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Under a longitudinal rescaling of coordinates x0;3 ! �x0;3, � � 1, the classical QCD action simplifies

dramatically. This is the high-energy limit, as �� s�1=2, where s is the center-of-mass energy squared of a

hadronic collision. We find the quantum corrections to the rescaled action at one loop, in particular,

finding the anomalous powers of � in this action, with � < 1. The method is an integration over high-

momentum components of the gauge field. This is a Wilsonian renormalization procedure, and counter-

terms are needed to make the sharp-momentum cutoff gauge invariant. Our result for the quantum action

is found, assuming j ln�j � 1, which is essential for the validity of perturbation theory. If � is sufficiently

small (so that j ln�j � 1), then the perturbative renormalization group breaks down. This is due to

uncontrollable fluctuations of the longitudinal chromomagnetic field.
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I. INTRODUCTION

Effective gauge-theory descriptions are a promising ap-
proach to high-energy proton-proton collisions [1–5], and
nuclear collisions [6–10].

The approximation of Verlinde and Verlinde [3] was to
eliminate some gauge-theory degrees of freedom through a
longitudinal rescaling. These authors argued that this re-
scaling yields the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
theory [11]. In particular, they were able to rederive the
BFKL vertex and argued that gluon Reggeization occurs. A
similar idea was incorporated by McLerran and
Venugopalan [6] into a picture which came to be known
as the color-glass condensate [7]. Longitudinal rescaling in
Ref. [3] was done purely classically, by a simple change of
variables in the action. After the rescaling, quark and gluon
matter travels primarily longitudinally. Most of the energy
is in the transverse color field strength, just as in a
Weizsacker-Williams shock wave. Effective actions incor-
porating such shock waves have been extensively dis-
cussed by Lipatov [12] and Balitsky [13]

In Ref. [5], the cutoff rescaled theory was shown to be
completely integrable, massive and confining, in the high-
energy limit. Our interest here is to see whether this limit is
justified.

In this paper, we determine how the quantum action
changes under longitudinal rescaling. We will only con-
sider the gluon field in our calculation. Quarks will be
included in a later publication.

The explicit rescaling of coordinates and gauge fields is
x0;3 ! �x0;3, x1;2 ! x1;2, A0;3 ! ��1A0;3, A1;2 ! A1;2,

where A� ¼ Aa
�ta, a ¼ 1; . . . ; N2 � 1 are SUðNÞ Yang-

Mills field. Sometimes we shall use L as an abbreviation
for the longitudinal Lorentz indices 0, 3 and ? as an

abbreviation for the transverse Lorentz indices 1, 2. We
normalize Trtatb ¼ �ab and define ifcabtc ¼ ½ta; tb�. Since
momentum components transform as pL ! ��1pL, p? !
p?, we can think of the rescaling factor as � ¼ ffiffiffiffiffiffiffiffiffi

s0=s
p

,
where s0 and s are the center-of-mass energies squared,
before and after the rescaling, respectively. To describe
extremely high energies, we would, in principle, take � �
1 [3].
Perhaps a better motivation for this rescaling is that

transverse transport of glue is suppressed and longitudinal
transport is enhanced. This can be seen by perusing the
Hamiltonian. If the scale factor � is small, but not zero, the
resulting Hamiltonian has one extremely small coupling
and one extremely large coupling. The classically rescaled
action is

S ¼ 1

2g20

Z
d4xTr

�
��2F2

03 þ
X2
j¼1

F2
0j �

X2
j¼1

F2
j3 � �2F2

12

�
;

(1.1)

where F�� ¼ @�A� � @�A� � i½A�; A��. The

Hamiltonian in A0 ¼ 0 gauge is therefore

H ¼
Z

d3x

�
g20
2
E2
? þ 1

2g20
B2

? þ �2

�
g20
2
E2
3 þ

1

2g20
B2

3

��
;

(1.2)

where the electric and magnetic fields are Ei ¼ �i�=�Ai

and Bi ¼ �ijkð@jAk þ Aj � AkÞ, respectively, and ðAj �
AkÞa ¼ fabcA

b
jA

c
k. Physical states � must satisfy Gauss’s

law

ð@? � E? þ @3E3 � �Þ� ¼ 0; (1.3)

where � is the quark color-charge density. If the term of
order �2 is neglected, all the energy is contained in the
transverse electric and magnetic fields. Chromo-
electromagnetic waves can only move longitudinally.

*orland@nbi.dk
†xiao9304@hotmail.com

PHYSICAL REVIEW D 80, 016005 (2009)

1550-7998=2009=80(1)=016005(11) 016005-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.016005


This is most easily seen in an axial gauge A3 ¼ 0, in which
case the � ¼ 0 Hamiltonian contains no transverse deriva-
tives [5].

As we mentioned above, the longitudinal rescaling con-
sidered above is classical. In a fully quantized Yang-Mills
theory, the rescaled action is not as simple as (1.1). In the
quantum case, all the coefficients of the field strength-
squared terms must be rescaled. Furthermore, these coef-
ficients are not simply multiplied by integer powers of �;
anomalous dimensions are present.

The rescaling is done for the quantized Yang-Mills
theory in two steps. First a Wilson-style renormalization
[14] from an isotropic to an anisotropic cutoff is per-
formed. Second, the longitudinal rescaling discussed above
is done to restore the isotropy of the cutoff. One way to
visualize this procedure is to imagine a lattice ultraviolet
cutoff, with lattice spacing a. The lattice rescaling proce-
dure is illustrated in Fig. 1. Degrees of freedom are thinned
out by a Kadanoff or ‘‘block-spin’’ transformation, which
changes the lattice spacing in the longitudinal directions to
a=�, while leaving the lattice spacing in the transverse
directions unchanged. After this reduction of degrees of
freedom, the entire lattice is rescaled longitudinally, so that
the lattice spacing in the direction of any coordinate axis
has the original value a.

