÞ=3� T


mPl

��8q=3
	�2ðpþ2Þ
Mpc ; (2.21)

where TRH is the reheating temperature, T
 is the tempera-
ture at which plasma effects become dominant (i.e. the
Universe first becomes a good conductor), and mPl �
1019 GeV is the Planck mass. Finally, p ¼ p	 and q ¼
q	 are the exponents of the scale factor að�Þ during the dS
and RH epochs [see Eqs. (2.13) and (2.16)]. Results are
independent on the parameter �.

The temperature T
 can be estimated via reheating pro-

cesses [12] T
 ¼ minfðTRHMGUTÞ1=2; ðT2
RHmPlÞ1=3g, and

for T < T
 �B evolves as �B � a�4. Notice that the reheat-
ing temperature TRH is given by TRH ¼ f109 GeV;MGUTg
[12]. Imposing that r� 10�37, we infer the values for the
parameter � yielding the observed strength of the cosmo-
logical magnetic field. Results are reported in Tables I and
II.

Some comments are in order. First, during the radiation-
dominated era, the plasma effects induce a rapid decay of
the electric field, whereas the magnetic field remains [12].

Moreover, the functions Fð�Þ have been obtained for a
cosmological background which evolves according to stan-
dard cosmology. In particular, during the radiation-
dominated era the scale factor evolves according to the

power law a� �� t1=2 (t is the cosmic time). The ‘‘mag-
netic’’ component of the energy density, therefore, is as-
sumed negligible with respect to the radiation energy

density: �total ¼ �rad þ �B ’ �radð¼ �2g

30 T4Þ. The validity

of the condition �B < �rad, that will be discussed in the
next section when we will study the origin of baryon
asymmetry, yields a constraint on the temperature at which
the nonlinear effects are active. Yet, in order that predic-
tions of the standard cosmology (such as BBN, CMB, and
large scale structure formation) remain unaltered, we as-
sume that after the conformal time ~� (or after the cosmic
time ~t or the temperature ~T) corrections to the standard
linear electrodynamics vanish, i.e. � ¼ 0 for �> ~�, and
� � 0 for �RD <�< ~�, where �RD is the time when
radiation-dominated era starts (that, in our model, it does
coincide with the end of reheating). Of course, ~� � �end,
where �end corresponds to the end of the radiation-
dominated era. As we have seen, F ¼ a2B evolves as F�
F0a

�ð	Þ , where �ð	Þ
RD are the two solutions of �RD in (2.20).

Using the range of values for � reported in Tables I and II

one can show that �ðþÞ
RD 2 ð0:42; 0:50Þ and �ð�Þ

RD 2
ð�3;�2:4Þ. All these features will play a relevant role in
the framework of the gravitational baryogenesis (next
section).

III. GRAVITATIONAL BARYOGENESIS

To begin with, we shortly recall the main topics of the
gravitational baryogenesis. The latter, as already pointed
out, is a mechanism for generating the baryon number
asymmetry during the expansion of the Universe by means
of a dynamical breaking of CPT (and CP) [38]. In this
approach the thermal equilibrium is preserved. The inter-
action responsible for CPT violation is given by a coupling
between the derivative of the Ricci scalar curvature R and
the baryon current J� [41]

1

M2


Z
d4x

ffiffiffiffiffiffiffi�g
p

J�@�R; (3.1)

where M
 is the cutoff scale characterizing the effective
theory. If there exist interactions that violate the baryon

TABLE II. Values of � for r� 10�37 at 1 Mpc and for
MGUT � 1016, 1017 GeV and TRH � 109 GeV, T
 � 1012 GeV.
The cases pþ, qþ and pþ, q� do not admit solutions.

p, q MGUT (GeV) TRH (GeV) T
 (GeV) ��
p�, qþ 1017 109 1012 1.331

1016 1.360

p�, q� 1017 109 1012 1.375

1016 1.382

TABLE I. Values of � for r� 10�37 at 1 Mpc and forMGUT �
1017 GeV and TRH � 1015 � 1017 GeV. The cases pþ, qþ, and
pþ, q� do not admit solutions.

p, q MGUT (GeV) TRH (GeV) T
 (GeV) ��
p�, qþ 1017 1015 1015 1.280

1016 1016 1.278

1017 1016 1.265

p�, q� 1017 1015 1015 1.315

1016 1016 1.295

1017 1016 1.297
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number B in thermal equilibrium, then a net baryon asym-
metry can be generated and gets frozen-in below the de-
coupling temperature TD.

