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In this paper, we investigate deep inelastic and elastic scattering on a polarized spin- 12 hadron using

gauge/string duality. This spin- 12 hadron corresponds to a supergravity mode of the dilatino. The polarized

deep inelastic structure functions are computed in the supergravity approximation at large t’ Hooft

coupling � and finite x with ��1=2 � x < 1. Furthermore, we discuss the moments of all structure

functions, and propose an interesting sum rule
R
1
0 dxg2ðx; q2Þ ¼ 0 for the g2 structure function which is

known as the Burkhardt-Cottingham sum rule in QCD. In the end, the elastic scattering is studied and

elastic form factors of the spin- 12 hadron are calculated within the same framework.
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I. INTRODUCTION

Gauge/string duality [1–3] provides us new insights into
gauge theories in the strong coupling regime. According to
the gauge/string duality, the dual string theory, which
corresponds to conformal gauge theories [e.g., the N ¼
4 super YangMills (SYM) theory], is embedded inAdS5 �
S5 space with the metric

ds2 ¼ gM;NdX
MdXN

¼
�
r2

R2
���dy

�dy� þ R2

r2
dr2

�
þ R2d�2

5; (1)

where gM;N is the ten-dimensional metric and ��� ¼
ð�;þ;þ;þÞ is the mostly plus flat space metric. Here
we use M, N as indices in ten dimensions, m, n as indices
in AdS5, and �, � as those in four-dimensional flat space
which lives on the boundary of the AdS5 space. R, which is
the curvature radius of the AdS5 space, is also equal to the
radius of the five-sphere S5. It is given by the duality

R2 ¼ l2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�gstN

p
; (2)

where the string coupling gst and the string length ls are
given by 4�gst ¼ g2YM and l2s ¼ �0 with �0 being the
Regge slope parameter, respectively. The t’Hooft coupling
is defined as � ¼ g2YMN ¼ 4�gstN. One can easily see that
the large t’Hooft coupling limit is equivalent to the limit
R2 � l2s . In the limit gst � 1 and R2 � l2s , the string
theory can be approximated by supergravity. Then the
duality reduces to correspondence between gauge theories
at large t’Hooft coupling and supergravity, One can inves-
tigate the nonperturbative properties of gauge theories at
large t’Hooft coupling by studying the corresponding su-

pergravity theory. There are also some interesting connec-
tions between the type II-B superstring theory and the
N ¼ 4 SYM theory. First, the SUð4Þ R symmetry of
the N ¼ 4 SYM is the SOð6Þ isometry of S5.
Furthermore, the SOð4; 2Þ conformal symmetry of the
gauge theory is the isometry of AdS5. In addition, there
is an implication that the radial direction (r) inAdS5 can be
identified with the energy scale in four-dimensional SYM
theory, namely, E� r

R2 .

There has been substantial progress in studying strong
coupling gauge theories especially in terms of deep inelas-
tic scattering. A few years ago, Polchinski and Strassler
[4,5] studied the deep inelastic scattering on hadrons by
using gauge/string duality where the usual structure func-
tions F1 and F2 are calculated for both spinless and spin- 12
hadrons when Bjorken-x is finite (��1=2 � x < 1) where
supergravity approximation is valid. The spinless hadron
and spin- 12 hadron correspond to supergravity modes of

dilaton and dilatino, respectively. Furthermore, they also
investigated the case at small-x where the Pomeron con-
tribution with a trajectory of 2�Oð 1ffiffiffi

�
p Þ was found. Since

an infrared cutoff � is introduced in order to generate
confinement, the model is then called hard wall model.
There are also some earlier studies [6,7] on high energy
scattering in gauge/string duality. There have been a lot of
further developments along this direction [8–14]. A satu-
ration picture based on deep inelastic scattering in AdS/
CFT is developed [15] afterwards and recently reviewed in
Ref. [16]. In addition, the deep inelastic scattering off the
finite temperature plasma in gauge/string duality is re-
cently studied in Refs. [17,18].
Our main objective in this paper is to extend the calcu-

lation of deep inelastic scattering on a spin- 12 fermion in the

hard wall model, and compute the parity-violating struc-
ture function F3 as well as the polarized structure functions
g1, g2, g3, g4, and g5. Among these five polarized structure
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functions, g3, g4, and g5 are parity-violating structure
functions.

Type II-B superstring theory, which lives in a ten-
dimensional space (e.g., AdS5 � S5), is a parity-violating
theory. It contains massless left-handed Majorana-Weyl
gravitinos and massless right-handed Majorana-Weyl dila-
tinos. The gravitino, which is a spin- 32 fermion, is the

superpartner of the graviton. Likewise, the dilatino, which
is a spin- 12 fermion, is the superpartner of the dilaton. It has

been proved that type II-B superstring theory is anomaly
free [19,20] in terms of local (gauge) symmetries. Here we
expect that the currents in the dual gauge theory are
conserved at finite-x as we will show later in the paper.
In this paper, we focus on the spin- 12 dilatino and calculate

its structure functions as well as form factors. In order to
study the polarized structure functions and form factors,
we follow the setup in Ref. [5] and assume the dilatino has
a small mass M which eventually can be related to the
cutoff scale �.

