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Motivated in part by the several observed anomalies involving CP asymmetries of B and Bs decays, we

consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple

resolution. We initially assume T-invariance by taking the up and down-quark 4� 4 mass matrix to be

real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden)

up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two

zero-mass eigenstates, which we take to be the ðu; cÞ and ðd; sÞ states in the up and down-quark sectors,

respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two

phase factors in each sector. This breaking mechanism generates the small quark masses mu, mc and md,

ms, which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the

SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking

mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same

time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t0. For
example, with this choice we get Vtd � ðVcb=Vcd � Vts=VusÞ þOð�2Þ and Vt0b � Vt0d � ðVcb=VcdÞ, Vtb0 �
Vt0d � ðVts=VusÞ, implying that Vt0d > Vt0b, Vtb0 . We furthermore find that the Cabibbo angle is related to

the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high

energies, JSM4 � ImðVtbV
?
t0bVt0b0V

?
tb0 Þ, which is the high-energy analogue of the Jarlskog invariant of the

SM, is proportional to the light-quark masses and the measured Cabibbo-Kobayashi-Maskawa quark-

mixing matrix angles: jJSM4j � A3�5 � ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mt

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc=mt0

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=mb

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mb0

p Þ � 10�5, where

A� 0:81 and � ¼ 0:2257 are the Wolfenstein parameters. Other choices for the orientation of the hidden

symmetry and/or the breaking mechanism may lead to different physical outcomes. A general solution,

obtained numerically, will be presented in a forthcoming paper.
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I. INTRODUCTION

In spite of the success of the standard model (SM) in
explaining almost all of the observed phenomena in parti-
cle physics, it does not address some fundamental issues,
such as the hierarchy problem, dark matter, the matter
antimatter asymmetry in the universe, etc. Also unex-
plained are the issues in flavor physics, such as the hier-
archy of fermion masses and the number of families. There
are strong indications, from both the theoretical and ex-
perimental points of view, that some of these unresolved
questions are related to some new physics, maybe at the
near by TeV scale. It is, therefore, hoped that, with the
LHC turning on very soon, we will get a first hand glimpse
of the new physics at the TeV scale and new hints from
nature to some of these issues and, in particular, to the
physics of flavor.

In this paper we wish to study some of the fundamental
unresolved issues of flavor within a simple extension of the
SM, in which a fourth sequential family of fermions is

added—the SM4. Indeed, the four generations scenario can
play an important role in flavor physics [1], and has re-
cently gained some new interest as it might shed new light
on baryogenesis and on CP-violation in K in B, Bs decays
[2–6]. This model, which can be regarded as an effective
low energy description of some higher energy and more
fundamental underlying theory, retains all the features of
the SM with three generations (which from here on we will
denote as SM3), except that it brings into existence the new
heavy fermionic members t0 and b0, which form the 4th
quark doublet and a similar leptonic doublet, where the
‘‘neutrino’’ of the 4th family must also be rather heavy,
with mass * MZ=2. This may well be an important clue
that the underlying nature of the 4th family may be quite
different from the 1st three families. This line of thinking
may in fact lead to a dark matter candidate [7].
The addition of the fourth generation to the SM3 means

that the Cabibbo-Kobayashi-Maskawa quark-mixing ma-
trix (CKM) can now potentially have six independent real
parameters/angles and three physical CP-violating phases
[8]. The two additional phases (with respect to the SM3)
provide new sources of CP-violation and may, thus, give
rise to new CP-violating effects. Indeed, in a recent paper
[3], it was shown that a fourth family of quarks with mt0 in
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the range of �400–600 GeV provides a simple and per-
haps rather natural explanation for the several indications
of new physics [9] that have been observed involving CP
asymmetries in b-quark systems, and this in fact forms an
important motivation for our work. Such heavy fermionic
states point to the interesting possibility that the 4th family
may play a role in dynamical electroweak symmetry break-
ing (EWSB), since the mechanism of dynamical mass
generation seems to require such heavy masses [10,11].
In addition, as mentioned above, the new CP-violating
phases may play an important role in generating the baryon
asymmetry in the universe [4,5], which is difficult to
address within the SM3.

We note in passing that a 4th generation of quarks (and
leptons) with such heavy masses is not ruled out by preci-
sion electroweak constraints, but rather requires that cor-
respondingly the Higgs has to be heavier, * 300 GeV [6].

In recent work [12] that also partly motivated the present
work, Friedberg and Lee (FL) suggested a very interesting
new approach for the generation of CP-violation and quark
masses in the SM3: that a weakly broken symmetry which
is operational in the SU(2) (weak) fermionic states relates
the smallness of CP-violation to the smallness of the light-
quark masses md and mu. More specifically, they imposed
a hidden symmetry on the weak states of the quarks (named
henceforward as the hidden frame), which is then weakly
broken by small CP-phases that generate the nonzero
masses for the light-quarks u and d. They found a very
interesting relation between CP-violation and the light-
quark masses:

JSM /
ffiffiffiffiffiffiffiffiffiffiffiffi
mdms

m2
b

s
; (1)

where JSM is the Jarlskog invariant responsible for
CP-violation in the SM3 [8]. While FL have shown that
the same mechanism can be also applied to the leptonic
sector [12], this idea was further examined and extended by
Jarlskog [13] who showed that, when applied only to right-
handed neutrinos, the FL hidden symmetry may provide a
rather natural explanation for the smallness of neutrino
masses.

The main appealing feature of the FL mechanism is that
the CP-violating phases are the small parameters that
control the breaking of the hidden symmetry and are,
therefore, the generators of the small masses of the first
generation quarks. Unlike the conventional SM3 picture,
the FL mechanism gives a physical meaning to the rota-
tions of the quark fields (i.e., from the weak basis to the
physical mass eigenstates basis) in the up- and down-quark
sector separately, since there is an independent hidden
symmetry for each sector.