Some papers on anisotropic renormalization were writ-
ten [15], not long after Refs. [3,6] appeared. Perturbative
renormalization of the Yang-Mills field is not performed in
these papers.

The Wick-rotated Yang-Mills theory is defined by in-
troducing the functional integral

R
exp�S, where S is the

action, with an ultraviolet cutoff � on the variables of
integration, namely, the gauge field A�ðxÞ (we do not

include quark fields in this paper). The cutoff is introduced
by requiring that the Fourier components of these fields,
which are functions of Euclidean four-momentum p, van-
ish for p2 >�2. This sharp momentum cutoff breaks
gauge invariance, meaning that counterterms restoring
this invariance are necessary. We denote the two compo-
nents of longitudinal momenta by pL ¼ ðp0; p3Þ and the
two components of transverse momenta by p? ¼ ðp1; p2Þ.

We first isolate the degrees of freedom depending on

momenta satisfying ~bp2
L þ p2

? > ~�2, where � � ~�, ~b �
1, and integrate these out of the functional integral. This
yields a new functional integral whose action has new
couplings, but with an ellipsoidal cutoff, with the remain-

ing degrees of freedom vanishing unless ~bp2
L þ p2

? < ~�2.

The different coefficients of the field-strength-squared
component are rescaled differently. Finally, we rescale

pL ! ��1pL and p? ! p?. We identify ��2 ¼ ~b. The
ultraviolet regularization is once again isotropic, with

components vanishing unless p2 ¼ p2
L þ p2

? < ~�2. As a

result, the different coefficients of the field-strength-
squared components are rescaled again, yielding the final
form of the action.

It is possible to assume that ~� ¼ �. In that case, we
integrate out all the degrees of freedom in the original
momentum sphere, except for those in an ellipsoid, whose
two major axes are equal to the diameter of the sphere. It is
illustrative, however, to consider the more general case of
~� 	 �.
The plan of the paper is as follows. In the next section,

we discuss generally how the Wilson renormalization for
an SUðNÞ Yang-Mills theory is carried out. The isotropic
case is briefly reviewed in Sec. III. The integration from a
spherical cutoff to an ellipsoidal cutoff is explained in
Sec. IV. This result is then used to find the effect of a
longitudinal rescaling on the Yang-Mills action in Sec. V.
We touch upon the utility of effective actions for high-
energy collisions, in the light of our results, in Sec. VI. In
the last section, we mention some calculations which
should be done, in the near future.

II. RENORMALIZATION OF QCD WITH A
MOMENTUM CUTOFF: GENERAL

CONSIDERATIONS

In this section, we review how the QCD action changes
if we integrate, to one loop, from one sharp momentum
cutoff to a smaller sharp momentum cutoff. For readers not
already familiar with this method, a discussion can be
found in Ref. [16]. The techniques do not differ appreci-

xL

x

Block! Scale!

1

FIG. 1. Rescaling of field theory on a lattice with � ¼ 1=2. First, a Kadanoff transformation increases the longitudinal lattice
spacing. The spacing is then restored to its original value by a longitudinal rescaling.
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ably from those for the background-field calculation of the
effective action.

First we Wick rotate the Yang-Mills theory to obtain the

standard Euclidean metric. We choose � and ~� to be real

positive numbers with units of cm�1 and b and ~b to be two

dimensionless real numbers, such that b � 1 and ~b � 1.

We require furthermore that �> ~� and that �2=b �
~�2=~b. We define the region of momentum space P to be
the set of points p, such that bp2

L þ p2
? <�2. We define

the region ~P to be the set of points p, such that ~bp2
L þ

p2
? < ~�2. Finally, we define S to be the Wilsonian ‘‘onion

skin’’ S ¼ P� ~P.
The functional integral we consider is

Z� ¼
Z �Y

p2P

dAðpÞ
�
exp�S;

S ¼
Z

d4x
1

4g20
TrF��F

�� þ Sc:t:;�;b;

(2.1)

where Sc:t:;�;b contains counterterms, needed to maintain

gauge invariance with the sharp-momentum cutoff �, and
anisotropy parameter b.

The restriction on the measure of integration in (2.1)
means that the gauge field has the Fourier transform

A�ðxÞ ¼
Z
P

d4p

ð2�Þ4 A�ðpÞe�ip�x:

We split the field A� into slow parts ~A�, and fast parts

a�, defined by

~A�ðxÞ ¼
Z

~P

d4p

ð2�Þ4 A�ðpÞe�ip�x;

a�ðxÞ ¼
Z
S

d4p

ð2�Þ4 A�ðpÞe�ip�x;

so that A�ðxÞ ¼ ~A�ðxÞ þ a�ðxÞ. This can also be written in
momentum space: A�ðpÞ ¼ ~A�ðpÞ þ a�ðpÞ, by defining

~A�ðpÞ ¼
�
A�ðpÞ; p 2 ~P;
0; p 2 S

;

a�ðpÞ ¼
�
0; p 2 ~P;
A�ðpÞ; p 2 S

:

(2.2)

We shall integrate out the fast components a�, of the

field to obtain

Z� ¼ e�fZ~�; Z~� ¼
Z �Y

p2~P

dAðpÞ
�
exp�~S;

~S ¼
Z

d4x
1

4~g20
Tr ~F��

~F�� þ Sc:t:;~�;~b;

(2.3)

where f is an unimportant ground-state-energy renormal-

ization, ~g0 is the coupling at the new cutoff ~�, ~b, ~F�� ¼
@� ~A� � @� ~A� � i½ ~A�; ~A��, and Sc:t:;~�;~b contains the coun-

terterms needed to restore gauge invariance with the new
cutoff.
To integrate out the fast gauge field, yielding the new

action in (2.3), we expand the original action in terms of
this field to quadratic order:

S ¼ 1

4g20

Z
d4xTrf ~F��

~F�� � 4½ ~D�; ~F
���a� þ ð½ ~D�; a��

� ½ ~D�; a��Þð½ ~D�; a�� � ½ ~D�; a��Þ � 2i ~F��½a�; a��g;
(2.4)

where ~D� ¼ @� � i ~A� is the covariant derivative deter-

mined by the slow gauge field.
The action is invariant under the gauge transformation of

the fast field:

~A� ! ~A�; a� ! a� þ ½ ~D� � ia�;!�:
Variations �a� orthogonal to these gauge transformation

satisfy ½ ~D�; �a�� ¼ 0. We can add with impunity the term
1
2g2

0

R
d4xTr½ ~D�; a��2 to the action.