This paper is organized as follows. In Sec. II, we provide
the definitions for various structure functions as well as
kinematic variables. In Sec. III, we calculate the expecta-

tion value of theR currents in our gedanken experiment of
polarized deep inelastic scattering from gauge/string dual-
ity. This eventually leads to the structure functions at finite
x. Section IV is devoted to the discussions and comments
on the structure functions and their sum rules. In Sec. V, we
focus on the elastic scattering and derive the form factors
for the spin- 12 hadron. Finally, in Sec. VI, we summarize

our results.

II. POLARIZED DEEP INELASTIC SCATTERING

The hadronic tensor W�� is defined as

W�� ¼
Z

d4�eiq��hP;Q; Sj½J�ð�Þ; J�ð0Þ�jP;Q; Si; (3)

with J� being the incident current. The hadronic tensor
W�� can be split as

W�� ¼ WðSÞ
��ðq; PÞ þ iWðAÞ

��ðq;P; SÞ: (4)

According to Lorentz and CP invariance, the symmetrical
and antisymmetrical parts can be expressed in terms of
eight independent structure functions as [21,22],1

WðSÞ
�� ¼

�
��� �

q�q�

q2

��
F1ðx; q2Þ þMS � q

2P � q g5ðx; q2Þ
�
� 1

P � q
�
P� � P � q

q2
q�

��
P� � P � q

q2
q�

�

�
�
F2ðx; q2Þ þMS � q

P � q g4ðx; q2Þ
�
� M

2P � q
��

P� � P � q
q2

q�

��
S� � S � q

P � qP�

�

þ
�
P� � P � q

q2
q�

��
S� � S � q

P � qP�

��
g3ðx; q2Þ

WðAÞ
�� ¼ �M"���	q

�

P � q
�
S	g1ðx; q2Þ þ

�
S	 � S � q

P � qP
	

�
g2ðx; q2Þ

�
� "���	q

�P	

2P � q F3ðx; q2Þ;

(5)

whereM is the mass of the hadron, S is its polarization, q is
the momentum carried by the current, and P is the initial
momentum of the hadron (see Fig. 1). In deep inelastic
scattering, we define the kinematic variables as the follow-
ing:

x ¼ � q2

2P � q and P2
X ¼ ðPþ qÞ2: (6)

The mass of the intermediate state after the scattering is
defined as M2

X ¼ s ¼ �P2
X. All the structure functions are

functions of x and q2.

III. POLARIZED STRUCTURE FUNCTIONS IN
HARD WALL MODEL

In the so-called hard wall model, Polchinski and
Strassler impose a confinement scale � in the fifth dimen-
sion of AdS5 space. As we will see later in the paper [see
Eq. (54)], this scale also provides a mass scale for the
hadrons. Following Polchinski and Strassler [5], we per-
form a gedanken experiment of polarized deep inelastic
scattering which occurs between the boundary and the
cutoff scale �. Here we first summarize their setup before
we extend the calculations to the polarized case.

FIG. 1. Illustration of DIS.

1There are some sign changes in our definition comparing to
the usual definition in [21,22]. These sign changes arise due to
the reason that we use the most plus metric throughout this paper
instead of the usual most minus metric.
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The incident current is chosen to be theR current which
couples to the hadron as an isometry of S5. According to
the AdS/CFT correspondence, the current excites a non-
normalizable mode of a Kaluza-Klein gauge field at the
Minkowski boundary of the AdS5 space,


Gma ¼ Amðy; rÞvað�Þ; (7)

where vað�Þ denotes a Killing vector on S5 with � being
the angular coordinates on S5. Amðy; rÞ is the external
potential in the gauge theory corresponding to the operator
insertion n�J

�ðqÞ on the boundary of the fifth dimension

of the AdS5 space with the boundary condition

A�ðy;1Þ ¼ A�ðyÞj4D ¼ n�e
iq�y: (8)

This gauge field fluctuation Amðy; rÞ can be viewed as a
vector boson field which couples to the R current J� on
the Minkowski boundary, and then propagates into the bulk
as a gravitational wave, and eventually interacts with the
supergravity modes of the dilatino or dilaton. The gauge
field satisfies Maxwell’s equation in the bulk,DmF

mn ¼ 0.
With a gauge choice, one can solve this equation for A�.

Usually people choose the gauge Ar ¼ 0. However, the
problem is easier in the Lorenz-like gauge, i���q�A� þ
R�4r@rðr3ArÞ ¼ 0. With given boundary conditions, one
obtains the solution2

A� ¼ n�e
iq�y qR

2

r
K1ðqR2=rÞ; (9)

Ar ¼ �iq � neiq�y R
4

r3
K0ðqR2=rÞ; (10)

where q ¼ ffiffiffiffiffi
q2

p
. (Note that in �þþþ metric signature,

Q2 ¼ q2 > 0 for spacelike current.) Since KnðqR2=rÞ �
expð�qR2=rÞ, the deep inelastic scattering should be lo-
calized around rint ’ qR2 which is far away from the cutoff
r0 ¼ �R2 for hard scattering when q2 � �2.

