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Vector meson-baryon strong coupling constants in light cone QCD sum rules
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Using the most general form of the interpolating current of the baryons, the strong coupling constants of
the light vector mesons with the octet baryons are calculated within the light cone QCD sum rules. The
SU(3), symmetry breaking effects are taken into account in the calculations. It is shown that each of the
electric and magnetic coupling constants can be described in terms of three universal functions. A detailed

comparison of the results of this work on aforementioned couplings with the existing theoretical results is

presented.
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I. INTRODUCTION

The strong coupling constants of the pseudoscalar (sca-
lar) octet mesons 7, K, 5 (o, ay, f), and vector nonet
mesons p, ¢, w, K* with baryons are the fundamental
parameters in the analysis of the existing experimental
results on the meson-nucleon, nucleon-hyperon, and
hyperon-hyperon interactions. The coupling constants of
the vector mesons with the octet baryons can be written in
terms of the pNN coupling constant and «, («,,), where
a, (a,,) is the F/(F + D) ratio of the electric (magnetic)
coupling constants [1]. The vector dominance model pre-
dicts @, = 1, assuming universal coupling of the p meson
to the isospin current [2]. Therefore, reliable determination
of the meson-baryon coupling constants presents an im-
portant problem. Calculation of these coupling constants
from the fundamental theory of strong interactions,
namely, QCD, represents a very important task. At the
hadronic scale QCD is nonperturbative, which makes it
impossible to calculate the properties of hadrons from a
fundamental QCD Lagrangian. For this reason, calculation
of the properties of hadrons requires nonperturbative meth-
ods. Among a number of approaches, especially QCD sum
rules, is one of the most powerful and predictive methods
[3].

In this work we calculate the strong coupling constants
of the octet vector mesons with baryons in the framework
of the light cone QCD sum rules (LCSR) method. Note that
the p NN strong coupling constant is studied in this frame-
work in [4]. The strong coupling constants of pNN, p33,
and pEE are studied in LCSR in [5]. The coupling con-
stant of the vector mesons p and @ with the baryons is
studied in the framework of the external field QCD sum
rules method in [6]. The coupling constants of pseudosca-
lar mesons with baryons are studied comprehensively in
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the framework of the light cone version of the QCD sum
rules [7].

A few words about the LCSR method are in order. This
method is based on operator product expansion, which is
carried out over twist near the light cone x> = 0. The
matrix elements of nonlocal operators between one particle
and vacuum states are parametrized in terms of distribution
amplitudes, which are the main nonperturbative parame-
ters. More about the LCSR method and its applications can
be found in [8,9].

The paper is organized as follows. In Sec. II, SU(3),
classifications of the vector meson-baryon coupling con-
stants are presented, and they are calculated in LCSR
framework in Sec. III. Section IV is dedicated to the
numerical analysis of the sum rules for the above-
mentioned coupling constants and our discussions and
comments on these results. In this section we also present
a comparison of our results with the predictions of other
approaches.

IL. SU(3); CLASSIFICATION OF THE VECTOR
MESON-BARYON COUPLING CONSTANTS

It is well known that, in SU(3), symmetry, coupling
constants of all pseudoscalar mesons with baryons can be
expressed in terms of two constants F and D in the
following way:

Lppy = N2F TeB[V, B] + V2D TrB{V, B}
1

\/i(f + D) Tr(BB) TrV, (1)

and we assume ideal mixing of the octet and singlet iso-
singlets giving observable p® and @ mesons. Ideal mixing
corresponds to the mixing angle # = cos™'4/2/3 = 35.30,
which is very close to the experimental value 6 = 37.5°
[10]. The coefficient of the last term is chosen to eliminate
the coupling of the nucleon to the pure 5s state ¢p. B and V
are the octet baryons and octet vector mesons:
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Instead of the F and D as independent parameters, one
can also choose to work with the coupling g”~?#" and the
ratio a = F/(F + D). In terms of these parameters,
F =agrr", D= (1— a)g’ P Note also that, there
are two pairs of F and D values: one for the electric type
and one for the magnetic type couplings.

III. LIGHT CONE SUM RULES FOR THE VECTOR
MESON-BARYON COUPLING CONSTANTS

To construct LCSR for the vector meson-baryon strong
coupling constants, the following correlation function is
considered:

BBy — [ dxe V()| T {15,075 (OHO), (&)

where B, (B,) is the initial (final) baryon, V is a vector
meson, 7p is the interpolating current of the corresponding
baryon, g is the momentum of the V meson, and T is the
time ordering product. The correlation function can be
calculated in terms of the hadrons, as well as in the deep
Euclidean region p> — —oo, in terms of the quark and
gluon degrees of freedom. Using the operator product
expansion (OPE) the corresponding sum rules are obtained

Ag A
[18—B. — B, "B, m + { _
(p% - m%)(p% - m%) € (ﬁZ m2) fl YM f2 my my
= )lBl )\Bz
(P> —m)l(p+qP*—m

f

PHYSICAL REVIEW D 80, 016010 (2009)

by equating both representations through the dispersion
relations.

Let us first construct the phenomenological part of the
correlation function. To this aim we will insert a complete
set of intermediate states with the same quantum numbers
as the current operators 7. After isolating the ground state
baryons, we get

sz(pzw(q)l&(m»
m

2 2

B g 10
><< 1(1271)|77321| >+.__’ 5)
Py — my

[IB=BY (p3, p3) =

where p; = p, + ¢, m; is the mass of baryon B;, and - -
represents the contributions of the higher states and the
continuum.

The matrix elements entering Eq. (5) are defined as
follows:

<0|”73,-|Bi(19i)> = AB,.M(PZ‘), (6)

Ba(p)V(@)IB, (py)) = ﬁ(pz)[fl Ya

i
- fzmcﬂwq ]M(Pl)s“,
@)

where Ap. is the overlap amplitude for the baryon B;, ¢" is
the vector meson four-momentum, and u is the Dirac
spinor for the baryon which is normalized as itu = 2m.
Using Eqgs. (6) and (7), we obtain the following result for
the phenomenological part of the correlation function:

i
¥ quqy}(lfl + ml))

7 {PE4(f1 + [2) +2(e - p)pf1 + (my — my) p# + 2my(e - p) + (mymy — pPEf
1

+—2—[pE((p + @) = p?) = 2 )P4 + (p* + mim)éd + my((p + @) = pP)¥ — 2my(s - p)l}

mp +m2

= Hfﬁ'le{?{d-k Hf‘[‘(S'p)'i‘ e

where we had set p; = p and p, = p + g.

