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We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit

function of the density, p ¼ fð�Þ. Through general physical considerations we constrain the asymptotic

past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a

decelerating perfect fluid, or ‘‘aether,’’ with wAE � 0. Barotropic models give substantially disjoint

predictions from quintessence, except in the limit of �CDM. They are also interesting in that they

simultaneously can ameliorate the coincidence problem and yet ‘‘predict’’ a value of w � �1.
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I. INTRODUCTION

Observational evidence strongly points to an accelerated
expansion of the Universe [1,2], but the physical origin of
this acceleration is unknown. Since general relativity re-
lates spacetime curvature (and hence acceleration) to en-
ergy, it is natural to hypothesize that either this relationship
must be modified (as in extended gravity models [3,4]), or
that there is some additional source of energy density
driving the expansion. Many models in the latter category
have been proposed, including scalar field models (‘‘quin-
tessence’’) [5–10], scalar field models with modified ki-
netic terms (‘‘k-essence’’) [11–20], and even more exotic
possibilities (see, for example, the review of [21]).

Here we examine in more detail a class of models called
barotropic fluids, in which the dark energy pressure pDE is
given as an explicit function of the density �DE. This can be
viewed as a very simple prescription, in contrast to other
models (such as the ones above) where the relation is
implicit, written in terms of intermediate variables.
Although some barotropic models are well studied, we
find here a number of new, general properties that makes
this class of interest in dark energy physics. Specific mod-
els investigated previously include the Chaplygin gas
[22,23] and the generalized Chaplygin gas [22,24], the
linear equation of state [25–28] and the affine equation
of state [29,30] (note these are actually the same model),
the quadratic equation of state [29,31], and the van der
Waals equation of state [32,33]. Such models have been
considered either as unified models for dark matter and
dark energy together, or as models for the dark energy
alone. We confine our attention to the latter case.

One of the key properties of barotropic fluids is that the
sound speed, c2s ¼ dpDE=d�DE, does not have to equal the
speed of light as in quintessence models. In addition, the
condition c2s � 0 causes the barotropic dynamical behavior
to be distinguishable from quintessence—that is, they tend
to lie in distinct regions of the equation of state phase space

[34]. Here we extend these results to a more general dis-
cussion of the types of behavior that are allowed for
barotropic models. We will see that limits 0 � c2s � 1 on
the sound speed, along with some fairly general observa-
tional constraints, allow surprisingly broad conclusions to
be made about the properties of viable barotropic models,
ruling out some models in the literature. Moreover, the
properties describe an attractively simple picture of dark
energy, together with a possible simultaneous resolution of
the coincidence problem and why today the equation of
state w is near �1.
We discuss general properties of barotropic fluids in

Sec. II, together with some special cases. In Sec. III we
explore the distinction between barotropic and scalar field
solutions to the dark energy puzzle, and the relation to
�CDM, finishing with a comparison of the coincidence
and w � �1 behaviors of the different classes.

II. PROPERTIES OF A BAROTROPIC FLUID

A. General properties

We define a barotropic fluid as any fluid in which the
physics of the fluid is fully determined by the pressure as
an explicit function of the density:

pDE ¼ fð�DEÞ: (1)

Thus, the equation of state function f completely charac-
terizes a barotropic fluid. For example, the generalized
Chaplygin gas has the equation of state function [24]

pDE ¼ � A

��
DE

; (2)

where A and � are constants, while the quadratic equation
of state is

pDE ¼ p0 þ ��DE þ ��2
DE; (3)

with the linear (or affine) model corresponding to the
special case � ¼ 0. The van der Waals equation of state
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is [32,33]

pDE ¼ ��DE

1� ��DE

� ��2
DE: (4)

How do barotropic models differ from quintessence
models for dark energy? For a canonical, minimally
coupled scalar field �, the relation between pressure and
density is given parametrically by

p� ¼ 1

2
_�2 � Vð�Þ; (5)