Spin- 12 hadrons correspond to supergravity modes of the

dilatino. In the conformal region, one can write the dilatino
field as

� ¼ c ðy; rÞ � �ð�Þ; (11)

where c ðy; rÞ is an SOð4; 1Þ spinor on AdS5 and �ð�Þ is a
normalized SOð5Þ spinor on S5. The wave function c
satisfies a five-dimensional Dirac equation3

�D6 c ¼ mc : (12)

The solution to this Dirac equation is [23]

c ¼ eip�y
C0

r5=2
½JmR�1=2ðMR2=rÞPþ

þ JmRþ1=2ðMR2=rÞP��u	; (13)

where

p6 u	 ¼ iMu	 ð	 ¼ 1; 2Þ; M2 ¼ �p2;

P	 ¼ 1
2ð1	 �5Þ: (14)

Here we define the � matrices according to the Dirac
algebra in the mostly plus metric signature �þþþ
(see, e.g., the notation in Ref. [24]),

f��; ��g 
 ���� þ ���� ¼ 2��� � 14�4; (15)

which gives an additional factor of �i in �� (� ¼
0; 1; 2; 3). It is straightforward to see that this explains
the factor i in front of the fermion mass in Eq. (14) and
the �5 is the same as the usual definition.
The dilatino is taken to be in a charge eigenstate with

charge Q under the Uð1Þ symmetry, which yields
va@

a�ð�Þ ¼ iQ�ð�Þ. This Uð1Þ symmetry arises from
the Uð1Þ subgroup of the SUð4Þ R symmetry.
For the initial hadron, by assuming MR2=r � 1 in the

interaction region and expanding the Bessel functions in
Eq. (13) up to linear term in M, one gets

c i � eiP�y
c0i

�3=2R9=2

�
r0
r

�
mRþ2

�
Pþui	

þ Mr0
2ðmRþ 1=2Þ�r

P�ui	
�
: (16)

�c i � e�iP�y c0i
�3=2R9=2

�
r0
r

�
mRþ2

�
�ui	P�

þ Mr0
2ðmRþ 1=2Þ�r

�ui	Pþ
�
: (17)

In order to obtain a polarized contribution of the structure
function, we have kept the next leading order M of the
initial hadron. The conformal dimension � of the state is
found to be mRþ 2. For the intermediate hadron, MX �
� and

c X � eiðPþqÞ�y c
0
Xs

1=4�1=2R1=2

r5=2
½JmR�1=2ðMXR

2=rÞPþ

þ JmRþ1=2ðMXR
2=rÞP��uX	: (18)

�c X � e�iðPþqÞ�y c
0
Xs

1=4�1=2R1=2

r5=2
�uX	½P�JmR�1=2ðMXR

2=rÞ
þ PþJmRþ1=2ðMXR

2=rÞ�: (19)

Before getting into the detailed calculation, let us look
into the center of mass square of the intermediate states in
ten dimensions. It is easy to see that

2Here we have corrected a minus sign typo in the solution of
Ar in Ref. [5].

3We also noticed that there are some typos in the Dirac
equations in Ref. [5] where there is an extra i in Eq. (12) while
an i is missing in Eq. (14). The detailed derivation is provided
above.
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~s ¼ �gM;NPX;MPX;N � R2

r2int
q2
�
1

x
� 1

�
with rint ¼ qR2:

(20)

Thus we know that �0~s ¼ 1ffiffiffi
�

p ð1x � 1Þ � 1 when 1ffiffiffi
�

p � x <

1. In this range of x, only massless string states are the
relevant intermediate states produced during the interac-
tion, and the supergravity calculation should be valid and
reliable to obtain the structure functions. When x gets
smaller, the massive string modes are excited and string
scattering amplitude should be taken into account. This has
been calculated thoroughly for F1 and F2. Unfortunately,
we leave this part of the calculation for polarized structure
functions for future studies.

Therefore, it is straightforward to compute the matrix
element and obtain

n�hPX; X; 	
0jJ�ð0ÞjP;Q;	i

¼ iQ
Z

d6x?
ffiffiffiffiffiffiffi�g

p
Am

��X�
m�i (21)

¼ iQ
Z

d6x?
ffiffiffiffiffiffiffi�g

p ðA�
��Xe

�
�̂�

�̂�i þ Ar
��Xe

r
r̂�

r̂�iÞ; (22)

where n� is the polarization of the current J�, �̂ and r̂ are

the tangent space index, and the vielbein e��̂ and err̂ are

given by

e��̂ ¼ R

r
��

�̂ and err̂ ¼
r

R
: (23)