)

We see from Eq. (8) that the correlation function contains numerous structures and none of the structures has any
apparent advantage over any other. Therefore any of these structures, in principle, can be used in determining the baryon-
meson coupling constants. Our numerical analysis shows that the structures g#4 and g(e - p) exhibit better convergence,
which is the reason why we choose them in further analysis. From the coefficient functions IT/1*/2 and I/ one can extract
the values of f; + f, and f, respectively.

In order to obtain the expressions for the correlation functions, and from which the coefficient functions, from the QCD
side, baryon interpolating currents are needed. In the present work we use the most general forms of the following
interpolating currents for baryons:
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1
n¥ = \/;E“bc[(uﬂcsb))’sdc — (sTCd")ysu® + BT Cyss®)d® — B(s*T Cysd®)uc],

(s—u), m

- 1 o .
n* = —\[5772 (u—d), nP=-n>(s—d), 9)

——y'd—s), 7T == (u—),

1
nh = —\/%G“bc[2(u“TCdb)y5sc + (u T Cs?)ys5d® + (sTCysd®)uc + 2B Cysd®)s¢ + B(uT Cyss®)d + (s*T Cysd”)uc],

where C is the charge conjugation operator, (a, b, c) are the
color indices, B is an arbitrary parameter, and 8 = —1
corresponds to the Ioffe current. We see from Eq. (9) that
all currents, except the current of A, can be derived from
the 20 current by making simple replacements. It is shown
in [11] that the A current can also be obtained from the X.°
current with the help of the following relations:

29¥(d—s) + 7 = 3A,

. . (10)
20¥ ' (u—s) — p*' = —BA.

It should be noted that the properties of the nucleons are
first studied in [12] using the general form of the interpo-
lating current for baryons. The problem of choosing an
optimal form of the interpolating current for a baryon is
discussed in [9].

Before giving detailed calculations of the correlation
functions, let us first derive the relations among them.
For this purpose we will follow the approach presented in
[ 7], where relations between correlation functions involv-
ing coupling constants of pseudoscalar mesons to octet
baryons are obtained. Of course, in the exact SU(3) ¢ limit
all coupling constants of vector mesons with octet baryons
can be related to each other using symmetry arguments.
The main advantage of our approach is that our approach
allows us to take SU(3), symmetry violating effects into
account.

Below we will show that all correlation functions re-
sponsible for the coupling constants of the vector mesons
to octet baryons can be written in terms of only three
functions for each electric and magnetic form factors.
Note that the relations between the invariant functions
are all structure independent. Starting from the correlation
function that is responsible for the %% — 29p° transition,
two of the three independent functions can be obtained. It
allows us to establish relations among this correlation
function and the correlation functions responsible for
3t —3%p% and 3 — X7 p° transitions, which can be
written as

M=% = g 201 (u,d, 5) + g,0,11) (u, d, )
+ 8yl d,9), (n

where we formally write down the quark content of the p°

[
meson in the form

Ju = ngéqq'yﬂq’
u,d,s

and for the p° meson g,z, = —&,q0 = 1/v/2. gp5, = 0.
The invariant functions I1;, IT}, and IT, describe emission
of the p® meson from u, d, and s quarks of 3°, respectively.
We see from Eq. (9) that the current of 2° is symmetric
under the replacement u < d, hence II|(u,d,s)=
I1,(d, u, s). For this reason, we have two independent
functions IT,(u, d, s) and I1,(u, d, s). In further discussion,
we introduce the following formal notation:

IT,(u, d, 5) = (au|3°2°|0),
,(u, d, s) = (5s|2°3°)0),

for convenience. Replacing d — u in I1(d, u, s) and using
30(d — u) = —23*, we obtain

41T, (u, u, ) = 2(aul 3+ 3710). (13)

(12)

Appearance of the factor 4 in Eq. (13) can be explained as
follows. Since there are two u quarks, in 2., there are two
ways of contracting them. Each one of the quark lines can
emit the p® meson yielding, in total, 4 ways for emitting
the p® meson. Using the fact thatin 3 * there is no d quark,
we obtain

1> =27 = g (aul 37 5710) + g,5,(5sI2 7 5710)
= 211, (u, u, s). (14)

Using similar arguments, for the 3~ — 3~ p° transition,
we get

> =270 = g 1 (dd|S™371|0) + g,5,(5sI272710)
= —\2I1,(d, d, s) = —211,(d, d,s).  (15)

These equations establish relations between the couplings
of the p” meson with %7, 39 and 3~ baryons. Note that in
the isospin symmetry limit, we obtain the well-known
relations [T1¥" ~2"7" = 12 —27¢" and [12"—2" = 0.
Let us proceed now by calculating the couplings of the
p® meson with a proton and neutron. For this purpose we
need the matrix elements (x| NN|0) and (dd|NN|0). The
matrix involving interpolating current of the proton can be
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obtained from the current of 3 by the replacement s — d,
i.e.,
(aul ppl0y = (aul =+ X7|0)(s — d) = 211, (u, u, d).
(16)
In order to obtain {dd|pp|0), I1,(u, d, s) is needed. In the
first step, making the replacement d — u, we get

IT,(u, u, s) = (55|27 2710), 17

where the factor 2 in the normalization of the current is
canceled by the two possible ways of contracting the u
quarks. Making the replacement s — d in the second step,
we obtain

I, (u, u, d) = (dd|pp|0). (18)
It follows from Egs. (16)—(18) that
17=rr’ = ¢ o (iiul pplO) + g,q4(dd| ppl0)
1
V2

Similarly, we can easily obtain the following results in-
volving the coupling constants of the p° meson to the
neutron and = baryons,

= V210, (u, u, d) — —=T1,(u, u, d). (19)

1
l—ln—mp0 - ﬁﬂz(d, d u) — \/EHI(d, d, M),

0. 0,0

—
—E%

=
=
Im=

1
ﬁ I1,(s, s, u), (20)

= 1

= —=» = —\/—zﬂz(s, s, d).

These relations, together with the relations given in Eqgs.
(14), (15), and (19), describe the couplings of the p® meson
with baryons in terms of two invariant functions 11, («, d, s)
and I1,(u, d, s).