From (3.1) it follows:

M�2
 ð@�RÞJ� ¼ M�2
 _RðnB � n �BÞ;
where _R ¼ dR=dt. Therefore the effective chemical po-
tential for baryons and antibaryons is �B ¼ _R=M2
 ¼
�� �B, and the net baryon number density at the equilibrium
turns out to be (as T � mB, where mB is the baryon mass)
nB ¼ gb�BT

2=6. gb �Oð1Þ is the number of intrinsic
degrees of freedom of baryons. The baryon number to
entropy ratio, that defines the baryon asymmetry, is there-
fore [38]

�B ¼ nB
s

’ � 15gb
4�2g


_R

M2
T

��������TD

; (3.2)

where s ¼ 2�2g
sT3=45, and g
s counts the total degrees
of freedom for particles that contribute to the entropy of the
Universe. g
s takes values very close to the total degrees of
freedom of effective massless particles g
, i.e. g
s ’ g
 �
106. �B does not vanish provided that the time derivative
of the Ricci scalar is nonvanishing.

In the context of general relativity, the Ricci scalar and
the trace Tg of the energy-momentum tensor (T��

g ) are

related by the relation

R ¼ �8�GTg ¼ �8�Gð1� 3wÞ�;
where � is the matter density, w ¼ p=� is the adiabatic
parameter, p the pressure, and Tg ¼ T

�
g�. _R is zero in the

radiation-dominated epoch of the standard Friedman-
Robertson-Walker cosmology, because (in the limit of
exact conformal invariance) w ¼ 1=3. However, devia-
tions from the standard electrodynamics prevent the
Ricci curvature and its first time derivative from vanishing
(as seen from the point of view of the new structure of the
energy-momentum tensor). Therefore a net baryon asym-
metry may be generated also during the radiation-
dominated era (for other applications and scenarios see
[38,42–44]).

A. Gravitational Baryogenesis in nonlinear
Electrodynamics

We wish now discuss the origin of the baryon asymme-
try in the framework of the nonlinear electrodynamics. The
epoch of the Universe we refer is the radiation-dominated
era. As pointed out at the end of Sec. II, we assume that
from the beginning of the radiation-dominated era to time ~t
the nonlinear terms of electromagnetism are non zero. The
latter may break the conformal invariance and therefore
1� 3w � 0, or equivalently, the trace of the energy-
momentum tensor does not vanishes. As a consequence,
R and _R are different from zero. In fact, by making use of
the expression for the energy-momentum tensor

Tg�� ¼ 1

4�

�
@L

@X
F�
F



� þ g��L

�
; (3.3)

we infer that the trace Tg is given by

Tg ¼ ��ð�� 1Þ
�

X�:

Equation (2.19) implies that _X ¼ ð�RD � 2ÞHB2, where
H ¼ _a=a.
By making use of the Einstein field equations

H ¼ �

3mP

ffiffiffiffiffiffiffiffiffiffiffi
4�g

5

s
T2; (3.4)

the parameter �B characterizing the baryon asymmetry
[see Eq. (3.2)] can be cast in the form

�B ¼ 8gb

ffiffiffiffiffiffiffiffiffi
5

�g


s
ð�RD � 2Þ�ð�� 1Þ�

�
B2

2

�
� TD

M2
m3
P

:

(3.5)

Equation (3.5) expresses the baryon asymmetry in terms
of parameters characterizing the nonlinear electrodynam-
ics. In the standard case, i.e. � ¼ 0, �B vanishes and no net
baryon asymmetry can be generated, as expected.

Introducing the dimensionless parameter � �
�½GeV�4ð1��Þ, Eq. (3.5) can be rewritten as

�

�
B

GeV2

�
2� ¼ N�B

GeV

TD

�
M

GeV

�
2
�
mP

GeV

�
3
; (3.6)

where

N �
ffiffiffiffiffiffiffiffiffi
�g

5

r
2�

8gbð�RD � 2Þ�ð�� 1Þ :

