
Infrared renormalons and single meson production in proton-proton collisions

A. I. Ahmadov,1,* Coskun Aydin,3,† Sh.M. Nagiyev,2 Yilmaz A. Hakan,3,‡ and E.A. Dadashov2

1Institute for Physical Problems, Baku State University, Z. Khalilov Street 23, AZ-1148, Baku, Azerbaijan
2Institute of Physics of Azerbaijan National Academy of Sciences, H. Javid Avenue, 33, AZ-1143, Baku, Azerbaijan

3Department of Physics, Karadeniz Technical University, Trabzon, Turkey
(Received 5 November 2008; revised manuscript received 28 May 2009; published 7 July 2009)

In this article, we investigate the contribution of the higher-twist Feynman diagrams to the large-pT

inclusive pion production cross section in proton-proton collisions and present the general formulas for the

higher-twist differential cross sections in the case of the running coupling and frozen coupling approaches.

The structure of infrared renormalon singularities of the higher-twist subprocess cross section and the

resummed expression (the Borel sum) for it are found. We compared the resummed higher-twist cross

sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross

section. We obtain, that ratio R ¼ ð�HT
�þÞres=ð�HT

�þÞ0, for all values of the transverse momentum pT of the

pion identically equivalent to ratio r ¼ ð�HT
� Þres=ð�HT

� Þ0. It is shown that the resummed result depends on

the choice of the meson wave functions used in calculation. Phenomenological effects of the obtained

results are discussed.
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I. INTRODUCTION

The large-order behavior of a perturbative expansion in
gauge theories is inevitably dominated by the factorial
growth of renormalon diagrams [1–4]. In the case of quan-
tum chromodynamics (QCD), the coefficients of perturba-
tive expansions in the QCD coupling �s can increase
dramatically even at low orders. This fact, together with
the apparent freedom in the choice of renormalization
scheme and renormalization scales, limits the predictive
power of perturbative calculations, even in applications
involving large momentum transfers, where �s is effec-
tively small.

A number of theoretical approaches have been devel-
oped to reorganize the perturbative expansions in a effort to
improve the predictability of the perturbative QCD
(pQCD). For example, optimized scale and scheme choices
have been proposed, such as the method of effective
charges (ECH) [5], the principle of minimal sensitivity
(PMS) [6], and the Brodsky-Lepage-Mackenize (BLM)
scale-setting prescription [7] and its generalizations [8–
20]. In [4], developments include the resummation of
the formally divergent renormalon series and the parame-
trization of related higher-twist power-suppressed
contributions.

In general, a factorially divergent renormalon series
arises when one integrates over the logarithmically running
coupling �sðk2Þ in a loop diagram. Such contributions do
not occur in conformally invariant theories which have a
constant coupling. Of course, in the physical theory, the
QCD coupling does run.

Among the fundamental predictions of QCD are asymp-
totic scaling laws for large-angle exclusive processes [21–
27]. QCD counting rules were formalized in Refs. [22,23].
These reactions probe hadronic constituents at large rela-
tive momenta, or equivalently, the hadronic wave function
at short distances. Important examples of exclusive ampli-
tudes are provided by the electromagnetic form factors of
mesons. Since there is little direct evidence with which to
compare the predictions, it is fortunate that short-distance
wave functions also control a wide variety of processes at
large transverse momentum. In particular, the meson wave
function determines the leading higher-twist contribution
to meson production at high pT .
The hadronic wave functions, in terms of quark and

gluon degrees of freedom, play an important role in the
quantum chromodynamics predictions for hadronic pro-
cesses. In the perturbative QCD theory, the hadronic dis-
tribution amplitudes and structure functions which enter
exclusive and inclusive processes via the factorization
theorems at high momentum transfers can be determined
by the hadronic wave functions, and therefore they are the
underlying links between hadronic phenomena in QCD at
large distances (nonperturbative) and small distances (per-
turbative). If the hadronic wave functions were accurately
known, then we could calculate the hadronic distribution
amplitude and structure functions for exclusive and inclu-
sive processes in QCD. Conversely, these processes also
can provide phenomenological constraints on the hadronic
distribution amplitudes, the hadronic structure functions,
and thereby the hadronic wave functions. From another
point of view, as different wave functions may give the
same distribution amplitude, there are still ambiguities
about the wave function even if we know the exact form
of the distribution amplitude.
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In principle, the hadronic wave functions determine all
properties of hadrons. From the relation between the wave
function and measurable quantities we can get some con-
straints on the general properties of the hadronic wave
functions. Note that only the lowest q �q Fock state contrib-
utes to the leading scaling behavior; other Fock-state con-
tributions are suppressed by powers of 1=Q2.

The frozen coupling constant approach can be applied
for investigation, not only exclusive processes, but also for
the calculation of higher-twist contributions to some in-
clusive processes, for example, as large-pT meson photo-
production [28], two-jetþmeson production in the
electron-positron annihilation [29]. In the works [28,29],
for the calculation of integrals, such as

I �
Z �sðQ̂2Þ�ðx; Q̂2Þ

1� x
dx; (1.1)

the frozen coupling constant approach was used.
According to Ref. [7], it should be noted that in pQCD
calculations the argument of the running coupling constant
in both the renormalization scale and the factorization

scale Q̂2 should be taken equal to the square of the mo-
mentum transfer of a hard gluon in a corresponding

Feynman diagram. But defined in this way, �sðQ̂2Þ suffers
from infrared singularities. For example, in our work [30],

Q̂2 equals to ðx1 � 1Þû and �x1t̂, where û, t̂ are the
subprocess’s Mandelstam invariants. Therefore, in the
soft regions x1 ! 0, x2 ! 0 integrals (1.1) diverge and
for their calculation some regularization methods of
�sðQ2Þ in these regions are needed. The power-suppressed
corrections arising from the soft end-point regions to the
single meson photoproduction process were computed in
[31]. In Ref. [31], the evolution of the meson wave function
on the factorization scale was ignored. In the present work,
we take into account this evolution as well. In Ref. [32], the
authors investigated the phenomenology of infrared renor-
malons in inclusive processes. The dispersive approach has
been devised to extend properly modified perturbation
theory calculations towards the low-energy region [33].
Connections between power corrections for the three
deep inelastic scattering sum rules have also been explored
in [34].

Investigation of the infrared renormalon effects in vari-
ous inclusive and exclusive processes is one of the most
important and interesting problems in the perturbative
QCD. It is known that infrared renormalons are responsible
for factorial growth of coefficients in perturbative series for
the physical quantities. But, these divergent series can be
resummed by means of the Borel transformation [1] and
the principal value prescription [35], and effects of infrared
renormalons can be taken into account by a scale-setting
procedure �sðQ2Þ ! �sðexpðfðQ2ÞÞQ2Þ at the one-loop
order results. Technically, all-order resummation of infra-
red renormalons corresponds to the calculation of the one-
loop Feynman diagrams with the running coupling con-

stant�sð�k2Þ at the vertices or, alternatively, to calculation
of the same diagrams with nonzero gluon mass. Studies of
infrared renormalon problems have also opened new pros-
pects for the evaluation of power-suppressed corrections to
processes characteristics [36]. Power corrections can also
be obtained by means of the Landau-pole free expression
for the QCD coupling constant. The most simple and
elaborated variant of the dispersive approach, the Shirkov
and Solovtsov analytic perturbation theory, was formulated
in Ref. [37].
By taking these points into account, it may be argued