Notice that there is a linear term in a� in the action (2.4).

Once we integrate out the fast field, the only result of this

term will be to induce terms of order ½ ~D�; ~F
���2 in ~S.

These terms will be of dimension greater than four or
nonlocal, so we ignore them, as they will be irrelevant.
We can thereby replace (2.4) with

S ¼ 1

4g20

Z
d4xTr ~F��

~F�� þ 1

2g20

Z
d4xð½ ~D�; a��½ ~D�; a��

� 2i ~F��½a�; a��Þ;
In terms of coefficients of the generators tb, b ¼
1; . . . ; N2 � 1, this expression may be written as

S ¼ 1

4g20

Z
d4x ~Fb

��
~F��
b þ SO þ SI þ SII;

where

SO ¼ 1

2g20

Z
S

d4q

ð2�Þ4 q
2ab�ð�qÞa�b ðqÞ; (2.5)

SI ¼ i

g20

Z
S

d4q

ð2�Þ4
Z

~P

d4p

ð2�Þ4 q
�fbcda

b
�ðqÞ ~Ac

�ðpÞad�ð�q� pÞ

þ 1

2g20

Z
S

d4q

ð2�Þ4
Z

~P

d4p

ð2�Þ4
Z

~P

d4l

ð2�Þ4 fbcdfbfga
d
�ðqÞ

� ~Ac
�ðpÞ ~Af

�ðlÞag�ð�q� pÞ; (2.6)

and

SII¼ 1

2g20

Z
S

d4q

ð2�Þ4
Z

~P

d4p

ð2�Þ4fbcda
b
�ðqÞ ~Fc

��ðpÞad�ð�p�qÞ:
(2.7)

The gluon propagator is given by the expression for SO in
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(2.5) as

hab�ðqÞac�ðpÞi ¼ g20�
bc����

4ðqþ pÞq�2: (2.8)

We define the meaning of brackets hWi, around any quan-
tity W to be the expectation value of W with respect to the
measure N exp�SO, where N is chosen so that h1i ¼ 1.

One more term must be included in the action, which
depends on the anticommuting ghost fields Gb

�ðxÞ, Hb
�ðxÞ,

associated with the gauge fixing of ab�ðxÞ. The ghost action
is

Sghost ¼ i

g20

Z
S

d4q

ð2�Þ4
Z

~P

d4p

ð2�Þ4 q
�fbcdG

bðqÞ ~Ac
�ðpÞ

�Hdð�q� pÞ þ 1

2g20

Z
S

d4q

ð2�Þ4
Z

~P

d4p

ð2�Þ4

�
Z

~P

d4l

ð2�Þ4 fbcdfbfgG
dðqÞ ~Ac

�ðpÞ ~Af
�ðlÞ

�Hgð�q� pÞ;

which is similar to SI, except that the fast vector gauge field
has been replaced by the scalar ghost fields. Integration
over the ghost fields eliminates two of the four spin degrees
of freedom of the fast gauge field.

To integrate out the fast gauge field and its associated
ghost fields, we use the connected-graph expansion for the
expectation value of the exponential of minus a quantity R:

he�Ri ¼ exp

�
�hRi þ 1

2!
ðhR2i � hRi2Þ � 1

3!
ðhR3i

� 3hR3ihRi þ 2hRi3Þ þ � � �
�
:

Applying this expansion to second order, we find

exp�~S ¼ exp

�
� 1

4g20

Z
d4x ~Fb

��
~F
��
b

�

�
�
exp

�
� 1

2
SI � SII

��


 exp

�
� 1

4g20

Z
d4x ~Fb

��
~F
��
b

�
exp

�
� 1

2
hSIi

þ 1

4
ðhS2I i � hSIi2Þ þ 1

2
ðhS2IIi � hSIIi2Þ

�
: (2.9)

We remark briefly on the coefficients in the last exponen-
tial in (2.9). The coefficient of hSIi has a contribution �1
from a fast gluon loop and 1=2 from a fast ghost loop. The
coefficient of hS2I i � hSIi2 has a contribution 1=2 from a
fast gluon loop and �1=4 from a fast ghost loop. The
coefficient of hS2IIi � hSIIi2 has no ghost contribution.
Other terms in the exponential of the same order vanish
upon contraction of group indices.

The terms in the new action (2.9) are given by

1

2
hSIi � 1

4
ðhS2I i � hSIi2Þ

¼ CN

4

Z
~P

d4p

ð2�Þ4
~Ab
�ð�pÞ ~Ab

�ðpÞP��ðpÞ;

P��ðpÞ ¼
Z
S

d4q

ð2�Þ4
�
�q�ðp� þ 2q�Þ

4q2ðqþ pÞ2 þ ���

4q2

�
; (2.10)

where CN is the Casimir of SUðNÞ, defined by fbcdfhcd ¼
CN�

bh, and

� 1

2
ðhS2IIi � hSIIi2Þ ¼ �CN

2

Z
~P

d4p

ð2�Þ4
~Fb
��ð�pÞ ~Fb

��ðpÞ

�
Z
S

d4q

ð2�Þ4
1

q2ðpþ qÞ2 : (2.11)

The remaining work to be done is to evaluate integrals in
(2.10) and (2.11).
Notice that if the integral IðpÞ is defined by