The bound �B & 9� 10�11 and Eq. (3.6) give a constraint
(upper bound) on the free parameter � for fixed magnetic
field strengths. For our estimations, we use the following
values of parameters: As pointed out in [38], a possible

choice of the cutoff scale M
 is M
 ¼ mPl=
ffiffiffiffiffiffiffi
8�

p
if TD ¼

MI, where MI � 21016 GeV is the upper bound on the
tensor mode fluctuation constraints in inflationary scale
[45]. For TD, we use the decoupling temperature at the
GUT scale, TD � 1016 GeV (a decoupling temperature at
the GUT scale is phenomenologically acceptable if the
unwanted relics like gravitinos are decoupled at the
Planck scale so that they will be diluted away during
inflation and will not be regenerated at reheating at the
GUT scale). By using the range of values for � reported in

Tables I and II, and setting �ðþÞ
RD � 0:5 and �ð�Þ

RD ��3, one
may obtain an estimation on �: �� 10146 for B�
10�10 G, and �� 10173 for B� 10�20 G.
As a final comment, we analyze the validity of our

approximation �B < �rad. In the regime we worked,
�X��1 � 1, see Sec. II, the energy density of the electro-
magnetic field reads �B � �ðB2=2Þ�. By making use of
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Eq. (3.6) and � � �½GeV�4ð1��Þ, we get

�

�
B

GeV2

�
2� ¼ N�B

�
M

GeV

�
2
�
mP

GeV

�
3 GeV

TD

: (3.7)

The condition �rad >�B gives the lower bound on the
temperature T

T > 1:1� 1015
�
1016 GeV

TD

�
1=4

GeV; (3.8)

where we have used 30N
2��2g


�Oð10�2Þ. As Eq. (3.8) shows,
our assumptions are consistent for temperatures of the
Universe varying in the range TRH > T > ~T, i.e. the non-
linear electrodynamics effects are active at GUT scales. In
this regime, nonlinear electrodynamics allows one to ac-
count for both the amplification of the primordial magnetic
fields and the origin of the baryon asymmetry.

IV. THE NOVELLO-BERGLIAFFA-SALIM MODEL
OF NONLINEAR ELECTRODYNAMICS

In the framework of nonlinear electrodynamics, we shall
now analyze the Novello-Bergliaffa-Salim (NBS) model
[46]. This model is particularly interesting because the
nonlinear terms of the electromagnetic field give rise to a
‘‘fluid’’ with an asymptotically negative equation of state.
Therefore, the accelerated expansion of the Universe can
be attributed to these nonlinear corrections to the standard
electromagnetic Lagrangian.

The Lagrangian of the nonlinear electrodynamics of the
NBS model is [47]

L� ¼ �X��8

X
; (4.1)

where ½�� ¼ ðenergyÞ2. It corresponds to C ¼ 1, � ¼ �1,
and � ¼ �8 in (2.1).

To derive an upper bound on the parameter �, NBS
assume that dark energy can be described by the non linear
term, and using the current value for�de ¼ �de=�cr, where
�cr ¼ 3H2

0=8�G is the critical energy density, they find

[46]

�4 & 3:74� 10�28 gr

cm3
¼ 1:683� 10�45 GeV4: (4.2)

The extremely small value of � implies a negligible
correction to Maxwell’s electromagnetism. Nonetheless,
one should keep in mind that for extremely low magnetic
field strength it is the 1=F term of the NBS Lagrangian that
dominates.

A. Primordial Magnetic Field

In studying the amplification of the magnetic fields, we
follow Sec. II. In order to obtain the required value r�
10�37 corresponding to the observed values of the galactic
magnetic field, we assume that the NBS nonlinear electro-
magnetism is turned off during the de Sitter era, and turns

on at the reheating era, until the time ~� of the radiation-
dominated era. The wave equation for F is given by (2.10)
with � ¼ �1. As before, we assume that the ðF2=a4Þ term
is dominant.

1. Inflationary de Sitter (dS) phase

If during this era the nonlinear electrodynamics effects
are absent, then the wave equation for F is h�F ¼ 0,

whose solution is F� sink� (the solution is independent
whether k� _ 1 as a consequence of the conformal invari-
ance of the minimally coupled electromagnetic field [12]).
In the long wavelength approximation, one obtains

F� �� a�1: (4.3)

2. Reheating (RH) phase

In this phase of the evolution of the Universe, the wave
equation (2.10) admits the solution

F� að19	
ffiffiffiffiffiffi
105

p Þ=4: (4.4)

3. Radiation-dominated (RD) phase

During the RD era, finally, the solution for F is given by

F� að9	
ffiffiffiffi
17

p Þ=2: (4.5)

Values of the parameter r are obtained using Eq. (2.21)
with the exponents p and q given by Eqs. (4.3) and (4.4),

p ¼ �1 and q ¼ ð19	 ffiffiffiffiffiffiffiffi
105

p Þ=4. Results are reported in
Table III.
It is interesting to note that the NBS model allows for an

amplification of the magnetic fields. In particular, we can
see that the required amplification (leading to r� 10�37)
may occur for the set of values

fMGUT; TRH; T
g ¼ fð1017; 1015; 1015Þ; ð1017; 1016; 1015:5Þ;
ð1017; 1017; 1016Þg GeV:

B. Baryon Asymmetry

Let us now investigate the baryon asymmetry in the
framework of the model of NBS.