Here the vielbein is used to make the product Lorentz
invariant due to the fact that the gamma matrices are
defined in the flat spacetime. It then follows that

n�hPX; X; 	
0jJ�ð0ÞjP;Q; 	i ¼ iQ

Z
dr

r3

R3
R5 c0i

�3=2R9=2

ð�R2ÞmRþ2

rmRþ2

c0Xs1=4�1=2R1=2

r5=2

�
�
qR2

r
K1ðqR2=rÞJmR�1=2ðMXR

2=rÞR
r
�uX	0n6 Pþui	 � iq � nR

4

r3
K0ðqR2=rÞ

� JmRþ1=2ðMXR
2=rÞ r

R
�uX	0�5Pþui	 þ qR2

r
K1ðqR2=rÞJmRþ1=2ðMXR

2=rÞR
r

MR2

ð2mRþ 1Þr
� �uX	0n6 P�ui	 � iq � nR

4

r3
K0ðqR2=rÞJmR�1=2ðMXR

2=rÞ r
R

MR2

ð2mRþ 1Þr �uX	0�5P�ui	
�
:

(24)

After changing variables to z ¼ R2

r , one finds

n�hPX; X; 	
0jJ�ð0ÞjP;Q; 	i ¼ iQc0ic

0
Xs

1=4���1=2
Z 1=�

0
dzz�ðqK1ðqzÞJ��2ðMXzÞ �uX	0n6 Pþui	 � iq � nK0ðqzÞ

� J��1ðMXzÞ �uX	0�5Pþui	 þ qzK1ðqzÞJ��1ðMXzÞM �uX	0n6 P�ui	
2ð�� 1Þ � iðq � nÞzK0ðqzÞ

� J��2ðMXzÞM �uX	0�5P�ui	
2ð�� 1Þ

�
; (25)

where

r0 ¼ �R2 and � ¼ �� 1=2 ¼ mRþ 3
2: (26)

Using the following integral results

Z 1

0
dzz�K1ðqzÞJ��2ðMXzÞ ¼ 2��1M��2

X q

ðM2
X þ q2Þ� �ð�Þ (27)

Z 1

0
dzz�K0ðqzÞJ��1ðMXzÞ ¼ 2��1M��1

X

ðM2
X þ q2Þ� �ð�Þ (28)

Z 1

0
dzz�þ1K1ðqzÞJ��1ðMXzÞ ¼ 2�M��1

X q

ðM2
X þ q2Þ�þ1

�ð�þ 1Þ
(29)

Z 1

0
dzz�þ1K0ðqzÞJ��2ðMXzÞ

¼ 2�M��2
X

ðM2
X þ q2Þ�þ1

½q2�ð�þ 1Þ � ðM2
X þ q2Þ�ð�Þ�; (30)

where the upper limits are approximately set to be 1, we
have
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hPX; X; 	
0jJ�ð0ÞjP;Q; 	i ¼ iQc0ic

0
Xs

1=4���1=22��1M��2
X ðM2

X þ q2Þ���ð�Þ
�
q2 �uX	0��Pþui	 � iMXq

� �uX	0Pþui	

þ �

�� 1

MMX

M2
X þ q2

q2 �uX	0��P�ui	 þ i
�

�� 1

Mq�q2

M2
X þ q2

�uX	0P�ui	 � i
Mq�

�� 1
�uX	0P�ui	

�

(31)

or its complex conjugate,4

hP;Q; 	jJ�ð0ÞjPX; X; 	
0i ¼ �iQc0ic

0
Xs

1=4���1=22��1M��2
X ðM2

X þ q2Þ���ð�Þ
�
q2 �ui	�

�PþuX	0 � iMXq
� �ui	P�uX	0

þ �

�� 1

MMXq
2

M2
X þ q2

�ui	�
�P�uX	0 þ i

�

�� 1

Mq�q2

M2
X þ q2

�ui	PþuX	0 � i
Mq�

�� 1
�ui	PþuX	0

�
:

(32)

With the help of Eq. (14), it is easy to see that
q�hPX; X; 	

0jJ�ð0ÞjP;Q; 	i ¼ 0 and q�hP;Q;
	jJ�ð0ÞjPX; X; 	

0i ¼ 0 as a result of current conservation.
In fact, with the present next-leading-order approximation,
we can only show that q�hPX; X; 	

0jJ�ð0ÞjP;Q; 	i �
M2=q2. Nevertheless, we can expand the initial wave func-
tion up to next-to-next-to-leading order (NNLO) (M2 or-
der), and find that M2=q2 contributions are canceled by
NNLO terms in the initial wave function. If one continues
to do this to higher orders, one can show that the current
conservation is true for all orders of M2=q2. Moreover,
using the recursion relations of Bessel functions, integrat-
ing the dz integral by parts and requiring the M=� and
MX=� to be the zeros of Bessel functions as we use in the
later elastic calculation, one can show that q�hP;Q;
	jJ�ð0ÞjPX; X; 	

0i ¼ 0 vanishes exactly.
Following Polchinski and Strassler, we also define T��

as

T�� ¼ ihP;Q; SjTðJ�ðqÞJ�ð0ÞÞjP;Q; Si: (33)

Its imaginary part can be written as

ImT�� ¼ 2�2
X
X


ðM2
X þ ðpþ qÞ2Þ

� hP;Q; SjJ�ð0ÞjPþ q; Xi
� hPþ q; XjJ�ð0ÞjP;Q; Si: (34)

In the large q2 limit, we approximately write
P

X
ðM2
X þ

ðpþ qÞ2Þ ’ 1
2�MX�

.