IðpÞ ¼
Z
S

d4q

ð2�Þ4
p� þ 2q�
q2ðqþ pÞ2 ;

then IðpÞ þ Ið�pÞ ¼ 0. We can see this by changing the
sign of q in the integration. Hence we can replace the
polarization tensor P��ðpÞ in (2.10) by the manifestly

symmetric form ���ðpÞ:
1

2
hSIi � 1

4
ðhS2I i � hSIi2Þ

¼ CN

Z
~P

d4p

ð2�Þ4
~Ab
�ð�pÞ ~Ab

�ðpÞ���ðpÞ;

���ðpÞ ¼
Z
S

d4q

ð2�Þ4
�
�ðp� þ 2q�Þðp� þ 2q�Þ

8q2ðqþ pÞ2 þ ���

4q2

�
:

(2.12)

As it is now defined, the polarization tensor is symmetric,
but breaks gauge invariance. This is because at this order in
the loop expansion, p����ðpÞ � 0. The reason for this is

clear; gauge symmetry is explicitly broken by sharp-
momentum cutoffs. The purpose of the counterterms
Sc:t:;�;b and Sc:t:;~�;~b in (2.1) and (2.3), respectively, is to

restore this symmetry.

III. RENORMALIZATION OF QCD WITH A
MOMENTUM CUTOFF: THE SPHERICAL CASE

Next we present the results of the one-loop calculation

presented in the last section for spherical cutoffs, i.e. b ¼
~b ¼ 1. Absolutely nothing new will be found in this sec-
tion. Our only reason for discussing the spherical case is
that it is a serviceable template for the more complicated
ellipsoidal case.
Let us first evaluate���ðpÞ in (2.12), segregating it into

a gauge-invariant part and a non-gauge-invariant part. At
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p ¼ 0,

���ð0Þ ¼
Z
S

d4q

ð2�Þ4
�
� q�q�

2ðq2Þ2 þ
���

4q2

�
:

If we change the sign of one component only of q, e.g.
q0 ! �q0, qi ! qi,i ¼ 1, 2, 3, the first term of the inte-
grand changes sign for � ¼ 0 and � ¼ i. Hence ���ð0Þ
vanishes unless � ¼ �. Thus

���ð0Þ ¼ 1

8

Z
S

d4q

ð2�Þ4
���

q2
¼ 1

128�2
ð�2 � ~�2Þ���:

Writing ���ðpÞ ¼ �̂��ðpÞ þ���ð0Þ, we find

�̂ ��ðpÞ ¼
Z
S

d4q

ð2�Þ4
�
�ðp� þ 2q�Þðp� þ 2q�Þ

8q2ðqþ pÞ2 þ ���

8q2

�
:

If we subtract the polarization tensor at zero momentum by
a counterterms of identical form at each scale, or in other
words

Sc:t:;� ¼ � �2

128�2

Z
d4xA2;

Sc:t:;~� ¼ �
~�2

128�2

Z
d4x ~A2;

(3.1)

the result is gauge invariant, as we show below.

Next we expand the polarization tensor �̂��ðpÞ in

powers of p. The terms which are more than quadratic
order in p have canonical dimension greater than four, so
can be ignored in the new action. To this order,

�̂ ��ðpÞ ¼
Z
S

d4q

ð2�Þ4
�
p�p� þ ���p

2

8ðq2Þ2

� 2p�p	q�q	q�q�

ðq2Þ4
�
þ � � � (3.2)

The right-hand side of (3.2) is readily evaluated using
Euclidean Oð4Þ symmetry: we emphasize this point, be-
cause in the aspherical case, we will not have invariance
under Oð4Þ, but under its subgroup Oð2Þ � Oð2Þ.
Exploiting this symmetry, we write the nontrivial tensor
integral in (3.2) in terms of a scalar integral:

Z
S

d4q

ð2�Þ4
q�q	q�q�

ðq2Þ4 ¼ 1

24

Z
S

d4q

ð2�Þ4
1

q2
ð��	���

þ �����	 þ ����	�Þ:

The polarization tensor is therefore

�̂ ��ðpÞ ¼ 1

192�2
ln
�
~�
ð��� � p�p�Þ þ � � � : (3.3)

Gauge invariance is satisfied to this order of p, i.e.

p��̂��ðpÞ ¼ 0.

Next we turn to (2.11). As before, the terms of dimen-
sion higher than four can be dropped, by expanding the
integral over S in powers of p:

�1

2
ðhS2IIi�hSIIi2Þ

¼�CN

2

Z
~P

d4p

ð2�Þ4
~Fb
��ð�pÞ ~Fb

��ðpÞ
Z
S

d4q

ð2�Þ4
1

ðq2Þ2þ���

¼� CN

16�2
ln
�
~�

Z
~P

d4p

ð2�Þ4
~Fb
��ð�pÞ ~Fb

��ðpÞþ��� : (3.4)

Putting together (2.12), (3.1), (3.3), and (3.4) gives the
standard result for the new coupling ~g0 in (2.3):

1

~g20
¼ 1

g20
� CN

8�2
ln
�
~�
þ 1

12

CN

8�2
ln
�
~�
¼ 1

g20
� 11CN

96�2
ln
�
~�
:

(3.5)

IV. RENORMALIZATION OF QCD WITH A
MOMENTUM CUTOFF: THE ELLIPSOIDAL CASE

In the general case of ellipsoidal cutoffs, integration over
the region S is done by the change of variables, from q� to

two angles 
 and �, and two variables with dimensions of
momentum squared, u and w. The relation between the old
and new variables is

q1 ¼
ffiffiffi
u

p
cos
; q2 ¼

ffiffiffi
u

p
sin
;

q3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w� u

p
cos�; q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w� u

p
sin�

(4.1)

