
Next-to-leading order chiral perturbation theory of K� ! � and K ! �� amplitudes

Changhoan Kim1,2

1Department of Physics, Columbia University, New York, New York 10027, USA
2School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

(Received 29 August 2008; revised manuscript received 15 December 2008; published 17 July 2009)

It is shown that the low energy coefficients of the next-to-leading order chiral perturbation theory

needed to determine the physical �I ¼ 1=2, K ! �� decay amplitude can be fixed by calculating K� !
� amplitudes on the lattice. Unlike using next-to-leading order K ! �� amplitudes proposed by Laiho

and Soni, simulating K� ! � transitions on the lattice does not require evaluations of s-channel

disconnected diagrams which have been an obstacle in practice.
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I. INTRODUCTION

Chiral perturbation theory (�PT) provides a useful tool
in understanding the physics of mesons. In particular, it has
been employed to extrapolate important quantities to the
physical pion mass from the lattice calculations performed
using somewhat heavier mesons.

Employing leading order chiral perturbation theory in
lattice QCD calculations of nonleptonic kaon decays was
proposed by Bernard et al. in Refs. [1,2]. In this proposal,
the effective weak operators are rewritten in terms of
meson fields. The coefficients of those operators (low
energy coefficients (LECs)) are determined through lattice
simulations where lattice calculations of K ! vac and
K ! � can be used to determine the more difficult K !
�� amplitude. This calculation has been done [5,6] with
quenched ensembles using the leading order chiral pertur-
bation theory. However, the results did not show a good
agreement with the experimental observations.

Since then computing power has drastically improved
and we can afford to generate unquenched gauge ensem-
bles. The chiral perturbation theory treatment has also been
extended with the next-to-leading order (NLO) calculation
done by Laiho and Soni [7]. As mentioned in Ref. [7], the
next-to-leading order corrections could be around 30% and
the nonzero phase shift of the final �� state interaction
cannot be accommodated by the leading order chiral per-
turbation theory. Only chiral-loop corrections can induce
complex amplitudes.

However, at NLO K ! ��I¼0 simulations with un-
physically heavy pions in addition to K ! � and K !
vac ones on the lattice are needed to determine K ! ��
amplitudes with physical kinematics. There are significant
difficulties in lattice calculations of K ! ��I¼0 transi-
tions. Those difficulties basically result from the existence
of s-channel disconnected diagrams. The numerical evalu-
ation of those diagrams turn out to be very hard because of
the exponential decay of signal to noise (SN) ratio. In order
to avoid those difficulties, it is proposed to use K� ! �
transitions in Ref. [8].

The most notable advantage of using K� ! � ampli-
tudes is the elimination of s-channel disconnected dia-
grams. As one can see from the diagrams shown in
Figs. 1 and 4, the K ! �� and K� ! � diagrams are
related in a one-to-one fashion by simply moving the final
�þ propagator to the initial state. The s-channel discon-
nected diagram (C) of Fig. 1 is converted to the t-channel
disconnected diagram (C) of Fig. 4.
Furthermore, when practical calculations on the lattice

are to be performed, a more subtle advantage can be seen.
For lattice calculations of K ! �� amplitudes, in order to
ensure that the desired states are projected out, it would be
ideal to vary both the separation between the time where
the initial state is created and the time where the weak
operator is inserted (tO) and the separation between tO and
the time where the final state is annihilated. However,
varying both of the separations may be prohibitly expen-
sive in practice. In this case, it would be most useful to be
able to vary the time slice where the two particle state is
annihilated (or created for K� ! � transitions) because
the complexity of the two particle state makes it harder to
guess a priori the appropriate time separation needed to
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FIG. 1. Quark contraction diagrams for K ! �� matrix ele-
ments. The gray circle represents the insertion of a four-quark
operator. By crossing �þ over the operator, the corresponding
diagrams of Fig. 4 are obtained.
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project out the desired state. For K ! �� simulations, the
number of fermion propagator inversions must grow pro-
portional to the number of time slices where the�� state is
annihilated, as can be seen from the diagram (C) of Fig. 1.
In contrast, for K� ! � amplitudes, the K� state can be
created at all time slices with a fixed number of inversions
if sources are set at the time where the weak Hamiltonian
operator is inserted and also at the time where the � is
annihilated.

The same advantage can be exploited when the overlap
factors are calculated. Overlap factors, which describe the
overlap of the state created by the interpolating operator
and the desired state, must be divided out in order to extract
transition amplitudes from raw data. In order to compute
the overlap factors for the K ! �� amplitude, simulations
of �� ! �� (�� scattering) and K ! K (K spectrum)
are required, while for theK� ! � amplitude, simulations
of K� ! K� (K� scattering) and � ! � (� spectrum)
are necessary. Although the � ! � and K ! K simula-
tions may be equally easy, however, ��I¼0 scattering
simulations are significantly more difficult than those re-
quired for K� scattering simulations. As is well known, a
calculation of the s-channel disconnected diagrams is re-
quired for ��I¼0 scattering simulations [8]. In contrast,
strangeness conservation ensures that the s-channel dis-
connected diagrams are not required for K� scattering
simulations. A more detailed discussion can be found in
Ref. [8].

In this paper, the detailed �PT formulae for K� ! �
processes are presented. In the next two sections, we fix
notation by expressing the effective weak operators in
QCD as elements of the definite irreducible representation
of the SUð3ÞL � SUð3ÞR chiral symmetry group and their
corresponding expressions in terms of meson fields follow.
Then, it will be explicitly shown that the LECs needed to
determine the physical K ! �� decay amplitude at NLO
in �PT can be determined by analyzing the chiral expan-
sion of K� ! � amplitudes at simple kinematic points.
Those effects of finite volume are discussed which could be
an issue when two particle states with nonzero relative
momentum are considered. Practical issues related to fix-
ing many unknown LECs are also discussed in the later
section.

II. EFFECTIVE WEAK OPERATORS

The operator product expansion (OPE) can be used to
express K ! �� decay amplitudes in terms of matrix
elements of the �S ¼ 1 weak effective Hamiltonian,

h��jH �S¼1jKi ¼ GFffiffiffi
2

p VudV
�
us

X
cið�Þh��jQið�ÞjKi:

In essence, the OPE separates two important physical
scales: the cið�Þs, called Wilson coefficients, which con-
tain the short distance physics which can be calculated by
QCD and electroweak perturbative techniques and the

matrix elements h��jQið�ÞjKi, which are determined by
the long distance physics for which nonperturbative meth-
ods are required. A thorough discussion can be found e.g.
in Ref. [9].
If the charm-quark is integrated out, there are 10 of

Qið�Þ. Since they have been tabulated many times [10],
only two of them are shown, here:

Q1 ¼ �sa��ð1� �5Þua �ub��ð1� �5Þdb; (1)

Q7 ¼ 3

2
�sa��ð1� �5Þda

X
q

eq �qb�
�ð1þ �5Þqb: (2)

The Q1 is called a current-current weak operator and the
O7 arises from electroweak penguin diagrams.
In order to use chiral perturbation theory, these operators

must be written in terms of elements of irreducible repre-
sentations of the chiral symmetry group. The relevant four-
quark operators can be arranged into irreducible represen-
tations of the SUð3ÞL � SUð3ÞR chiral group with definite
isospin as follows:

X ð3=2Þ
27;1 ¼ ð�sdÞL½ð �uuÞL � ð �ddÞL� þ ð �suÞLð �udÞL;

X ð1=2Þ
27;1 ¼ ð�sdÞL½ð �uuÞL þ 2ð �ddÞL � 3ð �ssÞL� þ ð �suÞLð �udÞL;

X ð1=2Þ
8;1 ¼ ð �sdÞLð �uuÞL � ð�suÞLð �udÞL;

~X ð1=2Þ
8;1 ¼ ð�sdÞL½ð �uuÞL þ 2ð �ddÞL þ 2ð �ssÞL� þ ð �suÞLð �udÞL;

Y ð1=2Þ
8;1 ¼ ð �sdÞL½ð �uuÞR þ ð �ddÞR þ ð�ssÞR�;

Y ð1=2Þc
8;1 ¼ fð�sdÞL½ð �uuÞR þ ð �ddÞR þ ð �ssÞR�gc;

Y ð3=2Þ
8;8 ¼ ð �sdÞL½ð �uuÞR � ð �ddÞR� þ ð �suÞLð �udÞR;

Y ð3=2Þc
8;8 ¼ fð�sdÞL½ð �uuÞR � ð �ddÞR�gc þ fð�suÞLð �udÞRgc;

Y ð1=2Þ
8;8 ¼ ð �sdÞL½ð �uuÞR � ð�ssÞR� � ð �suÞLð �udÞR;

Y ð1=2Þc
8;8 ¼ fð�sdÞL½ð �uuÞR � ð�ssÞR�gc � fð�suÞLð �udÞRgc;

where we follow the notation of Ref. [6]. Operators are
classified by the Lorentz structure L � L and L � R and
represented by X and Y, respectively. The irreducible
representation to which the operator belongs is given in
the subscript and the short hand notation

ð�sdÞL ¼ �sa��ð1� �5Þda; ð�sdÞR ¼ �sb��ð1þ �5Þdb

is used. Because of invariance under the Fierz transforma-
tion, there are no color mixed L � L operators appearing,
but for L � R operators, their color mixed versions are
represented by superscript c:
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fð�sdÞLð �sdÞRgc ¼ �sa��ð1� �5Þdb �sb��ð1þ �5Þda: (3)

Finally, the isospin of the operators is also given in the
superscript.

In terms of this basis, the four-quark operators are
rewritten as

Q1 ¼ 1
2X

ð1=2Þ
8;1 þ 1

10
~Xð1=2Þ

8;1 þ 1
15X

ð1=2Þ
27;1 þ 1

3X
ð3=2Þ
27;1 ; (4)

Q7 ¼ 1
2½Yð1=2Þ

8;8 þYð3=2Þ
8;8 �: (5)

The strategy is to measure the matrix elements of the X
andY operators with quarks somewhat heavier than physi-
cal quarks and to use the chiral expansion to extrapolate the

matrix elements to the physical quark mass. Then, we can
recover the matrix elements of the Qið�Þ operators from
Eqs. (4) and (5).
Note that the classification of the X and Y operators

relies on the chiral symmetry. Thus, the realization of the
chiral symmetry on the lattice is crucial. Since Ginsparg-
Wilson fermions can allow extrapolation to the chiral limit
without taking continuum limit, using a lattice formulation
of one of those fermions is necessary for the calculations of
the matrix elements.
At leading order in the chiral expansion, which will be

defined in the next section, the K� ! � transition ampli-
tude can be written

h�jOð8;1ÞjK�i ¼ i

f3

�
�2ðm2

K �m2
�Þ
�
8

3
þ 4ið�m2

� þ 2ðpK � p�Þ þ ðpK � k�Þ þ ðp� � k�ÞÞ
3ðm2

� þ ðpK � p�Þ � ðpK � k�Þ � ðp� � k�ÞÞ
�

� 4�1ððpK � k�Þ � ðp� � k�ÞÞ
�
; (6)

where �1 and �2 are unknown LECs and will be deter-
mined by comparing with lattice calculations of e.g.

FVh�jYð1=2Þ
8;1 jK�i; (7)

where FV is the Lüscher-Lellouch finite volume factor
[11]. One can easily see from Eq. (6) that by varying
momentum and mass the unknown coefficients can be
determined [12]. We can then use Eq. (6) to reduce the
physical K ! �� transition amplitude by setting pK ¼
ðmK; 0Þ, p� ¼ ð�mK=2;kÞ, and k� ¼ ðmK=2;kÞ with

mK ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
p

.
Note that there are other operators belonging to the same

chiral representation (e.g. Xð1=2Þ
8;1 ). For those operators, the

same analysis can be done with different values of LECs.

III. CHIRAL PERTURBATION THEORY

Chiral perturbation theory (�PT) is based on an effective
field theory of the low energy sector of QCD. Its funda-
mental degrees of freedom are the lowest mass pseudosca-
lar mesons which are the Goldstone-bosons arising from
spontaneous chiral symmetry breaking. Because of the
nonlinear transformation of the Goldstone-bosons under
the symmetry group, the meson fields appear in the field �
given by

� ¼ exp

�
2i�ata

f

�
; (8)

where � belongs to the ð3; �3Þ representation of the
SUð3ÞL � SUð3ÞR, the 3� 3 matrices ta are proportional
to the Gell-Mann matrices with trðtatbÞ ¼ �ab, and the �a

are the real pseudoscalar-meson fields. The quantity f is
the meson decay constant in the chiral limit, with f� equal
to 130 MeV in this notation [7].

The leading order (Oðp2Þ) strong Lagrangian is given by

L ð2Þ
st ¼ f2

8
tr½@��y@��� þ f2B0

4
tr½�y�þ �y��; (9)

where � is a diagonal mass matrix with its diagonal
elements ðmu;md;msÞ. They are related to the meson
mass via

B0 ¼
m2

�þ

mu þmd

¼ m2
Kþ

mu þms

¼ m2
K0

md þms

: (10)

The leading order weak Lagrangian is given by

Lð2Þ
W ¼ �1 tr½�6@��

y@��� þ �22B0 tr½�6ð�y�þ�y�Þ�
þ �27t

ij
klð�y@��Þki ð�y@��Þlj þ �88 tr½�6�

yQ��
þ H:c:; (11)

where terms with coefficients �1 and �2 belong to the
(8, 1) representation of the SUð3ÞL � SUð3ÞR group and
the last two terms belong to the (27, 1) and the (8, 8)
representation, respectively.
The Lagrangian of the next-to-leading order (Oðp4Þ)

weak operators may be written

L ð4Þ
W ¼ X

eiO
ð8;1Þ
i þX

diO
ð27;1Þ
i þX

ciO
ð8;8Þ
i : (12)

The complete set of NLO weak operators with �S ¼ 1 is
discussed by Kambor, Missimer, and Wyler in Ref. [13]. A
minimal subset of operators contributing K ! � and K !
�� processes are studied in Refs. [14–17] and the explicit
forms are given in Refs. [7,17,18].
The (8, 8) and (27, 1) operators will not be considered in

this paper since the LECs for those operators can be
determined without �I ¼ 1=2, K ! �� simulations
[19]. The explicit forms of the (8, 1) operators are
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Oð8;1Þ
1 ¼ tr½�6S

2�; Oð8;1Þ
2 ¼ tr½�6S�tr½S�;

Oð8;1Þ
3 ¼ tr½�6P

2�; Oð8;1Þ
4 ¼ tr½�6P�tr½P�;

Oð8;1Þ
5 ¼ tr½�6½S; P��; Oð8;1Þ

10 ¼ tr½�6fS; L2g�;
Oð8;1Þ

11 ¼ tr½�6L�SL
��; Oð8;1Þ

12 ¼ tr½�6L��tr½fL�; Sg�;
Oð8;1Þ

13 ¼ tr½�6S�tr½L2�; Oð8;1Þ
15 ¼ tr½�6½P; L2��;

Oð8;1Þ
35 ¼ tr½�6fL�; @	W

�	g�; Oð8;1Þ
39 ¼ tr½�6W�	W

�	�

with S¼2B0ð�y�þ�y�), P ¼ 2B0ð�y���y�), L�¼
i�y@��, W�	¼2ð@�L	þ@	L�Þ, and ð�6Þij ¼ �3i�2j.