As we will show in this paper, the idea of FL and their
main result in Eq. (1) is extremely interesting when applied
to the SM4 case and our extension will lead it to predictive
power. In particular, with an appropriate choice of a hidden

symmetry, it allows to generate all four masses of the u, d,
c, and s-quarks in terms of the masses of the four heavy
quarks b, t, b0, and t0 and the new CP-phases. It also gives
distinct predictions for the 4th generation mixing angles
and for the size of CP-violation in this theory, subject to
the constraints coming from existing data on the SM3’s
3� 3 CKM matrix and quark masses. Thus, the hidden
symmetry framework for the SM4 case can be directly
tested in collider experiments. In particular, we give dis-
tinct predictions for the new mixing angles and for the size
of the new CP-violating quantities associated with the
dynamics of the 4th generation quarks.
On the other hand, the construction of a hidden symme-

try for the SM4 case, and the generation of the four light-
quark masses in conjunction with T-violation, is more
challenging and rather intricate and analytically involved
than in the case of the SM3. This is mainly due to the fact
that the phase-space of the hidden symmetry in the SM4
case is much broader and that, as opposed to the FL
mechanism for the SM3 where the CP-phases generate
only the masses of the 1st generation fermions, here we
use the new CP-phases (of the SM4) as generators of all
four light-quark masses md, mu, ms, mc, which makes it
more difficult to find a physical solution. To put it in
another way, our hidden symmetry for the SM4 case de-
fines a plane in which the theory is invariant whereas for
three families the symmetry is ‘‘one dimensional’’, i.e.,
defines a direction/vector.
In order to spell out our notation and the general formal-

ism of the hidden symmetry and its breaking mechanism
within the SM4, we first consider the 4� 4 up and down-
quark Yukawa terms in the SM4 (after EWSB):

M ðqu;dÞ ¼ ðqu;d1 ; qu;d2 ; qu;d3 ; qu;d4 ÞMðqu;dÞ
qu;d1

qu;d2

qu;d3

qu;d4

0
BBB@

1
CCCA; (2)

where qu;di , i ¼ 1� 4, are the hidden SU(2) quark states of
the SM4, andMðqu;dÞ are the corresponding mass matrices
in the hidden frame basis.
As our zeroth-approximation we assume invariance

under time reversal, thus taking M0ðqu;dÞ (the subscript 0
will henceforward denote the zeroth-order quantities) to be
real and symmetric. We can then extend FL’s idea to the
case of the SM4 by ‘‘doubling’’ the hidden symmetry in
each quark sector (in the following we drop the indices u
and d, where unless stated otherwise, it is understood that
the discussion below applies to both up and down sectors):

q1 ! q1 þ �1
zzþ �1

t t; q2 ! q2 þ �2
zzþ �2

t t;

q3 ! q3 þ �3
zzþ �3

t t; q4 ! q4 þ �4
zzþ �4

t t;
(3)

where z and t are space-time independent constants of
Grassmann algebra anticommuting with the Dirac field
operators, and �i

z, �
i
t are c-numbers.
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Since M0ðqÞ is a real symmetric 4� 4 matrix, it is
characterized in general by 10 real parameters. However,
imposing the hidden symmetry in Eq. (3) eliminates 2 of
the 10 parameters. The hidden symmetry of Eq. (3) ensures
[under the invariance of M0ðqu;dÞ] the existence of two
massless quark states in each sector, which we will identify
asmu andmc (in the up-quark sector) and asmd andms (in
the down-quark sector). The corresponding two massless
eigenvectors of M0ðqÞ are thus identified as the zeroth-
order u and c states, v0

u and v0
c (with m0

u, m
0
c ¼ 0) and in

the down-quark sector as the zeroth-order d and s states, v0
d

and v0
s (with m0

d, m
0
s ¼ 0). That is, since nature proves to

have a large hierarchical mass structure in the quark sector,
we will consider the SM4 in the chiral limit for the first two
generations of quarks—mu;d;c;s ¼ 0. Accordingly, the two
massive eigenvectors are identified as the zeroth-order t
and t0 states (or b and b0 states) v0

t and v0
t0 , (or v

0
b and v0

b0)

with masses (i.e., eigenvalues) m0
t , m

0
t0 (or m0

b, m
0
b0). In

particular, it is easy to show that in the hidden basis
fq1; q2; q3; q4g the massless eigenvectors span a 2-
dimensional subspace of the form:

v0
u; v0

c 2
�1
z

�2
z

�3
z

�4
z

0
BBB@

1
CCCA;

�1
t

�2
t

�3
t

�4
t

0
BBB@

1
CCCA; (4)

and similarly in the down-quark sector.
The next step towards establishing the complete physi-

cal picture of quark masses and mixings is to simulta-
neously break T-invariance and the hidden symmetry by
inserting two new phase factors into M0, in each sector. In
the following we will construct a general framework that
defines the hidden symmetry in the SM4 scenario in a form
that emphasizes the underlying geometrical picture, and,
then, give a concrete physical example for the breaking
mechanism.

II. HIDDEN SYMMETRY, T-INVARIANCE AND
THE ZEROTH-ORDER SPECTRUM FOR THE SM4

In a generalization of the FL idea to the case of the SM4,
let us assume, at the first stage that the zeroth-order mass
matrix M0 is real and invariant under the following trans-
lational symmetry (we will denote this symmetry as hidden
symmetry 1, HS1)

q1 ! q1 þ c�z; q2 ! q2 þ s�c�z;

q3 ! q3 þ s�s�c!z; q4 ! q4 þ s�s�s!z:
(5)

where c�, s� ¼ cos�, sin� etc., and z is a space-time
independent constant of Grassmann algebra anticommut-
ing with the Dirac fields.

This symmetry guarantees that the vector

Q1 ¼ c�q1 þ s�c�q2 þ s�s�c!q3 þ s�s�s!q4; (6)

is a massless eigenstate of the theory, as under the HS1 it

transforms as Q1 ! Q1 þ z. On the other hand, the three
orthogonal (to Q1) vectors

Q2 ¼ �s�q1 þ c�c�q2 þ c�s�c!q3 þ c�s�s!q4

Q3 ¼ �s�q2 þ c�c!q3 þ c�s!q4

Q4 ¼ �s!q3 þ c!q4;

(7)

are invariant under the HS1, i.e., Qi ! Qi for i ¼ 2, 3, 4.
The rotation from the hidden frame fq1; q2; q3; q4g to the
HS1 frame fQ1; Q2; Q3; Q4g can be written as Qi ¼ Rijqj,

thus defining the real unitary matrix R:

R ¼
c� s�c� s�s�c! s�s�s!
�s� c�c� c�s�c! c�s�s!
0 �s� c�c! c�s!
0 0 �s! c!