(note that u ¼ q2? and w� u ¼ q2L), which gives

Z
S
d4q ¼ 1

4

Z 2�

0
d


Z 2�

0
d�

�Z ~�2

0
du

Z b�1�2þð1�b�1Þu
~b�1 ~�2þð1�~b�1Þu

dw

þ
Z �2

~�2
du

Z b�1�2þð1�b�1Þu

u
dw

�
: (4.2)

The Oð2Þ � Oð2Þ symmetry group is generated by trans-
lations of the angles 
 ! 
þ d
 and � ! �þ d�.
The polarization tensor ���ðpÞ in (2.12), expanded to

second order in p� may be written as the sum of six terms:

���ðpÞ ¼ �1
��ðpÞ þ�2

��ðpÞ þ�3
��ðpÞ þ�4

��ðpÞ
þ�5

��ðpÞ þ�6
��ðpÞ;

where
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�1
��ðpÞ ¼

���

4

Z
S

d4q

ð2�Þ4
1

q2
; �2

��ðpÞ ¼ � 1

2

Z
S

d4q

ð2�Þ4
q�q�

ðq2Þ2 ;

�3
��ðpÞ ¼

p�p�

2

Z
S

d4q

ð2�Þ4
q�q�
ðq2Þ3 þ

p�p�

2

Z
S

d4q

ð2�Þ4
q�q�

ðq2Þ3 ; �4
��ðpÞ ¼ �p�p�

8

Z
S

d4q

ð2�Þ4
1

ðq2Þ2 ;

�5
��ðpÞ ¼ p2

2

Z
S

d4q

ð2�Þ4
q�q�

ðq2Þ3 ; �6
��ðpÞ ¼ �2p�p	I

6
�	��ðpÞ; where I6�	��ðpÞ ¼

Z
S

d4q

ð2�Þ4
q�q	q�q�

ðq2Þ4 :

(4.3)

We next evaluate each of the six terms of the polarization tensor (4.3). This is done using the integration (4.2) over the
variables (4.1) which is tedious, though not difficult. Since the integrals are invariant under Oð2Þ � Oð2Þ, but not Oð4Þ, we
introduce a bit of notation. We assume the indices C andD take only the values 1 and 2, and the indices� and� take only
the values 3 and 0. As usual, the indices �, �, etc., can take any of the four values 1, 2, 3 and 0. The results are

�1
��ðpÞ ¼

���

64�2

�
�2 lnb

b� 1
�

~�2 ln~b
~b� 1

�
; (4.4)

�2
CDðpÞ ¼ ��2�CD

64�2

�
1þ b

ðb� 1Þ2 ð1� bþ lnbÞ
�
þ

~�2�CD

64�2

�
1þ

~b

ð~b� 1Þ2 ð1�
~bþ ln~bÞ

�
;

�2
��

ðpÞ ¼ ��2���

64�2

�
1

b� 1
� lnb

ðb� 1Þ2
�
þ

~�2���

64�2

�
1

~b� 1
� ln~b

ð~b� 1Þ2
�
; �2

C�ðpÞ ¼ �2
�CðpÞ ¼ 0;

(4.5)

�3
CDðpÞ ¼

pCpD

32�2
ln
�
~�
� pCpD

64�2

�
b lnb

ðb� 1Þ2 �
b

b� 1

�
þ pCpD

64�2

� ~b ln~b

ð~b� 1Þ2 �
~b

~b� 1

�
;

�3
��

ðpÞ ¼ p�p�

32�2
ln
�
~�
� p�p�

64�2

�
2b lnb

b� 1
� b lnb

ðb� 1Þ2 þ
b

b� 1

�
þ p�p�

64�2

�
2~b ln~b
~b� 1

�
~b ln~b

ð~b� 1Þ2 þ
~b

~b� 1

�
;

�3
C�ðpÞ ¼ �3

�CðpÞ ¼
pCp�

32�2
ln
�
~�
� pCp�

64�2

b lnb

b� 1
þ pCp�

64�2

~b ln~b
~b� 1

;

(4.6)

�4
��ðpÞ ¼ �p�p�

64�2
ln
�
~�
þ p�p�

128�2

�
b lnb

b� 1
�

~b ln~b
~b� 1

�
; (4.7)

�5
CDðpÞ ¼

p2�CD

64�2
ln
�
~�
� p2�CD

128�2

�
b lnb

ðb� 1Þ2 �
b

b� 1

�
þ p2�CD

128�2

� ~b ln~b

ð~b� 1Þ2 �
~b

~b� 1

�
;

�5
��

ðpÞ ¼ p2���

64�2
ln
�
~�
� p2���

128�2

�
bð2b� 3Þ lnb

ðb� 1Þ2 þ b

b� 1

�
þ p2���

128�2

�~bð2~b� 3Þ ln~b
ð~b� 1Þ2 þ

~b
~b� 1

�
;

�5
C�ðpÞ ¼ �5

�CðpÞ ¼ 0;

(4.8)

and finally, we present the components of the tensor I6�	��ðpÞ (from which the components of �6
��ðpÞ can be obtained)
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I6CCCCðpÞ ¼
1

64�2
ln
�
~�
� b3

128�2ðb� 1Þ3
�
lnb� 2ðb� 1Þ

b
þ b2 � 1

2b2

�
þ

~b3

128�2ð~b� 1Þ3
�
ln~b� 2ð~b� 1Þ

~b
þ

~b2 � 1

2~b2

�
;

I61122ðpÞ ¼
1

3
I6CCCCðpÞ;

I6����ðpÞ ¼
1

64�2
ln
�
~�
� 1

64�2ðb� 1Þ3
�
lnb� 2ðb� 1Þ þ b2 � 1

2

�
þ 1

64�2ð~b� 1Þ3
�
ln~b� 2ð~b� 1Þ þ

~b2 � 1

2

�
;

I60033ðpÞ ¼
1

3
I6����ðpÞ;

I6CC�� ¼ 1

192�2
ln
�
~�
� 1

384�2

�
3bð2b� 3Þ lnb

ðb� 1Þ2 � 2b3 lnb

ðb� 1Þ3 þ
3b

b� 1
þ 2b� 1

b
þ b2 � 1

2b2

�

þ 1

384�2

�
3~bð2~b� 3Þ ln~b

ð~b� 1Þ2 � 2~b3 ln~b

ð~b� 1Þ3 þ
3~b

~b� 1
þ 2~b� 1

~b
þ

~b2 � 1

2~b2

�
: (4.9)

All other nonvanishing components of I6�	��ðpÞ can be obtained by permuting indices of those shown in (4.9).