Finally, the next-to-leading order strong Lagrangian
relevant for kaon decay amplitudes is

L ð4Þ
st ¼ X

LiO
ðstÞ
i (13)

and the explicit forms for the OðstÞ
i are

O ðstÞ
1 ¼ tr½L2�2; OðstÞ

2 ¼ tr½L�L	�tr½L�L	�;
OðstÞ

3 ¼ tr½L2L2�; OðstÞ
4 ¼ tr½L2�tr½S�;

OðstÞ
5 ¼ tr½L2S�; OðstÞ

6 ¼ tr½S�2;
OðstÞ

8 ¼ 1
2 tr½S2 þ P2�:

(14)

IV. ROLE OF K� ! � MATRIX ELEMENTS

In this section, we will show explicitly that those LECs
necessary to calculate the physicalK ! �� amplitude can
be determined from K ! vac, K ! �, and K� ! �
amplitudes.
There are five types of operators depending on the

representation of the chiral group and isospin: (27, 1)�I ¼
3=2, (27, 1) �I ¼ 1=2,(8, 8) �I ¼ 1=2,(8, 8) �I ¼ 3=2,
and (8, 1) �I ¼ 1=2. In this paper, only (8, 1) �I ¼ 1=2
operators are discussed. LECs for other operators
ð27; 1Þ=ð8; 8Þ �I ¼ 1=2 or 3=2 can be determined without
the use of K ! ��I¼0 amplitudes [19].
In order to check that all the LECs sufficient to recon-

struct the physical K ! �� amplitude can be determined,
it is enough to look at the analytic terms. Since matrix
elements, meson masses, and the meson momenta are
calculated on the lattice, if we insert those quantities into
the following �PT formulae a set of linear equations of
LECs will be obtained. Presumably, the contribution of the
logarithm terms would not render the linear equations
singular. So, we omit the logarithmic terms in the follow-
ing formulae.
Although K ! vac and K ! � calculations have al-

ready been done, for example, in Ref. [7], we present the
formulae for completeness. The analytic terms in the K !
vac amplitude come from diagrams T1 and T2 of Fig. 2 and
they are

h0jOð8;1ÞjK0i ¼ � 4i�2ðm2
K �m2

�Þ
f

� 8iðm2
K �m2

�Þð2ðe1 þ e2 þ e5Þm2
K þ e2m

2
�Þ

f
: (15)

From this calculation, one can determine �2, e2, e1 þ e5. If CPS [21] symmetry [22] is realized, hence mK ¼ m�, the
K ! vac matrix elements vanish. Thus, nondegenerate quark masses must be used for the determination of these LECs.

The diagrams E1 and E2 of Fig. 3 generate the analytic terms in the K ! � amplitudes, which are

h�þðk�ÞjOð8;1ÞjKþðpKÞi ¼ 4�1ðpK � k�Þ � 4�2m
2
K

f2
þ 1

f2
ð�16ðe1 þ e2 þ e5Þm4

K þ ð16ðe10 � e35ÞðpK � k�Þ

� 8ðe2 þ 2e3 � 2e5Þm2
�Þm2

K þ 64e39ðpK � k�Þ2 þ 8ðe11 � 2e35ÞðpK � k�Þm2
�Þ: (16)

By varying momenta and masses, one can determine �1, e39, e11 � 2e35, e10 � e35, and e3 � e5 when combined with
K ! vac results.

For K� ! �, there are five diagrams: A1, A2, and C1 of Fig. 2 and G1 and G2 of Fig. 3. The analytic terms are

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiG1þG2 ¼ i

f3

�
8

3
�2ðm2

K �m2
�Þ � 4�1ððpK � k�Þ � ðp� � k�ÞÞ þ 32

3
ðe1 þ e2 þ e5Þm4

K

þ 16

3
ðe1 þ 5e2 þ 3e3 � 2e5Þm2

�m
2
K � 16ððe10 � e35ÞðpK � k�Þ

þ ð2e13 þ e15Þðp� � k�ÞÞm2
K � 16

3
ð3e1 þ 7e2 þ 3e3Þm4

� � 64e39ððpK � k�Þ2

� ðp� � k�Þ2Þ � 8ðe11 � 2ðe15 þ e35ÞÞðpK � k�Þm2
�

þ 8ð2e10 þ e11 þ 4e13 � 4e35Þðp� � k�Þm2
�

þ 16e35ðpK � p�ÞððpK � k�Þ � ðp� � k�ÞÞ
�
; (17)
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H3

1F2E1E

G2G1F2

2H1H

FIG. 3. Diagrams not involved with tadpoles. E1, E2, and F1 are relevant to K ! � amplitudes while others are for K� ! �
amplitudes. Gray (black) blobs are weak (strong) vertices. Large blobs are the leading order terms while the small blobs are the next-
to-leading order ones.

D3

T1

A2A1 A3

1D2C1C

D2 D4

T2 T3

FIG. 2. Diagrams involved with tadpoles. T1, T2, and T3 are relevant to K ! vac amplitudes while others are for K� ! �
amplitudes. Gray (black) blobs are weak (strong) vertices. Large blobs are the leading order terms while the small blobs are the next-
to-leading order ones.
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h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiA1þA2

¼ 4ið�m2
� þ 2ðpK � p�Þ þ ðpK � k�Þ þ ðp� � k�ÞÞðm2

� �m2
KÞð�2 þ 4ðe1 þ e2 þ e5Þm2

K þ 2e2m
2
�Þ

3f3ðm2
� þ ðpK � p�Þ � ðpK � k�Þ � ðp� � k�ÞÞ

;
(18)

and

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiC1 ¼ i16�2ðm2
K �m2

�Þ
3f5ðpk þ p� � k�Þ2 �m2

K

ð�12k� � pKk� � p�ð2L1 þ L2 þ L3Þ

þ 6pK � p�ðk� � p�ð4L1 þ 2L2 þ L3Þ þ k� � pKð4L2 þ L3ÞÞ
þ 2k� � p�ð12L1 þ 3L3 � 8L4 � L5Þm2

