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We use stellar dynamics arguments to constrain the relevant parameters of unparticle-inspired models

of gravity. We show that resulting bounds do constrain the parameters of the theory of unparticles, as far as

its energy scale satisfies the condition �U � 1 TeV and dU is close to unity.
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I. INTRODUCTION

It has been remarked that the standard model (SM) is
likely to be incomplete due to the apparent lack of scale
invariant objects, unparticles [1], besides its well-known
shortcomings. Implementing scale invariance requires con-
sidering an additional set of fields with a nontrivial IR fixed
point, the Banks-Zacks (BZ) fields. The interaction be-
tween the SM and BZ fields occurs through the exchange
of particles with a large mass scale, M�, written as

L BZ ¼ 1

Mk�
OSMOBZ; (1)

where OSM is an operator with mass dimension dSM built
out of SM fields and OBZ is an operator with mass dimen-
sion dBZ built out of BZ fields.

At an energy scale �U, the BZ operators match onto
unparticles operators (OU) and Eq. (1) matches onto

L U ¼ CU�
dBZ�dU
U

Mk�
OSMOU; (2)

where dU is the scaling dimension of OU, which can be
fractional, and CU is a coefficient function.

Considering tensor-type unparticle interactions with the
stress-energy tensor of SM states leads to a modification to
the Newtonian potential �ðrÞ, usually referred to as un-
gravity—a gravitational potential with a power-law addi-
tion [2],

VðrÞ ¼ �GUM

r

�
1þ

�
RG

r

�
2du�2

�
; (3)

where RG is the characteristic length scale of ungravity,

RG ¼ 1

��U

�
MPl

M�

�
1=ðdU�1Þ�2ð2� �Þ

�

� �ðdU þ 1
2Þ�ðdU � 1

2Þ
�ð2dUÞ

�
1=ð2dU�2Þ

; (4)

and �U � 1 TeV is the energy scale of the unparticle
interaction (the lower bound reflects the lack of detection
of these interactions within the available energy range),
MPl is the Planck mass, and � is a constant dependent on
the type of propagator (unity in the case of a graviton).
The Newtonian potential is recovered for dU ¼ 1, RG ¼

0 (if dU > 1), or RG ! 1 (if dU < 1), so that

GU ¼ G

1þ ðRG

R0
Þ2dU�2

; (5)

where R0 is the distance where the gravitational potential
matches the Newtonian one, VðR0Þ ¼ �ðR0Þ. Unfor-
tunately, the value of R0 is unknown; this may be circum-
vented by considering only values of dU near unity [2], so
that Eq. (3) is approximately given by

VðrÞ ¼ �GM

2r

�
1þ

�
RG

r

�
2du�2

�
: (6)

Notice that corrections of this type also arise in the context
of a gravity model with vector-induced spontaneous
Lorentz symmetry breaking [3].

II. POLYTROPIC STELLAR MODEL

In what follows, we examine the bounds on parameters
RG and dU in Eq. (6) arising from astrophysical consid-
erations about stellar equilibrium. In order to do so, we
shall extend considerably the range of ungravity correc-
tions. Before discussing these bounds in detail, we point
out that astrophysical and cosmological constraints on
unparticles have been discussed in Refs. [4–10], and the
ones arising from nucleosynthesis have been studied in
Ref. [11]. We also mention that the technique to be em-
ployed has been developed to constrain Yukawa-type cor-
rections to the Newtonian potential [12] as well as to
examine alternative gravity models with nonminimal cou-
pling between curvature and matter [13].
The simplest model available for stellar structure in-

volves the polytropic gas model, which assumes the state

equation P ¼ K�ðnþ1Þ=n, where P is the pressure, � is the
density, n is the so-called polytropic index, and K is the
polytropic constant. The above equation of state allows one
to write the relevant thermodynamical quantities as
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� ¼ �c�
nð�Þ; T ¼ Tc�ð�Þ; P ¼ Pc�

nþ1ð�Þ;
(7)

where �c, Tc, and Pc correspond to the values of density,
temperature, and pressure at the core of the star, respec-
tively. The dimensionless function �ð�Þ depends on the
dimensionless variable �, related to the radial coordinate
through r ¼ ��, where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1ÞK
2�G

�ð1�nÞ=n
c

s
: (8)

Using Eq. (7), the hydrostatic equilibrium condition

d

dr

�
r2

�

dP

dr

�
¼ �G

dMðrÞ
dr

(9)

may be rewritten as

1

�2

d

d�

�
�2 d�

d�

�
¼ ��n; (10)

the Lane-Emden equation [14]. This differential equation
is subjected to the initial conditions �ð0Þ ¼ 1 and �0ð0Þ ¼
0. A solution to the Lane-Emden equation allows for the
determination of the thermodynamical quantities of a star
in terms of their values at its center. The profile of �ð�Þ
depends only on the choice of the polytropic index n, not
on the size of the star, manifesting the homology symmetry
of this equation.

