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We investigate the chiral dynamics of gauge theories developing an infrared stable fixed point. We

determine the dependence of the bilinear fermion condensate on the underlying fermion mass and its

anomalous dimension. We introduce the instanton contributions and investigate how they affect the

dynamics near the fixed point. We generalize the Gell-Mann Oakes Renner relation and suggest to use it to

uncover the presence of an infrared fixed point of the underlying gauge theory. Our results have an

immediate impact on the construction of sensible extensions of the standard model of particle interactions

and the general understanding of the phase diagram of strongly coupled theories.
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Non-Abelian gauge theories exist in a number of distinct
phases which can be classified according to the character-
istic dependence of the potential energy on the distance
between two well separated static sources. The collection
of all of these different behaviors, when represented, for
example, in the flavor-color space, constitutes the phase
diagram of the given gauge theory.

Knowing the phase diagram of strongly coupled theories
has an immediate impact on the construction of sensible
extensions of the standard model (SM) of particle inter-
actions [1]. Dynamical breaking of the electroweak sym-
metry is a time-honored example [2,3]. The use of
fermions transforming according to higher dimensional
representations of the new gauge group is leading to sev-
eral interesting phenomenological possibilities [4–6] such
as Minimal Walking Technicolor (MWT)[7] and Ultra
Minimal Walking Technicolor (UMT) [8]. These models
lie close, in theory space, to theories with nontrivial infra-
red fixed points (IRFP)s [4,9]. In the vicinity of such a zero
of the beta-function the coupling constant flows slowly,
i.e., walks [10–13]. Knowledge of the phase diagram is
relevant also to provide natural ultraviolet completions of
unparticle [14] models [1,15]. To gain analytic insight one
can use the conjectured all-order beta function for non-
supersymmetric gauge theories [9] together with the con-
straints from the unitarity of the conformal operators [16].
Other approaches are based on the older truncated
Schwinger-Dyson approach (SD) [17] or more recent ideas
[18]. The analytical phase diagram obtained by this ap-
proach, and a comparison of it to recent lattice results [19–
27], is summarized in [1].

The goal here is to study the chiral properties at the
IRFP, i.e., the conformal chiral dynamics.

Conformal Chiral Dynamics: Our starting point is a
nonsupersymmetric non-Abelian gauge theory with suffi-
cient massless fermionic matter to develop a nontrivial
IRFP. The cartoon of the running of the coupling constant
is represented in Fig. 1. In the plot �U is the dynamical

scale below which the IRFP is essentially reached. It can be
defined as the scale for which � is 2=3 of the fixed point
value in a given renormalization scheme.
If the theory possesses an IRFP the chiral condensate

must vanish at large distances. Here we want to study the
behavior of the condensate when a flavor singlet mass term
is added to the underlying Lagrangian:

�L ¼ �m ~c c þ H:c:; (1)

with m the fermion mass and c f
c as well as ~c c

f left trans-

forming two component spinors, c and f represent color
and flavor indices. The omitted color and flavor indices, in
the Lagrangian term, are contracted. We consider first the
case of fermionic matter in the fundamental representation
of the SUðNÞ gauge group. We then generalize our results
to the case of higher dimensional representations.
The effect of such a term is to break the conformal

symmetry together with some of the global symmetries
of the underlying gauge theory. The composite operator,

O ~c c f
f0 ¼ ~c f0c f; (2)

has mass dimension d ~c c ¼ 3� �m with �m the anoma-

lous dimension of the mass term. At the fixed point �m is a
positive number smaller than 2 [16]. We assume m � �U.
Dimensional analysis demands

�L ! �m��m

U Tr½O ~c c � þ H:c: (3)

FIG. 1 (color online). Running of the coupling constant in an
asymptotically free gauge theory developing an infrared fixed
point for a value � ¼ ��.*sannino@ifk.sdu.dk
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The mass term is a relevant perturbation around the IRFP
driving the theory away from the fixed point. It will induce
a nonzero vacuum expectation value for O ~c c itself pro-

portional to �f0
f . It is convenient to define Tr½O ~c c � ¼ NfO

with O a flavor singlet operator. The relevant low-energy
Lagrangian term is then

�m��m

U NfOþ H:c: (4)

To determine the vacuum expectation value of O we re-
place it, formally, with a sum over an infinite number of
canonically normalized single particle states [28]:

O ðxÞ ¼ X1
n¼1

fn’nðxÞ: (5)

Each state possesses a mass Mn whose value is controlled
by an artificial mass gap � and a function of n, call it zðnÞ,
with the properties zðnþ 1Þ> zðnÞ and zð1Þ ¼ 1.

