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Theoretical Particle Physics Group, Department of Theoretical Physics, Royal Technical Institute (KTH), Roslagstullsbacken 21, SE-
106 91 Stockholm, Sweden

(Received 27 March 2009; published 17 July 2009)

The constraints of gauge unification on intermediate mass scales in nonsupersymmetric SOð10Þ
scenarios are systematically discussed. With respect to the existing reference studies we include the

Uð1Þ gauge mixing renormalization at the one- and two-loop level, and reassess the two-loop beta

coefficients. We evaluate the effects of additional Higgs multiplets required at intermediate stages by a

realistic mass spectrum and update the discussion to the present day data. On the basis of the obtained

results, SOð10Þ breaking patterns with up to two intermediate mass scales are discussed for potential

relevance and model predictivity.
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I. INTRODUCTION

Understanding theoretically the patterns of masses and
mixings of ordinary fermions is one of the long aimed
goals in particle physics. Of the 56 parameters in the
standard model (SM) Yukawa sector (including Majorana
neutrinos) only 22 can be measured at low energy and just
17 have been determined from the experiment. Grand
unified theories (GUTs), by enforcing stringent relations
among the different particle sectors and by reducing the
degeneracy in the parameter space, do provide a powerful
tool for addressing the multiplicity of matter states and the
detailed structure of the Yukawa sector.

Appealing candidates for realistic GUTs are models
based on the SOð10Þ gauge group [1]. All the known SM
fermions plus three right-handed neutrinos fit into three
copies of the 16-dimensional spinorial representation of
SOð10Þ, thus providing a rationale for the SM hypercharge
structure. The model also provides a natural explanation
for the sub-eV light neutrino masses via the seesaw mecha-
nism [2,3].

The purpose of this paper is to review the constraints
enforced by gauge unification on the intermediate mass
scales in the nonsupersymmetric SOð10Þ GUTs, a needed
preliminary step for assessing the structure of the multitude
of the different breaking patterns before entering the de-
tails of a specific model. Eventually, our goal is to envisage
and examine scenarios potentially relevant for the under-
standing of the low energy matter spectrum. In particular
those setups that, albeit nonsupersymmetric, may exhibit a
predictivity comparable to that of the minimal supersym-
metric SOð10Þ, scrutinized at length in the last few years
[4].

The most recent discussion of fermion masses and mix-
ings in nonsupersymmetric SOð10Þ GUTs was given in
Ref. [5]. The authors focussed only on renormalizable

models (i.e. without the spinorial 16H in the Higgs sector)

with combinations of 10H and 126H or 120H driving the
Yukawa interactions. Particular attention is paid to the
leptonic sector and the mechanism of generation of neu-
trino masses via seesaw.
The constraints imposed by the absolute neutrino mass

scale on the position of the B� L threshold, together with
the proton decay bound on the unification scale MU, pro-
vide a discriminating tool among the many SOð10Þ scenar-
ios and the corresponding breaking patterns. These were
studied at length in the eighties and early nineties, and
detailed surveys of two- and three-step SOð10Þ breaking
chains (one and two intermediate thresholds, respectively)
are found in Refs. [6–9].
We perform a systematic survey of SOð10Þ unification

with two intermediate stages. In addition to updating the
analysis to present day data, this reappraisal is motivated
by (a) the absence of Uð1Þmixing in previous studies, both
at one and two loops in the gauge coupling renormaliza-
tion, (b) the need for additional Higgs multiplets at some
intermediate stages, and (c) a reassessment of the two-loop
beta coefficients reported in the literature.
The outcome of our study is the emergence of sizably

different features in some of the breaking patterns as
compared to the existing results. This allows us to rescue
previously excluded scenarios. All that before considering
the effects of threshold corrections [10–12], that are un-
ambiguously assessed only when the details of a specific
model are worked out.
It is remarkable that the chains corresponding to the

minimal SOð10Þ setup with the smallest Higgs representa-

tions (10H, 45H, and 16H, or 126H in the renormalizable
case) and the smallest number of parameters in the Higgs
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potential, are still viable. The complexity of this nonsu-
persymmetric scenario is comparable to that of the mini-
mal supersymmetric SOð10Þ model, which makes it worth
detailed consideration.

In Sec. II we set the framework of the analysis.
Section III provides a collection of the tools needed for a
two-loop study of grand unification. The results of the
numerical study are reported and scrutinized in Sec. IV.
Perspectives for further progress are discussed in Sec. V.
Finally, the relevant one- and two-loop � coefficients are
detailed in Appendix A.

II. THREE-STEP SOð10Þ BREAKING CHAINS

The relevant SOð10Þ ! G2 ! G1 ! SM symmetry
breaking chains with two intermediate gauge groups G2
and G1 are listed in Table I. Effective two-step chains are
obtained by identifying two of the high-energy scales,
paying attention to the possible deviations fromminimality
of the scalar content in the remaining intermediate stage
(this we shall discuss in Sec. IVB).

For the purpose of comparison we follow closely the
notation of Ref. [9], where P denotes the unbroken D
parity [13]. For each step the Higgs representation respon-
sible for the breaking is given.

The breakdown of the lower intermediate symmetry G1
to the SM gauge group is driven either by the 16- or 126-

dimensional Higgs multiplets 16H or 126H. An important

feature of the scenarios with 126H is the fact that in such a
case a potentially realistic SOð10Þ Yukawa sector can be
constructed already at the renormalizable level. Together
with 10H all the effective Dirac Yukawa couplings as well
as the Majorana mass matrices at the SM level emerge
from the contractions of the matter bilinears 16F16F with

126H or with 16H16H=�, where� denotes the scale (above

MU) at which the effective dimension five Yukawa cou-
plings arise.
The Higgs transforming as 10 under SOð10Þ may carry

in general extra quantum numbers of a complex represen-
tation of some additional symmetry (a discussion on the
implementation of a Peccei-Quinn Uð1ÞPQ symmetry in

this scenario is given in Ref. [5]). In this case it is sufficient
to consider only two complex symmetric matrices Y10 and
Y126 at the renormalizable SOð10Þ level, namely

16 FðY1010H þ Y126126HÞ16F; (1)

that govern all the effective Yukawa couplings at lower
energies. Such scenarios are rather constrained and hence
their detailed numerical studies are well motivated.
D parity is a discrete symmetry acting as charge con-

jugation in a left-right symmetric context [13], and as that
it plays the role of a left-right symmetry (it enforces for
instance equal left and right gauge couplings). SOð10Þ
invariance then implies exact D parity (because D belongs
to the SOð10Þ Lie algebra).D parity may be spontaneously
broken byD-odd Pati-Salam (PS) singlets contained in 210
or 45 Higgs representations. Its breaking can therefore be
decoupled from the SUð2ÞR breaking, allowing for differ-
ent left and right gauge couplings.
The possibility of decoupling the D-parity breaking

from the scale of right-handed interactions is a cosmolog-
ically relevant issue. On the one hand, baryon asymmetry
cannot arise in a left-right symmetric (gL ¼ gR) universe
[14]. On the other hand, the spontaneous breaking of a
discrete symmetry, such as D parity, creates domain walls
that, if massive enough (i.e. for intermediate mass scales)
do not disappear, overclosing the universe [15]. These
potential problems may be overcome either by confining
D parity at the GUT scale or by invoking inflation. The
latter solution implies that domain walls are formed above
the reheating temperature, enforcing a lower bound on the
D-parity breaking scale of 1012 GeV. Realistic SOð10Þ
breaking patterns must therefore include this constraint.

A. The extended survival hypothesis

Throughout all three stages of running we assume that
the scalar spectrum obeys the so-called extended survival
hypothesis (ESH) [16] which requires that at every stage of
the symmetry breaking chain only those scalars are present
that develop a vacuum expectation value (VEV) at the
current or the subsequent levels of the spontaneous sym-
metry breaking. ESH is equivalent to the requirement of the
minimal number of fine-tunings to be imposed onto the
scalar potential [17] so that all the symmetry breaking steps
are performed at the desired scales.
On the technical side one should identify all the Higgs

multiplets needed by the breaking pattern under considera-
tion and keep them according to the gauge symmetry down
to the scale of their VEVs. This typically pulls down a large

TABLE I. Relevant SOð10Þ symmetry breaking chains via two
intermediate gauge groups G1 and G2. For each step the repre-
sentation of the Higgs multiplet (in SOð10Þ notation) responsible
for the breaking is given. The breaking to the SM group 1Y2L3c
is obtained via a 16 or 126 Higgs representation. The naming and
ordering of the gauge groups follows the notation of Ref. [9].

Chain G2 G1

I: !210f2L2R4Cg !45f2L2R1X3cg
II: !54f2L2R4CPg !210f2L2R1X3cPg
III: !54f2L2R4CPg !45f2L2R1X3cg
IV: !210f2L2R1X3cPg !45f2L2R1X3cg
V: !210f2L2R4Cg !45f2L1R4Cg
VI: !54f2L2R4CPg !45f2L1R4Cg
VII: !54f2L2R4CPg !210f2L2R4Cg
VIII: !45f2L2R1X3cg !45f2L1R1X3cg
IX: !210f2L2R1X3cPg !45f2L1R1X3cg
X: !210f2L2R4Cg !210f2L1R1X3cg
XI: !54f2L2R4CPg !210f2L1R1X3cg
XII: !45f2L1R4Cg !45f2L1R1X3cg
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number of scalars in scenarios where 126H provides the
B� L breakdown.