that the analysis of the higher-twist effects on the depen-
dence of the pion wave function in pion production at
proton-proton collisions by the running coupling (RC)
approach [38], are significant from both theoretical and
experimental points of view.
We will show that higher-twist terms contribute substan-

tially to the inclusive meson cross section at moderate
transverse momenta. In addition, we shall demonstrate
that higher-twist reactions necessarily dominate in the
kinematic limit where the transverse momentum ap-
proaches the phase-space boundary.
A precise measurement of the inclusive charged pion

production cross section at
ffiffiffi
s

p ¼ 62:4 GeV and
ffiffiffi
s

p ¼
200 GeV is important for the proton-proton collisions
program at the Relativistic Heavy Ion Collider (RHIC) at
the Brookhaven National Laboratory. The results of our
calculations are based on the proton-proton collisions atffiffiffi
s

p ¼ 62:4 GeV and
ffiffiffi
s

p ¼ 200 GeV.
Another important aspect of this study is the choice of

the meson model wave functions. In this respect, the con-
tribution of the higher-twist Feynman diagrams to a pion
production cross section in proton-proton collisions has
been computed by using various pion wave functions.
Also, higher-twist contributions which are calculated by
the running coupling constant and frozen coupling constant
approaches have been estimated and compared to each
other. Within this context, this paper is organized as fol-
lows: In Sec. II, we provide formulas for the calculation of
the contribution of the high twist diagrams. In Sec. III, we
present formulas and an analysis of the higher-twist effects
on the dependence of the pion wave function by the run-
ning coupling constant approach. In Sec. IV, we provide
formulas for the calculation of the contribution of the
leading-twist diagrams. In Sec. V, we present the numerical
results for the cross section and discuss the dependence of
the cross section on the pion wave functions. We state our
conclusions in Sec. VI.

II. CONTRIBUTION OF THE HIGH TWIST
DIAGRAMS

The higher-twist Feynman diagrams, which describe the
subprocess q1 þ �q2 ! �þð��Þ þ � for the pion produc-
tion in the proton-proton collision are shown in Fig. 1. In
the higher-twist diagrams, the pion of a proton quark is
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directly observed. Their 1=Q2 power suppression is caused
by a hard gluon exchange between pion constituents. The
amplitude for this subprocess can be found by means of the
Brodsky-Lepage formula [26]

Mðŝ; t̂Þ ¼
Z 1

0
dx1

Z 1

0
dx2�ð1� x1 � x2Þ��ðx1; x2; Q2Þ

� THðŝ; t̂; x1; x2Þ: (2.1)

In Eq. (2.1), TH is the sum of the graphs contributing to
the hard-scattering part of the subprocess. The hard-
scattering part for the subprocess under consideration is
q1 þ �q2 ! ðq1 �q2Þ þ �, where a quark and antiquark form
a pseudoscalar, color-singlet state (q1 �q2). Here,
�ðx1; x2; Q2Þ is the pion wave function, i.e., the probability
amplitude for finding the valence q1 �q2 Fock state in the
meson carry fractions x1 and x2, x1 þ x2 ¼ 1. Remarkably,
this factorization is gauge invariant and only requires that
the momentum transfers in TH be large compared to the
intrinsic mass scales of QCD. Since the distribution am-
plitude and the hard-scattering amplitude are defined with-
out reference to the perturbation theory, the factorization is
valid to leading order in 1=Q, independent of the conver-
gence of perturbative expansions.

The hard-scattering amplitude TH can be calculated in
perturbation theory and represented as a series in the QCD
running coupling constant �sðQ2Þ. The function � is in-
trinsically nonperturbative, but its evolution can be calcu-
lated perturbatively.

The q1 �q2 spin state used in computing TH may be
written in the form

X
s1;s2

us1ðx1pMÞ �vs2ðx2pMÞffiffiffiffiffi
x1

p ffiffiffiffiffi
x2

p � Ns
s1s2

¼

8>><
>>:

�5p̂�ffiffi
2

p ; �;
p̂Mffiffi
2

p ; �L helicity 0;

� "�p̂Mffiffi
2

p ; �T helicity � 1;

(2.2)

where "� ¼ �ð1= ffiffiffi
2

p Þð0; 1;�i; 0Þ in a frame with
ðpMÞ1;2 ¼ 0 and the Ns

s1s2 project out a state of a spin s,

and pM is the four-momentum of the final meson. In our
calculation, we have neglected the pion and proton masses.
Turning to extracting the contributions of the higher-twist
subprocesses, there are many kinds of leading-twist sub-
processes in pp collisions as the background of the higher-
twist subprocess q1 þ q2 ! �þðor ��Þ þ �, such as
qþ �q ! �þ gðg ! �þð��ÞÞ, qþ g ! �þ qðq !
�þð��ÞÞ, �qþ g ! �þ �qgð �q ! �þð��ÞÞ, etc. The con-
tributions from these leading-twist subprocesses strongly
depend on some phenomenological factors, for example,
quark and gluon distribution functions in the proton and
fragmentation functions of various constituents, etc. Most
of these factors have not been well determined, neither
theoretically nor experimentally. Thus they cause very
large uncertainty in the computation of the cross section
of process pp ! �þðor ��Þ þ �þ X. In general, the
magnitude of this uncertainty is much larger than the
sum of all the higher-twist contributions, so it is very
difficult to extract the higher-twist contributions.
The Mandelstam invariant variables for subprocesses

q1 þ �q2 ! �þð��Þ þ � are defined as

ŝ ¼ ðp1 þ p2Þ2; t̂ ¼ ðp1 � p�Þ2;
û ¼ ðp1 � p�Þ2:

(2.3)

In our calculation, we have also neglected the quark
masses. We have aimed to calculate the pion production
cross section and to fix the differences due to the use of
various pion model functions. We have used five different
wave functions: the asymptotic wave function (ASY), the
Chernyak-Zhitnitsky wave function[27,39], the wave func-
tion in which two nontrivial Gegenbauer coefficients a2
and a4 have been extracted from the CLEO data on the
��? ! �0 transition form factor [40], the Braun-Filyanov
pion wave function [41], and the Bakulev-Mikhailov-
Stefanis pion wave function [42]. The wave functions of
pions also are developed in Refs. [43–45] by the Dubna
group. In Ref. [40], the authors have used the QCD light-
cone sum rules approach and have included into their
analysis the next-to-leading order (NLO) perturbative and
twist-four corrections. They found that in the model with
two nonasymptotic terms, at the scale �0 ¼ 2:4 GeV,
a2 ¼ 0:19, a4 ¼ �0:14.