Now let us derive similar relations for the charged p
meson. Consider the matrix element (dd|3°3.°|0) in which
d quarks from the 3° and 3° form the final dd and the
other u and s quarks are the spectators. In the matrix

|

[TA—AL’ = Q
3
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element (iid|3*3°|0), the d quark from 3° and the u
quark from X* form the state iid and the other u and s
quarks, similar to the previous case, are the spectators.
Therefore, one can expect that these matrix elements
should be proportional, and indeed, calculations confirm
that, i.e.,

M= = (ad|3*3°10) = —v2(dd|3°3°|0)
= —\2IT,(u, d, s) = —2I1,(d, u, s). (21)
Making the exchange u < d in Eq. (21), we get
IT>"=%7" = (du|3~3°/0) = v2(au|2°3°|0)
= 201,(u, d, s). (22)

]

Performing similar calculations for the = baryons, we
obtain

ME"~E " = (qu|E~E°|0) = —v2(au| E°E°|0)
= II,(s, 5, u),

15 ~=7" = (ad|E°Z710) = —/2(dd|E°E"|0) (
= II,(s, s, d).

23)

The correlation functions involving the p and K* me-
sons can be written as

-3 = \/EHI(u, d,s),
¥ =" = 21 (u, d,s) = —211,(d, u, 5),

HE*—»HK** = —Hz(d, d, S)r (24)
Hp_'EJrK*O — _]._.[2(”’ u, d),
M=K = —T,(u, u, 5),

K" = —11,(d, d, s).

We make use of Egs. (10) in order to calculate the
correlation functions involving the A baryon, in terms of
the invariant functions, after which we get

1 1
[H,(u, 5. )= T 5,0+ Thols, dw) = Tols, . d) = 5T dos) + 5 T1(d s)],

2
MA=2" 4 [120—Ap" = —6[H1(u, s,d) + 11,(d, s, u) — Iy(s, d, u) — (s, u, d)],

NG

5 —2K7 4 BI1E —AKT = —2\/51_[1(”’ 5, d),
[P~k 4 ([BIIP—AKT = —2\/51_[1(5’ u, d),
[I2°—PK"™ 4 BIIA—PK = —2\/51_[1(5, u, d),
=% BT~ = 3 BT1,(d, 5, )

Hn_'EOK*O . \/gnn—n/\[(*o — 2\/5]:[1(& d’ M), (25)

—[IE=2K L BIIE AR = 2 211,(d, s, u),

HEO—'HK*O _ \/_3'HA—>I1K*0 — 2\/51_[1(5‘, d, M),
M5 K 4 [BIAE K = 2310 (u, 5, d).

As can easily be seen in Eq. (25), correlation functions involving a single A baryon always come together with
correlation functions involving a 2° baryon, and therefore it is impossible to separate them using only I, and IT,. To be
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able to separate the correlation functions involving the A
and 3 baryons, we need to introduce one more indepen-
dent function:

M5(u, d,s) = —>—E K" = —(4512-3°0).  (26)
Note that in [7], a fourth function is defined as

My(u,d, s) = 5 =27 = —(sa@|SOE710).  (27)
|

HEO_,E+K*— _ Hn—vpp_ (d_> S) = _\/EH:;(S, S, M),
H2+—’EOK*+ _ \/EHEO_)E_K’H— (d_> M) = —\/§H3(u, u, S),
[Im—rr = HP—'”P+ (u — d) = —\/§H3(d, d, u),

PHYSICAL REVIEW D 80, 016010 (2009)

In the present work a new relation missed in [7] is obtained,
namely, I[14(u, d, s) = I15(u, s, d), and hence such a fourth
function is not necessary. The choice of I15(u, d, s) is not
unique.

Using this new invariant function and performing simple
calculations, we obtain

HE__'E_K*O _ HEO_,E+K*— (I/l N d) — _\/§H3(S, S, d);

Hp—»np+ — HE+—>EOK*+ (S [ d) = —\/§H3(u, u, d),

2Pk — [BIIA=PKT = 20125 K" (5 > y) = —2115(s, d, u),

TT>"=7K 4 BIA=KY = 21" E K (4 o 5)(d © u) = 215(s, u, d),

IX=277" 4+ BIAE 0" = 2[5 K7 (5 oy g) = —211,(u, s, d),
:l_-[E,Jr—'EOK*Jr (u —_ d) == _\/§H3(d; d) S),

[ ==& =

[IE—3k

Hp—>E°K*+

Hn—»EOK*O + \/gl‘ln—%[z*o —

1
NG

11 3030w

>~ e =\2I1,(d d, ),

0.

1 —_
[—me = \211,(d, d, u) + —I1,(d, d, u), I1=
1 ) Nz a )

[I1,(u, d, s) + I1,(d, u, 5)],

—
—E20 —

MA=%'r = A= 0" (y — a),

[2=EK = —[[2"=E K" (g o ) = [13(d, u, 5),

—IE =% (y = d) = 115(d, s, u),

— BIPAKT = 2[5 =K (y o 5) = —25(s, u, d),
—201E —2K" (y & s)(d = u) = 2I5(s, d, u),
1> =% + BHO> ~Ar = 2015 —2K" (4 — 5) = —2[15(u, d, 5),

HE+ﬁAp+ _ HE’—»Ap*(u - d),

M= =20 = 211, (u, u, s),

1
[[r—re = \/Eﬂl(u, u,d) + —2H2(M, u, d),

5

(s, 5, 1) 1
7 (s, s, u), 75

2
[3—A0 4 [[A—%'0 — \/_g[nl(u, s, d) — 11,(d, s, u) — I,(s, d, u) + T1,(s, u, d)],

HA—»Aw — \/5
3

22" = I1,(u, d, s), M=% = T,(u, u, s),

E=E% = 201,(s, s, u), === =2101(s, 5, d),

15 =*¢ =11,(d d,s),

1 1
—[Hl(u, s,d)+ 11,(d, s, u) + I,(s, d, u) + I1,(s, u, d) — EHI(M’ d,s) — EHI(d, u, s)],

[1—ré = [1—né =,

jg[—nl(s, d u) + 11,(s, u, d)]

I'=A9 § [[A=3 —

2 1
[MA—AG = EI:HI(S’ d,u) + I1,(s, u, d) — Eﬂz(% d, S)]- (28)

These relations allow us to express all possible strong
coupling constants of the octet vector mesons with the
octet baryons in terms of three independent invariant func-
tions without using the flavor symmetry.