0
BBB@

1
CCCA: (8)

Demanding translational invariance under HS1 of
Eq. (5), M0 has only one massless eigenstate (the state
Q1). Thus, in order to enforce the chiral limit for the first
two generations, we will demand that the zeroth-order
mass matrix is invariant under an additional translation
operation, which is operational in the HS1 frame
fQ1; Q2; Q3; Q4g and which we will name hidden symme-
try 2 (HS2). Without loss of generality, we assume that
HS2 is orthogonal to HS1 as follows:

Q1 ! Q1; Q2 ! Q2 þ c�t;

Q3 ! Q3 þ s�c�t; Q4 ! Q4 þ s�s�t:
(9)

The additional symmetry HS2 guarantees that the vector

P1 ¼ c�Q2 þ s�c�Q3 þ s�s�Q4; (10)

which is orthogonal to Q1, is also massless.
The most general form of the Yukawa term M0 that is

invariant under the independent translations in both direc-
tions HS1 and HS2, can then be written as:

M 0 ¼ �jc�Q4 � s�Q3j2 þ �jc�Q4 � s�s�Q2j2
þ 	jc�Q3 � s�c�Q2j2; (11)

and this defines the quark mass matrix M0. Recall that,
since M0 is invariant under HS1 and HS2, two of its four
eigenstates, i.e., Q1 and P1, are necessarily massless.
Before deriving the full zeroth-order system (i.e., 2 non-

zero masses and 4 states), we wish to point out the mapping
of our double hidden symmetry (HS1 and HS2) to the
generic parametrizations of the hidden symmetry in
Eq. (3). In particular, using the definition for HS1 and
HS2 in Eqs. (5) and (9), respectively, and the fact that q ¼
R�1Q, we obtain the overall hidden symmetry for the SM4
case:
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q1 ! q1 þ c�z� s�c�t;

q2 ! q2 þ s�c�zþ½c�c�c� � s�s�c��t;
q3 ! q3 þ s�s�c!zþ½c�s�c!c� þ c�c!s�c� � s!s�s��t;
q4 ! q4 þ s�s�s!zþ½c�s�s!c� þ c�s!s�c� þ c!s�s��t;

(12)

from which one can extract the hidden symmetry parame-
ters �i

z and �i
t of Eq. (3), as a function of the angles which

define the orientations of HS1 and HS2 with respect to the
hidden frame fq1; q2; q3; q4g.

Note that the expression forM0 in Eq. (11) contains five
angles: the two (explicit) angles � , � associated with the
orientation of HS2 with respect to the HS1 frame
fQ1; Q2; Q3; Q4g and the three angles �, �, ! associated
with the orientation of HS1 with respect to the hidden
frame fq1; q2; q3; q4g, which enter through the rotation
Q ¼ Rq. Thus, along with the parameters �, � and 	,
M0 in Eq. (11) is parametrized by 8 real parameters (in
each sector) as required when imposing the double hidden
symmetry (see discussion above). However, there is one
nonphysical angle in each sector which results from the
fact that the two orthogonal states Q1, P1 are massless at
zeroth-order and are, therefore, indistinguishable. This can
be easily understood by considering the geometrical inter-
pretation of the hidden symmetry in the SM4 case. In
particular, the double hidden symmetry (HS1þ HS2) de-
fines a plane in the hidden frame fq1; q2; q3; q4g under
which the theory is invariant. This is the plane spanned
by the two orthogonal vectors Q1 and P1. We, therefore,
have the freedom to make any unitary transformation in the
Q1 � P1 plane/subspace (in both up and down-quark sec-
tors) without affecting the physical picture. This allows us
to eliminate one angle in each of the ðv0

d; v
0
sÞ and ðv0

u; v
0
cÞ

subspaces. Thus, without loss of generality we find it
convenient to choose ! ¼ 
=2 in both sectors, which
sets Q4 ¼ q3 and Q1, Q2, Q3 ? q3. This is analogous to
a gauge condition in a vector field theory as also identified
in [12]. Note that even though at each sector the massless
states ðv0

d; v
0
sÞ and ðv0

u; v
0
cÞ are indistinguishable at the

zeroth-order, as we will see in the next section, after break-
ing the hidden symmetry this degeneracy is removed, and
those (now massive) states become well defined.

We are now ready to derive the mass spectrum and the
4� 4 CKM matrix at zeroth-order, i.e., without
T-violation. Recall that, by construction, there are two
massless states, given by Q1 and P1. In order to find the
2 massive states we can apply the original FL formulae for
three generations to the fQ2; Q3; Q4g subspace. As in [12],
we find that the eigensystem of M0 depends only on two
linear combinations of �, �, 	, so that one of these three
parameters can be ‘‘gauged away’’. Following the choice
of FL in [12], we eliminate the parameter 	 using the
‘‘gauge’’ condition (i.e., this has no effect on the physical
outcome):

�

	
¼ 1: (13)

Using this condition, we diagonalize the mass matrixM0

and find that the two massive states are

P2 ¼ �s�Q2 þ c�c�Q3 þ c�s�Q4;

P3 ¼ �s�Q3 þ c�Q4;
(14)

with masses:

mP2
¼ �; (15)

mP3
¼ �þ c2�� ¼ �þ c2�mP2

: (16)

Note that, formP3
� mP2

and/or c� ! 0we havemP3
�

� and mP2
� � (see below).

Thus the complete set of eigenstates of M0 at zeroth-
order becomes quite simple, as it is given by
fQ1; P1; P2; P3g with masses f0; 0; mP2

; mP3
g, which we

henceforward identify (in each sector) as the zeroth-order
quark states:

fv0
d; v

0
s ; v

0
b; v

0
b0 g � fQd

1 ; P
d
1 ; P

d
2 ; P

d
3g; (17)

fv0
u; v

0
c; v

0
t ; v

0
t0 g � fQu

1 ; P
u
1 ; P

u
2 ; P

u
3g; (18)

with masses m0
d ¼ m0

s ¼ m0
u ¼ m0

c ¼ 0 and:

m0
b ¼ �d; m0

b0 � �d;

m0
t ¼ �u; m0

t0 ¼ �u þ c2�um
0
t ;

(19)

where the superscripts d and u distinguish between the
parameters in the down-quark and up-quark sectors, re-
spectively. Note that since T-violation is responsible for
generating the light-quark masses, it is a small perturbation
to the T-invariant zeroth-order spectrum. Thus for all
practical purposes we can set mb � m0

b, mb0 � m0
b0 , mt �

m0
t , and mt0 � m0

t0 (see also below).