On the other hand, one must take into account that the

role of 126H is twofold: in addition to triggering the G1
breaking it plays a relevant role in the Yukawa sector
(Eq. (1)) where it provides the necessary breaking of the
down quark-charged lepton mass degeneracy. For this to

work one needs a reasonably large admixture of the 126H
component in the effective electroweak doublets. Since
ð2; 2; 1Þ10 can mix with ð2; 2; 15Þ126 only below the Pati-

Salam breaking scale, both fields must be present at the
Pati-Salam level (otherwise the scalar doublet mass matrix
does not provide large enough components of both these
multiplets in the light Higgs fields).

Note that the same argument applies also to the 2L1R4C
intermediate stage when one must retain the doublet com-

ponent of 126H, namely ð2;þ 1
2 ; 15Þ126, in order for it to

eventually admix with ð2;þ 1
2 ; 1Þ10 in the light Higgs sec-

tor. On the other hand, at the 2L2R1X3c and 2L1R1X3c
stages, the (minimal) survival of only one combination of
the �10 and �126 scalar doublets (see Table II) is compat-
ible with the Yukawa sector constraints because the degen-
eracy between the quark and lepton spectra has already
been smeared out by the Pati-Salam breakdown.

In summary, potentially realistic renormalizable
Yukawa textures in settings with well-separated SOð10Þ
and Pati-Salam breaking scales call for an additional fine-

tuning in the Higgs sector. In the scenarios with 126H, the
10H bidoublet ð2; 2; 1Þ10, included in Refs [6–9], must be
paired at the 2L2R4C scale with an extra ð2; 2; 15Þ126 scalar
bidoublet (or ð2;þ 1

2 ; 1Þ10 with ð2;þ 1
2 ; 15Þ126 at the

2L1R4C stage). This can affect the running of the gauge
couplings in chains I, II, III, V, VI, VII, X, XI, and XII.
For the sake of comparison with previous studies [6–9]

we shall not include the �126 multiplets in the first part of
the analysis. Rather, we shall comment on their relevance
for gauge unification in Sec. IVC.

III. TWO-LOOP GAUGE RENORMALIZATION
GROUP EQUATIONS

In this section we report, in order to fix a consistent
notation, the two-loop renormalization group equations
(RGEs) for the gauge couplings. We consider a gauge
group of the form Uð1Þ1 � . . . �Uð1ÞN �G1 � . . . �GN0 ,
where Gi are simple groups.

A. The non-Abelian sector

Let us focus first on the non-Abelian sector correspond-
ing to G1 � . . . �GN0 and defer the full treatment of the
effects due to the extra Uð1Þ factors to Sec. III B. Defining
t ¼ logð�=�0Þ we write

dgp
dt

¼ gp�p; (2)

where p ¼ 1; . . . ; N0 is the gauge group label. Neglecting
for the time being the Abelian components, the� functions
for the G1 � . . . �GN0 gauge couplings read at two-loop
level [18–21]:

�p ¼ g2p

ð4�Þ2
�
� 11

3
C2ðGpÞ þ 4

3
�S2ðFpÞ þ 1

3
�S2ðSpÞ

� 2�

ð4�Þ2 Y4ðFpÞ þ
g2p

ð4�Þ2
�
� 34

3
ðC2ðGpÞÞ2

þ
�
4C2ðFpÞ þ 20

3
C2ðGpÞ

�
�S2ðFpÞ

þ
�
4C2ðSpÞ þ 2

3
C2ðGpÞ

�
�S2ðSpÞ

�

þ g2q

ð4�Þ2 4½�C2ðFqÞS2ðFpÞ þ �C2ðSqÞS2ðSpÞ�
�
; (3)

where � ¼ 1, 12 for Dirac and Weyl fermions, respectively.

Correspondingly, � ¼ 1, 1
2 for complex and real scalar

fields. The sum over q � p corresponding to contributions
to �p from the other gauge sectors labeled by q is under-

stood. Given a fermion F or a scalar S field that transforms
according to the representation R ¼ R1 � . . . � RN0 , where
Rp is an irreducible representation of the group Gp of

dimension dðRpÞ, the factor S2ðRpÞ is defined by

TABLE II. Scalar multiplets contributing to the running of the
gauge couplings for a given SOð10Þ subgroup according to
minimal fine-tuning. The survival of �126 (not required by
minimality) is needed by a realistic leptonic mass spectrum, as
discussed in the text (in the 2L2R1X3c and 2L1R1X3c stages only
one linear combination of �10 and �126 remains). The Uð1ÞX
charge is given, up to a factor

ffiffiffiffiffiffiffiffi
3=2

p
, by ðB� LÞ=2 (the latter is

reported in the table). For the naming of the Higgs multiplets we
follow the notation of Ref. [9] with the addition of �126. When
the D parity (P) is unbroken the particle content must be left-
right symmetric. D parity may be broken via P-odd Pati-Salam
singlets in 45H or 210H.

Surviving Higgs multiplets in SOð10Þ subgroups
SOð10Þ f2L1R4Cg f2L2R4Cg f2L2R1X3cg f2L1R1X3cg Notation

10 ð2;þ 1
2 ; 1Þ (2, 2, 1) (2, 2, 0, 1) ð2;þ 1

2 ; 0; 1Þ �10

16 ð1;þ 1
2 ; 4Þ (1, 2, 4) ð1; 2;� 1

2 ; 1Þð1;þ 1
2 ;� 1

2 ; 1Þ �16
R

16 ð2; 1; �4Þ ð2; 1;þ 1
2 ; 1Þ �16

L

126 ð2;þ 1
2 ; 15Þ(2, 2, 15) (2, 2, 0, 1) ð2;þ 1

2 ; 0; 1Þ �126

126 (1, 1, 10) (1, 3, 10) ð1; 3;�1; 1Þ ð1; 1;�1; 1Þ �126
R

126 ð3; 1; 10Þ (3, 1, 1, 1) �126
L

45 (1, 0, 15) (1, 1, 15) �45

210 (1, 1, 15) �210

45 (1, 3, 1) (1, 3, 0, 1) �45
R

45 (3, 1, 1) (3, 1, 0, 1) �45
L

210 (1, 3, 15) �210
R

210 (3, 1, 15) �210
L
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S2ðRpÞ � TðRpÞ dðRÞdðRpÞ ; (4)

where TðRpÞ is the Dynkin index of the representation Rp.

The corresponding Casimir eigenvalue is then given by

C2ðRpÞdðRpÞ ¼ TðRpÞdðGpÞ; (5)

where dðGÞ is the dimension of the group. In Eq. (3) the
first row represents the one-loop contribution while the
other terms stand for the two-loop corrections, including
that induced by Yukawa interactions. The latter is ac-
counted for in terms of a factor

Y4ðFpÞ ¼ 1

dðGpÞ Tr½C2ðFpÞYYy�; (6)

where the ‘‘general’’ Yukawa coupling

Yabc �c ac bhc þ H:c: (7)

includes family as well as group indices. The coupling in
Eq. (7) is written in terms of four-component Weyl spinors
c a;b and a scalar field hc (be complex or real). The trace

includes the sum over all relevant fermion and scalar fields.

B. The Abelian couplings and Uð1Þ mixing

In order to include the Abelian contributions to Eq. (3) at
two loops and the one- and two-loop effects ofUð1Þmixing
[22], let us write the most general interaction of N Abelian
gauge bosons A

�
b and a set of Weyl fermions c f as

�c f	�Q
r
fc fgrbA

�
b : (8)

The gauge coupling constants grb, r; b ¼ 1; . . . ; N, couple
A�
b to the fermionic current Jr� ¼ �c f	�Q

r
fc f. TheN � N

gauge coupling matrix grb can be diagonalized by two
independent rotations: one acting on the Uð1Þ charges Qr

f

and the other on the gauge-boson fields A�
b . For a given

choice of the charges, grb can be set in a triangular form
(grb ¼ 0 for r > b) by the gauge-boson rotation. The
resulting NðN þ 1Þ=2 entries are observable couplings.

Since Fa
�
 in the Abelian case is itself gauge invariant,

the most general kinetic part of the Lagrangian reads at the
renormalizable level

� 1
4F

a
�
F

a�
 � 1
4�abF

a
�
F

b�
; (9)

where a � b and j�abj< 1. A nonorthogonal rotation of
the fields A�

a may be performed to set the gauge kinetic
term in a canonical diagonal form. Any further orthogonal
rotation of the gauge fields will preserve this form. Then,
the renormalization prescription may be conveniently
chosen to maintain at each scale the kinetic terms canoni-
cal and diagonal on shell while renormalizing accordingly
the gauge coupling matrix grb.