K � 4pK � p�ð2L4 þ L5Þm2
K � ð2L4 þ L5

� 2ð2L6 þ L8ÞÞm4
K � 2k� � pKð2L4 þ L5Þm2

K þ 2k� � pKð6L2 þ 3L3 þ 5L4Þm2
�

� 2k� � p�L4m
2
� � ð11L4 þ 4L5 � 6ð5L6 þ 2L8ÞÞm2

Km
2
�

� 2pK � p�ð6L2 þ 8L4 þ 3L5Þm2
� þ ðL4 � L5 þ 2ðL6 þ L8ÞÞm4

�Þ; (19)

where the Li are Gasser-Leutwyler coefficients [23], and it is assumed that those coefficients are already known [24].
Since the analytic terms of K� ! � amplitudes are quite complex, we isolate the new coefficients which must be

determined from K� ! � amplitudes by inserting LECs that can be computed from K ! vac and K ! � amplitudes.
One can easily see that only three coefficients remain to be determined which are from the G2 contribution,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiG2;part ¼ i

f3
ð16e35ðpK � p�ÞððpK � k�Þ � ðp� � k�ÞÞ � 32e13ðp� � k�Þðm2

K �m2
�Þ

� 16e15ððp� � k�Þm2
K � ðpK � k�Þm2

�ÞÞ: (20)

In order to show explicitly that the needed coefficients can be determined, we choose kinematics where the initial kaon and
pion are nearly at rest while the final pion has momentum 2�=L. With these kinematic points,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiG2;part ¼ 16iWððe35 � e15ÞðW�m
2
K �WKm

2
�Þ � e13ðEW þW�Þðm2

K �m2
�ÞÞ

f3
; (21)

whereW is the energy of the final pion andWK andW� are
the energies of the initial kaon and pion, respectively.
Although very small, we take into account the momentum
of the initial particles. When K� ! � transitions are
simulated on the lattice, this small momentum originates
from interactions between the kaon and the pion and we
have no control over the direction of this momentum. An
average over solid angle must be taken. More discussion of
this point is given in Sec. V. This effect is already included
in the above formula. Now, one can see that e35 � e15 and
e13 can be determined by varying mK and m�. Then,
combined with K ! vac and K ! � results, one can de-
termine the NLO analytic terms of the physical K ! ��
matrix element:

h���þjOð8;1ÞjK0iPHYS
¼ 8i

f3
ðm2

K �m2
�Þ � ðððe10 � e35Þ þ ðe35 � e15Þ � 2e13Þm2

K

þ ð�2ðe1 þ e5Þ � 4e2 � 2ðe3 � e5Þ þ 2ðe10 � e35Þ
þ ðe11 � 2e35Þ þ 4e13 þ 8e39Þm2

�Þ:

Note that the SU(3) limit cannot be used because
Eq. (21) vanishes in that limit. Moreover, there is a further
restriction on the choice of momenta if one considers more
general kinematics. The tadpole contribution (Eqs. (18)
and (19)) can diverge for some choices of momenta [26].
This is a disadvantage of using transitions with an unavoid-
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able energy-momentum injection such as the current
proposal.

V. FINITE VOLUME EFFECTS

In the previous section, it is shown that the unknown
LECs can be determined by measuring weak matrix ele-
ments from lattice calculations. We choose to use a mini-
mal set of matrix elements for the sake of proving
sufficiency of the calculation of only these types of ampli-
tudes. However, as is suggested in the next section, it
would be useful to measure more matrix elements rather
than the minimal set so that one can reduce statistical errors
in determining the LECs and test for the consistency of the
�PT expansions.

An obvious approach is to include matrix elements with
mesons of different masses, but this requires new sets of
configuration if we want to use unquenched chiral pertur-
bation theory. A method which does not require new
ensembles is to use mesons with nonzero relative mo-
menta. In this case, the nontrivial finite volume effects on
the resulting matrix elements are not exponentially small.
This has been studied by Lüscher and Lellouch in Ref. [11]
and it is generalized to the case where the total momentum
is not zero in Refs. [28,29]. This generalization is quite
useful since using a system with nonzero total momentum
is the only method, at the moment, of creating two particle
states with nonzero relative momentum without generating
new gauge ensembles.

One can also consider matrix elements that spatial mo-
mentum is injected through the weak Hamiltonian. In such
cases, the result of Refs. [28,29] has to be generalized
further. This is straightforward and the derivation is given
in Appendix B. The final result is

jh�ðkÞjHWð0ÞjK�; ðE;PÞij

¼ 1

4�

1ffiffiffiffiffiffi

V

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ð2�Þ3
�
q�

E�

�s

�
��������
Z

d�E� h�ðk�ÞjHWð0ÞjKðqÞ�ð�qÞi
��������; (22)

where the left-hand side represents a matrix element in a
finite box while the integrand on the right-hand side rep-
resents one in an infinite volume. Here, E is the energy of
the K� state which can be measured from lattice calcu-
lations. Similarly, P is the total momentum of the K� state
which is imposed explicitly by the operator creating the
state. Finally, k is the momentum of the final pion. The
starred variables are those Lorentz-transformed into the
center of momentum (CM) frame. In particular,

E� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � P2

p
(23)

which in turn gives the Lorentz transformation angle � ¼
P=E and the q� is defined from

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ q�2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ q�2
q

: (24)

The k� is the result of the Lorentz transformation with the
above � of the four-momentum of the final pion state,

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2
p

, k). 
V is a function of q� and its definition
is given in Refs. [28,29]. Roughly, it can be interpreted as
the density of states.
In Eq. (22), the difference from the result of

Refs. [28,29] is the explicit appearance of the integration
over solid angle. Since the final meson state has nonzero
momentum and cannot be used to constrain the initial state
to be an S-wave, this must be done explicitly. As such, the
initial state in the matrix element h�ðkÞjHWð0ÞjK�; ðE;PÞi
must be in an S-wave state [30], as seen from the CM
frame. This means that the S-wave state must be explicitly
generated in the lattice simulation. Fortunately, S-wave
states are the lowest energy states which can appear, so
we can generate the S-waveK� state by using any operator
which has an overlap with it and evaluating its correlation
function for large Euclidean time separation.

VI. PRACTICAL ISSUES

Up until now, the focus of this paper has been that the
lattice calculation of K ! �� matrix elements suggested
in Ref. [7] can be replaced with K� ! � matrix elements
which can be measured much more easily than K ! ��
ones. In this section, we address some practical issues
associated with the lattice calculation of the matrix ele-
ments which are required for determining the LECs.
The strategy this paper has taken is very similar to that of

Ref. [7]. Most of the unknown LECs must be determined
from K ! vac and K ! � matrix elements and K� ! �
matrix elements are considered as supplementary to deter-
mine the LECs which cannot be obtained from K ! vac
and K ! �matrix elements. Since these are simple matrix
elements, it is believed that they can be calculated easily
with good precision and this has been assumed in the
discussion above. Recently, the RBC-UKQCD collabora-
tion has performed a partially quenched calculation of
K ! vac and K ! � transition amplitudes [31]. As ex-
pected, the matrix elements were determined very well. In
particular,K ! �matrix elements—even after subtraction
of the contribution from the mixing with lower dimen-
sional operators—are measured quite accurately with less
than 10% error. By employing partial quenching and the
corresponding �PT, they attempted to determine from
subtracted K ! � matrix elements alone, all of the LECs

associated Oð8;1Þ operators except one of the LECs for
whose determination another process is required.
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Unfortunately, the LECs are determined very poorly, with
around 50% to 100% errors.