TABLE III. Values of r at 1 Mpc and for different
fMGUT; TRH; T
g.
MGUT (GeV) TRH (GeV) T
 (GeV) r

1017 1015 1015 10�38

1016 1015:5 10�37

1016 1016 10�47

1017 1016 10�37

1017 109 1012 10�42

1016 109 1012 10�53
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The trace of the energy-momentum tensor for the NBS
nonlinear electrodynamics Lagrangian (4.1) reads

TðNBSÞ ¼ �� 3p ¼ 8�8

X
; (4.6)

which is obtained by averaging the magnetic (and electric)
field on a sufficiently large time-dependent three volume

�E i ¼ 0; �Bi ¼ 0; EiBj ¼ 0;

EiEj ¼ �E2

3
�ij; BiBj ¼ �B2

3
�ij:

(4.7)

As in the case discussed in Sec. III, we assume the back-
ground evolves as in the standard cosmology, which means
that the energy density of the magnetic field is lesser than
the energy density of radiation. The time derivative of the
Ricci scalar is given by

_R ¼ � 128ð5	 ffiffiffiffiffiffi
17

p Þ
2

�8

B2

H

m2
P

; (4.8)

where H ¼ _a=a. By using again the Einstein field equa-
tions (3.4), the net baryon asymmetry generated by non-
linear electrodynamics turns out to be

�B ¼ N0 �
8

B2

TD

M2
m3
P

; (4.9)

where N0 ¼ Nj�¼�1. �B vanishes as � ¼ 0. The observed
baryon asymmetry can be generated provided that the
temperature at which the NBS nonlinear electrodynamics
is active satisfies the constraint (3.8), that is at GUT scales.

If we consider � as a free parameter, which does not
satisfy Eq. (4.2), then bounds on � from (4.9) follow by
using the previous values of the parameters M
 �
1016 GeV, TD � 1016 GeV, and a fixed magnetic field
strength. For example, for B� 10�20 G, one obtains�4 &
10�12 GeV4. On the other hand, if one assumes that the
bound (4.2) holds for conformal time � such that �RD <
�< ~�, then to obtain the observed baryon asymmetry the
magnetic field strength must be of the order * 10�54 G,
which seems not to be cosmologically interesting.

V. CONCLUSION

In this paper we have studied the amplification of the
magnetic field and the origin of the baryon asymmetry in
the framework of the nonlinear electrodynamics. In par-
ticular we have analyzed Lagrangian densities of the form
L� X þ �X� and L� X þ�8=X. The baryon asymme-
try is generated by means of the (gravitational) coupling
between baryon current and curvature of the background,
which is non vanishing during the radiation-dominated era
owing the nonlinear effects in the electromagnetism.
For the Lagrangian of the formX þ �X�, which we have

studied in the regime in which the nonlinear term domi-
nates the standard X term, and for the de Sitter, reheating,
and radiation-dominated eras, we have found that the
amplification of the primordial magnetic field occurs pro-
vided that the parameter � falls in the range [1.26; 1.38].
Moreover, the analysis has been performed also for the
origin of the baryon asymmetry occurring during the
radiation-dominated era.
As concerns the model proposed by Novello-Bergliaffa-

Salim, with L� Xþ�8=X, the analysis of the amplifica-
tion of the primordial magnetic fields shows that the re-
quired values r� 10�37, necessary for explaining the
observed galactic magnetic fields, is obtained provided
that the electromagnetic nonlinear terms turn on at the
reheating era, but are zero at the de Sitter epoch.
In conclusion, the nonlinear electrodynamics, which is

the reduction in the Abelian sector of an effective model of
the low energy (3þ 1) QCD [49], seems a promising
candidate for studying cosmological scenarios which go
beyond the standard cosmology and particle physics.
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