1 Thus, even if at one scale

grb is diagonal, in general nonzero off-diagonal entries are
generated by renormalization effects. One shows [24] that
in the case the Abelian gauge couplings are at a given scale
diagonal and equal (i.e. there is a Uð1Þ unification), there
may exist a (scale independent) gauge field basis such that
the Abelian interactions remain to all orders diagonal along
the RGE trajectory.2

In general, the renormalization of the Abelian part of the
gauge interactions is determined by

dgrb
dt

¼ gra�ab; (10)

where, as a consequence of gauge invariance,

�ab ¼ d

dt
ðlogZ1=2

3 Þab (11)

with Z3 denoting the gauge-boson wave-function renor-
malization matrix. In order to further simplify the notation
it is convenient to introduce the ‘‘reduced’’ couplings [24]

gkb � Qr
kgrb; (12)

that evolve according to

dgkb
dt

¼ gka�ab: (13)

The index k labels the fields (fermions and scalars) that
carry Uð1Þ charges.
In terms of the reduced couplings the � function that

governs the Uð1Þ running up to two loops is given by [18–
20]

�ab ¼ 1

ð4�Þ2
�
4

3
�gfagfb þ 1

3
�gsagsb

� 2�

ð4�Þ2 Tr½gfagfbYYy�

þ 4

ð4�Þ2 ½�ðgfagfbg
2
fc þ gfagfbg

2
qC2ðFqÞÞ

þ �ðgsagsbg2sc þ gsagsbg
2
qC2ðSqÞÞ�

�
; (14)

where repeated indices are summed over, labeling fermi-
ons (f), scalars (s), and Uð1Þ gauge groups (c). The terms
proportional to the quadratic Casimir C2ðRpÞ represent the
two-loop contributions of the non-Abelian components Gq

of the gauge group to the Uð1Þ gauge coupling
renormalization.
Correspondingly, using the notation of Eq. (12), an addi-

tional two-loop term that represents the renormalization of
the non-Abelian gauge couplings induced at two loops by
the Uð1Þ gauge fields is to be added to Eq. (3), namely

1Alternatively one may work with off-diagonal kinetic terms
while keeping the gauge interactions diagonal [23].

2Vanishing of the commutator of the � functions and their
derivatives is needed [25].
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��p ¼ g2p

ð4�Þ4 4½�g
2
fcS2ðFpÞ þ �g2scS2ðSpÞ�: (15)

In Eqs. (14) and (15), we use the abbreviation f � Fp and

s � Sp and, as before, � ¼ 1, 12 for Dirac and Weyl fermi-

ons, while � ¼ 1, 1
2 for complex and real scalar fields,

respectively.

C. Some notation

When at most one Uð1Þ factor is present, and neglecting
the Yukawa contributions, the two-loop RGEs can be con-
veniently written as

d��1
i

dt
¼ � ai

2�
� bij

8�2
�j; (16)

where �i ¼ g2i =4�. The � coefficients ai and bij for the

relevant SOð10Þ chains are given in Appendix A.
Substituting the one-loop solution for �j into the right-

hand side (RHS) of Eq. (16) one obtains

��1
i ðtÞ � ��1

i ð0Þ ¼ � ai
2�

tþ
~bij
4�

logð1�!jtÞ; (17)

where !j ¼ aj�jð0Þ=ð2�Þ and ~bij ¼ bij=aj. The analytic

solution in (17) holds at two loops (for !jt < 1) up to

higher order effects. A sample of the rescaled � coeffi-

cients ~bij is given, for the purpose of comparison with

previous results, in Appendix A.
We shall conveniently write the � function in Eq. (14),

that governs the Abelian mixing, as

�ab ¼ 1

ð4�Þ2 gsa	srgrb; (18)

where 	sr include both one- and two-loop contributions.
Analogously, the non-Abelian beta function in Eq. (3),
including theUð1Þ contribution in Eq. (15), is conveniently
written as

�p ¼ g2p

ð4�Þ2 	p: (19)

The 	p functions for the SOð10Þ breaking chains consid-

ered in this work are reported in Appendix A 1.
Finally, the Yukawa term in Eq. (6), and correspondingly

in Eq. (14), can be written as

Y4ðFpÞ ¼ ypk TrðYkY
y
k Þ; (20)

where Yk are the ‘‘standard’’ 3� 3 Yukawa matrices in the
family space labeled by the flavor index k. The trace is
taken over family indices and k is summed over the differ-
ent Yukawa terms present at each stage of SOð10Þ break-
ing. The coefficients ypk are given explicitly in

Appendix A.

D. One-loop matching

The matching conditions between effective theories in
the framework of dimensional regularization have been
derived in [26,27]. Let us consider first a simple gauge
group G spontaneously broken into subgroups Gp.

Neglecting terms involving logarithms of mass ratios
which are expected to be subleading (massive states clus-
tered near the threshold3) the one-loop matching for the
gauge couplings can be written as

��1
p � C2ðGpÞ

12�
¼ ��1

G � C2ðGÞ
12�

: (21)

Let us turn to the case when several non-Abelian simple
groups Gp (and at most one Uð1ÞX) spontaneously break

while preserving a Uð1ÞY charge. The conserved Uð1Þ
generator TY can be written in terms of the relevant gen-
erators of the various Cartan subalgebras (and of the con-
sistently normalized TX) as

TY ¼ piTi; (22)

where
P

p2
i ¼ 1, and i runs over the relevant p (and X)

indices. The matching condition is then given by

��1
Y ¼ X

i

p2
i

�
��1
i � C2ðGiÞ

12�

�
; (23)

where for i ¼ X, if present, C2 ¼ 0.
Consider now the breaking of N copies of Uð1Þ gauge

factors to a subset of M elements Uð1Þ (with M<N).
Denoting by Tn (n ¼ 1; . . . ; N) and by ~Tm (m ¼
1; . . . ;M) their properly normalized generators we have

~T m ¼ PmnTn (24)

with the orthogonality condition PmnPm0n ¼ �mm0 . Let us
denote by gna (n, a ¼ 1; . . . ; N) and by ~gmb (m, b ¼
1; . . . ;M) the matrices of Abelian gauge couplings above
and below the breaking scale, respectively. By writing the
Abelian gauge-boson mass matrix in the broken vacuum
and by identifying the massless states, we find the follow-
ing matching condition:

ð~g~gTÞ�1 ¼ PðggTÞ�1PT: (25)

Notice that Eq. (25) depends on the chosen basis for the
Uð1Þ charges (via P) but it is invariant under orthogonal
rotations of the gauge-boson fields (gOTOgT ¼ ggT). The

massless gauge bosons ~A
�
m are given in terms of A

�
n by

~A
�
m ¼ ½~gTPðg�1ÞT�mnA

�
n ; (26)

where m ¼ 1; . . . ;M and n ¼ 1; . . . ; N.
The general case of a gauge group Uð1Þ1 � . . . �

Uð1ÞN �G1 � . . . �GN0 spontaneously broken to Uð1Þ1 �
. . . �Uð1ÞM with M � N þ N0 is taken care of by replac-

3An early discussion of thresholds effects in SOð10Þ GUT is
found in [10].
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ing ðggTÞ�1 in Eq. (25) with the block-diagonal ðN þ
N0Þ � ðN þ N0Þ matrix

ðGGTÞ�1 ¼ Diag

�
ðggTÞ�1; g�2

p � C2ðGpÞ
48�2

�
(27)

thus providing, together with the extended Eqs. (24) and
(25), a generalization of Eq. (23).

IV. NUMERICAL RESULTS

At one loop, and in the absence of the Uð1Þ mixing, the
gauge RGEs are not coupled and the unification constraints
can be studied analytically. When two-loop effects are
included (or at one loop more than one Uð1Þ factor is
present) there is no closed solution and one must solve
the system of coupled equations, matching all stages be-
tween the weak and unification scales, numerically. On the
other hand (when no Uð1Þ mixing is there) one may take
advantage of the analytic formula in Eq. (17). The latter
turns out to provide, for the cases here studied, a very good
approximation to the numerical solution. The discrepan-
cies with the numerical integration do not generally exceed
the 10�3 level.

We perform a scan over the relevant breaking scalesMU,
M2, andM1 and the value of the grand unified coupling �U

and impose the matching with the SM gauge couplings at
theMZ scale requiring a precision at the per-mil level. This
is achieved by minimizing the parameter

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

�
�th
i � �i

�i

�
2

vuut ; (28)

where �is denote the experimental values at MZ and �th
i

are the renormalized couplings obtained from unification.
The input values for the (consistently normalized) gauge

SM couplings at the scale MZ ¼ 91:19 GeV are [28]

�1 ¼ 0:016 946� 0:000 006;

�2 ¼ 0:033 812� 0:000 021;

�3 ¼ 0:1176� 0:0020;

(29)

corresponding to the electroweak scale parameters

��1
em ¼ 127:925� 0:016;

sin2
W ¼ 0:231 19� 0:000 14:
(30)

All these data refer to the modified minimally subtracted

(MS) quantities at the MZ scale.
For �1;2 we shall consider only the central values while

we resort to scanning over the whole 3� domain for �3

when a stable solution is not found.
The results, i.e. the positions of the intermediate scales

M1, M2, and MU shall be reported in terms of decadic
logarithms of their values in units of GeV, i.e. n1 ¼
log10ðM1=GeVÞ, n2 ¼ log10ðM2=GeVÞ, nU ¼
log10ðMU=GeVÞ. In particular, nU, n2 are given as func-

tions of n1 for each breaking pattern and for different
approximations in the loop expansion. Each of the break-
ing patterns is further supplemented by the relevant range
of the values of �U.

A. Uð1ÞR � Uð1ÞX mixing

The chains VIII to XII require consideration of the
mixing between the two Uð1Þ factors. While Uð1ÞR and
Uð1ÞX do emerge with canonical diagonal kinetic terms,
being the remnants of the breaking of non-Abelian groups,
the corresponding gauge couplings are at the onset differ-
ent in size. In general, no scale-independent orthogonal
rotations of charges and gauge fields exist that diagonalize
the gauge interactions to all orders along the RGE trajec-
tories. According to the discussion in Sec. III, off-diagonal
gauge couplings arise at the one-loop level that must be
accounted for in order to perform the matching at the M1

scale with the standard hypercharge. The preserved direc-
tion in the QR;X charge space is given by

QY ¼
ffiffi
3
5

q
QR þ

ffiffi
2
5

q
QX; (31)

where

QR ¼ I3R and QX ¼
ffiffiffi
3

2

s �
B� L

2

�
: (32)

The matching of the gauge couplings is then obtained from
Eq. (25)

g�2
Y ¼ PðggTÞ�1PT; (33)

with

P ¼
� ffiffi

3
5

q
;

ffiffi
2
5

q �
(34)

and

g ¼ gRR gRX
gXR gXX

� �
: (35)

When neglecting the off-diagonal terms, Eq. (33) repro-
duces the matching condition used in Refs. [6–9]. For all
other cases, in which only one Uð1Þ factor is present, the
matching relations can be read off directly from Eqs. (21)
and (23).