Before starting to calculate these invariant functions
from the QCD side we would like to make the following
remark. The invariant function I15(u, d, s) can be split into
symmetric and antisymmetric parts with respect to the

I
exchange of d and s quarks as
s, d, s) = 11" (u, d, s) + 115%™ (u, d, 5).

The symmetric part, IT5"™, can be expressed in terms of IT,
and II, as
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10" 0, ) = 10 9) + 11y a5, )

— IL,(s, d, u)].

The explicit form of I15°" (u, d, s), which vanishes in the
SU(3); limit, is given in the Appendix along with the
explicit forms of II; and II,. Hence, in the SU(3), limit
only two invariant functions II,; and II, are relevant and
they correspond to F and D — F couplings. One more
additional function IT5”™ is needed in order to take SU(3),
violation into consideration.

We can now proceed to calculate these three invariant
functions. As has already been mentioned, for this aim, the

correlation functions responsible for the transitions 3 —
|

V(g D31 (2)7,,42(0)10) = fvmv{

qu due’”"x[

PHYSICAL REVIEW D 80, 016010 (2009)

30p0, 30— 306, and 3° — E-K** are enough [see
Eq. 4)].

In the deep Euclidean region, — p? — 00, —p3 — oo, the
correlation function can be evaluated using OPE. In order
to obtain the expressions of the correlation functions from
the QCD side, the propagator of the light quarks and the
matrix elements of the nonlocal operators G(x;)['g’(x,) and
4(x1)G ,,q'(x;) between the vacuum and the vector meson
states are needed, where I' represents the Dirac matrices
relevant to the case under consideration, and G v is the
gluon field strength tensor.

Up to twist4 accuracy, matrix elements
(V(@)lg(x)Tq(0)|0) and (V(9)|7(x)G ,4(0)|0) are given
in [13,14] as follows:

(-0

1 .
x)[ due™ g (u)
X 0

o [ duel“w[g3<u>+¢”<u>—2gL<u>]}
V(g Vg (0)y 0 vsa:(0)10) = ie;aﬁsmxﬂfvmv [ due™ g (),
m2
(V(g, Vg1, 2(0)10) = —zfv{<suqy—syqﬂ> [ duew[m(w i Al<u>]
+(q x)z( 4 Xy [duequ[ ¢L h3(u)]

<V(q’ /\)|C?1 (x)UaBgGMV(ux)q2(0)|O>
A

[ due ™ Ths(u) ~ ()],

et x , ,
= f%mzvm[qaqugéy ~ 4p9.8% ~ 4adv8E, T 45918%4] f Dajei@atue)r>T (a;)

4
+ fomilqaengs, — dpensar — 4a®h8B, T+ qﬁayga#]fﬂa ellaaruades TV ()

o
+ fimdlq,edes, — a.eh8t, — 4,eh88, + q,8585,] [ Dael@at s~ T P (a))

T
mv

q-

T .2
m
vty

q-x

+

[qaqﬂsﬁx qﬁqﬂs X, qaquﬁx + qﬁq,,s X /@a PUCTRITALE X’T(4)(a)

o _
(9ud, €055 — 43 uE0%0 — Gaq,ehxp + qﬁé]ﬁﬁxa[@aﬂ’( e TV (),

(V(g, M1g1(x)85G ., (ux)q2(0)|0) = —ifTmy(ehq, — 8ﬁqﬂ)’[Daiei(aﬁmg)q'xs(ai),

<V(51» )‘)lql(x)gsGN,u,V(ux)YSq2(O)|O> = _lf‘T/mV(Sfqu - SIA/qp.) [ Daiei(ongruag)q'xS(ai)’

(29)

(V(g, M1G1(x)g,G ., (ux)yay5q2(0)|0y = fymyqu(ehq, — eiq,) f Daje’@atuadrs A(a),

<V(61, )\)|QI(x)gSG,uV(ux)l')/aQZ(O)lO) = fVmVQa(S;\LqV - Si\qu) j @aiei(afruag)qu(ai)’
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= (1/2)€,,45G*? is the dual gluon field strength tensor, and [ Da; = [da,dada,6(1 — a, — a; — a,).

where G,

PHYSICAL REVIEW D 80, 016010 (2009)

q

In further analysis, we use the following expression for the light quark propagator:

lif m <éq>( . X
Ay e . A ’5 192 mq) 6 &)~ is. o M1z Cnru)e
i im —x2A2
—ux“%(um”m—32—7,2Gw<ux)o-f”[ln( ) o) (30

where vy is the Euler constant, A is a scale parameter, and
we will choose it as a factorization scale, ie., A =
0.5-1.0 GeV (for more details, see [15]). Note that, in
the calculations, SU(3), symmetry violation effects are
included in the nonzero strange quark mass and different
strange quark condensate. These effects are also taken into
account in calculation of the distribution amplitudes
[13,14].

The expressions of the full propagator of the light quark
and the definition of the distribution amplitudes allow us to
calculate the theoretical part of the correlation functions.
Equating both representations of correlation function and
separating coefficients of Lorentz structures p#4 and p(e -
p) and applying Borel transformation to both sides of the
correlation functions on the variables p? and (p + ¢)? in
order to suppress the contributions of the higher states and
continuum (see [16]), we get the sum rules for the corre-
sponding vector meson-baryon couplings. The contribu-
tions of higher states and the continuum are subtracted
using quark-hadron duality. After lengthy calculations,
for each Lorentz structure the expressions for the three

invariant functions Hﬁ-“), i =1, 2, 3 are obtained and their
|

—m? 2 MO _ _
PER a5 T2+ 5p%) — s L B)X(iiu)dd) —
";’Zg( 1+ B2)m () + () + m, + m)55)] ~
= M1 B ) + () + O, + ]+

+ m(5s)) + —[3(—1 + B2){5s)((aiu) + {dd)) + (—1 + B>)auXdd)] +

+ my(iiu)) + 0

m
267
+ my{dd) — 2m(5s)).

It follows from Eq. (31) that sum rules cannot predict the
sign of the residue. We have chosen the sign convention
such that in the SU(3), symmetry, the signs correctly
reproduce the F and D couplings (see [7]).