FIG. 1. Feynman diagrams for the higher-twist subprocess,
q1q2 ! �þðor ��Þ�.
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�asyðxÞ ¼
ffiffiffi
3

p
f�xð1� xÞ;

�CZðx;�2
0Þ ¼ 5�asyð2x� 1Þ2;

�CLEOðx;�2
0Þ ¼ �asyðxÞ½1þ 0:405ð5ð2x� 1Þ2 � 1Þ

� 0:4125ðð2x� 1Þ4 � 14ð2x� 1Þ2 þ 1Þ;
�BFðx;�2

0Þ ¼ �asyðxÞ½1þ 0:66ð5ð2x� 1Þ2 � 1Þ
þ 0:4687ðð2x� 1Þ4 � 14ð2x� 1Þ2 þ 1Þ�;

�BMSðx;�2
0Þ ¼ �asyðxÞ½1þ 0:282ð5ð2x� 1Þ2 � 1Þ

� 0:244ðð2x� 1Þ4 � 14ð2x� 1Þ2 þ 1Þ�;
(2.4)

where f� ¼ 0:923 GeV is the pion decay constant. Here,
we have denoted by x � x1, the longitudinal fractional
momentum carried by the quark within the meson. Then,
x2 ¼ 1� x and x1 � x2 ¼ 2x� 1. The pion wave function
is symmetric under the replacement x1 � x2 $ x2 � x1.
The model functions can be written as

�asyðxÞ ¼
ffiffiffi
3

p
f�xð1� xÞ;

�CZðx;�2
0Þ ¼�asyðxÞ

�
C3=2
0 ð2x� 1Þþ 2

3
C3=2
2 ð2x� 1Þ

�
;

�CLEOðx;�2
0Þ ¼�asyðxÞ½C3=2

0 ð2x� 1Þþ 0:27C3=2
2 ð2x� 1Þ

� 0:22C3=2
4 ð2x� 1Þ�;

�BFðx;�2
0Þ ¼�asyðxÞ½C3=2

0 ð2x� 1Þ
þ 0:44C3=2

2 ð2x� 1Þþ 0:25C3=2
4 ð2x� 1Þ�;

�BMSðx;�2
0Þ ¼�asyðxÞ½C3=2

0 ð2x� 1Þ
þ 0:188C3=2

2 ð2x� 1Þ� 0:13C3=2
4 ð2x� 1Þ�;

C3=2
0 ð2x� 1Þ ¼ 1;

C3=2
2 ð2x� 1Þ ¼ 3

2
ð5ð2x� 1Þ2 � 1Þ;

C3=2
4 ð2x� 1Þ ¼ 15

8
ð21ð2x� 1Þ4 � 14ð2x� 1Þ2 þ 1Þ: (2.5)

Several important nonperturbative tools have been de-
veloped which allow specific predictions for the hadronic
wave functions directly from theory and experiments. The
QCD sum-rule technique and lattice gauge theory provide
constraints on the moments of the hadronic distribution
amplitude. As is seen from Eq. (2.5) wave functions of the
meson, which were constructed from theory and experi-
ment, strongly depend on the methods applied. However,
the correct pion wave function is still an open problem in
QCD. It is known that the pion wave function can be
expanded over the eigenfunctions of the one-loop
Brodsky-Lepage equation, i.e., in terms of the

Gegenbauer polynomials fC3=2
n ð2x� 1Þg,

��ðx;Q2Þ ¼ �asyðxÞ
�
1þ X1

n¼2;4...

anðQ2ÞC3=2
n ð2x� 1Þ

�
:

(2.6)

The evolution of the wave function on the factorization
scale Q2 is governed by the functions anðQ2Þ,

anðQ2Þ ¼ anð�2
0Þ
�
�sðQ2Þ
�sð�2

0Þ
�
�n=�0

;
�2

�0

¼ 50

81
;

�4

�0

¼ 364

405
; nf ¼ 3:

(2.7)

In Eq. (2.7), f�ng are anomalous dimensions defined by
the expression,

�n ¼ CF

�
1� 2

ðnþ 1Þðnþ 2Þ þ 4
Xnþ1

j¼2

1

j

�
: (2.8)

The constants anð�2
0Þ ¼ a0n are input parameters that form

the shape of the wave functions and which can be extracted
from experimental data or obtained from the nonperturba-
tive QCD computations at the normalization point �2

0. The

QCD coupling constant �sðQ2Þ at the one-loop approxi-
mation is given by the expression

�sðQ2Þ ¼ 4�

�0 lnðQ2=�2Þ : (2.9)

Here,� is the fundamental QCD scale parameter, �0 is the
QCD beta function one-loop coefficient, respectively,

�0 ¼ 11� 2

3
nf:

The cross section for the higher-twist subprocess q1 �q2 !
�þð��Þ� is given by the expression

d�

dt̂
ðŝ; t̂; ûÞ ¼ 8�2�ECF

27

½Dðt̂; ûÞ�2
ŝ3

�
1

û2
þ 1

t̂2

�
; (2.10)

where

Dðt̂; ûÞ ¼ e1 t̂
Z 1

0
dx1

�
�sðQ2

1Þ��ðx1; Q2
1Þ

1� x1

�

þ e2û
Z 1

0
dx1

�
�sðQ2

2Þ��ðx1; Q2
2Þ

1� x1

�
: (2.11)

Here,Q2
1 ¼ ðx1 � 1Þû and Q2

2 ¼ �x1t̂ represent the mo-
mentum squared carried by the hard gluon in Fig. 1;
e1ðe2Þ is the charge of q1ð �q2Þ; and CF ¼ 4

3 . The higher-

twist contribution to the large-pT pion production cross
section in the process pp ! �þð��Þ þ � is [46]

�HT
M � E

d�

d3p
¼

Z 1

0

Z 1

0
dx1dx2Gq1=h1ðx1ÞGq2=h2ðx2Þ

ŝ

�

d�

dt̂

� ðq �q ! ��Þ�ðŝþ t̂þ ûÞ: (2.12)
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�E
d�

d3p
¼ d�

dydp2
T

; ŝ ¼ x1x2s; t̂ ¼ x1t;

û ¼ x2u; t ¼ �mT

ffiffiffi
s

p
e�y ¼ �pT

ffiffiffi
s

p
e�y;

u ¼ �mT

ffiffiffi
s

p
ey ¼ �pT

ffiffiffi
s

p
ey;

x1 ¼ � x2u

x2sþ t
¼ x2pT

ffiffiffi
s

p
ey

x2s� pT

ffiffiffi
s

p
e�y ;

x2 ¼ � x1t

x1sþ u
¼ x1pT

ffiffiffi
s

p
e�y

x1s� pT

ffiffiffi
s

p
ey

;

(2.13)

where mT is the transverse mass of pion, which is given by

m2
T ¼ m2 þ p2

T:

Let us first consider the frozen coupling approach. In this

approach, we take the four-momentum square Q̂2
1;2 of the

hard gluon to be equal to the pion’s transverse momentum

square Q̂2
1;2 ¼ p2

T . In this case, the QCD coupling constant

�s in the integral (2.11) does not depend on the integration
variable. After this substitution, calculation of integral
(2.11) becomes easy. Hence, the effective cross section
obtained after substitution of the integral (2.11) into the
expression (2.10) is referred to as the frozen coupling
effective cross section. We will denote the higher-twist
cross section obtained using the frozen coupling constant
approximation by ð�HT

� Þ0.
For a full discussion, we consider a difference �HT

�

between the higher-twist cross section combinations �HT
�þ

and �HT
��

�HT
� ¼ �HT

�þ � �HT
��

¼ E�þ
d�

d3p
ðpp ! �þ�Þ � E��

d�

d3p
ðpp ! ���Þ:

(2.14)

We have extracted the following higher-twist subpro-
cesses contributing to the two covariant cross sections in
Eq. (2.12):

d�1

dt̂
ðu �d ! �þ�Þ; d�2

dt̂
ð �du ! �þ�Þ;

d�3

dt̂
ð �ud ! ���Þ; d�4

dt̂
ðd �u ! ���Þ:

(2.15)

By charge conjugation invariance, we have

d�1

dt̂
ðu �d ! �þ�Þ ¼ d�3

dt̂
ð �ud ! ���Þ; and

d�2

dt̂
ð �du ! �þ�Þ ¼ d�4

dt̂
ðd �u ! ���Þ:

(2.16)