B. Two-loop results (purely gauge)

The results of the numerical analysis are organized as
follows: Figs. 1 and 2 show the values of nU and n2 as
functions of n1 for the pure gauge running (i.e. no Yukawa

interactions), in the 126H and 16H case, respectively. The

differences between the patterns for the 126H and 16H
setups depend on the substantially different scalar content.
The shape and size of the various contributions (one loop,
with and without Uð1Þ mixing, and two loops) are com-
pared in each figure. The dissection of the RGE results
shown in the figures allows us to compare our results with
those of Refs. [6–9].
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Table III shows the two-loop values of ��1
U in the

allowed region for n1. The contributions of the additional
�126 multiplets and the Yukawa terms are discussed sepa-
rately in Secs. IVC and IVD, respectively. With the ex-

ception of a few singular cases detailed therein, these
effects turn out to be generally subdominant.
As already mentioned in the introduction, two-loop

precision in a GUT scenario makes sense once (one-
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(b) Chain IIa
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(c) Chain IIIa
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(d) Chain IVa
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(e) Chain Va

11.0 11.5 12.0 12.5 13.0 13.5 14.0
n113.5
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(f) Chain VIa
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n113.0
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(g) Chain VIIa
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(h) Chain VIIIa
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(i) Chain IXa
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(j) Chain XIa
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(k) Chain XIIa

FIG. 1 (color online). The values of nU (red/upper branches) and n2 (blue/lower branches) are shown as functions of n1 for the pure
gauge running in the 126H case. The bold black line bounds the region n1 � n2. From chains Ia to VIIa the short-dashed lines represent
the result of one-loop running while the solid ones correspond to the two-loop solutions. For chains VIIIa to XIIa the short-dashed lines
represent the one-loop results without the Uð1ÞX �Uð1ÞR mixing, the long-dashed lines account for the complete one-loop results,
while the solid lines represent the two-loop solutions. The scalar content at each stage corresponds to that considered in Ref. [9],
namely, to that reported in Table II without the �126 multiplets. For chains I to VII the two-step SOð10Þ breaking consistent with
minimal fine-tuning is recovered in the n2 ! nU limit. No solution is found for chain Xa.
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loop) thresholds effects are coherently taken into account,
as their effect may become comparable if not larger than
the two loop itself (the argument becomes stronger as the
number of intermediate scales increases). On the other
hand, there is no control on the spectrum unless a specific
model is studied in detail. The purpose of this work is to set
the stage for such a study by reassessing and updating the
general constraints and patterns that SOð10Þ grand unifi-
cation enforces on the spread of intermediate scales.

The one and two-loop � coefficients used in the present
study are reported in Appendix A. Table IX in the appendix

shows the reduced ~bij coefficients for those cases where we

are at variance with Ref. [7].
One of the largest effects in the comparison with

Refs. [6–9] emerges at one loop and it is due to the
implementation of the Uð1Þ gauge mixing when Uð1ÞR �
Uð1ÞX appears as an intermediate stage of the SOð10Þ
breaking.4 This affects chains VIII to XII, and it exhibits
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FIG. 2 (color online). Same as in Fig. 1 for the 16H case.

4The lack of Abelian gauge mixing in Ref. [9] was first
observed in Ref. [29].
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itself in the exact (one-loop) flatness of n2, nU, and �U as
functions of n1.

The rationale for such a behavior is quite simple. When
considering the gauge coupling renormalization in the
2L1R1X3c stage, no effect at one loop appears in the non-
Abelian � functions due to the Abelian gauge fields. On
the other hand, the Higgs fields surviving at the 2L1R1X3c
stage, responsible for the breaking to 1Y2L3c, are (by
construction) SM singlets. Since the SM one-loop � func-
tions are not affected by their presence, the solution found
for n2, nU, and �U in the n1 ¼ n2 case holds for n1 < n2 as
well. Only by performing correctly the mixed 1R1X gauge
running and the consistent matching with 1Y one recovers
the expected n1 flatness of the GUT solution.

In this respect, it is interesting to notice that the absence
of Uð1Þ mixing in Refs. [6–9] makes the argument for the
actual possibility of a light (observable) Uð1ÞR gauge
boson an ‘‘approximate’’ statement (based on the approxi-
mate flatness of the solution).

One expects this feature to break at two loops. The
SUð2ÞL and SUð3Þc � functions are affected at two loops
directly by the Abelian gauge bosons via Eq. (15) (the
Higgs multiplets that are responsible for the Uð1ÞR �
Uð1ÞX breaking do not enter through the Yukawa interac-
tions). The net effect on the non-Abelian gauge running is
related to the difference between the contribution of the
Uð1ÞR and Uð1ÞX gauge bosons and that of the standard
hypercharge. We checked that such a difference is always a
small fraction (below 10%) of the typical two-loop con-
tributions to the SUð2ÞL and SUð3Þc � functions. As a
consequence, the n1 flatness of the GUT solution is at a
very high accuracy (10�3) preserved at two loops as well,
as the inspection of the relevant chains in Figs. 1 and 2
shows.

Still at one loop we find a sharp disagreement in the n1
range of chain XIIa, with respect to the result of Ref. [9].

The authors find n1 < 5:3, while strictly following their
procedure and assumptions we find n1 < 10:2 (the updated
one- and two-loop results are given in Fig. 1(k)]. As we
shall see, this difference brings chain XIIa back among the
potentially realistic ones.
As far as two-loop effects are at stakes, their relevance is

generally related to the length of the running involving the
largest non-Abelian groups. On the other hand, there are
chains where n2 and nU have a strong dependence on n1
(we will refer to them as ‘‘unstable’’ chains) and where
two-loop corrections affect substantially the one-loop re-
sults. Evident examples of such unstable chains are Ia, IVa,
Va, IVb, and VIIb. In particular, in chain Va the two-loop
effects flip the slopes of n2 and nU, that implies a sharp
change in the allowed region for n1. It is clear that when
dealing with these breaking chains any statement about
their viability should account for the details of the thresh-
olds in the given model.
In chains VIII to XII (where the second intermediate

stage is 2L1R1X3c, two-loop effects are mild and exhibit
the common behavior of lowering the GUT scale (nU)
while raising (with the exception of Xb and XIa,b) the
largest intermediate scale (n2). The mildness of two-loop
corrections (no more that one would a priori expect) is
strictly related to the (n1) flatness of the GUT solution
discussed before.
Worth mentioning are the limits n2�nU and n1�n2.

While the former is equivalent to neglecting the first stage
G2 and to reducing effectively the three breaking steps to
just two (namely SOð10Þ!G1!SM) with a minimal fine-
tuning in the scalar sector, care must be taken of the latter.
One may naively expect that the chains with the same G2
should exhibit for n1�n2 the same numerical behavior
(SOð10Þ!G2!SM), thus clustering the chains (I,V,X),
(II,III,VI,VII,XI), and (IV,IX). On the other hand, one must
recall that the existence of G1 and its breaking remain en-
coded in theG2 stage through the Higgs scalars that are re-
sponsible for theG2!G1 breaking. This is why the chains
with the same G2 are not in general equivalent in the n1�
n2 limit. The numerical features of the degenerate patterns
(with n2�nU) can be cross-checked among the different
chains by direct inspection of Figs. 1 and 2 and Table III.
In any discussion of viability of the various scenarios the

main attention is paid to the constraints emerging from the
proton decay. In nonsupersymmetric GUTs, this process is
mediated by baryon number violating gauge interactions,
inducing at low energies a set of effective dimension six
operators that conserve B� L. In the SOð10Þ scenarios we
consider here, such gauge bosons are integrated out at the
unification scale, and therefore proton decay constrains nU
from below. The present experimental limit �pðp !
eþ�0Þ> 1:6� 1033 years [28] implies�

��1
U

45

�
102ðnU�15Þ > 5:2; (36)

which, for ��1
U ¼ 45 yields nU > 15:4. Taking the results

TABLE III. Two-loop values of ��1
U in the allowed region for

n1. From chains I to VII, ��1
U is n1 dependent and its range is

given in square brackets for the minimum (left) and the maxi-
mum (right) value of n1, respectively. For chains VIII to XII,
��1
U depends very weakly on n1 (see the discussion on Uð1Þ

mixing in the text). No solution is found for chain Xa.

Chain ��1
U Chain ��1

U

Ia [45.5, 46.4] Ib [45.7, 44.8]

IIa [43.7, 40.8] IIb [45.3, 44.5]

IIIa [45.5, 40.8] IIIb [45.7, 44.5]

IVa [45.5, 43.4] IVb [45.7, 45.1]

Va [45.4, 44.1] Vb [44.3, 44.8]

VIa [44.1, 41.0] VIb [44.3, 44.2]

VIIa [45.4, 41.1] VIIb [44.8, 44.4]

VIIIa 45.4 VIIIb 45.6

IXa 42.8 IXb 44.3

Xa Xb 44.8

XIa 38.7 XIb 41.5

XIIa 44.1 XIIb 44.3
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in Figs. 1 and 2 and Table III at face value the chains VIab,
XIab, XIIab, Vb, and VIIb should be excluded from real-
istic considerations.