IV. NUMERICAL ANALYSIS AND DISCUSSION

This section is devoted to the numerical analysis of the
sum rules for the vector meson-octet baryon coupling

O (=1 + B)[13m,(au) + {dd)) + 11(m, + my)(5s)] —

|

expressions are presented in the Appendix. Here the super-
script « refers to the invariant functions Hg“) relevant to
the coupling constants f; and f; + f», respectively.

For a given transition B; — B,V once the Borel trans-
formed and continuum subtracted coefficient functions
I1/1 and I1/17/2 are obtained, the sum rules for the electric
and magnetic type couplings are obtained as

1

o (3 /M) =(m3/M2)~[m? /(M3 + MO f1 ,
Ap, Ag,

fi=

Fitfo= o= (2 /M)~ (2 /M)~ /O34 MO 1+

/\31 B,

In determining the vector meson-octet baryon strong
coupling constants, the residues of baryons are needed.
The residues of baryons obtained from the analysis of the
two-point correlation function are given in [16—18]. The
currents of the other baryons can be obtained from the 3°
current by making appropriate substitutions of quarks. For
this reason, for determination of the residues, we give the
sum rule only for 3°

(=1 + B)(5s)(auy + (dd))

0
MZ
647 2( 1+ B)zMz(md<uu> + mu<dd>)

e O T2+ 552)(m (i) + my(dd)

- 2< L+ B(m,(dd)

(1 + B+ B)(m,Sau)
€1V

2 2

constants. The main input parameters of the light cone
sum rules in our case are the vector meson distribution
amplitudes (DAs). The DAs of the vector mesons are given
in [13—15]. The values of the leptonic constants f7, and 1L,

and of the tw1st 2 and twist-3 parameters a” i, 3v’ AQV,
ol il L

@3y, K3y, ‘”w» )\HV, K3y ‘”3\/7 and Ay, as Well as twist-4

parameters £, (Dﬂ, & & K4V, and kg, are given in

Tables I and II, respectively, in [12]. The values of the

016010-7



ALIEV et al.

TABLE 1.

PHYSICAL REVIEW D 80, 016010 (2009)

The values of the electric coupling constants for various channels.

General current

Ioffe current

fihanne] Result SU(3)f Result SU(3)f QSR [4] QSR [5] QSR (61
frore’ -25* 1.1 —-1.7 -59+13 —6.4 25+0.2 2406 32+09
p—po —89+15 -10.3 -82+ 04 -9.6 18+8 72+ 1.8
=0_,=0,0
sTEy —42+2.1 —4.3 -2.0+0.2 -1.6 24%06 LS+ 11
0_, A 0
3 Ao 1.9 +0.7 L5 -3.0£0.5 -2.8
A=2"p 1.9 0.7 1.5 -2.8+0.6 -2.8
+_,50 ,+
Fame 72+ 1.2 6.0 8508 8.0
frM 2.0+ 06 1.5 —2.8*0.6 —2.8
p—AK" 51+1.8 4.4 7.4+0.8 83
1
[ 6.6+ 1.8 6.1 1.7 = 0.4 2.3
FENK -23*1.7 —-2.4 -10.0 = 1.8 -9.1
fETAK -5.9+0.7 —5.8 —62*0.4 =55
FREK 1.6 + 1.0 1.7 7.1+13 6.4
A—EK —6.0 0.7 -5.9 —6.2+0.2 -5.5
n—S0K0 —4.0+0.7 —4.3 -1.5+03 -6
1
fimhe 71+ L1 -1.7 —4.8+0.2 —4.8 48 = 1.2
IE°—>E°¢ —95+125 -85 —-13.5+ 1.6 —113
A=A -53%15 -3.6 -8.0= 1.0 —6.8
0_,30
e —6.0*0.8 —6.1 —0.25 = 0.50 —-2.3

other input parameters which are needed in the sum rule
are (7q) = —(0.243 GeV)?, m} = 0.8 [16], and (g3G?) =
0.47 GeV* [3].

In the problem under consideration, the masses of initial
and final baryons are, more or less, equal to each other. For
this reason we choose M? = M2 = 2M?, and consequently
we set uy = 1/2. Hence, in further numerical analysis, the
values of the DAs only at u, = 1/2 are needed.

TABLE II.

It follows from the explicit expressions of the sum rules
for the vector meson-octet baryon coupling constants that,
in addition to the DAs, they also contain three auxiliary
parameters, namely, the Borel mass parameter, the contin-
uum threshold s, and the parameter £ in the interpolating
current. Since any physically measurable quantity should
be independent of them, we need to look for regions of M 2,
59, and in which the results of the vector meson-octet

The values of the magnetic coupling constants for various channels.

General current

lIoffe current

(f + f,)channel Result SUG); Result SUQB), QSR [4] QSR [5] QSR [6]
(f, + fo)rr?’ 19.7 2.8 21.4 227+ 1.3 24.7 21.6 * 6.6 10.1 *3.7 36.8 + 13
(f, + fr)r—re 145+ 26 15.0 212+ 1.2 25.7 324 + 14.4 50+ 1.2 e
(f1 + f)= =7 ~2.8+1.6 ~32  —0.24+0.24 05 e “36+16 —53+33
(f1 + fo)¥ =0 13.8 +2.7 142 151+ 0.9 14.0 e e
(f) + f)A=2"r 143 +29 14.2 15.1 +0.8 14.0 e ..
(fy + f)5 =" —17.8+22 —~18.2 —27.9* 1.8 -25.2 7.1+ 1.0 535+ 19
(fy + f2)¥ =7 143 +29 14.2 15.1 0.8 14.0 . ..
(f1 + f)r—AE —22.9+42 -22.9 -273+ 1.5 -28.8

(f1 + f2)¥ ~"K° 3.8+2.38 45 —~0.79 + 0.05 —-0.7

(f) + fo) B2 K 33.8 + 4.9 30.3 41.3 +2.4 34.9

(f1 + f2)F MK 11.6 = 2.9 8.7 179 + 1.0 14.8

(fy + fo)¥—EK" —24.6 + 4.8 —21.4 —292 * 1.7 —24.7

(fy + f)AEKY 11.1*26 8.7 150 = 1.0 14.8

(fy + fo) K" —28+18 -32 0.56 = 0.04 0.5 .

(f1 + f)AAe 1.6 + 0.6 1.8 7.1+05 9.1 -57+1.0

(f) + fr)E'—E" 22.8 + 6.4 25.7 37.7 +2.5 35.6 .