Summing over radial excitations and the final state spin,
but keeping the initial spin, along with the relation
1
2�W

S;A
�� ¼ 2 ImTS;A

�� derived from the optical theorem,

yields

WðSÞ
�� ¼ �A0Q2ð�2=q2Þ��1x�þ1ð1� xÞ��2

��
��� �

q�q�

q2

��
1

2
þ q � S

2P � qM
�
� 1

P � q
�
P� � P � q

q2
q�

��
P� � P � q

q2
q�

�

� M

2P � q
��

P� � P � q
q2

q�

��
S� � S � q

q2
q�

�
þ

�
P� � P � q

q2
q�

��
S� � S � q

q2
q�

���
(35)

¼ �A0
0Q

2ð�2=q2Þ��1x�þ1ð1� xÞ��2

��
��� �

q�q�

q2

��
1

2
þ q � S

2P � qM
�
� 1

P � q
�
P� � P � q

q2
q�

��
P� � P � q

q2
q�

�

�
�
1þ q � S

P � qM
�
� M

2P � q
��

P� � P � q
q2

q�

��
S� � S � q

q2
q�

�
þ

�
P� � P � q

q2
q�

��
S� � S � q

q2
q�

���
(36)

and

4Note that terms like iMXq
� �ui	P�uX	0 do not change sign due to the fact that �0 is imaginary in the notation that we are working

with.
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WðAÞ
�� ¼ �A0

0Q
2ð�2=q2Þ��1x�þ1ð1� xÞ��2

�
� 
����q

�P�

2P � q �M
����q
�S�

2P � q �M
����q
�

2P � q
�
S� � q � S

P � qP
�

�

�
�
1

2x

�þ 1

�� 1
� �

�� 1

��
; (37)

where A0 ¼ �jc0ij2jc0Xj222��2ð�Þ. To obtain WðAÞ
�� , we have used the identity,


����q�½ðq � SÞP� � ðP � qÞS�� ¼ q�
����P�q�S� � q�
����P�q�S� � q2
����P�S�: (38)

Comparing with Eq. (5), we arrive at the final results:

2F1 ¼ F2 ¼ F3 ¼ 2g1 ¼ g3 ¼ g4 ¼ g5 ¼ �A0Q2ð�2=q2Þ��1x�þ1ð1� xÞ��2 (39)

2g2 ¼
�
1

2x

�þ 1

�� 1
� �

�� 1

�
�A0Q2ð�2=q2Þ��1x�þ1ð1� xÞ��2: (40)

The F1 and F2 are exactly the same as the results found in
Ref. [5] by Polchinski and Strassler. The results for F3 and
all of the polarized structure functions are new. These
structure functions are essentially calculated from the so-
called double trace operators with their twist �p 
 2. In
Fig. 2, we illustrate the x dependence of the g1 and g2
structure functions. The F3, g3, g4, and g5 structure func-
tions are just twice of the g1. The g2 structure functions are
especially interesting; it is negative at the large x region
and positive at the relatively small x region which shares
the same feature as seen in the proton g2 experiment data.

IV. DISCUSSIONS

In this section, we focus on the interpretation of the
structure functions that we obtained from the last section
using gauge/string duality. We also compare the results
with the structure functions obtained in QCD for nucleons.
(For a review in QCD, see e.g., Refs. [21,22,25,26].)

(i) Since only the linear term in M is kept in the initial
wave function and throughout the calculation, the
results shown above are from the leading order cal-

culation. The corrections are of order M2

q2
and �2

q2
.

(ii) In QCD, there is an interesting inequality F1 
 g1
which is derived from the positivity of the cross
section [25]. Here we see that F1 ¼ g1, and the
bound is saturated. This indicates that the initial

hadron is completely polarized. In terms of string
theory language, this implies that the struck dilatino
just tunnels or shrinks to smaller size of the order of
the inverse momentum transfer during the scatter-
ing. As a result, the structure function exhibits a
power law behavior in terms of the q2 dependence
which comes from the tunneling probability [4,5].