On the other hand, one must recall that once a specific
model is scrutinized in detail there can be large threshold
corrections in the matching [10–12], that can easily move
the unification scale by a few orders of magnitude (in both
directions). In particular, as a consequence of the sponta-
neous breaking of accidental would-be global symmetries
of the scalar potential, pseudo-Goldstone modes (with
masses further suppressed with respect to the expected
threshold range) may appear in the scalar spectrum, lead-
ing to potentially large RGE effects [30]. Therefore, we
shall follow a conservative approach in interpreting the
limits on the intermediate scales coming from a simple
threshold clustering. These limits, albeit useful for a pre-
liminary survey, may not be sharply used to exclude mar-
ginal but otherwise well-motivated scenarios.

Below the scale of the B� L breaking, processes that
violate separately the baryon or the lepton numbers
emerge. In particular, �B ¼ 2 effective interactions give
rise to the phenomenon of neutron oscillations (for a recent
review see Ref. [31]). Present bounds on nuclear instability
give �Nucl > 1032 years, which translates into a bound on
the neutron oscillation time �n� �n > 108 sec . Analogous
limits come from direct reactor oscillations experiments.
This sets a lower bound on the scale of �B ¼ 2 nonsuper-
symmetric (dimension nine) operators that varies from 10
to 300 TeV depending on model couplings. Thus, antineu-
tron oscillations probe scales far below the unification
scale. In a supersymmetric context the presence of �B ¼
2 dimension seven operators softens the dependence on the
B� L scale and for the present bounds the typical limit
goes up to about 107 GeV.

Far more reaching in scale sensitivity are the �L¼2
neutrino masses emerging from the seesaw mechanism. At
the B�L breaking scale the �126

R (�16
R ) scalars acquire

�L ¼ 2 (�L¼1) VEVs that give a Majorana mass to
the right-handed neutrinos. Once the latter are integrated
out, dimension five operators of the form �
c

L
LHHT gener-

ate light Majorana neutrino states in the low energy theory.
In the type-I seesaw, the neutrino mass matrix m
 is

proportional to YNM
�1
R YT

Nv
2 where the largest entry in the

Yukawa couplings is typically of the order of the top quark
one and MR �M1. Given a neutrino mass above the limit
obtained from atmospheric neutrino oscillations and below
the eV, one infers a (loose) range 1012 GeV<M1 <
1014 GeV. It is interesting to note that the lower bound
pairs with the cosmological limit on the D-parity breaking
scale (see Sec. II).

In the scalar-triplet induced (type-II) seesaw the evi-
dence of the neutrino mass entails a lower bound on the

VEV of the heavy SUð2ÞL triplet in 126H (or in 16H16H).
This translates into an upper bound on the mass of the
triplet that depends on the structure of the relevant Yukawa

coupling. If both type-I as well as type-II contribute to the
light neutrino mass, the lower bound on the M1 scale may
then be weakened by the interplay between the two con-
tributions. Once again this can be quantitatively assessed
only when the vacuum of the model is fully investigated.
Finally, it is worth noting that if the B� L breakdown is

driven by 126H, the elementary triplets couple to the
Majorana currents at the renormalizable level and m
 is
directly sensitive to the position of the G1!SM threshold
M1. On the other hand, the n1 dependence of m
 is
loosened in the b-type of chains due to the nonrenormaliz-
able nature of the relevant effective operator

16F16F16H16H=�, where the effective scale �>MU ac-
counts for an extra suppression.
With these considerations at hand, the constraints from

proton decay and the seesaw neutrino scale favor the
chains II, III, and VII, which all share 2L2R4CP in the first
SOð10Þ breaking stage [5]. On the other hand, our results
rescue from oblivion other potentially interesting scenarios
that, as we shall expand upon shortly, are worth in-depth
consideration. In all cases, the bounds on the B� L scale
enforced by the seesaw neutrino mass excludes the possi-
bility of observable Uð1ÞR gauge bosons.

C. The �126 Higgs multiplets

As mentioned in Sec. II A, in order to ensure a rich
enough Yukawa sector in realistic models there may be
the need to keep more than one SUð2ÞL Higgs doublet at
intermediate scales, albeit at the price of an extra fine-
tuning. A typical example is the case of a relatively low
Pati-Salam breaking scale where one needs at least a pair of
SUð2ÞL � SUð2ÞR bidoublets with different SUð4ÞC quan-
tum numbers to transfer the information about the PS
breakdown into the matter sector. Such additional Higgs
multiplets are those labeled by �126 in Table II.
Table IV shows the effects of including �126 at the

SUð4ÞC stages of the relevant breaking chains. The two-
loop results at the extreme values of the intermediate
scales, with and without the �126 multiplet, are compared.
In the latter case the complete functional dependence
among the scales is given in Fig. 1. Degenerate patterns
with only one effective intermediate stage are easily cross-
checked among the different chains in Table IV.
In most of the cases, the numerical results do not exhibit

a sizeable dependence on the additional ð2; 2; 15Þ126 (or

ð2;þ 1
2 ; 15Þ126) scalar multiplets. The reason can be read

off Table X in Appendix A and it rests on an accidental
approximate coincidence of the �126 contributions to the
SUð4ÞC and SUð2ÞL;R one-loop beta coefficients (the same

argument applies to the 2L1R4C case).
Considering, for instance, the 2L2R4C stage, one obtains

�a4¼ 1
3�4�T2ð15Þ¼ 16

3 , and �a2¼ 1
3�30�T2ð2Þ¼5,

that only slightly affects the value of �U (when the PS
scale is low enough), but has generally a negligible effect
on the intermediate scales.
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An exception to this argument is observed in chains Ia
and Va that, due to their n2;Uðn1Þ slopes, are most sensitive

to variations of the � coefficients. In particular, the inclu-
sion of �126 in the Ia chain flips at two loops the slopes of
n2 and nU so that the limit n2 ¼ nU (i.e. no G2 stage) is
obtained for the maximal value of n1 (while the same
happens for the minimum n1 if there is no �126).

Figure 3 shows three template cases where the �126

effects are visible. The highly unstable chain Ia shows, as
noticed earlier, the largest effects. In chain Va the effects of
�126 are moderate. Chain VII is the only ‘‘stable’’ chain
that exhibits visible effects on the intermediate scales. This
is due to the presence of two full-fledged PS stages.

D. Yukawa terms

The effects of the Yukawa couplings can be at leading
order approximated by constant negative shifts of the one-
loop ai coefficients ai ! a0i ¼ ai þ �ai with

�ai ¼ � 1

ð4�Þ2 yik TrYkY
y
k : (37)

The impact of �ai on the position of the unification scale
and the value of the unified coupling can be simply esti-
mated by considering the running induced by the Yukawa
couplings from a scale t up to the unification point (t ¼ 0).
The one-loop result for the change of the intersection of the
curves corresponding to ��1

i ðtÞ and ��1
j ðtÞ reads (at the

leading order in �ai):

�tU ¼ 2�
�ai ��aj

ðai � ajÞ2
½��1

j ðtÞ � ��1
i ðtÞ� þ . . . (38)

and

���1
U ¼ 1

2

�
�ai þ �aj
ai � aj

� ðai þ ajÞð�ai ��ajÞ
ðai � ajÞ2

�

� ½��1
j ðtÞ � ��1

i ðtÞ� þ . . . (39)

for any i� j. For simplicity we have neglected the changes
in the ai coefficients due to crossing intermediate thresh-
olds. It is clear that for a common change �ai ¼ �aj the

unification scale is not affected, while a net effect remains
on ��1

U . In all cases, the leading contribution is always
proportional to ��1

j ðtÞ���1
i ðtÞ (this holds exactly for

�tU).
In order to assess quantitatively such effects we shall

consider first the SM stage that accounts for a large part of
the running in all realistic chains. The case of a low n1
scale leads, as we explain in the following, to comparably
smaller effects. The impact of the Yukawa interactions on
the gauge RGEs is readily estimated assuming only the up-
type Yukawa contribution to be sizeable and constant,

namelyTrYUY
y
U�1. This yields�ai��6�10�3yiU, where

the values of the yiU coefficients are given in Table XI. For
i¼1 and j¼2 one obtains �a1��1:1�10�2 and

TABLE IV. Impact of the additional multiplet �126 (second
line of each chain) on those chains that contain the gauge groups
2L2R4C or 2L1R4C as intermediate stages, and whose breaking to
the SM is obtained via a 126H representation. The values of n2,
nU, and ��1

U are showed for the minimum and maximum values

allowed for n1 by the two-loop analysis. Generally the effects on
the intermediate scales are below the percent level, with the
exception of chains Ia and Va that are most sensitive to variations
of the � functions.