(f1 + f)A—0e 19.3 +5.0 18.7 22,0+ 1.4 235

(fy + f)¥ % —35+25 45 0.81 * 0.05 0.7
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baryon coupling constants are practically independent of
these parameters.

The upper bound for the Borel parameter M? is deter-
mined by demanding that the higher states and continuum
contributions to a correlation function should be less than
half the value of the same correlation function. The lower
bound of M? can be determined by requiring that the
contribution of the highest term with the power of 1/M?
be less than 25%. Using these restrictions, we obtain the
working region for the Borel parameters. The continuum
threshold is varied in the regions s, = (mg + 0.5)* and
so = (mp + 0.7)%.

To demonstrate the analysis, in Figs. 1 and 2, we depict
the dependence of f1~"*° and f7777° + fF77P on M? at
three different values of the parameter 3, and at two fixed
values of s(. The results for /777" and f7~7F° + 7P
exhibited by these figures show good stability with respect
to the variation of M? in its working domain. As has
already been noted, the sum rules contain another arbitrary
parameter 3, and with similar reasoning, we should find
such a region of 3, in which the results for the coupling
constants are independent of it. For this purpose, in Figs. 3
and 4, we present the dependence f1 7 and f{ 7" +
F7PP on cosf, where 6 is defined as tand = B. From
these figures one can conclude that, the working region for
the unphysical parameter B is —0.5 <cosf < 0.3 for
FTPPe and —0.7 < cosf < 0.1 for fI—rro 4 firro)
where the coupling constants f7 77 and fV77" +
FYPP0 are insensitive to the variation of B. As a result
of these considerations, we find that f~7”° = —2.9 = 0.9
and f5777° = 19.7 + 2.8.

Performing a similar analysis, the results for the other
coupling constants of vector mesons with octet baryons are
presented in Table I. For completeness, we also present the
existing results in literature in the same table. Note that in
this table we present only those results which are not
obtained from each other by a simple SU(2) and isotopic

for

M? (Gev?)

FIG. 1. The dependence of the electric coupling constant f; of
the p — pp° transition on Borel mass M? for the three fixed
values of the parameter B: 8 — 1, —5, and +5, and two fixed
values of the vacuum threshold so: s, = 2.25 GeV? and s, =
2.75 GeV2.

PHYSICAL REVIEW D 80, 016010 (2009)

0.0

3%

_e-o-o €
£

o -0
O

-10.0 -

i

AP =1.0 Gel?

-~
- S U
—o--0--—=

SAPTS e

E

-15.0

o

e

e
O----e-

-20.41 H | | | 1
0.0 0.5 1.0

cos

FIG. 2. The dependence of the electric coupling constant f; of
the p — pp° transition on cos# for the three fixed values of the
vacuum threshold so: 5o = 2.25 GeV?, 2.50 GeV?, and s, =
2.75 GeVZ, and for the Borel mass at M? = 1 GeVZ2.

spin relations. We also would like to remind one that, the
signs of the residues are not fixed by the sum rules. This
leaves an ambiguity in the signs of any seven (since an
overall sign does not affect the coupling) couplings. These
signs have already been fixed in [7] to follow the SU(3),
symmetry. In this work we follow the same sign conven-
tion. The error bars in the table take into account only the

v | ppond®
/A + 3

1
0.90 0.95 1.00 1.05 1.10

M? (Gev?)

FIG. 3. The same as in Fig. 1, but for the coupling constant

(f1+ f2)-

30,0

59 =225 Gl —a—
50 Gl --e--

=N
)
T 200f
=%

5.0 ! ! ! 4
1.0 0.5 0.0 0.5 1.0

cos

FIG. 4. The same as in Fig. 2, but for the coupling constant

(f1 + f2)
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uncertainties due to the variations of the auxiliary parame-
ters and the uncertainties in the input parameters.

From the results summarized in Table I, we can com-
ment as follows:

(a) For the coupling f: A comparison of the predictions
on the coupling constants which are obtained using
the most general form of the currents, with the ones
obtained using the loffe current shows substantial
difference for many channels. For example, the
coupling constants f, for the p — 3t K*0
SORO, 37 > nK*, n—pp, B> 3 K*,
30 — EO9K*0 channels for the general case, differ
considerably from the prediction of the loffe current.
Especially, the difference between the predictions of
the above-mentioned currents for the 3 — 3%¢
transition is worth mentioning. While the loffe cur-
rent predicts f; = 0, the general current case pre-
dicts f; = —5. The sign of f, for the 20 — Ap?,
3* — Ap*, transitions differ from those predicted
by the Ioffe current. Our predictions on the coupling
constant f, for the p — pp° within their error lim-
its- are closer to the results predicted by [4—6]. There
is considerable difference for the p — pw transition
between our result compared to that obtained in [4],
but our result is close to the results of [5].

(b) For the coupling f; + f,: Except the 20 — Z°p°,
3t —=30", 3T —nk, E'—E%, n—
SOK0, p—>3TK0 A— Aw, and 30— 3%¢
transitions, our predictions for the general current
are in good agreement with the predictions of the
Ioffe current.

These discrepancies between the coupling constants
obtained using the general form of the baryon current
and the loffe current can be explained as follows. For
many channels the value 8 = —1 lies outside the stability
region of B, as a result of which considerable differences
appear between the predictions of the above-mentioned
baryon currents, making the predictions less reliable.

In the tables, we have also presented in the columns
labeled SU(3) the best fits to our results of the SU(3),

=0,
9

PHYSICAL REVIEW D 80, 016010 (2009)

expressions given in Eq. (3). The SU(3), fits in Table I
correspond to the central values of F = —3.0 £ 0.5, D =
1.3x06and F=—-42%x0.7, D= —2.7 % 1.0 for the
general and loffe currents, respectively. For the central
values, these yield ay = 1.6 and a = 0.61, respectively,
both of which deviate from the vector dominance model
prediction ay = 1 considerably.

In Table II, the SU(3), fit value corresponds to JF =
92+1.0, D=124*14 and F=127%18, D=
12.2 £ 1.8 for the general form of the baryon current and
B = —1 baryon current, respectively. For the a;, value of
the magnetic type coupling, these predictions yield a,, =
0.43 and «a; = 0.85, respectively. a, is also calculated in
[19] using the soft core potential and it is predicted to be
ay; = 0.44, in agreement with the prediction of the general
current.