�� ¼ 1

2
_�2 þ Vð�Þ; (6)

where _� ¼ d�=dt, and Vð�Þ is the quintessence potential.
One can certainly find quintessence potentials for which

p� is not a single-valued function of �� and which there-

fore can never be described in terms of Eq. (1). For
instance, a field oscillating about the minimum of a poten-
tial has zero kinetic term at either extreme of the oscillation
and zero potential term at the minimum (in terms of the
equation of state ratiow ¼ p�=��, this isw ¼ �1 andþ1

respectively). Thus, p� passes through 0 twice on every

oscillation, with a decreasing value of �� each time (since

�� diminishes as the Universe expands). On the other

hand, many quintessence models can be characterized by
a pressure which is a single-valued function of density, so
what distinguishes these models from the barotropic mod-
els we consider here?1

The main distinction is that barotropic models have a
value of dpDE=d�DE which is constrained by limits on the
sound speed. The sound speed for a barotropic fluid is
given by

c2s ¼ dpDE

d�DE

: (7)

Note that there is no need to write partial derivatives, since
pDE depends only on �DE. To ensure stability, we must
have c2s � 0, so that dpDE=d�DE � 0. Thus, the function
fð�DEÞ in Eq. (1) is not arbitrary; it must satisfy
df=d�DE � 0. We will further require, for causality, that
c2s � 1 ([35], but also see [36]). This imposes the addi-
tional constraint df=d�DE � 1.

In contrast, a canonical minimally coupled scalar field is
an imperfect fluid. While its adiabatic sound speed is given
by Eq. (7) (written as a partial derivative holding the
entropy, or scale factor, fixed), its physical sound speed

is always equal to the speed of light. Thus, these models are
not subject to the constraint that dp=d� � 0; in fact, they
generically have dp=d� < 0 [34,37]. This is the reason
that barotropic models and many quintessence models
occupy disjoint regions in the w� w0 phase plane [34].
(For more general discussions of the behavior of scalar
field dark energy models in the w� w0 phase space, see
[37–40]).
Starting from the definition of the equation of state ratio,

w ¼ pDE=�DE, and taking the derivative with respect to the
logarithmic scale factor lna, denoted by a prime, one has

w0 ¼ �3ð1þ wÞ
�
dpDE

d�DE

� w

�
(8)

¼ �3ð1þ wÞðc2s � wÞ: (9)

The requirement that c2s � 0 then gives [34]

w0 � 3wð1þ wÞ: (10)

Here we consider only barotropic models for which w>
�1, although it is also possible to generate barotropic
phantom models with w<�1 [41–43]. Since, for dark
energy, w< 0, we have w0 < 0 for all barotropic fluids that
can serve as dark energy. Models of this kind, in which w
approaches �1 with time, have been dubbed ‘‘freezing’’
models [37], although for quintessence freezing models
one frequently has the opposite of Eq. (10): w0 � 3wð1þ
wÞ. (Quintessence models can be found to violate this,
while barotropic models will never break Eq. (10)).
Further, the upper bound on the sound-speed, c2s � 1, gives
a lower bound on w0:

w0 � �3ð1þ wÞð1� wÞ: (11)

This is precisely the null line for the w� w0 phase plane
[38] and leads to the one exception where quintessence
models are exactly equivalent to barotropic models: skat-
ing models [38,44], with kinetic energy along a flat poten-
tial, follow the equality in Eq. (11) and correspond to
barotropic models with fð�DEÞ ¼ �DE � �?; both have
c2s ¼ 1. This is a pathological case, however, as the kinetic
energy of skating models redshifts as a�6 and the model
quickly becomes indistinguishable from a cosmological
constant.
Since w decreases with time, Eq. (8) has a generic future

attractor at w ¼ �1, independent of the functional form of
fð�DEÞ. At the attractor, the density, pressure, and sound
speed asymptotically approach constant values, which we
denote �1, p1, and cs1. Taking cs ¼ cs1 in Eq. (9), we see
that w approaches �1 as