Chain n1 n2 nU ��1
U

Ia [9.50, 10.0] [16.2, 10.0] [16.2, 17.0] [45.5, 46.4]

[8.00, 9.50] [10.4, 16.2] [18.0, 16.2] [30.6, 45.5]

IIa [10.5, 13.7] [15.4, 13.7] [15.4, 15.1] [43.7, 40.8]

[10.5, 13.7] [15.4, 13.7] [15.4, 15.1] [43.7, 37.6]

IIIa [9.50, 13.7] [16.2, 13.7] [16.2, 15.1] [45.5, 40.8]

[9.50, 13.7] [16.2, 13.7] [16.2, 15.1] [45.5, 37.6]

Va [11.0, 11.4] [11.0, 14.4] [15.9, 14.4] [45.4, 44.1]

[10.1, 11.2] [10.1, 14.5] [16.5, 14.5] [32.5, 40.8]

VIa [11.4, 13.7] [14.4, 13.7] [14.4, 14.9] [44.1, 41.0]

[11.2, 13.7] [14.5, 13.7] [14.5, 14.9] [40.8, 38.1]

VIIa [11.3, 13.7] [15.9, 13.7] [15.9, 14.9] [45.4, 41.1]

[10.5, 13.7] [16.5, 13.7] [16.5, 15.0] [33.3, 38.1]

XIa [3.00, 13.7] [13.7, 13.7] [14.8, 14.8] [38.7, 38.7]

[3.00, 13.7] [13.7, 13.7] [14.8, 14.8] [36.0, 36.0]

XIIa [3.00, 10.8] [10.8, 10.8] [14.6, 14.6] [44.1, 44.1]

[3.00, 10.5] [10.5, 10.5] [14.7, 14.7] [39.8, 39.8]

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
n18

10

12

14

16

18

n2 nU

(a) Chain Ia

10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4
n1

10

12

14

16

n2 nU

(b) Chain Va

10 11 12 13 14
n113

14

15

16

17
n2 nU

(c) Chain VIIa

FIG. 3 (color online). Example of chains with sizeable �126 effects (long-dashed curves) on the position of the intermediate scales.
The solid curves represent the two-loop results in Fig. 1. The most dramatic effects appear in the chain Ia, while moderate scale shifts
affect chain Va (both unstable under small variations of the � functions). Chain VIIa, due to the presence of two PS stages, is the only
stable chain with visible �126 effects.
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�a2��0:9�10�2, respectively. Since aSM1 ¼ 41
10 and

aSM2 ¼�19
6 , the first term in (39) dominates and one finds

���1
U �0:04. For a typical value of ��1

U �40 this trans-
lates into ���1

U =��1
U �0:1%. The impact on tU is indeed

tiny, namely�nU��1�10�2. In both cases the estimated
effect agrees to high accuracy with the actual numerical
behavior we observe.

The effects of the Yukawa interactions emerging at

intermediate scales (or of a non-negligible TrYDY
y
D in a

two Higgs doublet setting with large tan�) can be analo-
gously accounted for. As a matter of fact, in the SOð10Þ
type of models TrYNY

y
N�TrYUY

y
U due to the common

origin of YU and YN . The unified structure of the Yukawa
sector yields therefore homogeneous �ai factors (see the
equality of

P
kyik in Table XI). This provides the observed

large suppression of the Yukawa effects on threshold scales
and unification compared to typical two-loop gauge
contributions.

In summary, the two-loop RGE effects due to Yukawa
couplings on the magnitude of the unification scale (and
intermediate thresholds) and the value of the GUT gauge
coupling turn out to be very small. Typically we observe
negative shifts at the per-mil level in both nU and �U, with
no relevant impact on the gauge-mediated proton decay
rate.

E. The privilege of being minimal

With all the information at hand we can finally approach
an assessment of the viability of the various scenarios. As
we have argued at length, we cannot discard a marginal
unification setup without detailed information on the fine
threshold structure.

Obtaining this piece of information involves the study of
the vacuum of the model, and for SOð10Þ GUTs this is in
general a most challenging task. In this respect supersym-
metry helps: the superpotential is holomorphic and the
couplings in the renormalizable case are limited to at
most cubic terms; the physical vacuum is constrained by
GUT-scale F and D flatness and supersymmetry may be
exploited to studying the fermionic rather than the scalar
spectra.

It is not surprising that for nonsupersymmetric SOð10Þ,
only a few detailed studies of the Higgs potential and the
related threshold effects (see for instance Refs. [32–36])
are available. In view of all this and of the intrinsic pre-
dictivity related to minimality, the relevance of carefully
scrutinizing the simplest scenarios is hardly overstressed.

The most economical SOð10Þ Higgs sector includes the
adjoint 45H, that provides the breaking of the GUT sym-

metry, either 16H or 126H, responsible for the subsequent
B� L breaking, and 10H, participating to the electroweak

symmetry breaking. The latter is needed together with 16H
or 126H in order to obtain realistic patterns for the fermi-
onic masses and mixing. Because of the properties of the
adjoint representation this scenario exhibits a minimal

number of parameters in the Higgs potential. In the current
notation such a minimal nonsupersymmetric SOð10Þ
(MSO10) GUT corresponds to the chains VIII and XII.
From this point of view, it is quite intriguing that our

analysis of the gauge unification constraints improves the
standing of these chains (for XIIa dramatically) with re-
spect to existing studies. In particular, considering the

renormalizable setups (126H), we find for chain VIIIa,
n1 � 9:1, nU ¼ 16:2, and ��1

U ¼ 45:4 (to be compared
to n1 � 7:7 given in Ref. [9]). This is due to the combina-
tion of the updated weak scale data and two-loop running
effects. For chain XIIa we find n1 � 10:8, nU ¼ 14:6, and
��1
U ¼ 44:1, showing a dramatic (and pathological)

change from n1 � 5:3 obtained in [9]. Our result sets the
B� L scale nearby the needed scale for realistic light
neutrino masses.
We observe non-negligible two-loop effects for the

chains VIIIb and XIIb (16H) as well. For chain VIIIb we
obtain n1 � 10:5, nU ¼ 16:2, and ��1

U ¼ 45:6 (that lifts
the B� L scale while preserving nU well above the proton
decay bound Eq. (36)). A similar shift in n1 is observed in
chain XIIb where we find n1 � 12:5, nU ¼ 14:8, and
��1
U ¼ 44:3. As we have already stressed one should not

too readily discard nU ¼ 14:8 as being incompatible with
the proton decay bound. We have verified that reasonable
GUT threshold patterns exist that easily lift nU above the
experimental bound. For all these chainsD parity is broken
at the GUT scale thus avoiding any cosmological issues
(see the discussion in Sec. II).
As remarked in Sec. IVB, the limit n1 ¼ n2 leads to an

effective two-step SOð10Þ ! G2 ! SM scenario with a
nonminimal set of surviving scalars at the G2 stage. As a
consequence, the unification setup for the MSO10 can be
recovered (with the needed minimal fine-tuning) by con-
sidering the limit n2 ¼ nU in those chains among I to VII
whereG1 is either 2L2R1X3c or 2L1R4C (see Table I). From
the inspection of Figs. 1 and 2 and of Table III, one reads
the following results: for SOð10Þ!452L2R1X3c ! SM we
find

n1 ¼ 9:5; nU ¼ 16:2; and ��1
U ¼ 45:5; in casea

and

n1 ¼ 10:8; nU ¼ 16:2; and ��1
U ¼ 45:7; in case b;

while for SOð10Þ!452L1R4C ! SM

n1 ¼ 11:4; nU ¼ 14:4; and ��1
U ¼ 44:1; in case a

and

n1 ¼ 12:6; nU ¼ 14:6; and ��1
U ¼ 44:3; in case b:

We observe that the patterns are quite similar to those of
the nonminimal setups obtained from chains VIII and XII
in the n1 ¼ n2 limit. Adding the�126 multiplet, as required
by a realistic matter spectrum in case a, does not modify
the scalar content in the 2L2R1X3c case: only one linear

combination of the 10H and 126H bidoublets (see Table II)
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is allowed by minimal fine-tuning. On the other hand, in
the 2L1R4C case, the only sizeable effect is a shift on the
unified coupling constant, namely ��1

U ¼ 40:7 (see the

discussion in Sec. IVC).
In summary, in view of realistic thresholds effects at the

GUT (and B� L) scale and of a modest fine-tuning in the
seesaw neutrino mass, we consider both scenarios worth a
detailed investigation.

V. OUTLOOK

We presented an updated and systematic two-loop dis-
cussion of nonsupersymmetric SOð10Þ gauge unification
with two (and one) intermediate scales. We completed and
corrected existing analyses by including a thorough dis-
cussion of Uð1Þ mixing, which affects the gauge running
already at the one-loop level in a number of interesting
SOð10Þ breaking chains. We assessed the relevance of
additional Higgs multiplets, needed at some of the inter-
mediate stages in order to reproduce a realistic fermionic
mass spectrum. Finally, we found and fixed several dis-
crepancies in the two-loop � coefficients.

The updated results have a non-negligible impact on the
values of the unification andB� L scales (as well as on the
value of the unified gauge coupling). This is due to the
combined effects of the one-loop dynamics corresponding
to the Uð1Þ gauge mixing and of the two-loop RGE
contributions.

We discussed the viability of the different SOð10Þ sce-
narios on the basis of proton decay and the seesaw induced

neutrino mass. We were lead to focus our attention on the
minimal SOð10Þ setup, emerging from a balance of mini-
mal dimensionality Higgs representations and a minimal
number of parameters in the scalar potential. Such a sce-
nario invokes, in addition to a complex 10H, one adjoint

45H together with one 126H or 16H at the effective level.
Although the updated values of the unification or B� L

scales are in some of the setups still conflicting with the
experimental requirements, they are close enough that
reasonable spreads in the GUT thresholds (or a moderate
fine-tuning in the neutrino mass matrix) can easily restore
the agreement. This may entail the detailed study of the
scalar potential of the model beyond the tree approxima-
tion, that is a rather nontrivial task. Nevertheless, the
appeal of minimality (with supersymmetry confined to
the Planck scale) motivates us to pursue this study.
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APPENDIX A: ONE- AND TWO-LOOP BETA
COEFFICIENTS

In Tables V, VI, VII, VIII, IX, X, and XI we report the
one- and two-loop � coefficients used in the numerical

TABLE V. The ai and bij coefficients due to pure gauge interactions are reported for the G2 chains with 126H (left) and 16H (right),
respectively. The two-loop contributions induced by Yukawa couplings are discussed in Appendix A 2.