M2
n ¼ �2zðnÞ: (6)

We also have [28]:

f2n ¼ F d ~c c

dzðnÞ
dn

�2ðM2
nÞd ~c c�2; (7)

with F d ~c c
a function depending on the scaling dimension

of the operator as well as the details of the underlying
dynamics [15]. Because of the presence of the fictitious
mass terms the potential reads:

V ¼ m��m

U Nf

X1
n¼1

fn’n þ �m��m

U Nf

X1
n¼1

fn �’n

þ X1
n¼1

M2
n’n �’n: (8)

The bar over the fields and the fermion mass indicates
complex conjugation. The extremum condition yields

h �’ni ¼ �m��m

U Nf

fn
M2

n

; (9)

yielding

hOi ¼ � �m��m

U Nf

X1
n¼1

f2n
M2

n

: (10)

We now take the limit �2 ! 0 and the sum becomes an
integral. For any specific function zðnÞ it is easy to show
that

hOi ¼ � �m��m

U NfF d ~c c
�½�UV;�IR�; (11)

with

�½�UV;�IR� ¼ 1

1� �m

½�2ð1��mÞ
UV ��2ð1��mÞ

IR �: (12)

The ultraviolet and infrared cutoffs are introduced to tame
the integral in the respective regions. A simple physical
interpretation of these cutoffs is the following. At very high

energies, at scales above �U, the underlying theory flows
to the ultraviolet fixed point and we have to abandon the
description in terms of the composite operator. This im-
mediately suggests that �UV is naturally identified with
�U. The presence of the mass term induces a mass gap,
which is the quantity we are trying to determine. The
induced physical mass gap is a natural infrared cutoff.
We, hence, identify �IR with the physical value of the
condensate. We find

h ~c f
cc c

fi / �m�2
U; 0<�m < 1; (13)

h ~c f
cc c

fi / �m�2
U log

�2
U

jhOij ; �m ! 1; (14)

h ~c f
cc c

fi / �mð3��mÞ=ð1þ�mÞ�ð4�mÞ=ð1þ�mÞ
U ; 1<�m � 2:

(15)

We used h ~c c i ���m

U hOi to relate the expectation value of
O to the one of the fermion condensate. Via an allowed
axial rotation m is now real and positive. It is instructive to
compare these results with the ones obtained via naive
dimensional analysis (NDA) [29] also discussed in [30]
and in [15]. We find

h ~c f
cc c

fiNDA / �mð3��mÞ=ð1þ�mÞ�ð4�mÞ=ð1þ�mÞ
U : (16)

Note that one recovers the previous scaling as function of
m (up to logarithmic corrections) only for 1 � �m � 2.
The failure of NDA for a smaller anomalous dimension is
due to the fact that the ultraviolet physics is not captured by
NDA [15].
Instantons: The underlying gauge theory suffers from an

axial anomaly resulting in an explicit breaking of theUAð1Þ
symmetry. To take into account this phenomenon we add
the following instanton-induced term to the potential of the
theory [31–40]:

c�4
U

det½O ~c c �
�

d ~c cNf

U

þ H:c: ¼ c
ONf

�
ðd ~c cNf�4Þ
U

þ H:c: (17)

In terms of the fields ’m the vacuum expectation value
equation reads:

h’‘i ¼ � f‘
M2

‘

�
�mNf�

�m

U þ �cNf

ðP
n
fnh �’niÞNf�1

�
d ~c cNf�4

U

�
: (18)

We search for a solution of the previous equation of the

form h’‘i ¼ a f‘
M2

‘

. Substituting in the previous expression

we deduce

�a Nf�1 �Cþ aþ �M ¼ 0; (19)

with

�C ¼ �cNf

�
d ~c cNf�4

U

ðF d ~c c
�½�U;�IR�ÞNf�1; (20)
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�M ¼ �mNf�
�m

U : (21)

We have already taken the� ! 0 limit in (20). We analyti-
cally solve for a in the two extreme cases, i.e., no instanton
contribution (c ¼ 0):

jaj ¼ jMj; �a ¼ �ð1þ 2kÞ � �M with c ¼ 0:

(22)

�a and �M are the phases, respectively, of a and M. This
solution was found above. In the limit in which the in-
stanton term dominates over the linear term in a the
solution is

jaj
jMj ¼

�jMj2�Nf

jCj
�
1=ðNf�1Þ

;

�a ¼ �M � �c � �ð1� 2kÞ
Nf � 1

:

(23)

k is an integer. In the instanton dominated (ID) limit:

jhOiIDj ¼
�jMj�d ~c cNf�4

u

jcjNf

�
1=ðNf�1Þ

: (24)

The F d ~c c
�½�U;�IR� term cancels. Explicating the mass

term dependence,

h ~c f
cc c

fiID /
�
m

�U

�
1=ðNf�1Þ

�3
U: (25)

This ID contribution dominates for large values of the
fermion mass.