Using the orientation of the HS1 frame Qi with respect
to the hidden frame qi, i.e., Q ¼ Rq with R given in
Eq. (8), and the orientation of the states P2, P3 with respect
to the fQ2; Q3; Q4g subframe [as given in Eq. (14)], we can
write the set of four eigenstates in each sector in terms of
the weak (hidden) states qi (as required in order to derive
the zeroth-order (real) 4� 4 CKM matrix):

v0
d

v0
s

v0
b

v0
b0

0
BBB@

1
CCCA ¼

Rd
1i

Ad
i

Bd
i

Cd
i

0
BBB@

1
CCCAqdi ;

v0
u

v0
c

v0
t

v0
t0

0
BBB@

1
CCCA ¼

Ru
1i

Au
i

Bu
i

Cu
i

0
BBB@

1
CCCAqui ; (20)

where the superscripts u and d are again added in order to
distinguish between the angles associated with the up and
down-quark sectors, respectively. Also,
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Ad
i � cos�d � Rd

2i þ sin�d � cos�d � Rd
3i

þ sin�d � sin�d � Rd
4i (21)

Bd
i � � sin�d � Rd

2i þ cos�d � cos�d � Rd
3i

þ cos�d � sin�d � Rd
4i; (22)

Cd
i � � sin�d � Rd

3i þ cos�d � Rd
4i; (23)

and similarly for the up-quark sector with Au
i , B

u
i , C

u
i using

Ru and �u, �u, where �d, �d ð�u; �uÞ are the HS2 angles in
the down(up)-quark sector and Rd(Ru) is the matrix which
defines the rotation from the hidden frame to the HS1
frame in the down(up)-quark sector with the corresponding
angles �d, �d, !d ð�u;�u;!uÞ in Eq. (8).

Then denoting by D0 ¼ ðv0
d; v

0
s ; v

0
b; v

0
b0 Þ and U0 ¼

ðv0
u; v

0
c; v

0
t ; v

0
t0 Þ the unitary matrices that diagonalize the

real and symmetric mass matrices in the down and up-
quark sectors, respectively:

Dy
0M0ðqdÞD0 ¼ diagð0; 0; m0

b; m
0
b0 Þ; (24)

Uy
0M0ðquÞU0 ¼ diagð0; 0; m0

t ; m
0
t0 Þ; (25)

we can obtain the 4� 4 zeroth-order CKM matrix of the
SM4 (i.e., without T-violation):

V0ðCKMÞ ¼ Uy
0D0: (26)

The general expression for V0ðCKMÞ in terms of the
angles that define the hidden symmetry in the up and down-
quark sectors is rather complicated to be written here. Let
us, therefore, choose a specific physical orientation of the
hidden symmetry, where the direction of HS2 is partly
fixed by the angle � with the choice � ¼ ! ¼ 
=2 in
each sector (recall that we have fixed the angle ! ¼ 
=2
in a manner similar to choosing a gauge). This orientation
is physically viable in the sense that it reproduces the
observed light-quark masses and the measured CKM mix-
ing angles. It will be used in the next sections to demon-
strate the general mechanism for breaking the hidden
symmetry and T-invariance and the corresponding genera-
tion of the light-quark masses.

In particular, using Eqs. (17)–(26) with � ¼ ! ¼ 
=2
we obtain

V0
ud ¼ c�uc�d þ s�us�d cosð�u ��dÞ;

V0
us ¼ s�uc�d

sinð�u ��dÞ;
V0
ub ¼ c�us�d � s�uc�d cosð�u ��dÞ;

V0
ub0 ¼ �s�us�d

sinð�u ��dÞ;
V0
cd ¼ �s�dc�u

sinð�u ��dÞ;
V0
cs ¼ s�u

s�d
þ c�u

c�d
cosð�u ��dÞ;

V0
cb ¼ c�u

c�d sinð�u ��dÞ;
V0
cb0 ¼ s�u

c�d
� c�u

s�d
cosð�u ��dÞ;

V0
td ¼ c�ds�u � s�dc�u cosð�u ��dÞ;

V0
ts ¼ �c�d

c�u sinð�u ��dÞ;
V0
tb ¼ s�us�d þ c�uc�d cosð�u ��dÞ;

V0
tb0 ¼ s�d

c�u sinð�u ��dÞ;
V0
t0d ¼ s�ds�u

sinð�u ��dÞ;
V0
t0s ¼ s�d

c�u
� c�d

s�u
cosð�u ��dÞ;

V0
t0b ¼ �s�u

c�d sinð�u ��dÞ;
V0
t0b0 ¼ c�d

c�u
þ s�d

s�u
cosð�u ��dÞ:

(27)

From these expressions we can find the size of some of
the hidden symmetry angles in terms of the observed 3� 3
CKM elements and, also, several interesting and surprising
relations/predictions for the mixing angles of the 4th gen-
eration quarks with the first 3 generations:

� tan�u ¼ Vus

Vts

¼ Vub0

Vtb0
; (28)

� tan�d ¼ Vcd

Vcb

¼ Vt0d

Vt0b
; (29)

� tan�u ¼ Vt0d

Vcd

; (30)

� tan�d ¼ Vub0

Vus

; (31)

implying Vt0d > Vt0b and Vub0 >Vtb0—opposite to the hier-
archical pattern as observed in the SM3’s 3� 3 block.
In addition, taking V2

ts=V
2
us � V2

cb=V
2
cd 	 1, Vud � 1�

�2=2 and Vcs � 1� �2=2, where �� 0:2257 is the
Wolfenstein parameter [14], we find that �u ��d is the
Cabibbo angle (i.e., the Wolfenstein parameter) with

sinð�u ��dÞ � �� 0:2257; (32)

cosð�u ��dÞ � Vud �Oð�2Þ; (33)

and

c�d �
Vcb

Vcd

�Oð�Þ (34)
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c�u �
Vts

Vus

�Oð�Þ (35)

cosð�u � �dÞ � Vcs �Oð�2Þ; (36)

also implying that �u � �d. This in turn gives

Vt0b0 � Vcs (37)

Vub0 � Vt0d: (38)

Furthermore, for the top-quark mixing angles we get

Vtb � 1�Oð�2Þ; (39)

Vtd �
�
Vcb

Vcd

� Vts

Vus

�
þOð�2Þ; (40)

In the next sections we will use this physical setup to
break T-invariance and derive the CP-violating parameters
of the model.