III. THE RUNNING COUPLING APPROACH AND
HIGHER-TWIST MECHANISM

In this section, we shall calculate the integral (2.11)
using the running coupling constant method and also dis-
cuss the problem of normalization of the higher-twist
process cross section in the context of the same approach.
As is seen from (2.11), in general, one has to take into

account not only the dependence of �ðQ̂2
1;2Þ on the scale

Q̂2
1;2, but also an evolution of �ðx; Q̂2

1;2Þ with Q̂2
1;2. The

meson wave function evolves in accordance with a Bethe-
Salpeter–type equation. Therefore, it is worth noting that
the renormalization scale (argument of �s) should be equal
to Q2

1 ¼ ðx1 � 1Þû, Q2
2 ¼ �x1t̂, whereas the factorization

scale [Q2 in�Mðx;Q2Þ] is taken independently from x; we
take Q2 ¼ p2

T . Such approximation does not considerably
change the numerical results, but the phenomenon consid-
ered in this article (effect of infrared renormalons)
becomes transparent. The main problem in our investiga-
tion is the calculation of the integral in (2.11) by the
running coupling constant approach. The integral in
Eq. (2.11) in the framework of the running coupling ap-
proach takes the form

IðQ̂2Þ ¼
Z 1

0

�sð	Q2Þ�Mðx;Q2Þdx
1� x

: (3.1)

The �sð	Q2Þ has the infrared singularity at x ! 1, if
	 ¼ 1� x and as a result integral (3.1) diverges [the pole
associated with the denominator of the integrand is ficti-
tious, because�M � ð1� xÞ, and therefore, the singularity
of the integrand at x ¼ 1 is caused only by �sðð1� xÞQ2Þ].
For the regularization of the integral we express the run-
ning coupling at scaling variable �sð	Q2Þ with the aid of
the renormalization group equation in terms of the fixed
one �sðQ2Þ. The renormalization group equation for the
running coupling � � �s=� has the form [35]

@�ð	Q2Þ
@ ln	

’ ��0

4
½�ð	Q2Þ�2; (3.2)

where

�0 ¼ 11� 2

3
nf:

The solution of Eq. (3.2), with the initial condition

�ð	Þj	¼1 ¼ � � �sðQ2Þ=�
is [35]

�ð	Þ
�

¼
�
1þ �

�0

4
ln	

��1
: (3.3)

This transcendental equation can be solved iteratively by
keeping the leading �klnk	 order. This term is given by

�ð	Q2Þ ’ �s

1þ ln	=t
: (3.4)
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After substituting Eq. (3.4) into Eq. (2.11) we get

DðQ2Þ ¼ e1t̂
Z 1

0
dx1

�sð	Q2Þ�Mðx;Q2Þ
1� x

þ e2û
Z 1

0
dx1

�sð	Q2Þ�Mðx; Q2Þ
1� x

¼ e1t̂�sðQ2Þ
Z 1

0
dx1

�Mðx;Q2Þ
ð1� xÞð1þ ln	=tÞ þ e2û�sðQ2Þ

Z 1

0
dx

�Mðx;Q2Þ
ð1� xÞð1þ ln	=tÞ

¼ e1t̂�sðQ2Þ
Z 1

0
dx

�asyðxÞ½1þ
P1

2;4;... anð�2
0Þ½�sðQ2Þ

�sð�2
0
Þ��n=�0C3=2

n ð2x� 1Þ�
ð1� xÞð1þ ln	=tÞ þ e1û�sðQ2Þ

�
Z 1

0
dx

�asyðxÞ½1þ
P1

2;4;... anð�2
0Þ½�sðQ2Þ

�sð�2
0Þ
��n=�0C3=2

n ð2x� 1Þ�
ð1� xÞð1þ ln	=tÞ ; (3.5)

where t ¼ 4�=�sðQ2Þ�0.
The integral (3.5) is common and, of course, still diver-

gent, but now it is recast into a form which is suitable for
calculation. Using the running coupling constant approach,
this integral may be found as a perturbative series in
�sðQ2Þ

DðQ2Þ � X1
n¼1

�
�sðQ2Þ
4�

�
n
Sn: (3.6)

The expression coefficients Sn can be written as power
series in the number of light quark flavors or, equivalently,
as a series in power of �0;

Sn ¼ Cn�
n�1
0 :

The coefficients Cn of this series demonstrate factorial
growth Cn � ðn� 1Þ!, which might indicate an infrared
renormalon nature of divergences in the integral (3.5) and
corresponding series (3.6). The procedure for dealing with
such ill-defined series is well known; one has to perform
the Borel transform of the series [15]

B½D�ðuÞ ¼ X1
n¼0

Dn

n!
un;

then invertB½D�ðuÞ to obtain the resummed expression (the
Borel sum) DðQ2Þ. After this we can find directly the
resummed expression for DðQ2Þ. The change of the vari-
able x to z ¼ lnð1� xÞ, as lnð1� xÞ ¼ ln	. Then,

DðQ2Þ ¼ e1 t̂�sðQ2Þt
Z 1

0

�Mðx;Q2Þdx
ð1� xÞðtþ zÞ

þ e2û�sðQ2Þt
Z 1

0

�Mðx;Q2Þdx
ð1� xÞðtþ zÞ : (3.7)

For the calculation of the expression (3.7) we will apply the
inverse Laplase transform to Eq. (3.7) [47]. After this
operation, formula (3.7) is simplified and we can extract
the Borel sum of the perturbative series (3.6) and the

corresponding Borel transform in dependence from the
wave functions of the meson, respectively. Also after
such manipulations the obtained expression can be used
for numerical computations.
The inverse Laplace transformation from 1=ðtþ zÞ has

the form

1

tþ z
¼

Z 1

0
e�ðtþzÞudu (3.8)

after inserting Eq. (3.8) into (3.7). Then, we obtain

DðQ2Þ ¼ e1 t̂�sðQ2Þt
Z 1

0

Z 1

0

�Mðx;Q2Þe�ðtþzÞududx
ð1� xÞ

þ e2û�sðQ2Þt
Z 1

0

Z 1

0

�Mðx;Q2Þe�ðtþzÞududx
ð1� xÞ :

(3.9)

In the case of �asyðxÞ for DðQ2Þ, we get

DðQ2Þ ¼
�
4

ffiffiffi
3

p
�f�e1t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

�

�
�Z 1

0
due�tu

�
1

1� u
� 1

2� u

��
: (3.10)

In the case of the �CZðx;Q2Þ wave function, we find

DðQ2Þ ¼
�
4

ffiffiffi
3

p
�f�e1t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

�

�
�Z 1

0
due�tu

�
1

1� u
� 1

2� u

þ 0:84

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
4

1� u
� 24

2� u

þ 40

3� u
� 20

4� u

���
: (3.11)

In the case of the �CLEOðx;Q2Þ wave function, we get
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DðQ2Þ ¼
�
4

ffiffiffi
3

p
�f�e1 t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

�Z 1

0
due�tu

�
1

1� u
� 1

2� u
þ 0:405

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�

4

1� u
� 24

2� u
þ 40

3� u
� 20

4� u

�
� 0:4125

�
�sðQ2Þ
�sð�2

0Þ
�
364=405

�
�

8

1� u
� 120

2� u
þ 560

3� u
� 1112

4� u
þ 1008

5� u
� 336

6� u

��
: (3.12)

Also, in the case of the �BMSðx; Q2Þ wave function, we get

DðQ2Þ ¼
�
4

ffiffiffi
3

p
�f�e1 t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

�Z 1

0
due�tu

�
1

1� u
� 1

2� u
þ 0:282

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�

4

1� u
� 24

2� u
þ 40

3� u
� 20

4� u

�
� 0:244

�
�sðQ2Þ
�sð�2

0Þ
�
364=405

�
�

8

1� u
� 120

2� u
þ 560

3� u
� 1112

4� u
þ 1008

5� u
� 336

6� u

��
: (3.13)