This escalation of error can be understood easily. The
conventional presumption is that LECs follow a multivari-
ate Gaussian distribution with the mean values given by the
�PT formulae which can be written, if masses and mo-
menta are known as

KðmK;m�; pK; p�Þ � X ¼ ~M; (25)

where we put tildes on M in order to stress that they are
theoretical matrix elements. Then, the fitting procedure
requires minimizing

CðXÞ ¼ ðK � X �MÞT��1ðK � X�MÞ; (26)

whereM is the matrix elements measured on the lattice and
X represents a vector of the unknown LECs. If the number
of unknowns is the same as that of measured matrix
elements, the minimization ofCðXÞ is equivalent to solving

KðmK;m�; pK; p�Þ � X ¼ M: (27)

The point is that even though the errors in M are small
there is no guarantee that so are the errors in K�1M. For
example, if two positive quantities (a, b) with relative
errors ðea; ebÞ are subtracted, the relative error of the
subtracted value could be significantly larger than ea or
eb. Indeed, Eqs. (16) and (17) suggest that the difference of
the matrix elements must be used to deduce the LECs. In
other words, errors in differences of the matrix elements
may have more direct impact on the errors of the LECs
rather than those of the measured matrix elements do.

If there are redundant matrix elements, the correspond-
ing equation becomes

ðTKÞX ¼ TM ! ðTKÞ�1TM ¼ X; (28)

where matrices K and T are rectangular, not square. The
matrix T is determined from the minimization condition of
Eq. (26),

T ¼ KT��1: (29)

The variances of the LECs (i.e. fit parameters) can be
written

hXiXji ¼ h½ðTKÞ�1T�ikMk½ðTKÞ�1T�jlMli
¼ h½ðKT��1KÞ�1KT��1�ik

�Mk½ðKT��1KÞ�1KT��1�jlMli:

Utilizing the fact that � is the correlation matrix of mea-
sured matrix elements, they are simplified into

hXiXji ¼ ½ðKT��1KÞ�1�ij: (30)

Note that calculating any linear combination of Ms has no
effect on the uncertainties. Such a transformation can be
represented by

K ! SK; � ! S�ST; (31)

and one can see that Eq. (30) is invariant.
Based on Eq. (30), one can consider some schemes to

reduce uncertainties of the LECs. An intuitively obvious
way, besides increasing the number of configurations, is to
increase the number of kinematic points. Although it is
evident that more information determines the unknowns
more precisely, it is not mathematically apparent from
Eq. (30). So, we provide the proof in Appendix D.
In order to enlarge the number of matrix elements,

partial quenching may be employed [32]. As mentioned
in the earlier section, one can consider imposing various
momenta on the pions and kaons. In particular, K� ! �
transitions can provide a great deal more matrix elements.
One of the advantages of K� ! � transitions over K !
�� ones is that K� ! � processes may be simulated with
a partially quenched choice of masses. Unlike K ! ��
transitions which require unitarity, K� ! � matrix ele-
ments do not show any pathological behavior on partially
quenched ensembles [8]. Thus, those additional inversions
required for partially quenched K ! � matrix element
calculations can be used for K� ! � matrix elements.
There is no data discussing fluctuations of lattice corre-

lation functions for K� ! � matrix elements. In Fig. 4,
the quark contraction diagrams forK� ! � transitions are
shown. Since the diagrams (B) and (D) are essentially the
same as those appearing K ! ��I¼2 transitions, we know
that the signal to noise ratios are as good as those of lattice
correlation functions of K ! ��I¼2 transitions. The SN
ratios of (A) and (C) are hard to estimate, but one may
naively imagine that the effect of the loop in the middle is
as mild as the case of K ! � matrix elements. Thus, one
might expect the errors of lattice calculations of K� ! �
matrix elements are as small as those of K ! � matrix
elements.
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Having many matrix elements, one needs a large number
of configurations in order to estimate the correlation matrix
reliably. It has been argued that the number of configura-
tions must be around 10 times that of observables [33].
Since a large number of configurations are needed to
reduce to statistical errors in matrix elements, increasing
the number of configurations is imperative. Indeed, the
number of configurations used by the RBC-UKQCD col-
laboration was around 70. If the number of configurations
may be quadrupled, hence around 300, the errors on matrix
elements will go down by a factor of 2 and we can have 30
matrix elements which is almost three times as many as the
numbers of the unknown LECs, which could make addi-
tional improvement of accuracy of the determination of the
LECs. It is notable that the covariance matrix (Eq. (30))
may become smaller even though matrix elements incon-
sistent with the fit function are included. Thus, the �2 of the
fit must be monitored when more information is exploited.

Determining all the LECs necessary to extrapolate the
real world K ! �� matrix elements is certainly a numeri-
cally challenging task. Nevertheless, it is so only because
of the unusually large number of parameters to fit. As
discussed earlier, measuring more matrix elements than
the number of unknowns is essential besides increasing
statistics. This could be achieved by employing partial
quenching and by including K� ! � processes as well
as K ! vac and K ! � ones.

VII. SUMMARY

In this paper, it is shown that the LECs necessary for the

NLO �PT extrapolation of the physical h��jOð8;1ÞjKi
matrix elements can be obtained from lattice calculations
of K� ! �, K ! �, and K ! vac processes. The impor-
tant point is that simulations of K ! ��I¼0 transitions,
which are very difficult, can be avoided.

Although we establish this result by using a minimal set
of kinematics, in practice one may want to use as many

matrix elements as the ensemble size allows. In order to
enlarge the number of matrix elements, one can consider
including more kinematics as well as employing partial
quenching. Unlike K ! �� processes, K� ! � ones can
be simulated on partially quenched ensembles. If nontrivial
kinematic points are to be used, the finite volume effects on
K� ! �matrix elements must be taken into account care-
fully [11]. In particular, the case where spatial momentum
is injected through the weak Hamiltonian is discussed,
which requires a slight generalization of the results of
Ref. [28].
As discussed in Ref. [8], using K� ! � processes al-

lows us to avoid technical difficulties such as s-channel
disconnected diagrams. However, the mixing with lower
dimensional operators is still present. One may apply the
subtraction scheme used in Ref. [5].
The current computing resources are powerful enough to

simulate K� ! � transitions. With these NLO �PT for-
mulae, we can improve the calculation of K ! �� matrix
elements, which in turn will allow us to evaluate �0=�more
accurately.
However, the recent work by the RBC-UKQCD collabo-

ration showed some concern regarding the validity of
SU(3) �PT as their data did not fit very well [25,31]. If
this turns out to be generally true, the approach of using
�PT for extrapolating K ! �� matrix elements to the
physical point may need to be reconsidered [34].
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APPENDIX A: LOGARITHMIC TERMS

In this section, the logarithmic terms (diagram A3, F1,
F2, D1, D2, D3, H1, H2, H3) are given.