(iii) It is now straightforward to compute the moments
of all the structure functions when the contributions

from x � ��1=2 are negligible. Typically there are
just two different kinds of moments, e.g.,

Z 1

0
2g1ðx; q2Þxn�1dx

¼ �A0Q2ð�2=q2Þ��1 �ð�� 1Þ�ð�þ nþ 1Þ
�ð2�þ nÞ (41)

Z 1

0
2g2ðx; q2Þxn�1dx

¼ �A0Q2ð�2=q2Þ��1 �ð�� 1Þ�ð�þ nÞ
�ð2�þ nÞ

1� n

2
:

(42)

We expect that the moments are correct at least for
n > 2 where the low-x contributions are negligible.
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x

τ=3

g2(x)/C

xg2(x)/C

FIG. 2 (color online). Illustration of the g1 and g2 structure functions, where C ¼ 1
2�A

0Q2ð�2=q2Þ��1 and � ¼ 3.
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(iv) In addition, when one sets n ¼ 1 for g2, one finds
an interesting sum rule

Z 1

0
dxg2ðx; q2Þ ¼ 0; (43)

which is completely independent of � and q2. In
QCD, this sum rule is known as the Burkhardt-
Cottingham sum rule [27] in the large Q2 limit.
However, this sum rule can be invalidated by non-
Regge divergence at low x.

(v) Now let us take a closer look at the n ¼ 1 moment
of the g1 structure functions:

Z 1

0
2g1ðx; q2Þdx ¼ �A0Q2ð�2=q2Þ��1

� �ð�� 1Þ�ð�þ 2Þ
�ð2�þ 1Þ : (44)

For sufficiently large q2 ! 1, this integral van-
ishes. This contradicts with the naive expectation
that

R
1
0 g1ðx; q2Þdx should remain finite as q2 ! 1

since the dilatino has spin- 12 .

Before we explain this problem, let us review the case of
the F1 and F2 structure function [5]. According to energy
momentum conservation, the second moment of F1 and the
first moment of F2 should have a nonzero limit as q2 ! 1.
This is known to be determined by the operator product
expansion coefficients of J�J� � T��. However, it is not
true for the result that we found above. This indicates that
some contributions to F1 and F2 which peak around x ¼ 0
are missing in the above calculation. The missing contri-
butions are Pomeron exchanges. At large t’Hooft coupling,
the Pomeron exchange is a graviton exchange which yields

xF1 � F2 / x�1þOð1= ffiffiffi
�

p Þ (45)

at small x, where the correction to the Pomeron intercept
arises from the curvature of AdS5. The Pomeron contribu-
tion will survive in the large q2 limit and give us a non-
vanishing second moment of F1 [5,15].

Therefore, there should be a similar contribution to g1 at
small x. Usually, the physical scattering amplitudes, which
can be written in terms of F1 þ g1 and F1 � g1, have the
same leading order 1=x singularity. In other words, g1
should always be less singular than F1. In terms of the
Regge theory, there should be an axial vector Regge ex-
change contribution which yields a singular [28]

g1 � 1

x�R1
; (46)

with �R1 ¼ 1�Oð 1ffiffiffi
�

p Þ when x is extremely small. This

contribution will also survive in the large q2 limit and yield
a finite first moment. This may indicate that most of the
hardon spin is carried by the small-x constituents inside the
hadron:

(i) Normally in QCD, the g1 structure function contains
two parts, namely, the singlet part and the nonsinglet
part. The singlet part contains the polarized singlet
quark and gluon spin contributions, while the non-
singlet part can be cast into the Bjorken sum rule.
One can subtract off the singlet part and derive the
Bjorken sum rule by calculating

R
1
0 dx½gp1 ðx; q2Þ �

gn1ðx; q2Þ� at the large Q2 limit. Here gp1 ðx; q2Þ,
gn1ðx; q2Þ stand for the g1 structure functions of pro-
ton and neutron, respectively. Since in our above
AdS/CFT calculation we only use theUð1Þ subgroup
of the SUð4Þ R-flavor-symmetry group and calcu-
late the contributions from double trace operators,
we cannot distinguish the singlet part from the non-
singlet part. Both parts are not included in the cal-
culation. However, if one includes the contribution
from the axial currents and uses the full SUð4Þ group,
then one gets an additional flavor factor
hQjTaTbjQi, where Ta are the SUð4Þ flavor matri-
ces and the flavor indices a, b are set equal. It is
straightforward to see that this flavor factor also
contains both singlet and nonsinglet parts.
According to our calculation at finite x, both of
them are small at the large q2 limit. The detailed
discussions on the small-x limit of the g1 structure
function will be available in Ref. [28].

(ii) The parity-violating structure functions F3, g3, g4
and g5 are as large as the F2 structure function due
to the reason that the dilatino is right-handed fer-
mion in massless limit. They are tightly related to
the peculiar wave-function of the dilatino. However,
we expect that g1 and g2 may exhibit some common
features of the polarized structure functions of
spin- 12 hadrons in the nonperturbative region when

the coupling is large.