Equation (3.1) and (3.2) is nothing more than the Borel sum
of the perturbative series (3.6), and the corresponding
Borel transform in the case �asyðxÞ is

B½D�ðuÞ ¼ 1

1� u
� 1

2� u
; (3.14)

in the case �CZðx;Q2Þ is

B½D�ðuÞ ¼ 1

1� u
� 1

2� u
þ 0:84

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�

4

1� u
� 24

2� u
þ 40

3� u
� 20

4� u

�
; (3.15)

in the case �CLEOðx;Q2Þ is

B½D�ðuÞ ¼ 1

1� u
� 1

2� u
þ 0:405

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�

4

1� u
� 24

2� u
þ 40

3� u
� 20

4� u

�

� 0:4125

�
�sðQ2Þ
�sð�2

0Þ
�
364=405

�
�

8

1� u
� 120

2� u
þ 560

3� u
� 1112

4� u

þ 1008

5� u
� 336

6� u

�
; (3.16)

and in the case �BMSðx;Q2Þ is

B½D�ðuÞ ¼ 1

1� u
� 1

2� u
þ 0:282

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�

4

1� u
� 24

2� u
þ 40

3� u
� 20

4� u

�

� 0:244

�
�sðQ2Þ
�sð�2

0Þ
�
364=405

�
8

1� u
� 120

2� u

þ 560

3� u
� 1112

4� u
þ 1008

5� u
� 336

6� u

�
: (3.17)

The series (3.6) can be recovered by means of the following
formula:

Cn ¼
�
d

du

�
n�1

B½D�ðuÞju¼0:

The Borel transform B½D�ðuÞ has poles on the real u axis at
u ¼ 1; 2; 3; 4; 5; 6, which confirms our conclusion con-
cerning the infrared renormalon nature of divergences in
(3.6). To remove them from Eqs. (3.11) and (3.12) some
regularization methods have to be applied. In this article,
we adopt the principal value prescription. We obtain: in the
case �asy

½DðQ2Þ�res ¼
�
4

ffiffiffi
3

p
�f�e1t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

�

�
�
Lið	Þ
	

� Lið	2Þ
	2

�
; (3.18)

in the case �CZðx;Q2Þ

½DðQ2Þ�res ¼
�
4

ffiffiffi
3

p
�f�e1t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

���
Lið	Þ
	

� Lið	2Þ
	2

�
þ 0:84

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�
4
Lið	Þ
	

� 24
Lið	2Þ
	2

þ 40
Lið	3Þ
	3

� 20
Lið	4Þ
	4

��
; (3.19)

in the case �CLEOðx;Q2Þ
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½DðQ2Þ�res ¼
�
4

ffiffiffi
3

p
�f�e1t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

���
Lið	Þ
	

� Lið	2Þ
	2

�
þ 0:405

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�
4
Lið	Þ
	

� 24
Lið	2Þ
	2

þ 40
Lið	3Þ
	3

� 20
Lið	4Þ
	4

�
� 0:4125

�
�sðQ2Þ
�sð�2

0Þ
�
364=405

�
�
8
Lið	Þ
	

� 120
Lið	2Þ
	2

þ 560
Lið	3Þ
	3

� 1112
Lið	4Þ
	4

þ 1008
Lið	5Þ
	5

� 336
Lið	6Þ
	6

��
; (3.20)

also, in the case �BMSðx;Q2Þ

½DðQ2Þ�res ¼
�
4

ffiffiffi
3

p
�f�e1t̂

�0

þ 4
ffiffiffi
3

p
�f�e2û

�0

���
Lið	Þ
	

� Lið	2Þ
	2

�
þ 0:282

�
�sðQ2Þ
�sð�2

0Þ
�
50=81

�
�
4
Lið	Þ
	

� 24
Lið	2Þ
	2

þ 40
Lið	3Þ
	3

� 20
Lið	4Þ
	4

�
� 0:244

�
�sðQ2Þ
�sð�2

0Þ
�
364=405

�
�
8
Lið	Þ
	

� 120
Lið	2Þ
	2

þ 560
Lið	3Þ
	3

� 1112
Lið	4Þ
	4

þ 1008
Lið	5Þ
	5

� 336
Lið	6Þ
	6

��
; (3.21)

where Lið	Þ is the logarithmic integral for 	 > 1 defined as
the principal value [48]

Li ð	Þ ¼ P:V:
Z 1

0

dx

lnx
; 	 ¼ Q2=�2: (3.22)

Hence, the effective cross section obtained after substi-
tution of the expressions (3.10), (3.11), and (3.12) into the
expression (2.10) is referred to as the running coupling
effective cross section. We will denote the higher-twist
cross section obtained using the running coupling constant
approach by ð�HT

� Þres.

IV. CONTRIBUTION OF THE LEADING-TWIST
DIAGRAMS

Regarding the higher-twist corrections to the pion pro-
duction cross section, a comparison of our results with

leading-twist contributions is crucial. We take two
leading-twist subprocesses for the pion production:
(1) quark-antiquark annihilation q �q ! g�, in which the
� meson is indirectly emitted from the gluon, g !
�þð��Þ, and (2) quark-gluon fusion, qg ! q�, with sub-
sequent fragmentation of the final quark into a meson, q !
�þð��Þ. The corresponding cross sections are obtained in

d�

dt̂
ðq �q ! gqÞ ¼ 8

9
��E�sðQ2Þ e

2
q

ŝ2

�
t̂

û
þ û

t̂

�
; (4.1)

d�

dt̂
ðqg ! q�Þ ¼ ��e2q�E�sðQ2Þ

3ŝ2

�
ŝ

t̂
þ t̂

ŝ

�
: (4.2)

For the leading-twist contribution, we find

�LT
M � E

d�

d3p

¼ X
q

Z 1

0
dx1dx2dz

�
Gq1=h1ðx1ÞGq2=h2ðx2ÞD�

g ðzÞ ŝ

�z2
d�

dt̂
ðq �q ! g�Þ þGq1=h1ðx1ÞGg=h2ðx2ÞD�

q ðzÞ ŝ

�z2
d�

dt̂
ðqg ! q�Þ

�

� �ðŝþ t̂þ ûÞ; (4.3)

where

ŝ ¼ x1x2s; t̂ ¼ x1t

z
; û ¼ x2u

z
; z ¼ � x1tþ x2u

x1x2s
: (4.4)