In conclusion, the strong coupling constants of the vec-
tor mesons with octet baryons are investigated in LCSR. It
is proven that all coupling constants can be written in terms
of three universal functions, which at the exact SU(3),
symmetry case reduces to F and D couplings. The nu-
merical values of the electric and magnetic couplings are
obtained.
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APPENDIX
In this Appendix we present the explicit expressions of

the six Borel transformed invariant functions.

1. Electric-type coupling

The electric-type coupling is determined by the coeffi-
cient of the structure p#4:
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VECTOR MESON-BARYON STRONG COUPLING CONSTANTS ... PHYSICAL REVIEW D 80, 016010 (2009)

em%,/4M2 H{](u’ d s) =

- oo @) + st (1= Bt (7~ a2 - m1 — )

+3my(1 + B)]l/f3;v(u0) +4MPmy ([(—my(1 = B) = Im (1 + B)Jiy(T, 1) + 4m,(1 + ,3)1'1

XT3 42T )} + (= B m G mm (@) + my GO+ o1 = B)
|‘|,m%/[3<g G*(m{dd) + md<ss))l4(C) + 4m0mv(m {dd) — md(§s>)i0(‘i’, D]+ mm“‘,f‘%

X{g3GH)(1 = B)lmy(1 = B) + my(1 + B)]iy(T = T4 1) t o m (1 = BA[3md(m(dd)

2881 Dm0 + B

= mydd)3B* + 28 + 3)[ir(A, 1) — ir,(V, 1 = 2v)] — 8[m(55)B — my(dd)2* + B + 2)]
X i5(D, 1 — 2v) + 4[m(55)(1 + B2) — 2m(dd)(2B* + B + 2)]ir(D, 1) + 4(m{dd) + m(5s))
X (1+ B2ir(V, 1 = 2v) = 4[2m(55) B + my(dd)(1 + B*)]ir (P, 1) + 12[6(1 — B2)(m(Ss)

+ my(dd)) + (mg{dd) + m(dd)(5B + 28 + 5)]i,(C) + 3(md<6_1d> +my(5s) (1 + B*)A(ug)}

my fir (1 = B){dd)(1 — p)

+ md(§s>)i4(C) + 4m? (m(dd) — my(3s))io(¥, 1)] +

m3my fh(mddy + m(5s)(3B2 + 28 + 3)l (ug) +

+
432M? 36M2

+XE1+ B (T = Ty D) + oy my fr{(gi G2 ma(1 — B)* = 3m,(1 — B)]

576M> 72
— 8m3m?[(dd)(1 — B)? — AGss)(1 — BTl (ug) + T ——mEMH{(1 + BA)f) (BmyAluy)

— 4myir (A1) + 4my [ (4D + 2% + V, 1 — 20)) — 4my fI[(3B2 + 28 + 3)ir (P, 1)

+(1+ B0 (T, 1) = 3(582 + 28 + 5)iy(C)] — 125(1 — Blmy(1 — B) — 3my(1 + B)]wg;v(uo)}
- Lmv{f (md<dd> +my 51+ B2l (ug) — 2my f(1 = B(dd)(1 — B) = 3(5s)(1 + B)]

(”o)} T Tom 2(1 + Bz)mvf [ig(W, 1 —2v) — io(P, 1)] — myfir(1 = BA[Bmy(1 = B)
+ 11m (1 + B)1iy (T, 1) = 4my(1 + B)iy(T 5, 1) — 2[m,(1 — ,8) + Sms(l +B)1i (T, D) (AD
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em%,/4M2H§1(u’ d, S) —
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1 M2
5a M B8+ 28+ M fbmydllu) — s gt m, )(l—Bz)fvmv(WE )

X [4M2m3 i OT = 8T 5 — 4T 4, 1) = 3(2GHyl (up)] - (&2GH flmim3 (1 — B)?

576M8
Fmd (1 = B (m,(dd) + my(au))[(g2G2)iy(C)

X (m,(dd) + my{iu))iy(C) — 288M6

+4m(2)m%,i0(‘i’ I)J_Wmvf (€2G*)(1 = B (m, +my)iy(T — T4 1)

my fi(1 = B2 (m,{dd) + m(au))ig(¥, 1) — my A (m, (i) + my(dd))

1
18M4 288M?
X (3B%+2B+3)[2i,(A,1) = 2i,(4® + 2V + V, 1 —2v) — 3A(up)] —

B - gy

X (m,{dd) + m{au)) — (m,{au) + my{dd))(58% + 28 + 5)]i,(C) +2(1 + B)*(m,iu) + my{dd))

X (0, D)+ 3o my ) + my (@) 5B + 68 + STl (ug) — 3mbin(, 1)]

- 36;42 my f () + (dd)[(1 = p2)iy(T, 1) = ir(T o, D] =

X [3(g2G?)(m,, + my) — 40m3 > (iaw) + (dd)) ]l (ug) — 967

1
W’ﬂ%f&(l )

3sz {3B%+2B+3)

X [i(A, 1) = 4ir(D, 1 — 20)] + 2(582 + 68 + 5)ir (P, 1) — 2(3,82 +28+3)iy(V, 1 —2v)

—4(1+ B)2ir (W, 1) — BB + 28+ 3)ir,(V, 1 — 20v)} + m Ml my [(3B2 + 28 + 3)A(ug)

12872
4587 + 2B+ 5)iy(C)] + 120m, + mg)(1 = B)fY (o)} - %[mvf%ﬂz + 28+ 3)(mSau)

v (m,, +mg)(1 = %)

+ m{ddy) Y (up) + 6m3 fiE (1 — ,62><<au> +(dd)) ng!;v(uo)] -

X (1T —8T 3 —2T 4 1) — + 28+ 3)ig(¥, 1 —2v) — iy(‘V, 1)], (A2)
12
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1

em%//4M2(H§1)asym(u, d s)= 768\/—T]C\J/'<<§3G2>mv(md my)(1— B)3 + B)(E — I )[214(BT) +7(Cp)]

72\/_M6f mom3, (my(5s) — m(dd))(1 — B)3 + B)io(V, 1)

_mfvm“‘,(md m){g2GH)(1 — B)B + B)iy (T — 2T, 1 —2v)

7 1
_ 18\/1_M4f|\|/m€/(md<fs> — mddd))(1 — B)(3 + B)iy(P, 1) + mmﬁfﬁ(l _ )