III. T-VIOLATION AND HIDDEN SYMMETRY
BREAKING MECHANISM

There are, of course, several ways to break the hidden
symmetry without breaking T-invariance (we will further
comment on that below). Here we wish to extend the
attractive mechanism for the simultaneous breaking of
both the hidden symmetry and T-invariance, that was
suggested by Friedberg and Lee in [12] in the SM3 case,
and formulate the general breaking mechanism for the
SM4 case.

In particular, when the hidden symmetry and
T-invariance are broken simultaneously, the massless
states v0

d, v
0
s , v

0
u, v

0
c (which were protected by the hidden

symmetry) acquire a mass which is directly related to the
size of the phases responsible for T-violation: two
CP-violating phases in the up-quark sector are needed to
generate the masses mu and mc, while two CP-violating
phases in the down-quark sector generate the masses md

andms. Since we know thatmu;c 	 mt;t0 andmd;s 	 mb;b0 ,

we can treat the effect of T-violation as a perturbation to
the zeroth-order (T-invariant) approximation in both the
down and up-quark sectors.

In what follows we will describe the breaking mecha-
nism using the generic notation outlined in the previous
section, which holds for both down and up-quark sectors.
The application of the results below to a specific sector is
straightforward.

In order to break the hidden symmetry we rewrite the
zeroth-order Yukawa term M0 in terms of its eigenstates:

M 0 ¼
X
i

m0
i jv0

i j2 ¼ mP2
jP2j2 þmP3

jP3j2; (41)

where we have used the fact that mQ1
¼ mP1

¼ 0. This

gives [see Eqs. (17), (18), and (20)]:

ðM0Þij ¼ mP2
BiBj þmP3

CiCj; (42)

where we have dropped the superscripts d or u in the

coefficients Bd;u
i and Cd;u

i [as defined in Eqs. (22) and
(23)], so that the expression above applies to both down
and up sectors. Following the original Friedberg and Lee
proposal in [12], in the minimal setup, T-invariance and
the hidden symmetry can then be broken by inserting a
phase in any one of the nondiagonal entries of ðM0Þij as
follows:

ð�MÞij ¼ ðmP2
BiBj þmP3

CiCjÞ � ðei�ij � 1Þ; j > i;

ð�MÞji ¼ ð�MÞ?ij; (43)

such that

M ¼ M0 þ �M: (44)

and �ij 	 1, hence, �M 	 M0 so that �M can be treated

as a perturbation. As we shall demonstrate in the next
section, in the minimal setup, two such phase insertions
(in each sector) are required in different locations inM0 in
order to break both HS1 and HS2 and to generate the
observable masses of the first 2 light generations of quarks.
Before studying the breaking pattern described in

Eq. (43), we wish to briefly comment here on other pos-
sible frameworks for the breaking mechanism that may
lead to richer phenomenological implications for flavor
physics. In particular, as mentioned above, in general the
hidden symmetry can be broken without affecting
T-invariance in the theory. Thus, one can envision a
more general breaking term that can allow the generation
of the light-quark masses in different limits of the
T-invariance breaking. For example, in Eq. (43) we could
replace the breaking term (ei� � 1) with (e�ei� � 1), in
which case T-invariance and the chiral limit in the light-
quarks sector can be restored in different limits of �,
� ! 0.1 In particular, with such a term the chiral limit
can still be broken with � ! 0 as long as � � 0. Indeed,
such a more general breaking term can give rise to a richer
phenomenology for flavor physics and CP-violation—for
example, it may allow keeping the light-quark masses
small even with a large CP-phase (�), if � is adjusted
accordingly. Such issues and a more elaborate study of the
hidden symmetry breaking mechanism will be presented
in [15].
Coming back to the minimal setup of Eq. (43), let us

write the overall T-violating term as

�M � �Mz þ �Mt; (45)

where �Mz and �Mt contain the new phases that break
HS1 and HS2, respectively, each given by the generic form

1We thank the referee for raising this point and for suggesting
the modified breaking term (e�ei� � 1), which effectively dem-
onstrates the importance and the impact of the breaking mecha-
nism on the phenomenology of flavor with hidden symmetries.
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in Eq. (43). The T-violating mass term �M then shifts the
zeroth-order masses and states. Using perturbation theory,
these shifts are given in the general case without degener-
acies by

�mq � mq �m0
q ¼ ðv0

qÞy�Mv0
q; (46)

�vq � vq � v0
q ¼

X
q�q0

ðv0
q0 Þy�Mv0

q

m0
q �m0

q0
v0
q0 ; (47)

where m0
q and v0

q are the zeroth-order masses and states

(i.e., v0
q and v0

q0 stands for any one of the vectors Q1, P1,

P2, P3 in either the up- or down-sectors),�mq are the mass

shifts due to the breaking of the hidden symmetry and �vq

contains the imaginary terms which are / i sin�ij from

which the physical T-violating elements of the 4� 4
CKM matrix are constructed.

In our case, however, the states Q1 and P1 are degener-
ate. Thus, in order to find the physical masses (m
) and
their corresponding physical states (v
) in the Q1 � P1

subspace, we need to diagonalize the following 2� 2
perturbation mass matrix in the Q1 � P1 subspace:

�mðQ1; P1Þ ¼ Qy
1�MQ1 Qy

1�MP1

Py
1�MQ1 Py

1�MP1

 !