1þ w� a�3ð1þc2s1Þ; (12)

and the dark energy density asymptotically approaches �1
as

�DE � �1 � a�3ð1þc2s1Þ: (13)

1Indeed, it is trivial to write down an effective potential for a
barotropic model:

Vð�Þ ¼ ð�� fÞ=2� ¼
Z

dtð�þ fÞ1=2;
and from this Vð�Þ alone one could not tell if the physics was
barotropic or quintessential.
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Since at late times the density always approaches a
constant, �1, this suggests decomposing the barotropic
energy density into two components,

�DE ¼ �1 þ �AE; (14)

where the first term represents an always present cosmo-
logical constant and the second term defines an ‘‘aether’’
density, �AE, a spatially pervasive fluid with sound speed
generally different from unity.

The aether component is itself barotropic (with
zero cosmological constant piece), and by comparing
Eqs. (13) and (14) to the usual behavior of some compo-

nent x, �x � a�3ð1þwxÞ, one sees that 0 � wAE � 1. That is,
we can represent any barotropic fluid overall as consisting
of a cosmological constant plus a positive equation of state
perfect fluid. The sound speed of the aether is equal to the
sound speed of the full barotropic component, a result that
is easily proven using the formulas for summing compo-
nents, Eqs. (26) and (27) of [40], together with Eq. (9).

Note that the cosmic acceleration from the dark energy
arises purely from the cosmological constant piece. In
contrast to the barotropic dark energy as a whole, the aether
component acts to decelerate and has a density that de-
creases at least as fast as the matter density, �M � a�3, and
no more rapidly than a stiff fluid, �� a�6.

As a specific example, consider the Chaplygin gas
model, which is given by Eq. (2) with � ¼ 1. The full
Chaplygin gas density evolves as

�DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ ð�2

DE;0 � �21Þa�6
q

; (15)

with the future attractor at �1 ¼ ffiffiffiffi
A

p
, so the aether density

is given by

�AE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ ð�2

DE;0 � �21Þa�6
q

� �1: (16)

The aether density decays as a�3 at early times (i.e.,
wAE ¼ 0), while in the limit where the constant-density
attractor is approached, �AE decays as a�6 (i.e., wAE ¼
þ1).

Requiring a matter dominated era at high redshift con-
strains the behavior of the aether component at early times.
Since wAE � 0, the energy density of this component will
tend to dominate in the past. However such an aether
component with a density greater than the matter density
at high redshift violates a host of observational constraints
[45]. Thus, we must havewAE ! 0 as a ! 0. Furthermore,
applying Eq. (9) to the aether component, we see that as
a ! 0 we have c2s � wAE so in this limit c2s ! 0.

These arguments then allow us to put very general
constraints on the behavior of the overall barotropic dark
energy: it will always behave like a pressureless dust
component at early times, and like a cosmological constant
at late times. (Note that ‘‘late times’’ could mean the far
future, rather than the present). In order to produce dustlike
behavior at early times, the functional form of fð�DEÞmust

satisfy the constraint df=d�DE ! 0 as �DE ! 1, as well
as the previously-discussed sound-speed limits: 0 �
df=d�DE � 1 at all times. We discuss the observational
implications of this further in Sec. III.
For the barotropic models we have mentioned, these

limits impose severe constraints. For example, for the
quadratic and affine models of Eq. (3), our limits impose
� ¼ 0 and � ¼ 0, so all acceptable dark energy models of
this type reduce to the simple case pDE ¼ constant. This
corresponds to the special case where �AE behaves exactly
like dust at all times (see the next section). Similarly, the
van der Waals model (Eq. (4)) is found to have unphysical
behavior. For the generalized Chaplygin gas (Eq. (2)), our
constraints give �> 0, ruling out several extensions of the
generalized Chaplygin gas [46].
The aether decomposition also provides a simple recipe

for producing acceptable barotropic models. Specifically,
every barotropic equation of state can be written in the
form

pDE ¼ ��1 þ gð�DE � �1Þ; (17)

where the function g is subject to the constraints

0 � dgð�Þ=d� � 1; (18)

gð0Þ ¼ 0; (19)

and, in the limit where � ! 1,

dgð�Þ=d� ! 0: (20)