V. ELASTIC FORM FACTORS

In this section, we focus on elastic scattering off a spin- 12
fermion in gauge/string duality in the hard wall model
framework. In the case of the elastic scattering, the final
state is the same as the initial state which allows us to set
M2

X ¼ M2 and x ¼ 1. Thus, the only variable is q2. In AdS/
QCD model, the meson form factors have been extensively
studied in Refs. [29–38]. Furthermore, the nucleon (spin- 12
hadron) form factors are then computed in Refs. [39–41].
Here in this section, we would like to follow the formalism
that we developed for the deep inelastic scattering, and use
it in the elastic scattering, then calculate all possible form
factors for spin- 12 hadrons. Here in this section, we need to

keep the full dilatino wave function since q2=M2 is no
longer a large parameter.
To compute the form factors, one can first write down

the most general definition for elastic form factors

hPX;Q; 	0jJ�ð0ÞjP;Q; 	i ¼ iQ �uX	0��ui	 (47)
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with

�� ¼ ��F 1ðq2Þ þ 	��q�
2M

F 2ðq2Þ � iq�F 3ðq2Þ

þ ���5F 5
1ðq2Þ � i

q�

M
�5F 5

3ðq2Þ; (48)

where we have used the fact that 1, ��, 	��, ���5 and �5

form the complete sets of 4� 4 � matrices. Among all
these form factors, F 1ðq2Þ and F 2ðq2Þ are the Dirac and
Pauli form factors, respectively. They are related to the
vector current exchange. F 5

1ðq2Þ and F 5
3ðq2Þ are the axial

form factors related to axial vector current. F 3ðq2Þ usually
vanishes if the current is conserved. It is easy to see that in
our present framework, the 	�� component is missing, and
thus the F 2 is zero. In Ref. [41], where nonvanishing Pauli
form factor F 2 is obtained, a new 	�� term has to be
introduced into the action.
Before we calculate the form factors from the current

expectation value, let us take a look at how current con-
servation is satisfied. The current conservation condition
can be written as

q�hPX;Q; 	0jJ�ð0ÞjP;Q; 	i �
Z 1=�

0
dzz2½qK1ðqzÞJ��2ðMzÞJ��2ðMzÞ �uX	0q6 Pþui	

� iq2K0ðqzÞJ��2ðMzÞJ��1ðMzÞ �uX	0Pþui	 þ qK1ðqzÞJ��1ðMzÞJ��1ðMzÞ �uX	0q6 P�ui	
þ iq2K0ðqzÞJ��1ðMzÞJ��2ðMzÞ �uX	0P�ui	�: (49)

Using the Dirac equation, one can simplify the above expression and obtain

q�hPX;Q; 	0jJ�ð0ÞjP;Q; 	i � i
Z 1=�

0
dzz2½qMK1ðqzÞJ��2ðMzÞJ��2ðMzÞ �uX	0Pþui	

� qMK1ðqzÞJ��2ðMzÞJ��2ðMzÞ �uX	0P�ui	 � q2K0ðqzÞJ��2ðMzÞJ��1ðMzÞ �uX	0Pþui	
þ qMK1ðqzÞJ��1ðMzÞJ��1ðMzÞ �uX	0P�ui	 � qMK1ðqzÞJ��1ðMzÞJ��1ðMzÞ �uX	0Pþui	
þ q2K0ðqzÞJ��1ðMzÞJ��2ðMzÞ �uX	0P�ui	�: (50)

Using the following identities,

d

dx
½x�K�ðxÞ� ¼ �x�K��1ðxÞ;

d

dx
½x�J�ðxÞ� ¼ x�J��1ðxÞ;

d

dx
½x��J�ðxÞ� ¼ �x��J�þ1ðxÞ;

(51)

one can easily show that

Z 1=�

0
z2K0ðqzÞJ��2ðMzÞJ��1ðMzÞdz

¼ � 1

q�2
K1ðq=�ÞJ��2ðM=�ÞJ��1ðM=�Þ

þ 1

q

Z 1=�

0
z2K1ðqzÞ

� ½MJ��2ðMzÞJ��2ðMzÞ �MJ��1ðMzÞJ��1ðMzÞ�dz
(52)

and eventually

q�hPX;Q; 	0jJ�ð0ÞjP;Q; 	i

� K1

�
q

�

�
J��1

�
M

�

�
J��2

�
M

�

�
: (53)

This indicates that the current is conserved when

M ¼ ���2;k� or M ¼ ���1;k�; (54)

where ���2;k and ���1;k are kth zeros of J��2ðM�Þ and
J��1ðM�Þ, respectively. This is essentially equivalent to the
mass spectrum found in Ref. [42] by requiring the vanish-
ing chiral spinor wave function on the hard wall located at
r0 ¼ �R2.
Furthermore, we would like to comment that in the large

q2 limit, the current conservation is trivially satisfied when
one sets the upper limit of the z integral as 1, where we
find

q�hPX;Q; 	0jJ�ð0ÞjP;Q; 	i
� ið �uX	0Pþui	 � �uX	0P�ui	ÞI ; (55)

where I is found to be

I ¼ 2ð�� 1Þ
M

�
M2

q2

�
��1

�
2F1

�
�� 3

2
; �; 2�� 3;

�4M2

q2

�

� 2F1

�
�� 1

2
; �; 2�� 2;