XD G2><md m)G + B) — 16m2m2(dd) — ()5 + 2B)I274(By) + 71(Cp)]
172\/5 2meV (ddy — (35)(1 = B)(3 + beta)i|(T —2T 4,1 —2v)

* s ﬁM2fvm3v(md<c7d> = my(5s)(1 + B{2Lir(P, 1) — ir(D, 1 — 2v)]

LA 1= 20) = (VLD = s My~ m)f (1~ B+
X [2i4(By) + i,(Cp)] + ——= \/— m fit((dd — 55)(1 = B)(3 + B)[2i4(By) + i4(Cy)]

1
+ Wm‘éf%(md —my)(1 = BB+ B)iy(T —2T 4 1 - 2v). (A3)

2. Magnetic-type coupling
The magnetic-type coupling is determined by the coefficient of the structure (e - p)p:
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em2v/4M2H{’ 2y, d, s) =
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1
6472 M4(1 - IB)f\J/_[md —mg = (md + ms)ﬁ]d’x%(uo) + 19277

M2
- B2i(A 1= 20) = Bis(V,1) =32+ 3By ()l + {(1 e (yE Az)
X (8M[my(1 — B) + m, (1 T BIMAir(S. 1) + [my(1 — B) — my(1 + B)IEBM2min(3, 1)

+(2G?) (uo»)} —mym GG — B2)(m(dd) + my(55) i, (o)

My fi{is(V, 1) + 94y (uo)

384M6
ey GG = B G55) + m@ad) iy () = sy Fa26%)

X (1= B)dlmy(1 = B) + 3my(1 + B)lir(S, 1) + [my(1 = B) = my(1 + B)][4ir(T | — Tr + T
e W Im A + B2 = m )8 + 68 + 1)
X iy(A, 1= 20) — m[mdd)(1 + B)° — m,(5)3B% + 28 + 3)]ir(V, 1) + 3md(1 — B2)
X (m(55) + oAy o)} + 55 M (1 = )1 = )= m(1 + B)]
X[4in(T | =T+ T3— Ty 1 —20) +4ir(S, 1) — 3A7(ug)] + 8[my(1 — 3) +2m,(1+ B)]
my (V1) = 2Biy(A, 1= 20) + B2ir(V, 1)] - ﬁfv (1 - B)[(dd)
X (1—-p)— <ss>(1 + B Amyiy(T | — Ty + T3~ Ty 1 —2v) = 3m3Ap(ug) + 12M2 i (up)]

- iméf&(l — Bdd)(1 — B) + 3Gs)(1 + B)1ir(S, 1) — (82G*)(1 = B)my(1 — B)

= T4 1= 2v) = 3Az(up) ]} +

eraks
= m (1% B ao) + 1 w1 — BB — B) = 2551 + Bl (o) + smyfl
<mada1 + 7 = mSsB + 6+ DI(A.1 =20~ U@ + B = )

X BB +2B+3)i(V. D} + —me {da)om,(1 = B?) + my(38> + 28 +3)]

+(5)[6my(1 = B7) + m,(3B% + 28 + 3) 13 (ug), (A4)
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I, d,5) = o ML= B2)f O, + ma) b (o) = M*my fUL(B? + 65 + 1)is(A, 1 - 2v)

19272

2
—(3B2+ 28+ Mis(V, 1) +3(1 + ﬁ>2¢3.v<uo>] e+ b= 8 (ye - 10
X [8M2m3ir(S — 8, 1) — (§2G*) it (up)] + T 52M6 my fi{g2G*) (1 — B)*(m,{dd)
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X iiu) + dd){m3[in(T | — T+ T3 — T4 1 —20) + 3ir(S, 1)] + 3M? i (o)}

1

+ @f\/ (1- ,82)(<”“> + <dd>)[10mo¢v(”0) +9m3 AT(MO)] 11527 zfv <g >

X (1= B, + m) b () ~ ;@mmm (@) + mAda)(B+ 68 + Dis(A, 1= 20)

— (BB +2B+3)i3(V, )] - —mvf {@w)m, (1 + B)* = 2my(1 — B)*] = (dd)[2m,(1 — B)?
= my(1+ BTy (up), (A5)

v 2 + 1 M? .
eI d, ) = s (1= Bt My — m)(E, ~ W40 + BT T )

1
+ @3+ ,B)iz(T3 - T4, D] - mmg(’"d - ms)f\J/-<g%G2>(1 - B)
<[ = B)ir(B 1 — 20) + (1 +3B)ir(T) — T, ] + %mv(md@d)

— m(ENuoflg® (1 + BYLia(A, 1) = iry(V, 1 = 20)] + —=—

mV(md - ms)

96\/5 2
XM2fE(1 = B = Bir(S 1 —=20) + 5+ 7B)ir(T| — T2 1) + 3+ B)

X iy(T5— T4 1]+

%lﬁmv(md@ab myEN L+ BPLis(AL 1) — is(V, 1 - 2v)
- 721@'”'%“‘_"” —GFE = B — B 1 — 20) + (1 + 38)in(T) — T 1]

(A6)
The functions i,, iy, and i, are defined as

io(b, f(v) = f Da, [0 Ldvd(ag ay a)f )k — 1)k — ug),
6. /0) = [ Das [ dvilag ap a)fot — ) i fw) = [ Da [ dvlag g a)f )5k - o),
1 - 1
(b, f(v)) = [ D, fo dvdlay, ey a)f)(k—up),  L(fw) = f duf(u),

W) = [ dulu = ug)fu),

Uugp
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where

Mi __Mim3
M+ M3 MM

+ a,v, Uy =

k=aq ¢

In the expressions for Hg“), the contributions of the higher states and continuum are subtracted using the replacements:

M? 50 s — m} /4
e~ mv/AM a2 n—— — —s/M2 1,0 T My
viAMEpr <lnA2 yE) j;nzv/4 dse In o

_mv/“MZ(ln%j - )’E) - lnwe_so”’l2 + 1 fso dse=s/M > — V2 m%//4’
A m2 /4

A2 M?> A2
oM /AME ] <ln£2 — )’E) : 1 7’"%//46_30/1”2 + IR e~ S/M* 4 Lo dse—s/M* 1p> "/ my/4
M2 M2 A2 so — m2/4 M* )24 A2
—m2 JAM? 3420 1 So —s/M2(« _ 2 Jpyn—1
e~ my/AM g _)m,[uxdse M (s — m3 /41,
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