B. Special cases

Now consider some special cases of interest. When c2s ¼
0, we have the previously-mentioned constant-pressure
model, characterized by p ¼ ��1. The density in this
case evolves as

� ¼ �1 þ Ca�3; (21)

i.e., this looks just like the �CDM model (though with an
additional matter contribution). This model has been pre-
viously discussed elsewhere. For instance, it corresponds
to the � ¼ 0 limit of the generalized Chaplygin gas [24],
and it is a special case of the ‘‘mocker models’’ discussed
in [38], in which it was noted that such models are char-
acterized by w0 ¼ 3wð1þ wÞ, defined there as the
constant-pressure line.
For c2s constant but nonzero, we have

� ¼ �1 þ Ca�3ð1þc2s Þ: (22)

These models are all observationally excluded as noted
earlier, since they asymptotically dominate the expansion
at high redshift. In particular, pure skating models have
c2s ¼ 1 and therefore correspond to dg=d� ¼ 1 at all
times; such models then violate the condition in Eq. (20)
above.
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C. Relation to k-essence

Note that there is a one-to-one correspondence between
barotropic fluids and the subset of k-essence models with
constant potential, the so-called ‘‘purely kinetic’’
k-essence models. The latter models were first investigated
in the context of inflation [11] and later proposed as unified
models of dark matter and dark energy [19]. These models
are characterized by a Lagrangian of the form:

p ¼ FðXÞ; (23)

where X is

X ¼ 1

2
r��r��; (24)

and � is the k-essence scalar field. The pressure in these
models is simply given by Eq. (23), while the energy
density is

� ¼ 2XðdF=dXÞ � F: (25)

To convert between a kinetic k-essence model and a
barotropic model, one inverts the function F to find X ¼
F�1ðpÞ and substitutes this into Eq. (25) to convert �ðXÞ
into �ðpÞ. Inverting this delivers the barotropic Eq. (1). If
one starts with a barotropic model, one inverts f to give
� ¼ f�1ðpÞ and interprets Eq. (25) as a differential equa-
tion to solve for FðXÞ. To wit (cf. [47])

Z dF

f�1ðFÞ þ F
¼ lnðCX1=2Þ; (26)

where C is a constant. This one-to-one correspondence
(assuming the functions are invertible) means that the
trajectories for purely kinetic k-essence lie in the same
region of the w� w0 phase plane as the trajectories for
barotropic fluids [20].

For the constant c2s barotropic model, for example, the
explicit barotropic relation between pressure and density is

pDE ¼ c2s�DE þ ð1þ c2sÞ�?; (27)

and the analogous k-essence Lagrangian is [20,30]

p ¼ �? þ A
2c2s

1þ c2s
Xð1þc2s Þ=ð2c2s Þ; (28)

where A is an arbitrary constant allowed by field redefini-
tion in X.

III. OBSERVATIONAL SIGNATURES

Despite the generality of the models discussed here, they
do provide some distinctive observational signatures. We
first consider features in the homogeneous background
properties, e.g., expansion history and equation of state,
and then in the spatial perturbation properties.

Consider first the jerk parameter of the expansion history
[48]

j � a2a
:::

_a3
: (29)

The importance of this parameter was first emphasized by
[49], and it was presented as one of the ‘‘statefinder’’
parameters in [50,51]. In a flat universe, j is given by [49]

j ¼ 1þ 9

2
�DE

dpDE

d�DE

ð1þ wDEÞ: (30)

Thus, for �CDM (including the constant-pressure models
discussed in Sec. II B), we see that j ¼ 1, independent of
the value of�� [52]. For the barotropic models considered
here, the requirement that dpDE=d�DE � 0 translates into a
simple bound: j � 1. On the other hand, for quintessence
models, we can write [34,38]

j ¼ 1� 3

2
�DE½w0 � 3wð1þ wÞ�: (31)