�4M2

q2

��

� 2�

M

�
M2

q2

�
�

2F1

�
�� 1

2
; �þ 1; 2�� 1;

�4M2

q2

�
: (56)

Using Taylor expansions of the hypergeometric functions,
one can easily show that I ¼ 0.
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A. Elastic form factors in the large q2 limit

Assuming q � �, one can set the upper limit of the dz
integral as 1 and thus obtain

F 1ðq2Þ ¼ jc0j2 �
M

ð�� 1Þ
�
M2

q2

�
��1

� 2F1

�
�� 3

2
; �; 2�� 3;

�4M2

q2

�

þ jc0j2 �
M

�

�
M2

q2

�
�

� 2F1

�
�� 1

2
; �þ 1; 2�� 1;

�4M2

q2

�
(57)

F 2ðq2Þ ¼ 0 and F 3ðq2Þ ¼ 0 (58)

and

F 5
1ðq2Þ ¼ jc0j2 �

M
ð�� 1Þ

�
M2

q2

�
��1

� 2F1

�
�� 3

2
; �; 2�� 3;

�4M2

q2

�

� jc0j2 �
M

�

�
M2

q2

�
�

� 2F1

�
�� 1

2
; �þ 1; 2�� 1;

�4M2

q2

�
(59)

F 5
3ðq2Þ ¼ 2jc0j2 �

M
ð�� 1Þ

�
M2

q2

�
�

� 2F1

�
�� 1

2
; �; 2�� 2;

�4M2

q2

�
: (60)

At the large q2 limit, we find that F 1ðq2Þ ’ F 5
1ðq2Þ ’

jc0j2 �
M ð�� 1ÞðM2

q2
Þ��1 and F 5

3ðq2Þ ’ 2jc0j2 �
M ð�� 1ÞðM2

q2
Þ�.

B. Elastic form factors in the small q2 limit

In the small q2 limit, we expand the Bessel functions
K0;1ðq2Þ up to q2 logq2 but neglect q2 terms. It is then

straightforward to evaluate the dz integral which yields

F 1ðq2Þ ¼ jc0j2 M

2�

�
J��2

�
M

�

�
J0��1

�
M

�

�
� J��1

�
M

�

�
J0��2

�
M

�

��
þ 2jc0j2

�
M

2�

�
2��1 q2

M2
ln

�
q

�

�

� 2F3ð�� 3
2 ; �; �� 1; �þ 1; 2�� 3;�M2=�2Þ

2��ð�� 1Þ2 þ 1

2
jc0j2

�
M

2�

�
2�þ1 q2

M2
ln

�
q

�

�

� 2F3ð�� 1
2 ; �þ 1; �; �þ 2; 2�� 1;�M2=�2Þ

2ð�þ 1Þ�ð�Þ2 (61)

F 2ðq2Þ ¼ 0 and F 3ðq2Þ ¼ 0 (62)

and

F 5
1ðq2Þ ¼

1

2
jc0j2J��2

�
M

�

�
J��1

�
M

�

�
þ 2jc0j2

�
M

2�

�
2��1 q2

M2
lnðq=�Þ 2F3ð�� 3

2 ; �; �� 1; �þ 1; 2�� 3;�M2=�2Þ
2��ð�� 1Þ2

� 1

2
jc0j2

�
M

2�

�
2�þ1 q2

M2
lnðq=�Þ 2F3ð�� 1

2 ; �þ 1; �; �þ 2; 2�� 1;�M2=�2Þ
2ð�þ 1Þ�ð�Þ2 (63)

together with

F 5
3ðq2Þ ¼ �jc0j2

�
M

�

�
2��1

22�2� lnðq=�Þ

� 1F2ð�� 1
2 ; �þ 1; 2�� 2;�M2=�2Þ
�ð�� 1Þ�ð�þ 1Þ :

(64)

In the end, one can use numerical methods and evaluate
all these form factors with the chosen � and ratio M=�,
then plot them in terms of functions of q2=M2 (see Fig. 3).
According to the power counting rule, we set � ¼ 3 for
now. It is easy to see that the above form factors give rise to
logarithmic divergent charge radii for the charged hadron.
This is peculiar in the hard wall model and will be cured in
our follow-up phenomenological studies [43]. Besides, we
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also compare our results of Q4Fp
1 ðQ2Þ with experimental

data, which are shown in Fig. 4).

VI. CONCLUSION

Using gauge/string duality, we have calculated the struc-
ture functions as well as the form factors of a spin- 12
hadron. Especially the polarized structure functions and
parity-violating structure functions are new. We find that

the Burkhardt-Cottingham sum rule is also true in our
present calculation when the small-x contribution to g2 is
negligible. However, the situation for the g1 structure
function is more subtle and complicated. We conjecture
that there should be an axial Regge contribution to g1 at
small x which may indicate that most of the hadron spin is
carried by small-x partons. The phenomenological appli-
cation of the above calculation is very appealing and will
be available soon [43].
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