G2 (MU ! M2)

Chain aj bij Chain aj bij

Ia ð�3; 113 ;�7Þ 8 3 45
2

3 584
3

765
2

9
2

153
2

289
2

0
B@

1
CA Ib ð�3;� 7

3 ;� 29
3 Þ 8 3 45

2
3 50

3
75
2

9
2

15
2 � 94

3

0
B@

1
CA

IIa ð113 ; 113 ;�4Þ
584
3 3 765

2

3 584
3

765
2

153
2

153
2

661
2

0
B@

1
CA IIb ð� 7

3 ;� 7
3 ;� 28

3 Þ
50
3 3 75

2

3 50
3

75
2

15
2

15
2 � 127

6

0
B@

1
CA

IIIa ð113 ; 113 ;�4Þ
584
3 3 765

2

3 584
3

765
2

153
2

153
2

661
2

0
B@

1
CA IIIb ð� 7

3 ;� 7
3 ;� 28

3 Þ
50
3 3 75

2

3 50
3

75
2

15
2

15
2 � 127

6

0
B@

1
CA

IVa ð� 7
3 ;� 7

3 ; 7;�7Þ
80
3 3 27

2 12
3 80

3
27
2 12

81
2

81
2

115
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA IVb ð� 17

6 ;� 17
6 ;

9
2 ;�7Þ

61
6 3 9

4 12
3 61

6
9
4 12

27
4

27
4

23
4 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

Va ð�3; 4;� 23
3 Þ

8 3 45
2

3 204 765
2

9
2

153
2

643
6

0
B@

1
CA Vb ð�3;�2;� 31

3 Þ
8 3 45

2

3 26 75
2

9
2

15
2 � 206

3

0
B@

1
CA

VIa ð4; 4;� 14
3 Þ

204 3 765
2

3 204 765
2

153
2

153
2

1759
6

0
B@

1
CA VIb ð�2;�2;�10Þ

26 3 75
2

3 26 75
2

15
2

15
2 � 117

2

0
B@

1
CA
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G2 (MU ! M2)

Chain aj bij Chain aj bij

VIIa ð113 ; 113 ;� 14
3 Þ

584
3 3 765

2

3 584
3

765
2

153
2

153
2

1759
6

0
B@

1
CA VIIb ð� 7

3 ;� 7
3 ;�10Þ

50
3 3 75

2
3 50

3
75
2

15
2

15
2 � 117

2

0
B@

1
CA

VIIIa ð�3;�2; 112 ;�7Þ
8 3 3

2 12
3 36 27

2 12
9
2

81
2

61
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA VIIIb ð�3;� 5

2 ;
17
4 ;�7Þ

8 3 3
2 12

3 39
2

9
4 12

9
2

27
4

37
8 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

IXa ð�2;�2; 7;�7Þ
36 3 27

2 12
3 36 27

2 12
81
2

81
2

115
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA IXb ð� 5

2 ;� 5
2 ;

9
2 ;�7Þ

39
2 3 9

4 12
3 39

2
9
4 12

27
4

27
4

23
4 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

Xa ð�3; 263 ;� 17
3 Þ

8 3 45
2

3 1004
3

1245
2

9
2

249
2

1315
6

0
B@

1
CA Xb ð�3; 83 ;� 25

3 Þ
8 3 45

2

3 470
3

555
2

9
2

111
2

130
3

0
B@

1
CA

XIa ð263 ; 263 ;� 2
3Þ

1004
3 3 1245

2

3 1004
3

1245
2

249
2

249
2

3103
6

0
B@

1
CA XIb ð83 ; 83 ;�6Þ

470
3 3 555

2

3 470
3

555
2

111
2

111
2

331
2

0
B@

1
CA

XIIa ð� 19
6 ;

15
2 ;�9Þ

35
6

1
2

45
2

3
2

87
2

405
2

9
2

27
2

41
2

0
B@

1
CA XIIb ð� 19

6 ;
9
2 ;� 59

6 Þ
35
6

1
2

45
2

3
2

9
2 30

9
2 2 � 437

12

0
B@

1
CA

TABLE VI. The ai and bij coefficients due to gauge interactions are reported for the G1 chains I to VII with 126H (left) and 16H
(right), respectively. The two-loop contributions induced by Yukawa couplings are discussed in Appendix A 2.

G1 (M2 ! M1)

Chain ai bij Chain ai bij

Ia ð�3;� 7
3 ;

11
2 ;�7Þ 8 3 3

2 12
3 80

3
27
2 12

9
2

81
2

61
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

Ib ð�3;� 17
6 ;

17
4 ;�7Þ 8 3 3

2 12
3 61

6
9
4 12

9
2

27
4

37
8 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

IIa ð� 7
3 ;� 7

3 ; 7;�7Þ
80
3 3 27

2 12
3 80

3
27
2 12

81
2

81
2

115
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA IIb ð� 17

6 ;� 17
6 ;

9
2 ;�7Þ

61
6 3 9

4 12
3 61

6
9
4 12

27
4

27
4

23
4 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

IIIa ð�3;� 7
3 ;

11
2 ;�7Þ

8 3 3
2 12

3 80
3

27
2 12

9
2

81
2

61
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA IIIb ð�3;� 17

6 ;
17
4 ;�7Þ

8 3 3
2 12

3 61
6

9
4 12

9
2

27
4

37
8 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

IVa ð�3;� 7
3 ;

11
2 ;�7Þ

8 3 3
2 12

3 80
3

27
2 12

9
2

81
2

61
2 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA IVb ð�3;� 17

6 ;
17
4 ;�7Þ

8 3 3
2 12

3 61
6

9
4 12

9
2

27
4

37
8 4

9
2

9
2

1
2 �26

0
BBB@

1
CCCA

Va ð� 19
6 ;

15
2 ;� 29

3 Þ
35
6

1
2

45
2

3
2

87
2

405
2

9
2

27
2 � 101

6

0
B@

1
CA Vb ð� 19

6 ;
9
2 ;� 21

2 Þ
35
6

1
2

45
2

3
2

9
2 30

9
2 2 � 295

4

0
B@

1
CA

VIa ð� 19
6 ;

15
2 ;� 29

3 Þ
35
6

1
2

45
2

3
2

87
2

405
2

9
2

27
2 � 101

6

0
B@

1
CA VIb ð� 19

6 ;
9
2 ;� 21

2 Þ
35
6

1
2

45
2

3
2

9
2 30

9
2 2 � 295

4

0
B@

1
CA

VIIa ð�3; 113 ;� 23
3 Þ

8 3 45
2

3 584
3

765
2

9
2

153
2

643
6

0
B@

1
CA VIIb ð�3;� 7

3 ;� 31
3 Þ

8 3 45
2

3 50
3

75
2

9
2

15
2 � 206

3

0
B@

1
CA

TABLE V. (Continued)
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TABLE IX. The rescaled two-loop � coefficients ~bij computed in this paper are shown
together with the corresponding equations in Ref. [7]. For the purpose of comparison Yukawa
contributions are neglected and no Uð1Þ mixing is included in chain VIIIa=G1. Care must be
taken of the different ordering between Abelian and non-Abelian gauge group factors in Ref. [7].
We report those cases where disagreement is found in some of the entries, while we fully agree
with the Eqs. A9, A11, and A16.

Chain ~bij Eq. in Ref. [7]

All/SM 199
205 � 81

95 � 44
35

9
41 � 35

19 � 12
7

11
41 � 27

19
26
7

0
B@

1
CA

A7

VIIIa=G1

25
9

5
3 � 27

19 � 4
7

5
3

5
3 � 9

19 � 12
7

1
3

1
9 � 35

19 � 12
7

1
9

1
3 � 27

19
26
7

0
BBB@

1
CCCA A10

VIIIa=G2

61
11 � 3

2 � 81
4 � 4

7
3
11 � 8

3 � 3
2 � 12

7
27
11 �1 �18 � 12

7
1
11 � 3

2 � 9
4

26
7

0
BBB@

1
CCCA A13

Ia=G2
� 8

3
9
11 � 45

14�1 584
11 � 765

14� 3
2

459
22 � 289

14

0
B@

1
CA A14

Va=G1
� 35

19
1
15 � 135

58� 9
19

29
5 � 1215

58� 27
19

9
5

101
58

0
B@

1
CA A15

XIIa=G2
� 35

19
1
15 � 5

2� 9
19

29
5 � 45

2� 27
19

9
5 � 41

18

0
B@

1
CA A18

TABLE VII. The ai and bij coefficients due to purely gauge interactions for the G1 chains VIII to XII are reported. For comparison
with previous studies the � coefficients are given neglecting systematically one- and two-loops Uð1Þmixing effects (while all diagonal
Uð1Þ contributions to Abelian and non-Abelian gauge coupling renormalization are included). The complete (and correct) treatment of
Uð1Þ mixing is detailed in Appendix A 1.

G1 (M2 ! M1)

Chain ai bij Chain ai bij

VIIIa
..
.

XIIa

ð� 19
6 ;

9
2 ;

9
2 ;�7Þ 35

6
1
2

3
2 12

3
2

15
2

15
2 12

9
2

15
2

25
2 4

9
2

3
2

1
2 �26

0
BBB@

1
CCCA

VIIIb
..
.