D�
g ðzÞ ¼ D�þ

g ðzÞ ¼ D��
g ðzÞ, andD�

q ðzÞ represents gluon and quark fragmentation functions into a meson containing gluon
and quark of the same flavor. In the leading-twist subprocess, the � meson is indirectly emitted from the gluon and quark
with the fractional momentum z. The � function can be expressed in terms of the parton kinematic variables, and the z
integration can then be done. The final form for the cross section is
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�LT
M � E

d�

d3p

¼ X
q

Z 1

x1min

dx1
Z 1

x2min

dx2

�
Gq1=h1ðx1ÞGq2=h2ðx2ÞD�

g ðzÞ � 1

�z

d�

dt̂
ðq �q ! g�Þ

þGq1=h1ðx1ÞGg=h2ðx2ÞD�
g ðzÞ � 1

�z

d�

dt̂
ðqg ! q�Þ

�

¼ X
q

Z 1

x1min

dx1
Z 1

x2min

dx2
�ðx1tþ x2uÞ

�
x1Gq1=h1ðx1Þsx2Gq2=h2ðx2Þ

D�
g ðzÞ
�

d�

dt̂
ðq �q ! g�Þ

þ x1Gq1=h1ðx1Þsx2Gg=h2ðx2Þ
D�

g ðzÞ
�

d�

dt̂
ðqg ! q�Þ

�
: (4.5)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we discuss the numerical results for
higher-twist effects with higher-twist contributions calcu-
lated in the context of the running coupling constant and
frozen coupling approaches on the dependence of the
chosen meson wave functions in the process pp !
�þðor ��Þ�. In the calculations, we use the asymptotic
wave function�asy, the Chernyak-Zhitnitsky�CZ, the pion

wave function (from which two nontrivial Gegenbauer
coefficients a2 and a4 have been extracted from the
CLEO data on the �0� transition form factor [40]), the
Braun-Filyanov pion wave functions [41], and the
Bakulev-Mikhailov- Stefanis pion wave function [42]. In
Ref. [40], the authors have used the QCD light-cone sum
rules approach and included into their analysis the NLO
perturbative and twist-four corrections. For the higher-
twist subprocess, we take q1 þ �q2 ! ðq1 �q2Þ þ �, and we
have extracted the following four higher-twist subpro-
cesses contributing to pp ! �þðor ��Þ� cross sections:
u �d ! �þ�, �du ! �þ�, �ud ! ���, and d �u ! ��� . For
the dominant leading-twist subprocess for the pion produc-

tion, we take the quark-antiquark annihilation q �q ! g�, in
which the�meson is indirectly emitted from the gluon and
quark-gluon fusion, qg ! q�, with subsequent fragmenta-
tion of the final quark into a meson, q ! �þð��Þ. As an
example for the quark distribution function inside the
proton, the MRST2003C package [49] has been used. The
higher-twist subprocesses probe the meson wave functions
over a large range of Q2 squared momentum transfers,
carried by the gluon. Therefore, in the diagram given in
Fig. 1, we take Q2

1 ¼ ðx1 � 1Þû, Q2
2 ¼ �x1t̂, which we

have obtained directly from the higher-twist subprocesses
diagrams. The same Q2 has been used as an argument of
�sðQ2Þ in the calculation of each diagram.
The results of our numerical calculations are plotted in

Figs. 2–31. First of all, it is very interesting to compare the
resummed higher-twist cross sections with the ones ob-
tained in the framework of the frozen coupling approach.
In Figs. 2–4, we show the dependence of higher-
twist cross sections ð�HT

�þÞ0 calculated in the context of

the frozen coupling, ð�HT
�þÞres in the context of the running

coupling constant approaches and also the ratio

FIG. 2. Higher-twist �þ production cross section ð�HTÞ0 as a
function of the pT transverse momentum of the pion at the c.m.
energy

ffiffiffi
s

p ¼ 62:4 GeV.

FIG. 3. Higher-twist �þ production cross section ð�HTÞres as a
function of the pT transverse momentum of the pion at the c.m.
energy

ffiffiffi
s

p ¼ 62:4 GeV.
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R ¼ ð�HT
�þÞres=�HT

�þÞ0 as a function of the pion transverse

momentum pT for different pion wave functions at y ¼ 0.
It is seen that the values of cross sections ð�HT

�þÞ0, ð�HT
�þÞres,

and R for fixed y and
ffiffiffi
s

p
depend on the choice of the pion

wave function. As seen from Figs. 2 and 3, in both cases,
frozen coupling and running coupling constant approaches
the higher-twist differential cross section is monotonically
decreasing with an increase in the transverse momentum of
the pion. In Figs. 5 and 6, we show the dependence of the
ratio ð�HT

�þÞ0=ð�LT
�þÞ and ð�HT

�þÞres=ð�LT
�þÞ as a function of

the pion transverse momentum pT for different pion wave
functions. Here ð�HT

�þÞres, ð�HT
�þÞ0 are the higher-twist cross

sections calculated in the context of the running coupling
method and in the framework of the frozen coupling
approach and ð�LT

�þÞ is the leading-twist cross section,

FIG. 4. Ratio R ¼ ð�HT
�þÞres=ð�HT

�þÞ0, where higher-twist con-
tributions are calculated for the pion rapidity y ¼ 0 at the c.m.
energy

ffiffiffi
s

p ¼ 62:4 GeV as a function of the pion transverse
momentum, pT .

FIG. 5. Ratio ð�HT
�þÞ0=ð�LT

�þÞ, as a function of the pT transverse
momentum of the pion at the c.m. energy

ffiffiffi
s

p ¼ 62:4 GeV.

FIG. 6. Ratio ð�HT
�þÞres=ð�LT

�þÞ, as a function of the pT trans-
verse momentum of the pion at the c.m. energy

ffiffiffi
s

p ¼ 62:4 GeV.

FIG. 7. The difference of the higher-twist cross section,
ð�HT

� Þ0 ¼ ð�HT
�þÞ0 � ð�HT

��Þ0, as a function of the pion transverse

momentum, pT , at the c.m. energy
ffiffiffi
s

p ¼ 62:4 GeV.

FIG. 8. The difference of the higher-twist cross section,
ð�HT

� Þres ¼ ð�HT
�þÞres � ð�HT

��Þres, as a function of the pion trans-

verse momentum, pT , at the c.m. energy
ffiffiffi
s

p ¼ 62:4 GeV.
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respectively. As seen from Fig. 6, in the region 2 GeV=c <
pT < 5 GeV=c higher-twist cross section calculated in the
context of the running coupling method is suppressed by
about 2 orders of magnitude relative to the leading-twist
cross section, but in the region 5 GeV=c < pT 	
30 GeV=c is comparable with the cross section of
leading-twist. In Figs. 7–10, we show the dependence
ð�HT

� Þ0, ð�HT
� Þres, the ratio r ¼ ð�HT

� Þres=ð�HT
� Þ0, and the

ratio ð�HT
� Þres=ð�LT

� Þ as a function of the pion transverse
momentum pT for the pion wave functions. Here,
ð�HT

� Þ0 ¼ ð�HT
�þÞ0 � ð�HT

��Þ0 and ð�HT
� Þres ¼ ð�HT

�þÞres �
ð�HT

��Þres. As seen from Figs. 7 and 8, the higher-twist
differential cross section is decreasing with an increase in

the transverse momentum of the pion. As is seen from
Fig. 9, when the transverse momentum of the pion is
increasing, the ratio r is decreasing. But, as shown in
Fig. 9, in the region 2 GeV=c < pT < 25 GeV=c higher-
twist cross section calculated in the context of the running
coupling method is suppressed by about 3 orders of mag-
nitude relative to the higher-twist cross section calculated
in the framework of the frozen coupling method. The
dependence, as shown in Fig. 10, is identically equivalent
to Fig. 6.
In Figs. 11–16, we have depicted higher-twist cross

sections, ratios ð�HT
�þÞ0, ð�HT

�þÞres, R ¼ ð�HT
�þÞres=ð�HT

�þÞ0,
r ¼ ð�HT

� Þres=ð�HT
� Þ0, ð�HT

� Þ0=ð�LT
� Þ, and ð�HT

� Þres=ð�LT
� Þ

as a function of the rapidity y of the pion at
ffiffiffi
s

p ¼
62:4 GeV and pT ¼ 4:9 GeV=c. At

ffiffiffi
s

p ¼ 62:4 GeV and

FIG. 10. Ratio ð�HT
� Þres=ð�LT

� Þ, where higher-twist contribu-
tions are calculated for the pion rapidity y ¼ 0 at the c.m. energyffiffiffi
s

p ¼ 62:4 GeV, as a function of the pion transverse momentum,
pT .