Since quintessence models generally satisfy w0 � 3wð1þ
wÞ [37], we see that they are often characterized by j � 1.
Thus, accurate measurement of jerk parameter j < 1 (or
equivalently w and w0) could provide perhaps the cleanest
observational signature to distinguish barotropic dark en-
ergy from quintessence. One can view this as determining
the number of internal degrees of freedom in the dark
energy physics [30,53].
Unfortunately, the jerk parameter is rather difficult to

derive from current observational data. Assuming a con-
stant value for j, [54] derived j ¼ 2:16þ0:81

�0:75. While this

might naı̈vely seem to favor barotropic models, in fact the
assumption of constant j strongly biases the result. Typical
barotropic and quintessence models generally have values
of j that vary significantly with time, and current observa-
tions are insufficient to distinguish these two types of
models.
Note that as j approaches unity, it becomes difficult to

distinguish barotropic (or quintessence) models from
�CDM using the expansion history, since the constant-
pressure model is degenerate with �CDM. Two possible
observational signatures exist. In the case of barotropic
dark energy, some of the contribution to the zero-pressure
dark component can arise not only from dark matter but
also from the aether component. If the dark matter particle
is detected, and its relic abundance can be calculated from
its physical properties, then one signature of barotropic
dark energy would be an anomalously high observed value
of �M in relation to the dark matter (and baryon)
calculation.
A second possible signature is the behavior of spatial

perturbations. Since c2s ¼ 0 for the constant-pressure baro-
tropic model, one might hope to distinguish it observatio-
nally from the corresponding quintessence model with
c2s ¼ 1 on the basis of perturbation growth. (Constraints
on the dark energy sound speed have been explored for
constant sound speed in [55,56]). Interestingly, where
barotropic and quintessence models are closest in their
dynamics (i.e., near w0 � 3wð1þ wÞ), they differ most in
sound speed, and where they are closest in sound speed,
they differ most in their dynamics. However, as w ! �1,
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barotropic models and �CDM become degenerate, at least
to linear order. We can see this by examining the equation
for linear perturbation growth in the dark energy fluid in
synchronous gauge [57,58]:

_� DE þ ð1þ wÞð�DE þ _h=2Þ þ 3Hðc2s � wÞ�DE ¼ 0;

(32)

where h is the trace of the perturbation to the Friedman-
Robertson-Walker metric, and �DE is the divergence of the
fluid velocity. The key point is that for the case w ¼ �1,
there is no growing mode in �DE, since the last term is
always positive. Thus, w ¼ �1 models cannot be distin-
guished, regardless of the value of c2s (this point is empha-
sized in [58] for the case of the � ¼ 0 Chaplygin gas and
�CDM).

One can also argue qualitatively from Eq. (32) that the
growth of density perturbations should become relatively
insensitive to c2s in the limit where w is close to �1. This
conclusion is borne out by detailed comparisons in thew�
c2s plane between models and the observations [55,56].
These investigations show likelihood curves that are nearly
independent of c2s for w near �1.

Note that barotropic models as a class can never be
‘‘ruled out’’ as long as �CDM remains viable, since as a
limiting case constant-pressure barotropic models include
�CDM. We have shown ways, however, in which one can
generally constrain the allowed parameter space for baro-
tropic models. That said, all observationally-allowed baro-
tropic models must approach the constant-pressure model
at high redshift, making them indistinguishable from
�CDM in this limit (save through the theoretical predic-
tions for �M noted above).

One can take this further and argue that barotropic
models ‘‘predict’’ a value of w near �1, in a way that
quintessence models do not. Our argument is based on the
upper bound on w0 given by Eq. (10). This equation shows
that, for barotropic models with nonnegative c2s , the value
of w for the dark energy can never ‘‘loiter’’ at a value
between w ¼ 0 and w ¼ �1. While w can lie near 0 for
arbitrarily long times in these models, once it begins to
decrease toward �1, Eq. (10) puts a lower bound on the
rate of decrease. Thus, one cannot have arbitrarily long
periods in which w has some value between 0 and�1. The
opposite is true in quintessence models; it is easy to con-
struct such models (trackers) with w roughly constant and
equal to nearly any desired value [10].