1. The integrals

In order to write the transition amplitude in a simpler
form, the following notations are used:

A0ðmÞ � ��
Z ddq

ð2�Þd
1

q2 �m2
;

A1ðmÞ � ��
Z ddq

ð2�Þd
q2

q2 �m2
;

π

o Ko

Ko
Ko

−

−

π
K

(C)

(B)

(D)

(A)

π

π−

−

−

π

π
π−

π−

−

FIG. 4. Quark contraction diagrams for K� ! � transitions.
The gray circle represents the insertion of a four-quark operator.
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B0ðm1; m2; kÞ � ��
Z ddq

ð2�Þd
1

ðq� kÞ2 �m2
1

1

ðqþ kÞ2 �m2
2

;

B0�ðm1; m2; kÞ � ��
Z ddq

ð2�Þd
q�

ðq� kÞ2 �m2
1

1

ðqþ kÞ2 �m2
2

;

B0�	ðm1; m2; kÞ � ��
Z ddq

ð2�Þd
q�

ðq� kÞ2 �m2
1

q	
ðqþ kÞ2 �m2

2

;

B1ðm1; m2; kÞ � ��
Z ddq

ð2�Þd
q2

ðq� kÞ2 �m2
1

1

ðqþ kÞ2 �m2
2

;

B1�ðm1; m2; kÞ � ��
Z ddq

ð2�Þd
q�

ðq� kÞ2 �m2
1

q2

ðqþ kÞ2 �m2
2

;

B2ðm1; m2; kÞ � ��
Z ddq

ð2�Þd
q2

ðq� kÞ2 �m2
1

q2

ðqþ kÞ2 �m2
2

:

Furthermore, when there is a Lorentz contraction, we use the following abbreviation:

k � B0 � B0�k
�; k � B1 � B1�k

�; p � B0 � k � p�B0�	k
	:

2. Diagram H1a

Here, q ¼ 1
2 ðp� � k�Þ,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiH1a ¼ 1

f5�2

�
4�1k� �B0ðq;mK;mKÞ �pK þ 8�1k� �B0ðq;m�;m�Þ �pK

þ 4�1p� �B0ðq;mK;mKÞ �pK þ 8�1p� �B0ðq;m�;m�Þ �pK

� 2

3
�2ð4m2

K � 4m2
�ÞB1ðq;mK;mKÞþ 1

3
�1ð�2m2

K � 5m2
� þ 5k� �p�Þ

� ð�m2
� � k� �pK þ k� �p� þpK �p�ÞB0ðq;mK;mKÞ

þ 1

3
�2ð�2m2

K � 5m2
� þ 5k� �p�Þð4m2

� � 4m2
KÞB0ðq;mK;mKÞ

þ 1

9
�2ð8m2

K � 8m2
�Þð11m2

� � 10k� �p�ÞB0ðq;m�;m�Þ

þ 1

9
�1ð�6m2

� � 6k� �pK þ 6k� �p� þ 6pK �p�Þð11m2
� � 10k� �p�Þ

�B0ðq;m�;m�Þþ 2

9
�2ð4m2

K � 4m2
�ÞB0ðq;m;mÞm2

�

þ 4

9
�2ð8m2

� � 8m2
KÞB1ðq;m�;m�Þþ 2

9
�1m

2
�ð3m2

� þ 3k� �pK � 3k� �p�

� 3pK �p�ÞB0ðq;m;mÞ� 2

3
�1ð2m2

K þ 6m2
� þ k� �pK � 6k� �p� �pK �p�Þ

�B1ðq;mK;mKÞþ 4

9
�1ð39m2

� þ 6k� �pK � 36k� �p� � 6pK �p�ÞB1ðq;m�;m�Þ

� 4

3
�1B1ðq;m;mÞm2

� þ 4

3
�1B2ðq;mK;mKÞ � 16

3
�1B2ðq;m�;m�Þ

�
:
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3. Diagram H1b

Here, q ¼ 1
2 ðpK � k�Þ,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiH1b ¼ 1

f5�2

�
�3�1k� � pKk� � B0ðq;mK;m�Þ þ 3�1k� � p�k� � B0ðq;mK;m�Þ

� �1k� � pKk� � B0ðq;m;mKÞ þ �1k� � p�k� � B0ðq;m;mKÞ
� 6�1k� � B1ðq;mK;m�Þ � 2�1k� � B1ðq;m;mKÞ � 3�1k� � B0ðq;mK;m�ÞpK

� p� � �1k� � B0ðq;m;mKÞpK � p� � 3�1k� � pKpK � B0ðq;mK;m�Þ
þ 3�1k� � p�pK � B0ðq;mK;m�Þ � 3�1pK � p�pK � B0ðq;mK;m�Þ � �1k�

� pKpK � B0ðq;m;mKÞ þ �1k� � p�pK � B0ðq;m;mKÞ � �1pK � p�pK

� B0ðq;m;mKÞ � 6�1pK � B1ðq;mK;m�Þ � 2�1pK � B1ðq;m;mKÞ � 5

3
�1k�

� pKp� � B0ðq;mK;m�Þ þ 25

3
�1k� � pKp� � B0ðq;m;mKÞ þ 3

2
�1k�

� B0ðq;mK;m�Þm2
K � 2

3
�1p� � B1ðq;mK;m�Þ þ 10

3
�1p� � B1ðq;m;mKÞ

þ 8

3
�2k� � B0ðq;mK;m�Þm2

K þ 1

2
�1k� � B0ðq;m;mKÞm2

K

þ 3

2
�1pK � B0ðq;mK;m�Þm2

K þ 8

3
�2pK � B0ðq;mK;m�Þm2

K þ 1

2
�1pK

� B0ðq;m;mKÞm2
K � 5

6
�1p� � B0ðq;mK;m�Þm2

K � 85

18
�1p� � B0ðq;m;mKÞm2

K

þ 3

2
�1k� � B0ðq;mK;m�Þm2

� � 8

3
�2k� � B0ðq;mK;m�Þm2

� þ 1

2
�1k�

� B0ðq;m;mKÞm2
� þ 3

2
�1pK � B0ðq;mK;m�Þm2

� � 8

3
�2pK � B0ðq;mK;m�Þm2

�

þ 1

2
�1pK � B0ðq;m;mKÞm2

� � 5

6
�1p� � B0ðq;mK;m�Þm2

� � 5

18
�1p�

� B0ðq;m;mKÞm2
� � 2�1k� � B0ðq;mK;m�Þ � p� � 10�1k� � B0ðq;m;mKÞ

� p� � 2�1p� � B0ðq;mK;m�Þ � pK þ 1

24
�1ð�m2

K �m2
� þ 2k� � pK � 2k� � p�

þ 2pK � p�Þð50k� � pK � 23ðm2
K þm2

�ÞÞB0ðq;mK;m�Þ
þ 2

9
�2ðm2

K �m2
�Þð7ðm2

K þm2
�Þ � 10k� � pKÞB0ðq;mK;m�Þ

þ 1

72
�1ðm2

K þm2
� � 2k� � pK þ 2k� � p� � 2pK � p�Þð17m2

K þm2
� � 30k� � pKÞ

� B0ðq;m;mKÞ þ 1

3
�1ð�14m2

K � 14m2
� þ 30k� � pK � 5k� � p� þ 5pK � p�Þ

� B1ðq;mK;m�Þ þ 1

9
�1ð�10m2

K � 2m2
� þ 18k� � pK � 3k� � p� þ 3pK � p�Þ

� B1ðq;m;mKÞ � 8

9
�2ðm2

K �m2
�ÞB1ðq;mK;m�Þ þ 10

3
�1B2ðq;mK;m�Þ

þ 2

3
�1B2ðq;m;mKÞ

�
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4. Diagram H2

Here, q ¼ � 1
2 ðpK þ p�Þ,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiH2 ¼ 1