FIG. 9. Ratio r ¼ ð�HT
� Þres=ð�HT

� Þ0, where higher-twist contri-
butions are calculated for the pion rapidity y ¼ 0 at the c.m.
energy

ffiffiffi
s

p ¼ 62:4 GeV, as a function of the pion transverse
momentum, pT .

FIG. 11. Higher-twist �þ production cross section ð�HT
�þÞ0, as

a function of the y rapidity of the pion at the transverse
momentum of the pion pT ¼ 4:9 GeV=c, at the c.m. energyffiffiffi
s

p ¼ 62:4 GeV.

.

.

FIG. 12. Higher-twist �þ production cross section ð�HT
�þÞres, as

a function of the y rapidity of the pion at the transverse
momentum of the pion pT ¼ 4:9 GeV=c, at the c.m. energyffiffiffi
s

p ¼ 62:4 GeV.
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pT ¼ 4:9 GeV=c, the pion rapidity lies in the region
�2:52 	 y 	 2:52.

As seen from Figs. 13 and 14, in the region (� 2:52 	
y 	 �1:92), the ratio for all wave functions increases with
an increase of the y rapidity of the pion and has a maximum
approximately at the point y ¼ �1:92. Besides that, the
ratio decreases with an increase in the y rapidity of the
pion. As is seen from Figs. 13 and 14, the ratios R and r are
very sensitive to the choice of the meson wave functions.
But, as seen from Fig. 15, the ratio ð�HT

�þÞ0=ð�LT
�þÞ for all

wave functions has a minimum approximately at the point
y ¼ �1:92. In Fig. 16, we show the ratio ð�HT

� Þres=ð�LT
� Þ as

a function of the rapidity y of the pion. As seen from
Fig. 16, with an increase of the y rapidity of the pion the
ratio increases. It should be noted that the magnitude of the
higher-twist cross section for the pion wave function
�BMSðx;Q2Þ is very close to the asymptotic wave function

�asyðxÞ. The higher-twist corrections and ratio are very

sensitive to the choice of the pion wave function. Also,
the distinction between Rð�asyðxÞÞ with Rð�CLEOðx;Q2ÞÞ,
Rð�CZðx;Q2ÞÞ, Rð�BFðx;Q2ÞÞ, and Rð�BMSðx;Q2ÞÞ have
been calculated. For example, in the case of

ffiffiffi
s

p ¼
62:4 GeV, y ¼ 0, the distinction between Rð�asyðxÞÞ
with Rð�iðx;Q2ÞÞ (i ¼ CLEO, CZ, BF, BMS) as a function
of the pion transverse momentum pT is shown in Table I.
Thus, the distinction between Rð�asyðxÞÞ and Rð�iðx;Q2ÞÞ
(i ¼ CLEO, CZ, BF) is maximum at pT ¼ 20 GeV=c,
with Rð�BMSðxÞÞ at pT ¼ 2 GeV=c but the distinction
between Rð�asyðxÞÞ with Rð�iðx; Q2ÞÞ (i ¼ CLEO, CZ,

BF) is minimum at pT ¼ 2 GeV=c, with Rð�BMSðxÞÞ at
pT ¼ 20 GeV=c and increases with an increase in pT .
Such a behavior of R may be explained by reducing all

.

.

.

FIG. 13. Ratio R ¼ ð�HT
�þÞres=ð�HT

� Þ0, as a function of the y
rapidity of the pion at the transverse momentum of the pion
pT ¼ 4:9 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 62:4 GeV.

.

.

.

FIG. 14. Ratio r ¼ ð�HT
� Þres=ð�HT

� Þ0, as a function of the y
rapidity of the pion at the transverse momentum of the pion
pT ¼ 4:9 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 62:4 GeV.

FIG. 15. Ratio ð�HT
�þÞ0=ð�LT

�þÞ, as a function of the y rapidity of
the pion at the transverse momentum of the pion pT ¼
4:9 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 62:4 GeV.

FIG. 16. Ratio ð�HT
�þÞres=ð�LT

�þÞ, as a function of the y rapidity
of the pion at the transverse momentum of the pion pT ¼
4:9 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 62:4 GeV.
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moments of the pion model wave functions to those of
�asyðxÞ for high Q2. Also, we have calculated the distinc-

tion between Rð�asyðxÞÞ with Rð�CLEOðx;Q2ÞÞ,
Rð�CZðx;Q2ÞÞ, Rð�BFðx;Q2ÞÞ, and Rð�BMSðx;Q2ÞÞ as a
function of the rapidity y of the pion. For example, in the
case of

ffiffiffi
s

p ¼ 62:4 GeV, pT ¼ 4:9 GeV=c the distinction
between Rð�asyðxÞÞ with Rð�iðx;Q2ÞÞ (i ¼ CLEO, CZ,

BF, BMS) as a function of the rapidity y of the pion is
presented in Table II.

We have also carried out comparative calculations in the
center-of-mass energy

ffiffiffi
s

p ¼ 200 GeV. The results of our
numerical calculations in the center-of-mass energiesffiffiffi
s

p ¼ 200 GeV are plotted in Figs. 17–31. Analysis of
our calculations at the center-of-mass energies

ffiffiffi
s

p ¼
62:4 GeV and

ffiffiffi
s

p ¼ 200 GeV, show that with the increase
in beam energy values of the cross sections, ratio R ¼

ð�HT
�þÞres=ð�HT

�þÞ0, and contributions of higher-twist to the

cross section decrease by about 1–3 order. Therefore the
experimental investigation of higher-twist effects include
renormalon effects conveniently in low energy. On the
other hand, the higher-twist corrections and ratios R
and r are very sensitive to the choice of the pion wave
function. Also, the distinction between Rð�asyðxÞÞ with

Rð�CLEOðx;Q2ÞÞ, Rð�CZðx;Q2ÞÞ, Rð�BFðx;Q2ÞÞ, and
Rð�BMSðx; Q2ÞÞ have been calculated. For example, in
the case of

ffiffiffi
s

p ¼ 200 GeV, y ¼ 0, the distinction between
Rð�asyðxÞÞ with Rð�iðx;Q2ÞÞ (i ¼ CLEO, CZ, BF, BMS)

as a function of the pion transverse momentum pT is shown
in Table III. Thus, the distinction between Rð�asyðxÞÞ with
Rð�iðx;Q2ÞÞ, (i ¼ CZ, CLEO, BF) is maximum at

TABLE I. The distinction between Rð�asyðxÞÞ with
Rð�iðx;Q2ÞÞ (i ¼ CLEO, CZ, BF, BMS) at c.m. energy

ffiffiffi
s

p ¼
62:4 GeV.

pT , GeV=c
Rð�CLEOðx;Q2ÞÞ

Rð�asyðxÞÞ
Rð�CZðx;Q2ÞÞ
Rð�asyðxÞÞ

Rð�BFðx;Q2ÞÞ
Rð�asyðxÞÞ

Rð�BMSðx;Q2ÞÞ
Rð�asyðxÞÞ

2 0.557 0.299 0.462 9.813

6 1.744 0.513 1.5 2.208

20 7.273 6.065 6.311 3.357

TABLE II. The distinction between Rð�asyðxÞÞ with
Rð�iðx;Q2ÞÞ (i ¼ CLEO, CZ, BF, BMS) at c.m. energy

ffiffiffi
s

p ¼
62:4 GeV and pT ¼ 4:9 GeV=c.

y Rð�CLEOðx;Q2ÞÞ
Rð�asyðxÞÞ

Rð�CZðx;Q2ÞÞ
Rð�asyðxÞÞ

Rð�BFðx;Q2ÞÞ
Rð�asyðxÞÞ

Rð�BMSðx;Q2ÞÞ
Rð�asyðxÞÞ

�2:52 11.285 2.094 10.162 3.232

�1:92 0.36 0.279 0.446 5.103

0.78 0.076 0.945 6.213 2.392

FIG. 17. Higher-twist �þ production cross section ð�HT
�þÞ0 as a

function of the pT transverse momentum of the pion at the c.m.
energy

ffiffiffi
s

p ¼ 200 GeV.