Notice that�j
��ðpÞ, j ¼ 1; . . . ; 6 each change sign under the interchange of� and b with ~� and ~b, respectively. We can

eliminate �1
��ðpÞ and �2

��ðpÞ by a mass counterterm. The sum of the other pieces of the polarization tensor,P6
j¼3 �

j
��ðpÞ, reduces to the expression in (3.3) if b ¼ ~b; integrating degrees of freedom with momenta between two

similar ellipsoids yields the same result as integrating degrees of freedom with momenta between two spheres.

Next we set b ¼ 1 and expand ~b ¼ 1þ ln~bþ � � � . We drop the part of the polarization tensor of order ðln~bÞ2. We write
the polarization tensor as matrix whose rows and columns are ordered by 1, 2, 3, 0. After some work, we obtain

X6
j¼3

�jðpÞ ¼ 1

192�2
ln
�
~�
ð1� ppTÞ þ ln~b

64�2

�
�3

4p
2
1 � 1

6p
2
2 � 13

12p
2
L � 7

12p1p2 �7
4p1p3 �7

4p1p0

� 7
12p1p2 �3

4p
2
2 � 1

6p
2
1 � 13

12p
2
L �7

4p2p3 �7
4p2p0

�7
4p1p3 �7

4p2p3
7
4p

2
3 þ 2

3p
2
0 þ 1

3p
2
?

13
12p3p0

�7
4p1p0 �7

4p2p0
13
12p3p0

2
3p

2
3 þ 7

4p
2
0 þ 1

3p
2
?

0
BBB@

1
CCCA; (4.10)

where 1 is the four-by-four identity matrix and the super-
script T denotes the transpose. The first term on the right-
hand side of (4.10) is the polarization tensor found in the
previous section (3.3). The second term does not depend on
� or ~�. Had we taken b > 1, and expanded b ¼ 1þ lnbþ
� � � , the quantity ln~b in (4.10) would have been lnð~b=bÞ.

Notice that the second term on the right-hand side of
(4.10) violates gauge invariance (multiplying the vector p
by the matrix in this term does not yield zero). Therefore,
an additional counterterm is necessary. The most general

local action of dimension 4, which is quadratic in ~A� and

which does not change under Oð2Þ � Oð2Þ transformations
and is gauge invariant to linear order is

Squad ¼
Z

~P

d4p

ð2�Þ4 Tr ~Að�pÞT½a1M1ðpÞ þ a2M2ðpÞ

þ a3M3ðpÞ� ~AðpÞ;

where a1, a2 and a3 are real coefficients and

M1ðpÞ ¼
p2
2 �p1p2 0 0

�p1p2 p2
1 0 0

0 0 0 0
0 0 0 0

0
BBB@

1
CCCA;

M2ðpÞ ¼
0 0 0 0
0 0 0 0
0 0 p2

3 �p3p0

0 0 �p3p0 p2
0

0
BBB@

1
CCCA;

M3ðpÞ ¼
p2
L 0 �p1p3 �p1p0

0 p2
L �p2p3 �p2p0

�p1p3 �p2p3 p2
? 0

�p1p0 �p2p0 0 p2
?

0
BBB@

1
CCCA:

We next determine a1, a2 and a3 such that the difference

Sdiff ¼
Z

~P

d4q

ð2�Þ4 Tr ~Að�pÞTMdiffðpÞ ~AðpÞ

¼
Z

~P

d4q

ð2�Þ4 Tr ~Að�pÞT X
6

j¼3

�jðpÞ ~AðpÞ � Squad

(4.11)
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is maximally non-gauge invariant. By this we mean that the
projection of tensor MdiffðpÞ to a gauge-invariant expres-
sion:

�
1� ppT

pTp

�
MdiffðpÞ

�
1� ppT

pTp

�
;

has no local part. This gives a precise determination of
Sdiff , which is proportional to the counterterm to be sub-
tracted. To carry this procedure out, we break up the second
term of (4.10) into a linear combination ofM1,M2 andM3

and a diagonal matrix:

X6
j¼3

�jðpÞ ¼ 1

192�2
ln
�
~�
ð1� ppTÞ þ ln~b

64�2

�
7

12
M1ðpÞ � 13

12
M2ðpÞ þ 7

4
M3ðpÞ

�

þ ln~b

64�2

� 3
4p

2
? � 17

6 p
2
L 0 0 0

0 � 3
4p

2
? � 17

6 p
2
L 0 0

0 0 � 17
12p

2
? þ 7

4p
2
L 0

0 0 0 � 17
12p

2
? þ 7

4p
2
L

0
BBBBBB@

1
CCCCCCA
: (4.12)

The diagonal matrix is maximally non-gauge-invariant. It is local, Oð2Þ � Oð2Þ invariant and of dimension four; we
remove it with local counterterms, rendering our ellipsoidal cutoffs gauge invariant, to one loop. Therefore

a1 ¼ ln~b

64�2
� 7

12
; a2 ¼ � ln~b

64�2
� 13
12

; a3 ¼ ln~b

64�2
� 7
4
:

Removing the last term from (4.12) leaves us with our final result for the polarization tensor