XIIb

ð� 19
6 ;

17
4 ;

33
8 ;�7Þ 35

6
1
2

3
2 12

3
2

15
4

15
8 12

9
2

15
8

65
16 4

9
2

3
2

1
2 �26

0
BBB@

1
CCCA

TABLE VIII. The ai and bij coefficients are given for the
1Y2L3c (SM) gauge running. The scalar sector includes one
Higgs doublet.

SM (M1 ! MZ)

Chain ai bij

All ð4110 ;� 19
6 ;�7Þ 199

50
27
10

44
5

9
10

35
6 12

11
10

9
2 �26

0
B@

1
CA

TABLE X. One- and two-loop additional contributions to the
� coefficients related to the presence of the �126 scalar multip-
lets in the 2L2R4 (top) and 2L1R4 (bottom) stages.

�126 ai bij

(2, 2, 15) ð5; 5; 163 Þ 65 45 240
45 65 240
48 48 896

3

0
B@

1
CA

ð2;þ 1
2 ; 15Þ ð52 ; 52 ; 83Þ

65
2

15
2 120

45
2

15
2 120

24 8 448
3

0
B@

1
CA
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analysis. The calculation of the Uð1Þ mixing coefficients
and of the Yukawa contributions to the gauge coupling
renormalization is detailed in Appendices A 1 and A 2,
respectively.

1. Beta functions with Uð1Þ mixing

The basic building blocks of the one- and two-loop �
functions for the Abelian couplings with Uð1Þ mixing, cf.
Eqs. (14) and (15), can be conveniently written as

gkagkb ¼ gsa�
ð1Þ
sr grb (A1)

and

gkagkbg
2
kc ¼ gsa�

ð2Þ
sr grb; (A2)

where �ð1Þ and �ð2Þ are functions of the Abelian chargesQa
k

and, at two loops, also of the gauge couplings. In the case
of interest, i.e. for two Abelian charges Uð1ÞA and Uð1ÞB,
one obtains

�ð1Þ
AA ¼ ðQA

k Þ2; �ð1Þ
AB ¼ �ð1Þ

BA ¼QA
kQ

B
k ; �ð1Þ

BB ¼ ðQB
k Þ2;
(A3)

and

�ð2Þ
AA ¼ ðQA

k Þ4ðg2AA þ g2ABÞ þ 2ðQA
k Þ3QB

k ðgAAgBA þ gABgBBÞ
þ ðQA

k Þ2ðQB
k Þ2ðg2BA þ g2BBÞ;

�ð2Þ
AB ¼ �ð2Þ

BA ¼ ðQA
k Þ3QB

k ðg2AA þ g2ABÞ þ 2ðQA
k Þ2ðQB

k Þ2
� ðgAAgBA þ gABgBBÞ þQA

k ðQB
k Þ3ðg2BA þ g2BBÞ;

�ð2Þ
BB ¼ ðQA

k Þ2ðQB
k Þ2ðg2AA þ g2ABÞ þ 2QA

k ðQB
k Þ3

� ðgAAgBA þ gABgBBÞ þ ðQB
k Þ4ðg2BA þ g2BBÞ: (A4)

All other contributions in Eqs. (14) and (15) can be
easily obtained from Eqs. (A3) and (A4) by including the
appropriate group factors. It is worth mentioning that for
complete SOð10Þ multiplets, ðQA

k ÞnðQB
k Þm ¼ 0 for n and m

TABLE XI. The two-loop Yukawa contributions to the gauge sector � functions in Eq. (20) are detailed. The index p in ypk labels
the gauge groups while k refers to flavor. In addition to the Higgs bidoublet from the 10-dimensional representation (whose
components are denoted according to the relevant gauge symmetry by h and �) extra bidoublet components in 126H (denoted by H
and �) survives from unification down to the Pati-Salam breaking scale as required by a realistic SM fermionic spectrum. The Ta

factors are the generators of SUð4ÞC in the standard normalization. As a consequence of minimal fine-tuning, only one linear
combination of 10H and 126H doublets survives below the SUð4ÞC scale. The Uð1ÞR;X mixing in the case 2L1R1X3c is explicitly

displayed.

Gp ypk k Gauge structure Higgs representation Tensor � Tr½��y�
1Y
2L
3c
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odd (with nþm ¼ 2 at one loop and nþm ¼ 4 at the two-loop level).
By evaluating Eqs. (A3) and (A4) for the particle content relevant to the 2L1R1X3c stages in chains VIII–XII, and by

substituting into Eqs. (14) and (15), one finally obtains

(i) Chains VIII–XII with 126H in the Higgs sector:

	RR ¼ 9

2
þ 1

ð4�Þ2
�
15

2
ðg2RR þ g2RXÞ � 4

ffiffiffi
6

p ðgRRgXR þ gRXgXXÞ þ 15

2
ðg2XR þ g2XXÞ þ

3

2
g2L þ 12g2c

�
;

	RX ¼ 	XR ¼ � 1ffiffiffi
6

p þ 1

ð4�Þ2 ½�2
ffiffiffi
6

p ðg2RR þ g2RXÞ þ 15ðgRRgXR þ gRXgXXÞ � 3
ffiffiffi
6

p ðg2XR þ g2XXÞ�;

	XX ¼ 9

2
þ 1

ð4�Þ2
�
15

2
ðg2RR þ g2RXÞ � 6

ffiffiffi
6

p ðgRRgXR þ gRXgXXÞ þ 25

2
ðg2XR þ g2XXÞ þ

9

2
g2L þ 4g2c

�
;

	L ¼ � 19

6
þ 1

ð4�Þ2
�
1

2
ðg2RR þ g2RXÞ þ

3

2
ðg2XR þ g2XXÞ þ

35

6
g2L þ 12g2c

�
;

	c ¼ �7þ 1

ð4�Þ2
�
3

2
ðg2RR þ g2RXÞ þ

1

2
ðg2XR þ g2XXÞ þ

9

2
g2L � 26g2c

�
;

(A5)

(ii) Chains VIII–XII with 16H in the Higgs sector:

	RR ¼ 17

4
þ 1

ð4�Þ2
�
15

4
ðg2RR þ g2RXÞ �

1

2

ffiffiffi
3

2

s
ðgRRgXR þ gRXgXXÞ þ 15

8
ðg2XR þ g2XXÞ þ

3

2
g2L þ 12g2c

�
;

	RX ¼ 	XR ¼ � 1

4
ffiffiffi
6

p þ 1

ð4�Þ2
�
� 1

4

ffiffiffi
3

2

s
ðg2RR þ g2RXÞ þ

15

4
ðgRRgXR þ gRXgXXÞ � 3

8

ffiffiffi
3

2

s
ðg2XR þ g2XXÞ

�
;

	XX ¼ 33

8
þ 1

ð4�Þ2
�
15

8
ðg2RR þ g2RXÞ �

3

4

ffiffiffi
3

2

s
ðgRRgXR þ gRXgXXÞ þ 65

16
ðg2XR þ g2XXÞ þ

9

2
g2L þ 4g2c

�
;

	L ¼ � 19

6
þ 1

ð4�Þ2
�
1

2
ðg2RR þ g2RXÞ þ

3

2
ðg2XR þ g2XXÞ þ

35

6
g2L þ 12g2c

�
;

	c ¼ �7þ 1

ð4�Þ2
�
3

2
ðg2RR þ g2RXÞ þ

1

2
ðg2XR þ g2XXÞ þ

9

2
g2L � 26g2c

�
:

(A6)

By setting 	XR ¼ 	RX ¼ 0 and gXR ¼ gRX ¼ 0 in
Eqs. (A5) and (A6) one obtains the one- and two-loop �
coefficients in the diagonal approximation, as reported in
Table VII. The latter are used in Figs. 1 and 2 for the only
purpose of exhibiting the effect of the Abelian mixing in
the gauge coupling renormalization.

2. Yukawa contributions

The Yukawa couplings enter the gauge � functions first
at the two-loop level, cf. Eqs. (3) and (14). Since the
notation adopted in Eqs. (6) and (7) is rather concise we
shall detail the structure of Eq. (6), paying particular
attention to the calculation of the ypk coefficients in

Eq. (20).
The trace on the RHS of Eq. (6) is taken over all indices

of the fields entering the Yukawa interaction in Eq. (7).
Considering, for instance, the up-quark Yukawa sector of

the SM the term �QLYUUR
~hþ H:c: (with ~h ¼ i�2h

	) can

be explicitly written as

Yab
U "kl�3j

i �Qa
LikU

bj
R h	l þ H:c:; (A7)

where fa; bg, fi; jg, and fk; lg label flavor, SUð3Þc and
SUð2ÞL indices, respectively, while �n denotes the
n-dimensional Kronecker � symbol. Thus, the Yukawa
coupling entering Eq. (6) is a six-dimensional object with
the index structure Yab

U "kl�i
3j. The contribution of Eq. (A7)

to the three ypU coefficients (conveniently separated into

two terms corresponding to the fermionic representations
QL and UR) can then be written as

ypU ¼ 1

dðGpÞ ½C
ðpÞ
2 ðQLÞ

þ CðpÞ
2 ðURÞ�

X
ab;ij;kl

Yab
U "kl�3j

iYab	
U "kl�3i

j: (A8)

The sum can be factorized into the flavor space part
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P
abY

ab	
U Yab

U ¼ Tr½YUY
y
U� times the trace over the gauge

contractions Tr½��y� where � � "kl�3j
i. For the SM

gauge group (with the properly normalized hypercharge)
one then obtains y1U ¼ 17

10 , y2U ¼ 3
2 and y3U ¼ 2, that

coincide with the values given in the first column of the
matrix (B.5) in Ref. [21].
All of the ypk coefficients as well as the structures of the

relevant � tensors are reported in Table XI.
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