III. MODIFIED LANE-EMDEN EQUATION

In this section, we develop a method similar to that
presented in Ref. [12], in order to extract the relevant
bounds on dU and RG. We consider the modified potential
Eq. (6) and assume the validity of the Newtonian regime
(low density and small velocities) to obtain the modified
hydrostatic equilibrium equation:

r2

�

dPðrÞ
dr

¼ �GMðrÞ
2

�
1þ ð2dU � 1Þ

�
RG

r

�
2dU�2

�
: (11)

After some algebraic manipulation, this can be cast as

1

r2
d

dr

�
r2

�

dPðrÞ
dr

�
¼ �2��G

�
1þ ð2dU � 1Þ

�
RG

r

�
2dU�2

�

þGMðrÞ
2R3

G

ð2dU � 1Þð2dU � 2Þ

�
�
RG

r

�
2dUþ1

: (12)

Performing the substitutions r ¼ �� and � ¼ �c�
n, we

obtain the perturbed Lane-Emden equation

1

�2

d

d�

�
�2 d�

d�

�
¼ ��n

2

�
1þ ð2dU � 1Þ

�
�G

�

�
2dU�2

�

þ Mð�Þ
4��3

c�
3
G

ð2dU � 1ÞðdU � 1Þ

�
�
�G

�

�
2dUþ1

; (13)

where �G ¼ RG=� has been defined, for convenience.
Using relation dMðrÞ=dr ¼ 4��ðrÞr2, together with the
definitions of Eqs. (7) and (8), we obtain

Mð�Þ ¼ �4�

�ðnþ 1ÞK
2�G

�
3=2

�ð3�nÞ=2n
c �2 d�

d�
; (14)

which can be used to simplify the second term on the right-
hand side of Eq. (13), which now reads

1

�2

d

d�

�
�2 d�

d�

�
¼ ��n

2

�
1þ ð2dU � 1Þ

�
�G

�

�
2dU�2

�

� ð2dU � 1ÞðdU � 1Þ 1
�

d�

d�

�
�G

�

�
2dU�2

:

(15)

It is interesting to point out that this modified Lane-Emden
equation, unlike Eq. (10), has no homology symmetry, due
to the presence of �G in Eq. (15)—and hence the stability
of the star will depend on its radius. The unperturbed
central temperature Tc of a star is obtained from the
solution �0ð�Þ of Eq. (10) [14],

Tc0 /
�
�10

�
d�0
d�

�
�¼�10

��1
; (16)

where �10 signals the surface of the star, defined as
�0ð�10Þ ¼ 0. Considering n ¼ 3, which describes fairly
well the overall features of the Sun, one finds �10 � 6:90
[14]. In the presence of the ungravity perturbation into the
gravitational potential Eq. (6), the central temperature Tc

will be shifted from Tc0, the value obtained by using the
solution �0, to the unperturbed Lane-Emden equation,
Eq. (10), yielding the ratio

Tr � Tc

Tc0

¼ �10

�1

d�0
d�

d�
d�

: (17)

We now seek a numerical solution of Eq. (15) that allows
us to estimate the ratio Eq. (17) to obtain a contour plot of
the relative shift Tr � 1 for different values of dU and RG

(for n ¼ 3).
We consider two ranges of values for dU and RG: dU *

1 for RG < RS and dU & 1 for RG > RS, RS � 7� 108 m
being the Sun’s radius. For dU * 1, we also assume that the
length scale RG is larger than the Schwarzschild radius of
the Sun, RM ¼ 2GM�=c2 � 1:5 km, so that no relativistic
corrections of the form RM=r have to be considered.
In what concerns the modified Lane-Emden equation,
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Eq. (15), the following ranges are considered: 1:0< dU <
1:06 for 0< �G < 1 and 0:94< dU < 1 for 10< �G <
104.

IV. RESULTS

Numerical solutions of Eq. (15) allow for obtaining
contour plots for Tr � 1 as a function of dU and �G. The
results are depicted in Figs. 1 and 2 for jTr � 1j � 0:06,
the uncertainty in the Sun’s central temperature [14].

Designating the line in Fig. 1 that indicates a 6% change
of the Sun’s central temperature as R�ðdUÞ, one sees that
RGðdUÞ>R�ðdUÞ for dU & 1. Thus, Eq. (4) leads to

M�
MPl

> ½��UR�ðdUÞ	1�dUfðdU;�Þ; (18)

where

fðdU; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� �Þ

�

�ðdU þ 1
2Þ�ðdU � 1

2Þ
�ð2dUÞ

s
(19)

is defined, for convenience. One might plot the lower

bound obtained above as a function of dU, fixing the model
parameters � and�U. This is depicted in Fig. 3, for � ¼ 0,
2=3, 1, 1.9, and suitable values for�U; all lines converge to
the trivial point dU ¼ 1, M� � 0.
Similarly, one obtains from Fig. 2 the upper bound

RGðdUÞ< RþðdUÞ, where the latter denotes the line corre-
sponding to the 6% change in the Sun’s central tempera-
ture. Resorting again to Eq. (4), this again yields

M�
MPl

> ½��URþðdUÞ	1�dUfðdU; �Þ: (20)

The obtained lower bound is depicted in Fig. 4 (as
before, the lines converge to the point dU ¼ 1, M� � 0).