�̂ðpÞ ¼ X6
j¼3

�jðpÞ � ln~b

64�2

�3
4p

2
? � 17

6p
2
L 0 0 0

0 �3
4p

2
? � 17

6p
2
L 0 0

0 0 �17
12p

2
? þ 7

4p
2
L 0

0 0 0 �17
12p

2
? þ 7

4p
2
L

0
BBB@

1
CCCA

¼ 1

192�2
ln
�
~�
ð1� ppTÞ þ ln~b

64�2

�
7

12
M1ðpÞ � 13

12
M2ðpÞ þ 7

4
M3ðpÞ

�
:

One of the terms to be induced in the renormalized action by integrating out fast degrees of freedom is thereby

1

2
hSIi � 1

4
ðhS2I i � hSIi2Þ ¼ CN

Z
~P

d4p

ð2�Þ4
~Ab
�ð�pÞ ~Ab

�ðpÞ�̂��ðpÞ

¼ CN

Z
~P

d4p

ð2�Þ4
~Ab
�ð�pÞ ~Ab

�ðpÞ
�

1

192�2
ln
�
~�
ð1�ppTÞ þ ln~b

64�2

�
7

12
M1ðpÞ � 13

12
M2ðpÞ þ 7

4
M3ðpÞ

�	
:

(4.13)

The other term induced by this integration, namely �ðhS2IIi � hSIIi2Þ=2, will be discussed next.
We showed in Sec. II that the term�ðhS2IIi � hSIIi2Þ=2 is given by (2.11). This term may be expanded in powers of p as

we did for the spherical case in (3.4). The result is

� 1

2
ðhS2IIi � hSIIi2Þ ¼ �CN

2

Z
~P

d4p

ð2�Þ4
~Fb
��ð�pÞ ~Fb

��ðpÞ
Z
S

d4q

ð2�Þ4
1

ðq2Þ2 þ � � �

¼ �CN

�
1

16�2
ln
�
~�
� b lnb

32�2ðb� 1Þ þ
~b ln~b

32�2ð~b� 1Þ
�Z

~P

d4p

ð2�Þ4
~Fb
��ð�pÞ ~Fb

��ðpÞ þ � � � : (4.14)
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For b ¼ 1 and to leading order in ln~b, (4.14) becomes

� 1

2
ðhS2IIi � hSIIi2Þ ¼ �CN

�
1

16�2
ln
�
~�
þ ln~b

32�2

�

�
Z

~P

d4p

ð2�Þ4
~Fb
��ð�pÞ ~Fb

��ðpÞ þ � � � :
(4.15)

Putting together (4.13) and (4.15) gives the following

expression for the new action ~S ¼ R
d4x ~L:

~L¼ 1

4

�
1

g20
� 11CN

48�2
ln
�
~�
�CN ln~b

64�2

�
ð ~F2

01 þ ~F2
02 þ ~F2

13

þ ~F2
23Þ þ

1

4

�
1

g20
� 11CN

48�2
ln
�
~�
� 37CN ln~b

192�2

�
~F2
03

þ 1

4

�
1

g20
� 11CN

48�2
ln
�
~�
� 17CN ln~b

192�2

�
~F2
12 þ �� � : (4.16)

V. THE LONGITUDINALLY RESCALED YANG-
MILLS ACTION

The main result of Sec. IV, Eq. (4.16), tells what happens
after aspherically integrating out degrees of freedom. We
will write this in a form which allows comparison with
standard renormalization with an isotropic cutoff, i.e. (3.5).

We define ~g0 using (3.5). To leading order in ln~b, the
effective coupling in the first term of (4.16) is given by

1

g2eff
¼ 1

g20
� 11CN

48�2
ln
�
~�
� CN ln~b

64�2

¼ 1

~g20

~b�ðCN=64�
2Þ~g2

0 þ � � � :

After we set ~b ¼ ��2, we find to leading order in ln�

g2eff ¼ ~g20�
�ðCN=32�

2Þ~g2
0 : (5.1)

and

~L ¼ 1

4g2eff
Trð ~F2

01 þ ~F2
02 þ ~F2

13 þ ~F2
23

þ �ð17CN=48�
2Þ~g20 ~F2

03 þ �ð7CN=48�
2Þ~g20 ~F2

12Þ þ � � � ;
where the corrections are of order ðln�Þ2. We perform the
rescaling of longitudinal coordinates, xL ! �xL, drop the
tildes on the fields, and Wick-rotate back to Minkowski
signature, to find the longitudinally rescaled effective
Lagrangian

Leff ¼ 1

4g2eff
TrðF2

01 þ F2
02 � F2

13 � F2
23

þ ��2þð17CN=48�
2Þ~g2

0F2
03 � �2þð7CN=48�

2Þ~g2
0F2

12Þ
þ � � � ; (5.2)

where again the corrections are of order ðln�Þ2. Comparing
this with the classically rescaled action (1.1) we see that
the field-strength-squared terms are anomalously rescaled.
If we naively consider the limit as � ! 0 of (5.2), all

couplings become zero or infinite, except geff [3]. For very
high energy, that is for small �, this effective coupling
becomes strong, as can immediately be seen from (5.1). We
are fortunate, however, that this energy is enormous. If we
take ~g0 of order one, then

g2eff � ��ð1=100Þ: (5.3)

This tells us that g2eff is less than a number of order ten,

unless � is roughly less than an inverse googol, ��
10�100. Thus the experimentally accessible value of geff
is small. Even so, there is the concern that the coefficient of
F2
12 in the effective Lagrangian is very small as � ! 0.

This is also true for the classically rescaled theory (1.1) [5].
This means that there is very little energy in longitudinal
magnetic flux. Hence the longitudinal magnetic flux fluc-
tuates wildly. If we call the coefficient of this term in the
Lagrangian 1=ð4g2LÞ, then

g2L ¼ g2eff�
�2�ð7CN=48�

2Þ~g20 ; (5.4)

which explodes for small �, even if geff is small.