In terms of our aether decomposition, the slowest rate of
decrease for wDE occurs when wAE ¼ 0. In this case, for
example, w decreases from �0:1 to �0:9 as the scale
factor increases by about a factor of 4 (i.e., within 1.5 e-
folds). Other choices for the equation of state function can
only produce a more rapid decrease in w. Thus, in baro-
tropic models, a value of w between 0 and�1must always
be a transient phenomenon, leading to the argument that
barotropic models ‘‘predict’’ a value of w near �1 (a

prediction which would have been considerably more con-
vincing had we made it a decade ago). Note that aw ! �1
attractor is also present in some unified models for dark
matter and dark energy [59,60], although such unified
models are outside the scope of our discussion.
Since the only viable barotropic models are those that

scale like the dominant component at high redshift, no
other special selection needs to be applied: in this sense
the ‘‘bug’’ of not being able to distinguish a constant-
pressure barotropic model (wAE ¼ 0) from �CDM is
really a ‘‘feature’’ of ameliorating the problem of fine-
tuning initial conditions. (The usual cosmological constant
problem remains of why the nonaether part, �1, is so
small.)
Note that the coincidence problem is also somewhat

ameliorated (see [61] for a recent discussion of the coin-
cidence problem from a novel perspective). For the case of
a cosmological constant, the ratio of dark energy density to
matter density has to increase by 9 orders of magnitude
between recombination and today, leading to the question
of why dark energy overtakes matter basically now. In
contrast, the barotropic models can easily have a more
natural-seeming ratio of order 10�2 or Oð1Þ at recombina-
tion. While quintessential tracking models can also have
such ratios, they have difficulties in then achieving w �
�1 today. Thus barotropic models have attractive charac-
teristics with regards to both the fine-tuning and coinci-
dence problems. In effect, the aether component of the
barotropic fluid anesthetizes the cosmological constant
against the pain of fine-tuning.

IV. CONCLUSIONS

Barotropic fluids have a number of characteristics that
make them an interesting class of dark energy models.
They have, by definition, an explicit rather than implicit
equation of state relating the pressure and the energy
density. While this relation is nominally quite general,
we show that simple physical conditions such as stability
and causality severely restrict the allowed functional
forms. In particular, we demonstrate that viable barotropic
models must possess the following properties:
(i) Asymptotic future de Sitter state, where the dynam-

ics freezes to a cosmological constant state,
(ii) Dynamics distinct from much of quintessence, lying

in a separate region of w� w0 phase space; sound
speed generally distinct from quintessence,

(iii) Acts as a sum of a cosmological constant and a
perfect fluid ‘‘aether’’ component with wAE � 0,

(iv) The aether component must have wAE ! 0, c2s ! 0
in the past in order not to violate matter domination.

These results both unify a number of special cases in the
literature and rule out several models.
We consider several observational signatures to distin-

guish barotropic fluids through both the effects on back-
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ground expansion and on perturbation growth. For ex-
ample, in the barotropic case the sound speed is not re-
stricted to be the speed of light, as in canonical, minimally
coupled scalar field models. Constant-pressure (c2s ¼ 0)
barotropic models are however degenerate with �CDM,
though possibly distinguishable through a discrepancy be-
tween particle physics predictions for the dark matter
density and cosmological observations.

Finally, the aether component of the barotropic fluid can
anesthetize the cosmological constant against some of its
fine-tuning and coincidence problems. In the high redshift
universe the dark energy appears like �CDM, but with a

dark component energy density that can be comparable to
the matter density. At late times, it naturally and rapidly
transitions from a matterlike behavior to behavior that
approaches a pure cosmological constant.
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