FIG. 18. Higher-twist �þ production cross section ð�HT
�þÞres as

a function of the pT transverse momentum of the pion at the c.m.
energy

ffiffiffi
s

p ¼ 200 GeV.

FIG. 19. Ratio R ¼ ð�HT
�þÞres=ð�HT

�þÞ0, where higher-twist con-
tributions are calculated for the pion rapidity y ¼ 0 at the c.m.
energy

ffiffiffi
s

p ¼ 200 GeV as a function of the pion transverse
momentum, pT .
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FIG. 20. Ratio ð�HT
�þÞ0=ð�LT

�þÞ, as a function of the pT trans-
verse momentum of the pion at the c.m. energy

ffiffiffi
s

p ¼ 200 GeV.

FIG. 21. Ratio ð�HT
�þÞres=ð�LT

�þÞ, as a function of the pT trans-
verse momentum of the pion at the c.m. energy

ffiffiffi
s

p ¼ 200 GeV.

FIG. 22. The difference of the higher-twist cross section,
ð�HT

� Þ0 ¼ ð�HT
�þÞ0 � ð�HT

��Þ0, as a function of the pion transverse

momentum, pT , at the c.m. energy
ffiffiffi
s

p ¼ 200 GeV.

FIG. 23. The difference of the higher-twist cross section,
ð�HT

� Þres ¼ ð�HT
�þÞres � ð�HT

��Þres, as a function of the pion trans-

verse momentum, pT , at the c.m. energy
ffiffiffi
s

p ¼ 200 GeV.

FIG. 24. Ratio r ¼ ð�HT
� Þres=ð�HT

� Þ0, where higher-twist con-
tributions are calculated for the pion rapidity y ¼ 0 at the c.m.
energy

ffiffiffi
s

p ¼ 200 GeV, as a function of the pion transverse
momentum, pT .

FIG. 25. Ratio ð�HT
� Þres=ð�LT

� Þ, where higher-twist contribu-
tions are calculated for the pion rapidity y ¼ 0 at the c.m. energyffiffiffi
s

p ¼ 200 GeV, as a function of the pion transverse momentum,
pT .
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.
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FIG. 29. Ratio r ¼ ð�HT
� Þres=ð�HT

� Þ0, as a function of the y
rapidity of the pion at the transverse momentum of the pion
pT ¼ 15:5 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 200 GeV.

.

FIG. 26. Higher-twist �þ production cross section ð�HT
�þÞ0, as

a function of the y rapidity of the pion at the transverse
momentum of the pion pT ¼ 15:5 GeV=c, at the c.m. energyffiffiffi
s

p ¼ 200 GeV.

.

.

FIG. 27. Higher-twist �þ production cross section ð�HT
�þÞres, as

a function of the y rapidity of the pion at the transverse
momentum of the pion pT ¼ 15:5 GeV=c, at the c.m. energyffiffiffi
s

p ¼ 200 GeV.

.

.

FIG. 28. Ratio R ¼ ð�HT
�þÞres=ð�HT

� Þ0, as a function of the y
rapidity of the pion at the transverse momentum of the pion
pT ¼ 15:5 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 200 GeV.

FIG. 30. Ratio ð�HT
�þÞ0=ð�LT

�þÞ, as a function of the y rapidity of
the pion at the transverse momentum of the pion pT ¼
15:5 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 200 GeV.

FIG. 31. Ratio ð�HT
�þÞres=ð�LT

�þÞ, as a function of the y rapidity
of the pion at the transverse momentum of the pion pT ¼
15:5 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 200 GeV.
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pT ¼ 35 GeV=c, with Rð�BMSðxÞÞ at pT ¼ 10 GeV=c,
but the distinction between Rð�asyðxÞÞ with

Rð�CZðx;Q2ÞÞ, Rð�CLEOðx;Q2ÞÞ, Rð�BFðx;Q2ÞÞ is mini-
mum at pT ¼ 10 GeV=c, with Rð�BMSðxÞÞ at pT ¼
95 GeV=c and increases with an increase in pT . Also, we
have calculated the distinction between Rð�asyðxÞÞ with

Rð�CLEOðx;Q2ÞÞ, Rð�CZðx;Q2ÞÞ, Rð�BFðx;Q2ÞÞ, and
Rð�BMSðx;Q2ÞÞ as a function of the rapidity y of the
pion. For example, in the case of

ffiffiffi
s

p ¼ 200 GeV, pT ¼
15:5 GeV=c the distinction between Rð�asyðxÞÞ with

Rð�iðx;Q2ÞÞ as a function of the rapidity y of the pion is
presented in Table IV. The calculations show that the ratio
Rð�iðx;Q2ÞÞ=Rð�asyðxÞÞ, (i ¼ CLEO, CZ, BF, BMS) for

all values of the transverse momentum pT of the pion
identically equivalent to ratio rð�iðx;Q2ÞÞ=rð�asyðxÞÞ.

VI. CONCLUDING REMARKS

In this work, we have calculated the single meson in-
clusive production via the higher-twist mechanism and
obtained the expressions for the subprocess q �q ! M�

cross section for mesons with symmetric wave functions.
For calculation of the cross section we have applied the
running coupling constant method and revealed infrared
renormalon poles in the cross section expression. Infrared
renormalon induced divergences have been regularized by
means of the principal value prescripton and the resummed
expression (the Borel sum) for the higher-twist cross sec-
tion has been found. The higher-twist cross sections were
calculated in the frozen coupling and running coupling
approaches. The resummed higher-twist cross section dif-
fers from that found using the frozen coupling approach, in
some regions, considerably. Also we demonstrated that
higher-twist contributions to single meson production
cross section in the proton-proton collisions have impor-
tant phenomenological consequences. We have obtained
very interesting results. The ratio R for all values of the
transverse momentum pT and of the rapidity of the pion
identically equivalent to ratio r. Our investigation enables
us to conclude that the higher-twist pion production cross
section in the proton-proton collisions depends on the form
of the pion model wave functions and may be used for their
study. Analysis of our calculations shows that the magni-
tude of cross sections of the leading twist is larger than the
higher-twist cross sections ones calculated in the frozen
coupling approach in 2–4 order. But, in some regions of
transverse momentum of the pion, the higher-twist cross
section calculated in the context of the running coupling
method is comparable with the cross sections of leading
twist. Further investigations are needed in order to clarify
the role of high twist effects in this process. We have
demonstrated that the resummed result depends on the
pion model wave functions used in calculations. The
proton-proton collisions provide us with a new opportunity
to probe a proton’s internal structure. In particular, meson
production in proton-proton collisions takes into account
infrared renormalon effects; this opens a window toward
new types of parton distributions—chiral-odd distributions
h1ðx;�2Þ and hLðx;�2Þ which can not be measured by the
deep inelastic lepton-proton scatterings.
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