� �mQQ �mQP

�mPQ �mPP

� �
; (48)

where �mQP ¼ ð�mPQÞy and �mQQ, �mPP are real. That

is, after breaking T-invariance, the physical masses and
states of the first two generations are given by

m
 ¼ �mQQ þ �mPP

2

�
�
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð�mQQ�mPP � �mQP�mPQÞ

ð�mQQ þ �mPPÞ2
vuut �

;

(49)

and

vþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mQPj2 þ ðmþ ��mQQÞ2

q
� ½j�mQPjQ1 þ ðmþ � �mQQÞP1�

v� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mPQj2 þ ðm� ��mPPÞ2

q
� ½ðm� � �mPPÞQ1 þ j�mPQjP1�:

(50)

The corresponding corrections/shifts to the physical
states are still calculated from Eq. (47), where now v0

q,

v0
q0 2 fv�; vþ; P2; P3g. In particular, let us further define

the ‘‘perturbation matrix’’:

ðv0
qÞy�Mv0

q0 � iPqq0 ; (51)

where q � q0 and, toOð�Þ, Pqq0 are real andPq0q ¼ �Pqq0 .

That is, ðv0
q0 Þy�Mv0

q ¼ ½ðv0
qÞy�Mv0

q0 �y ¼ �iPqq0 , where

q, q0 2 d, s, b, b0 in the down-quark sector and q, q0 2 u,
c, t, t0 in the up-quark sector. Also note that the perturba-
tion matrix is diagonal in the ðv� � vþÞ subspace to Oð�Þ
[i.e., Pds ¼ Psd � Oð�2Þ and Puc ¼ Pcu � Oð�2Þ].
In the next section, for simplicity we will consider the

case where the perturbation is diagonal in the Q1 � P1

subspace, i.e., �mQP ¼ 0 in Eq. (48), so that v� ¼ Q1

and vþ ¼ P1. In this simple case we can use Eqs. (47) and
(51) to obtain the Oð�Þ shifts, �vq, to the zeroth-order

states ðv0
d; v

0
s ; v

0
b; v

0
b0 Þ and ðv0

u; v
0
c; v

0
t ; v

0
t0 Þ [as defined in

Eqs. (20)–(23)]:

�vd ¼ i

�
Pdb

mb

v0
b þ

Pdb0

mb0
v0
b0

�

�vu ¼ i

�
Put

mt

v0
t þ Put0

mt0
v0
t0

�

�vs ¼ i

�
Psb

mb

v0
b þ

Psb0

mb0
v0
b0

�

�vc ¼ i

�
Pct

mt

v0
t þ Pct0

mt0
v0
t0

�

�vb ¼ i

�
Pdb

mb

v0
d þ

Psb

mb

v0
s þ Pbb0

mb0 �mb

v0
b0

�

�vt ¼ i

�
Put

mt

v0
u þ Pct

mt

v0
c þ Ptt0

mt0 �mt

v0
t0

�

�vb0 ¼ i

�
Pdb0

mb0
v0
d þ

Psb0

mb0
v0
s þ Pbb0

mb0 �mb

v0
b

�

�vt0 ¼ i

�
Put0

mt0
v0
u þ Pct0

mt0
v0
c þ Ptt0

mt0 �mt

v0
t

�

(52)

such that, to Oð�Þ, the physical states are given by vq ¼
v0
q þ �vq. The corresponding Oð�Þ corrections to v0

q in

the general case where the perturbation is not diagonal in
the Q1 � P1 subspace, can be easily derived from the
expressions for v
 in Eq. (50) and the shifts �vq in

Eq. (52) above. For example,

�v� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mPQj2 þ ðm� � �mPPÞ2

q
� ½ðm� ��mPPÞ � �vd þ j�mPQj � �vs� (53)

where �vd;s are given in Eq. (52).

The physical (T-violating) 4� 4 CKM matrix elements
are, therefore, given symbolically by (u and d stand for any
of the up- and down-quark states, respectively):

Vud ¼ ðvuÞy � vd ¼ V0
ud þ ð�vuÞy � v0

d þ v0
u ��vd;

(54)

where V0
ud ¼ ðv0

uÞT � v0
d is the zeroth-order CKM matrix
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elements and the terms ½ð�vuÞy � v0
d�, ½v0

u ��vd�which are
also functions of the zeroth-order CKM elements, are
readily obtained from Eq. (52) above. For example, in
the simple case where v� ¼ Q1 and vþ ¼ P1, Vud [i.e.,
now the (11) elements of V] is given by

Vud ¼ V0
ud þ i

�
Pdb

mb

V0
ub þ

Pdb0

mb0
V0
ub0 �

Put

mt

V0
td �

Put0

mt0
V0
t0d

�

þOð�2Þ: (55)

Note that the zeroth-order elements V0
ud, given in

Eq. (27), are a good approximation to the magnitude of
the physical CKM angles [i.e., up to corrections of Oð�2Þ,
where � is any one of the CP-violating phases].

IV. A PHYSICAL FRAMEWORK FOR
T-VIOLATION

In the previous two sections we have described the
general features of the hidden symmetry and the generic
mechanism of breaking T-invariance and generating the
corresponding light-quark masses in coincidence with the
breaking of the hidden symmetry in the case of SM4. In this

section we would like to give a concrete physical example
(i.e., compatible with all relevant known data) which is
relatively simple analytically, therefore, providing insight
for the physical picture. Our chosen setup below illustrates
the power of this mechanism in predicting the new mixing
angles and phases associated with the 4th generation of
quarks and the size of CP-violation of the theory.
As in the previous section, here also we consider a

specific orientation for the hidden symmetry, where the
direction of HS2 is partly fixed by setting � ¼ 
=2 in each
sector. The hidden symmetry is then broken by inserting
the phases in the 12 and 34 elements of the mass matrix
M0, such that

�Mz ¼ ð�MÞ12; �Mt ¼ ð�MÞ34; (56)

where ð�MÞij is defined in Eq. (43). Note that with ! ¼
� ¼ 
=2 we have B1 ¼ s�, B2 ¼ �c�c�, B3 ¼ 0, B4 ¼
�c�s�, C1 ¼ 0, C2 ¼ s�s�, C3 ¼ �c�, and C4 ¼ �s�c�
[see Eqs. (22) and (23)]. Thus, the overall T-violating term,
�M ¼ �Mz þ�Mt, is given by:

�M ¼
0 �mP2

s�c�c�ðei�12 � 1Þ 0 0
�mP2

s�c�c�ðe�i�12 � 1Þ 0 0 0
0 0 0 mP3

s�c�c�ðei�34 � 1Þ
0 0 mP3

s�c�c�ðe�i�34 � 1Þ 0

0
BBB@

1
CCCA: (57)

For simplicity and without loss of generality, we will
further take s� 	 1 for � ¼ �d ��u [recall that
cosð�u ��dÞ � Vud � 1 implying �u ��d, see previous
section], which allows us to obtain a relatively compact
analytical picture. In particular, one simplification that
arises with this choice, is that the perturbation in the Q1 �
P1 subspace, �mðQ1; P1Þ in Eq. (48), is approximately
diagonal so that m� � �mQQ, mþ � �mPP and the cor-
responding states are v� � Q1, vþ � P1 in each sector. In
particular, �M in Eq. (57) generates the following light-
quark masses (we now add the superscripts d and u to
distinguish between the angles in the down and up-quark
sectors):

md � 2mbs
2
�d
c2�dð1� cos�d

12Þ; (58)

ms � 2mb0s
2
�d
c2�d

ð1� cos�d
34Þ; (59)

mu � 2mts
2
�u
c2�uð1� cos�u

12Þ; (60)

mc � 2mt0s
2
�u
c2�u

ð1� cos�u
34Þ: (61)

where [see Eq. (19) and set � ¼ 
=2]:

mb � �d; mb0 � �d; mt � �u; mt0 � �u:

(62)

As expected, we cannot reproduce the physical light-
quark mass spectrum if any of the phases �ij above van-

ishes. Note also that, since �u � �d and �u � �d [see
Eqs. (34) and (36)], we can also use the expressions in
Eqs. (58)–(61) for the light-quark mass terms to relate the
phases in one sector to the phases in the other sector:

�d
12

�u
12

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mdmt

mumb

s
� 10; (63)

�d
34

�u
34

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
msmt0

mcmb0

s
� 0:3; (64)

where we have taken mt0=mb0 � 1.
Finally, for our chosen orientation with � ¼ 
=2

and � 	 1, the Pqq0 elements required to calculate

the imaginary terms of the 4� 4 CKM elements [see
Eqs. (51)–(55)] are given by (to first order in �ij):

Pdb ¼ mbs�dc�d sin�
d
12; Psb0 ¼ mb0s�d

c�d
sin�d

34;

Put ¼ mts�uc�u sin�
u
12; Pct0 ¼ mt0s�u

c�u
sin�u

34;

(65)

and all other Pqq0 elements vanish. Using the expressions

for the light-quark masses in Eqs. (58)–(61), we can reex-
press the elements of the perturbation matrix Pqq0 in
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Eq. (65) above in terms of the CP-phases and the light-
quark masses:

Pdb � ffiffiffiffiffiffiffiffiffiffiffiffiffi
mdmb

p
cosð12�d

12Þ; Psb0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
msmb0

p
cosð12�d

34Þ;
Put � ffiffiffiffiffiffiffiffiffiffiffiffi

mumt

p
cosð12�u

12Þ; Pct0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
mcmt0

p
cosð12�u

34Þ;
(66)

V. CP-INVARIANTS WITH FOUR GENERATIONS

As in the SM3, CP-violation in the SM4 can also be
parametrized using CP-invariants a la the Jarlskog invari-
ant JSM of the SM3 [8]. Indeed, as was shown in [8], the
invariant CP-violation measure in the four quark families
case can be expressed in terms of four ‘‘copies’’ similar to
JSM (out of which only three are independent): J123, J124,
J134, and J234, where the indices indicate the generation
number, i.e., in this language one identifies JSM with J123
even though these twoCP-invariants are not quite the same
as JSM is no longer a valid CP-quantity in the SM4.

A generic derivation of the four Jijk copies in terms of

the quark masses and CKM mixing angles is quite com-
plicated and we are unable to give it in a compact analytical
format. There are several useful general formulations in the
literature for the parametrization of CP-violation in the
SM4 [8,16], but none is at the level of simplification
required for an analytical study of CP-violation in our
model. A numerical calculation/study of the CP-violating
quantities in our model is, however, straight forward fol-
lowing the prescription of the previous sections. This will
be presented elsewhere [15].

On the other hand, as was observed more than 10 years
ago [17] and noted again recently in [4], in the chiral limit
mu;d;s;c ! 0, CP-violation in the SM4 effectively

‘‘shrinks’’ to the CP-violation picture of a three generation
model involving the 4th generation heavy quarks. This
chiral limit, which is in the spirit of our current study, is
clearly applicable at high energies of the EW-scale and
above. Moreover, it allows us to derive a compact analyti-
cal estimate for the expected size of CP-violation in our
model.2

As was shown in [17], in the chiral limit there is no
CP-violation within the three families SM3 and so all
CP-violating effects are attributed to the new physics—in
our case, to the fourth generation of quarks. The key
CP-violating quantity in this limit can be written as [17]

JSM4 ¼ ImðVtbV
?
t0bVt0b0V

?
tb0 Þ; : (67)

since this is the only CP-violating quantity that survives
when one takes the limit mu;d;s;c ! 0.
Thus, in order to get some insight for the expected size

of CP-violation in our model, it is sufficient to derive an
estimate for JSM4. In particular, we will calculate JSM4 for
the specific orientation used in the previous section, i.e., for
the case � ¼ 
=2 and � 	 1.
Using the Pqq0 factors of Eq. (66) and based on Eq. (55),

we can calculate (to Oð�Þ) the relevant complex CKM
elements which enter JSM4 in Eq. (67):

Vtb � V0
tb þ i

�
V0
td

ffiffiffiffiffiffiffi
md

mb

s
cos

�
1

2
�d
12

�

� V0
ub

ffiffiffiffiffiffiffi
mu

mt

s
cos

�
1

2
�u
12

��
; (68)

Vt0b � V0
t0b þ i

�
V0
t0d

ffiffiffiffiffiffiffi
md

mb

s
cos

�
1

2
�d
12

�

� V0
cb

ffiffiffiffiffiffiffi
mc

mt0

s
cos

�
1

2
�u
34

��
; (69)