VI. IMPLICATIONS FOR EFFECTIVE HIGH-
ENERGY THEORIES

We have determined how a quantized non-Abelian
gauge action changes under a longitudinal rescaling � <
1, but � 
 1. Though our analysis suggests the form of the
effective action for the high-energy limit, � � 1, we can-
not prove that this form is correct. The main problem
concerns how the Yang-Mills action changes as � is de-
creased. The coefficient of the longitudinal magnetic field
squared, in the action, decreases, as � is decreased.
Eventually, we can no longer compute how couplings
will run.
Our difficulty is very similar to that of finding the

spectrum of a non-Abelian gauge theory. Assuming that
there is no infrared-stable fixed point at nonzero bare
coupling, a guess for the long-distance effective theory is
a strongly coupled cutoff action. The regulator can be a
lattice, for example. One can then use strong-coupling
expansions to find the spectrum. The problem is that no
one knows how to specify the true cutoff theory (which
presumably has many terms, produced by integrating over
all the short-distance degrees of freedom). The best we can
do is guess the regularized strongly coupled action. Such
strong-coupling theories are not (yet) derivable from QCD,
but are best thought of as models of the strong interaction
at large distances.
Similarly, we believe that (1.1) for � � 1, and variants

we discuss below, cannot be proved to describe the strong
interaction at high energies. Thus it appears that the same
statement applies to the BFKL/BK theory (designed to
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describe the region where Mandelstam variables satisfy
s � t � �QCD) [11,17]. Two closely related problems in

this theory are lack of unitarity and infrared diffusion of
gluon virtualities. These problems indicate that the BFKL
theory breaks down at large length scales. There is numeri-
cal evidence [18] that unitarizing using the BK evolution
equation [17] suppresses diffusion into the infrared and
leads to saturation, at least for fixed small impact parame-
ters. This BK equation is a nonlinear generalization of the
BFKL evolution equation. The nonlinearity only becomes
important at small x, at large longitudinal distances, where
perturbation theory is not trustworthy.

In the color-glass-condensate picture [6,7], the Yang-
Mills action with ln� ¼ 0 is coupled to sources. The
classical field strength is purely transverse. If this action
is quantized, however, this is no longer the case. The
fluctuations of the longitudinal magnetic field B3 will
become extremely large [this can be seen by inspecting
(1.1) and (1.2)]. In principle, we would hope to derive the
color-glass condensate by a longitudinal renormalization-
group transformation, with background sources. The ob-
stacle to doing this is precisely the problem of large
fluctuations ofB3. This does not suggest any inconsistency
of the color-glass-condensate idea itself, but indicates how
difficult it may be to establish the color-glass condensate
directly in QCD.

Finally we wish to comment on an approach to soft-
scattering and total cross sections. In Ref. [5] an effective
lattice SUðNÞ gauge theory was proposed. This gauge
theory is a regularization of (1.2) and (1.3). This gauge
theory can be formulated as coupled ð1þ 1Þ-dimensional
SUðNÞ � SUðNÞ nonlinear sigma models and reduces to a
lattice Yang-Mills theory at � ¼ 1 (in which case, it is
equivalent to the light-cone lattice theory of Bardeen et al.
[19]). The nonlinear sigma model is asymptotically free
and has a mass gap. These facts together with the assump-
tion that the terms proportional to �2 are a weak perturba-
tion leads to confinement and diffraction in the gauge
theory. Similar gauge models in (2þ 1) dimensions were
proposed as laboratories of color confinement [20], and
string tensions for different representations [21], the low-
lying glueball spectrum [22], and corrections of higher
order in order � to the string tension [23] were found (these
calculations were performed using the exact S-matrix [24]
and form factors [25] of the ð1þ 1Þ-dimensional nonlinear
sigma model). In such theories (whether in (2þ 1) or (3þ
1) dimensions), transverse electric flux is built of massive
partons (made entirely of glue, but not conventional glu-
ons). These partons move (and scatter) only longitudinally,
to leading order in �. The behavior of such gauge-theory
models is very close to the picture of the forward-scattering
amplitude suggested by Kovner [26].

The effective gauge theory of Ref. [5] has a small value
of geff , as well as a small value of �, in the Hamiltonian
(1.2). We have found in Sec. V that geff grows extremely

slowly, as the energy is increased. If we can naively ex-
trapolate our results to extremely high energies, this effec-
tive gauge theory appears correct. We should not, however,
regard this as proof that the effective theory is valid, since
the perturbative calculation of Sec. V breaks down at such
energies.

VII. DISCUSSION

In this paper, we found how the action of an SUðNÞ
gauge changes under longitudinal rescaling at one loop.
This was done by a Wilsonian renormalization procedure.
As the energy increases, the coefficient of F2

12 in the action
eventually becomes too small to trust the method further.
Therefore, neither classical nor perturbative methods may
be entirely trusted beyond a certain energy. The breakdown
of these methods at high energies is similar to the break-
down of perturbation theory to compute the force between
charges at large distances, in an asymptotically-free theory.
Nonetheless, high-energy effective theories, inspired by
the longitudinal rescaling idea, may be phenomenologi-
cally useful.
The next step is to repeat our calculation including

fermions. Aside from the importance of considering
QCD with quarks, it would be interesting to study how
longitudinal rescaling affects the QED action.
We should point out that another way to derive our

effective Lagrangian (5.2) and investigate anomalous di-
mensions of other operators would be to carefully study
Green’s functions of the operator

D ðxÞ ¼ x0T 00ðxÞ þ x3T 03ðxÞ; (7.1)

where T ��ðxÞ is the stress-energy-momentum tensor. The

spacial integral of this operator generates longitudinal
rescalings on states. Correlators of products of DðxÞ and
other operators could be studied with simpler regulariza-
tion methods (such as dimensional regularization) instead
of our sharp momentum cutoff. The commutator of DðxÞ
and an operator OðyÞ will reveal how OðyÞ behaves under
longitudinal rescaling. Such an analysis should be easier
than the method used in this paper, especially beyond one
loop.
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