f5�2

�
4

3
�1k� � B0ðq;mK;m�Þm2

K � 16

3
�1k� � B1ðq;mK;m�Þ

þ 40

3
�1k� � B0ðq;mK;m�ÞpK � p� þ 4

3
�1k� � B0ðq;mK;m�Þm2

�

� 4

9
�2ðm2

K �m2
�Þðm2

K þm2
� þ 10pK � p�ÞB0ðq;mK;m�Þ

þ 16

9
�2ðm2

K �m2
�ÞB1ðq;mK;m�Þ

�

5. Diagram H3

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiH3 ¼ 1

f5�2

�
64

15
ð�35�1k� � pK þ 5�1pK � p� þ 2ð25�1k� � p� þ 7�2ðm2

K �m2
�ÞÞÞ

� A0ðmKÞ � 32

3
ð�4�2m

2
K þ 4�2m

2
� þ 10�1k� � pK � 7�1k� � p� þ 5�1pK � p�Þ

� A0ðm�Þ þ 32

45
ð8�2m

2
K � 8�2m

2
� � 90�1k� � pK þ 45�1k� � p� þ 45�1pK � p�Þ

� A0ðmÞ � 64�1A1ðmKÞ þ 224

3
�1A1ðm�Þ � 32

3
�1A1ðmÞ

�

6. Diagram D12a

Here, q ¼ 1
2 ðpK þ p�Þ,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiD12a ¼ �2ðm2
K �m2

�Þ
4f5�2

�1

ðpk þ p� � k�Þ2 �m2
K

�
� 1

36
ðm2

K � 3m2
� þ 4k� � pK þ 4k� � p�

þ 6pK � p�Þðm2
K þm2

� þ 10pK � p�ÞB0ðq;mK;m�Þ
þ 2

9
ðm2

K �m2
� þ 2k� � pK þ 2k� � p� þ 8pK � p�ÞB1ðq;mK;m�Þ

� 4

9
B2ðq;mK;m�Þ

�
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7. Diagram D12b

Here, q ¼ 1
2 ðk� � p�Þ,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiD12b ¼ �2ðm2
K �m2