Vtb0 � V0
tb0 þ i

�
V0
ts

ffiffiffiffiffiffiffiffi
ms

mb0

s
cos

�
1

2
�d
34

�

� V0
ub0

ffiffiffiffiffiffiffi
mu

mt

s
cos

�
1

2
�u
12

��
; (70)

Vt0b0 � V0
t0b0 þ i

�
V0
t0s

ffiffiffiffiffiffiffiffi
ms

mb0

s
cos

�
1

2
�d
34

�

� V0
cb0

ffiffiffiffiffiffiffi
mc

mt0

s
cos

�
1

2
�u
34

��
: (71)

We can now estimate the size of CP-violation in our
model, which can emanate in high-energy processes in-
volving t0 and b0 exchanges. In particular, since the zeroth-
order CKM elements are a good approximation for the
magnitude of physical elements, we set V0

ij � Vij and use

the results and relations obtained for the CKM elements in
the previous sections [see Eqs. (28)–(40)]: Vtb � 1, Vt0b0 �
Vcs � 1, Vt0b � Vub0 � ðVcb=VcdÞ and Vtb0 � Vub0 �
ðVts=VusÞ. We then obtain

JSM4 � Vub0
Vts

Vus

�
Vcb

ffiffiffiffiffiffiffi
mc

mt0

s
cos

�
1

2
�u
34

�

� Vub0

ffiffiffiffiffiffiffi
md

mb

s
cos

�
1

2
�d
12

��
þ Vub0

Vcb

Vcd

�
�
Vub0

ffiffiffiffiffiffiffi
mu

mt

s
cos

�
1

2
�u
12

�
� Vts

ffiffiffiffiffiffiffiffi
ms

mb0

s
cos

�
1

2
�d
34

��
:

(72)

2Note that, although their is no CP-violation in our model in
the chiral limit mu;d;s;c ! 0 (which is our zeroth-order approxi-
mation), we can use the CP-violating quantities obtained in [17]
in this limit, since those are given in terms of the physical mixing
angles. In our model, the imaginary parts of these mixing angles
are proportional to the very small light-quark masses.
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Setting Vcb ��Vts � A�2 and Vts=Vus � Vcb=Vcd �
�A� and (consistent with their measured values [14],
where A� 0:81 and � ¼ 0:2257 is the Wolfenstein pa-
rameter), and taking Vub0 � Vcb � A�2 and mt0 � 2mt,
mb0 �mt0 � 55 GeV, consistent with the electroweak pre-
cision tests [6,18], we obtain

jJSM4j � A3�5 �
� ffiffiffiffiffiffiffi

mu

mt

s
þ

ffiffiffiffiffiffiffi
mc

mt0

s
�

ffiffiffiffiffiffiffi
md

mb

s
þ

ffiffiffiffiffiffiffiffi
ms

mb0

s �
� 10�5;

(73)

where we have used cosð�d
12=2Þ � cosð�d

34=2Þ �
cosð�u

12=2Þ � cosð�u
34=2Þ � 1 for the numerical estimate

(see below). Indeed, with the above chosen values for the
CKM elements and the 4th generation quark masses, all the
four phases are fixed by the requirement that they repro-
duce the corresponding light-quark masses as given in
Eqs. (58)–(61). In particular, according to Eqs. (58)–(61)
and the relations between the hidden symmetry angles and
the CKM elements as given by Eqs. (28)–(31), we have

cosð�u
34Þ � 1� mc

2mt0
V2

ub0
V2
cd

� 0:945; (74)

cosð�d
12Þ � 1� md

2mb
V2
cb

V2
cd

� 0:98; (75)

cosð�d
34Þ � 1� ms

2mb0
V2

ub0
V2
us

� 0:995; (76)

cosð�u
12Þ � 1� mu

2mt
V2
ts

V2
us

� 0:9998; (77)

consistent with our perturbative description of
CP-violation.

From Eq. (73) we see that as the CP-violating phases
�d
12, �

u
34 ! 0, both md and mc approach zero and, there-

fore, also JSM4 ! 0. Note also that, for our chosen orien-
tation of the hidden symmetry, we have
JSM4 � 10�5 � JSM, i.e., the SM4 analogue of the SM3’s
Jarlskog invariant at high energies and the original mea-
sured SM3’s Jarlskog invariant are of similar size. These
results demonstrate the highly predictive power of our
model for the description of CP-violation and the genera-
tion of the light-quark masses in the SM4. In particular,
once the magnitude of the mixing angles and the masses of
the 4th generation quarks are measured, our model gives a

very distinct prediction for the expected size of
CP-violation in the SM4, which can be directly confirmed
at high-energy collider experiments. In a forthcoming pa-
per [15], we will perform a full numerical study and scan
the complete range of the free parameter space of our
model, subject to the relevant existing data. We will also
suggest ways to test our model in the upcoming LHC and
the future machines such as a Super-B factory and the
International Linear Collider.

VI. SUMMARY

Motivated by the recent hints of CP anomalies in the
B-system and by the idea of Friedberg and Lee in [12], we
have presented a new framework for CP-violation and the
generation of the light-quark masses in the SM with four
families—the SM4.
We have applied the basic ingredients of the FL mecha-

nism to the SM4 case, by constructing an extended
(double) hidden symmetry suitable for four families which
defines the zeroth-order states in the up and down-quarks
sectors and which ensures T-invariance. We then outlined
the breaking mechanism of both the hidden symmetry and
T-invariance in the SM4 case, from which we obtained the
CP-violating measure and the physical states in this model.
We have shown that this mechanism, when applied to the
SM4, can be highly predictive and can be tested in future
experiments. In particular, we gave one physically relevant
example for the predictive power of our model by choosing
a specific orientation of the hidden symmetry. This allowed
us to analytically derive the physical (observed) quark
states, and to give a prediction for the size of the mixing
angles between the 4th generation and the 1st three gen-
erations of the SM3 and for the size of CP-violation
associated with the 4th generation quarks.
A complete numerical study of our model, which ex-

plores the full phase-space of viable hidden symmetries for
the SM4 and the corresponding range of the expected size
of CP-violation and of the 4th generation mixing angles, is
in preparation and will be presented in [15].
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