In the small mass regime we can solve (19) perturba-
tively in the mass. This expansion is well defined for 0<
�m � 1 since here the C coefficient is not affected by the
IR divergence. To the next leading term in m:

hOi ’ �ð �Mþ ð�MÞNf�1 �CÞF d ~c c
�½�UV;�IR�: (26)

The introduction of the �-term is a source of strong CP
violation appearing at low energies via the identification
�M ¼ �m þ! and �c ¼ �þ Nf! with �m the phase of

the fermion mass and ! an overall axial rotation. Using
! one can rotate away one of the two phases but not
both simultaneously. The net result is the presence in the

action of �eff ¼ �� Nf�m and we find hOiID ¼
Exp½�i �eff��ð1�2kÞ

Nf�1 �jhOiIDj. According to the all-order

beta function [9] an anomalous dimension smaller than 1
requires, for fermions in the fundamental representation, a
number of flavors larger than 11N=3. Even for N ¼ 2 the
number of flavors needed is sufficiently large to predict
that the instanton corrections are negligible. In the case of
fermionic matter transforming according to higher dimen-
sional representations the effects of the instantons are more
relevant since fewer flavors are needed to reach the con-
formal window [4] reducing the exponent of the instanton-
induced term. Besides, for any representation, in the region

1<�m � 2, instantons are relevant as we shall demon-
strate below.
2 Dirac Fermions, 2-index Symmetric Representation of

SUð3Þ : There are lattice indications that this theory may
develop an IRFP [21]. The instanton-induced potential
term here has the lowest possible exponent, i.e., Nf ¼ 2.

The all-order beta function predicts �m ¼ 1:3. This is the
regime where the instanton term cannot be neglected. We
obtain

hOi ¼ 2mei�a��m

U F d ~c c
�½�UV;�IR�

cos�a þ 2jcj cosð�aþ�cÞ
�

2d ~c c
�4

U

F d ~c c
�½�UV;�IR�

; (27)

where m> 0, �eff ¼ 0, �M ¼ �, and sin�a ¼
jCj sinð�a þ �cÞ determines �a. For �m > 1 � is IR domi-
nated leading to

h ~c f
fc1;c2gc

fc1;c2g
f i ¼ �m

c
�2

U þOðm2Þ; (28)

rather than

h ~c f
fc1;c2gc

fc1;c2g
f i / �

�
m

�U

�ð3��mÞ=ð1þ�mÞ
�3

U; (29)

valid for 1< �m � 2 but without the instanton term.
Without using the information of the beta function one
might still imagine the possibility that the anomalous
dimension is smaller than 1. In this case� is UV divergent,
we replace �UV with �U and find that the dependence of
the condensate on the mass is still linear.
2 Dirac Fermions in the Adjoint Representation of

SUð2Þ: This theory is also being investigated on the lattice
[19,20,22–24]. Here the instanton-induced term has 2Nf ¼
4 as an exponent and one can still solve analytically for the
condensate. If the underlying conformal theory possesses
an IRFP according to the all-order beta function �m ¼ 3=4
then the condensate has a linear dependence on the fermion

mass. It has a dependence proportional to m1=3 for larger
values of the mass.
Conformal Pions: At any nonzero value of the fermion

mass the chiral and conformal symmetries are explicitly
broken and single particle states emerge at low energies.
The relevant ones here are the conformal pions, i.e., the
would-be Goldstones which in the limit of zero fermion
mass cannot be described via single particle states. We
identify them via

hO ~c c f
f0 i ¼ hOiU with U ¼ eið�=F�Þ: (30)

� ¼ �aTa and Ta are the set of broken generators normal-
ized according to Tr½TaTb� ¼ �ab1=2. Substituting (30) in
(3) and expanding up to the second order in the pion fields
we have

m2
�F

2
� ¼ �m��m

U hO½m�i: (31)

Having determined the dependence on m of hO½m�i the
above generalizes the similar one in QCD [41–43] known
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as the Gell-Mann Oakes Renner (GMOR) relation. This
relation can be used to discover and classify, in a physical
way, different conformal fixed points. For example for the
theories investigated above we expect, for a very small
fermion mass, m2

�F
2
� ¼ m2�2

U. At larger masses the scal-
ing is different for the three cases and it can be easily
deduced from our results. A similar effective Lagrangian
was introduced in [15]. Assume now that the underlying
gauge theory has not developed an IRFP. In this case there
are only two possibilities: i) chiral symmetry breaks spon-
taneously yielding a condensate whose leading term inm is
a constant; ii) chiral symmetry is intact but a scale is still
generated. Chirally paired partners emerge together with
massless composite fermions appearing to saturate the
’t Hooft anomaly matching conditions. One can investigate

the finite volume effects using the conformal pion
Lagrangian in the �-regime [44].
We presented a novel analysis of the nonperturbative

physics related to the chiral dynamics of theories possess-
ing an IRFP. The results are testable via first principles
lattice simulations. Deviations from the QCD-like GMOR
relation can be used to disentangle conformal dynamics
from nonconformal dynamics. The low-energy effective
theories presented here, for the conformal pions, can be
extended to describe dynamical breaking of the electro-
weak symmetry featuring nearly conformal dynamics such
as MWTand UMT. The signals from MWTat the LHC are
being investigated while UMT also leads to interesting
dark matter candidates [8].
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