FIG. 1. Contour plot of Tr � 1 in function of RG and dU.

FIG. 2. Contour plot of Tr � 1 in function of logRG and dU.

FIG. 3. Lower bound of logðM�=MPlÞ for � ¼ 0 (black curve),
� ¼ 2=3 (dark grey curve), � ¼ 1 (light grey curve), and � ¼
1:9 (black, lower curve), and �U ¼ 1 TeV (solid curve) and
�U ¼ 103 TeV (dashed curve).

FIG. 4. Lower bound of logðM�=MPlÞ for � ¼ 0 (black curve),
� ¼ 2=3 (dark grey curve), � ¼ 1 (light grey curve), and � ¼
1:9 (black, lower curve), and �U ¼ 1 TeV (solid curve) and
�U ¼ 103 TeV (dashed curve).
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Discussion

As stated in Ref. [2], corrections to the Newtonian
potential �NðrÞ with dU < 1 might appear unfeasible,
since these will overcome the 1=r dependence of �NðrÞ
for r > Rg and lead to long-range deviations. This might be

alleviated by letting RG be so large that this crossover
occurs well beyond the relevant astrophysical range, and
one can no longer assume a static, spherically symmetric
ansatz for the metric.

Alternatively, one may consider values so close to unity,
dU & 1, that the perturbation to the Newtonian potential,
Eq. (6), may be expanded as ðr=RGÞ2�2dU � 1þ 2ðdU �
1Þ logðr=RgÞ, and the logarithmic dependence is attenuated

by the small dU � 1 term: for instance, for r ¼ 100 AU,
the typical dimension of the Solar System, and RG 

10 AU, the maximum value considered here, this yields
ðr=RGÞ2�2dU � 1þ 4ðdU � 1Þ; assuming the same value
for RG and instead, if r
 100 kpc
 1010 AU, the size of a
galaxy, one still gets ðr=RGÞ2�2dU � 1þ 20ðdU � 1Þ.

With these considerations in mind, the method devel-
oped here shows that one can successfully constrain the
range of MU for dU & 1: in particular, assuming �U �
1 TeV, one achieves lower bounds in the range M� *
ð10�1–102ÞMPl (even lower bounds can be obtained for
values of dU closer to unity).

For the case dU * 1, one obtains a lower bound exhib-
iting a peak around dU ¼ 1:01, with typical values M� *
ð10�2–10�1ÞMPl. Reference [2] presents the lower bounds
forM� as a function of�U, for dU ¼ 2, 3, 4—values which
are beyond the reach of this study. In a subsequent study,
the cases dU ¼ 1:1, 1.5, 2 were considered, with the first
case closer to the range considered here [10].

By solving Eq. (15) for dU ¼ 1:1 and finding the value
of RG that yields Tr � 1 ¼ 0:06, one obtains a lower bound
of about M� > ð10�4–10�2ÞMPl � ð1012–1014Þ TeV, de-
pending on �U and M� (this may be checked by extrap-
olating the plot in Fig. 2). This limit is much greater than
the one found in Ref. [10], where a result M� *
ð102–106Þ TeV is reported (for �U ¼ 106 TeV). This in-

dicates that the developed method hints at a much more
stringent bound for M�, for dU * 1.

V. CONCLUSIONS

In this work we have set up a formalism to constrain
ungravity-inspired deviations from the Newtonian hydro-
static equilibrium conditions within a star. This leads to a
perturbed Lane-Emden problem that is then examined for
the polytropic index n ¼ 3. From the resulting change in
the star’s central temperature, we obtain constraints on the
ungravity parameters RG and dU. Given that the overall
properties of the Sun are well described by the n ¼ 3 case,
we allow for the ungravity correction to affect this up to the
upper bound on the Sun’s central temperature, �Tc=Tc �
0:06.
We find that, for dU * 1 and �U � 1 TeV, lower

bounds on M� are in the range ð10�2–10�1ÞMPl. For dU &
1 and �U � 1 TeV, M� must lie in the range above
ð10�1–102ÞMPl. Of course, our bounds are complementary
to the ones obtained from torsion balance experiments,
which test a much smaller range of RG [15], actually about
80 �m.
The reported results for dU * 1 are either more stringent

[4,5,7–10] or similar [6] to those previously available. The
lower bound derived for dU & 1 is more relevant, since it
has been not obtained so far. In our opinion, this arises
from misconception that a negative exponent in Eq. (6) is
disallowed by long-range experiments [15]: while this is
true for large values of 1� dU, a range closer to unity,
dU & 1, yields an approximately logarithmic correction,
with large deviations from the Newtonian potential sup-
pressed by the smallness of the dU � 1 term.
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