�Þ
4f5�2

�1

ðpk þ p� � k�Þ2 �m2
K

�
�
� 5

3
pK � B1ðq;mK;m�Þ � pK � B1ðq;m;mKÞ � 5

3
p� � B1ðq;mK;m�Þ

� p� � B1ðq;m;mKÞ � 1

12
pK � B0ðq;mK;m�Þð�23m2

K � 13m2
� þ 40k� � pK

� 10k� � p� þ 10pK � p�Þ þ 5

6
k� � B0ðq;mK;m�Þð�m2

� þ k� � pK þ k� � p�

� pK � p�Þ þ 1

2
k� � B0ðq;m;mKÞð�m2

� þ k� � pK þ k� � p� � pK � p�Þ

� 1

12
p� � B0ðq;m;mKÞð�17m2

K �m2
� þ 30k� � pKÞ � 1

12
pK

� B0ðq;m;mKÞð�17m2
K þ 5m2

� þ 24k� � pK � 6k� � p� þ 6pK � p�Þ
� 1

12
p� � B0ðq;mK;m�Þð50k� � pK � 23ðm2

K þm2
�ÞÞ þ 3

2
k� � B0ðq;mK;m�Þ � k�

� 3k� � B0ðq;mK;m�Þ � p� þ 3

2
k� � B0ðq;m;mKÞ � k� � 3k� � B0ðq;m;mKÞ

� p� � 3

2
pK � B0ðq;mK;m�Þ � pK � 3

2
pK � B0ðq;m;mKÞ � pK � 3p�

� B0ðq;mK;m�Þ � pK � 3p� � B0ðq;m;mKÞ � pK � 1

32
ð�3m2

K þm2
� þ 6k� � pK

� 4k� � p� þ 4pK � p�Þð10k� � pK � 3ðm2
K þm2

�ÞÞB0ðq;mK;m�Þ
� 1

144
ð7m2

K þ 3m2
� � 6k� � pK þ 4k� � p� � 4pK � p�Þð7ðm2

K þm2
�Þ

� 10k� � pKÞB0ðq;mK;m�Þ � 1

144
ð7m2

K þ 3m2
� � 6k� � pK þ 4k� � p�

� 4pK � p�Þð7ðm2
K þm2

�Þ � 10k� � pKÞB0ðq;mK;m�Þ
� 1

864
ð17m2

K � 11m2
� � 18k� � pK þ 12k� � p� � 12pK � p�Þð17m2

K þm2
�

� 30k� � pKÞB0ðq;m;mKÞ þ 1

4
ð3m2

K þm2
� � 8k� � pK þ 2k� � p� � 2pK � p�Þ

� B1ðq;mK;m�Þ þ 1

18
ð7m2

K þ 5m2
� � 8k� � pK þ 2k� � p� � 2pK � p�Þ

� B1ðq;mK;m�Þ � 11

18
B2ðq;mK;m�Þ � 1

6
B2ðq;m;mKÞ

�
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8. Diagram D12c

Here, q ¼ 1
2 ðpK � k�Þ,

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiD12c ¼ �2ðm2
K �m2

�Þ
4f5�2

�1

ðpk þ p� � k�Þ2 �m2
K

�
�
k� � B0ðq;mK;mKÞ � k� � 2k� � B0ðq;mK;mKÞ � pK þ 2k� � B0ðq;m�;m�Þ

� k� � 4k� � B0ðq;m�;m�Þ � pK � 2p� � B0ðq;mK;mKÞ � pK � p�

� B0ðq;mK;mKÞ � p� � 4p� � B0ðq;m�;m�Þ � pK � 2p� � B0ðq;m�;m�Þ � p�

þ 1

12
ð�2m2

K � 5m2
� þ 5k� � p�Þð2m2

K þ 3m2
� þ 2k� � pK � 3k� � p�

� 2pK � p�ÞB0ðq;mK;mKÞ þ 1

18
ð5k� � p� � 7m2

�Þð5m2
� þ 2k� � pK � 3k� � p�

� 2pK � p�ÞB0ðq;m�;m�Þ þ 1

18
ð5k� � p� � 4m2

�Þð5m2
� þ 2k� � pK � 3k� � p�

� 2pK � p�ÞB0ðq;m�;m�Þ � 1

18
m2

�ð7m2
� þ 6k� � pK � 9k� � p� � 6pK � p�Þ

� B0ðq;m;mÞ þ 1

3
ð2m2

K þ 4m2
� þ k� � pK � 4k� � p� � pK � p�Þ

� B1ðq;mK;mKÞ þ 2

9
ð6m2

� þ k� � pK � 4k� � p� � pK � p�ÞB1ðq;m�;m�Þ

þ 1

9
ð9m2

� þ 2k� � pK � 8k� � p� � 2pK � p�ÞB1ðq;m�;m�Þ

þ 1

3
B1ðq;m;mÞm2

� � 1

3
B2ðq;mK;mKÞ � 4

9
B2ðq;m�;m�Þ

�

9. Diagram D3

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiD3 ¼ �2ðm2
K �m2

�Þ
4f5�2

�1

ðpk þ p� � k�Þ2 �m2
K

�
�
32

45
ð�18k� � k� þ 13k� � pK þ 18k� � p� þ 17pK � pK þ 47pK � p�

þ 12p� � p�ÞA0ðmKÞ þ 16

9
ð�8k� � k� þ 13k� � pK þ 8k� � p� þ 2pK � pK

þ 17pK � p� þ 7p� � p�ÞA0ðm�Þ þ 16

15
ð�4k� � k� � k� � pK þ 4k� � p�

þ 6pK � pK þ 11pK � p� þ p� � p�ÞA0ðmÞ þ 544

45
A1ðmKÞ þ 112

9
A1ðm�Þ

þ 16

15
A1ðmÞ

�

10. Diagram F1

h�þðk�ÞjOð8;1ÞjKþðpKÞÞiF3 ¼ i

f4�2

�
� 64

3
ð7�1k� � pK � 4�2m

2
KÞA0ðmKÞ � 160

3
ð2�1k� � pK � �2m

2
KÞA0ðm�Þ

� 32

3
ð6�1k� � pK � �2m

2
KÞA0ðmÞ � 64�1A1ðmKÞ þ 64

3
�1A1ðm�Þ

�
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11. Diagram F2

Here, q ¼ 1
2 ðk� � p�Þ,

h�þðk�ÞjOð8;1ÞjKþðpKÞÞiF2 ¼ i

f4�2

�
6�1k� � B1ðq;mK;m�Þ � 2�1k� � B1ðq;mK;mÞ þ 6�1pK � B1ðq;mK;m�Þ

� 3

2
�1k� � B0ðq;mK;m�Þm2

� þ 1

2
�1k� � B0ðq;mK;mÞm2

� � 2�1pK � B1ðq;mK;mÞ

þ 1

2
�1pK � B0ðq;mK;mÞm2

� � 3

2
�1pK � B0ðq;mK;m�Þm2

� þ 1

24
�1m

2
�ð8m2

K þ 13m2
�

� 20k� � pK þ 10k� � p� � 10pK � p�ÞB0ðq;mK;m�Þ � 1

72
�1m

2
�ð�8m2

K þ 5m2
� þ 12k�

� pK � 6k� � p� þ 6pK � p�ÞB0ðq;mK;mÞ þ 1

3
�1ð�4m2

K � 9m2
� þ 10k� � pK � 5k�

� p� þ 5pK � p�ÞB1ðq;mK;m�Þ þ 1

9
�1ð�4m2

K þm2
� þ 6k� � pK � 3k� � p� þ 3pK

� p�ÞB1ðq;mK;mÞ þ 10

3
�1B2ðq;mK;m�Þ þ 2

3
�1B2ðq;mK;mÞ

�

12. Diagram A3

h��ðk�ÞjOð8;1ÞjK0ðpKÞ��ðp�ÞiA3 ¼ 1

f5�2

�
� 128�2ð�2m2

� þ 2k� � pK þ 2k� � p� þ 4pK � p�Þðm2
K �m2

�ÞA0ðmKÞ
3ð2m2

� � 2k� � pK � 2k� � p� þ 2pK � p�Þ

� 128�2ð�2m2
� þ 2k� � pK þ 2k� � p� þ 4pK � p�Þðm2

K �m2
�ÞA0ðmKÞ

3ð2m2
� � 2k� � pK � 2k� � p� þ 2pK � p�Þ

� 64�2ð�2m2
� þ 2k� � pK þ 2k� � p� þ 4pK � p�Þðm2

K �m2
�ÞA0ðm�Þ

3ð2m2
� � 2k� � pK � 2k� � p� þ 2pK � p�Þ

� 64�2ð�2m2
� þ 2k� � pK þ 2k� � p� þ 4pK � p�Þðm2

K �m2
�ÞA0ðmÞ

9ð2m2
� � 2k� � pK � 2k� � p� þ 2pK � p�Þ

þ 64�1ð�2m2
� þ 2k� � pK þ 2k� � p� þ 4pK � p�ÞA1ðmKÞ

3ð2m2
� � 2k� � pK � 2k� � p� þ 2pK � p�Þ

� 32�1ð�2m2
� þ 2k� � pK þ 2k� � p� þ 4pK � p�ÞA1ðm�Þ

2m2
� � 2k� � pK � 2k� � p� þ 2pK � p�

þ 32�1ð�2m2
� þ 2k� � pK þ 2k� � p� þ 4pK � p�ÞA1ðmÞ

3ð2m2
� � 2k� � pK � 2k� � p� þ 2pK � p�Þ

�

APPENDIX B: FINITE VOLUME EFFECTS

The following argument follows Ref. [36], where more
detailed discussion can be found. The relevant correlation
function is

CðtÞ �
Z
V
dxeP�xh�ðk�ÞjHWð0ÞOK�ðt; xÞj0i

� V
X
n

h�ðk�ÞjHWð0ÞjK�; n;Pi

� e�EnthK�; n;PjOK�ð0Þj0i; (B1)

where contributions from excited state e.g. four particle

states are ignored since we are interested in the asymptotic
limit in which t ! 1.
If the volume is sufficiently large, the summation can be

approximated with integration:

CðtÞ ¼ V
Z 1

0
dE
VðEÞe�Eth�ðk�ÞjHWð0ÞjK�; ðE;PÞi

� hK�; ðE;PÞjOK�ð0Þj0i; (B2)

where the interpretation of 
VðEÞ is given in Ref. [36].
Roughly, 
V can be understood as density of states.
Meanwhile, the large volume allows us to rewrite the

correlation function, CðtÞ, in terms of infinite volume
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asymptotic states:

C ðtÞ ¼
�
1

2�

�
6 Z dp3

1

2E1

dp3
2

2E2

h�ðk�ÞjHWð0ÞjKðp1Þ�ðp2ÞihKðp1Þ�ðp2ÞjOK�j0i: (B3)

We perform a small manipulation on the above equation using

hKðpKÞ�ðp�ÞjOK�ðt;PÞj0i ¼
Z

d3xeiP�xhKðpKÞ�ðp�ÞjOK�ðt;xÞj0i

¼
Z

d3xeiP�xe�iðpKþp�Þ�xe�EthKðpKÞ�ðp�ÞjOK�ð0Þj0i
¼ ð2�Þ3�ðP� pK � p�ÞhKðpKÞ�ðp�ÞjOK�ð0Þj0ie�Et;

where

E ¼ EKðpKÞ þ E�ðp�Þ; EiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
q

: (B4)

Then the correlation function can be written in terms of the four-momentum integral:

h�ðk�ÞjHWð0ÞOK�ðt;PÞj0i ¼ ð2�Þ3
Z

dE
Z dp4

K

ð2�Þ4
dp4

�

ð2�Þ4 �
þðp2

K �m2
KÞ�þðp2

� �m2
�Þ�4ðP� pK � p�Þ

� e�ðEKþE�Þth�ðk�ÞjHWð0ÞjKðpKÞ�ðp�ÞihKðpKÞ�ðp�ÞjOK�ð0Þj0i;

where

pi ¼ ðEi;piÞ: (B5)

Since the integral is in covariant form, one can easily change the integration variables with Lorentz-transformed ones
which brings the two particle state into CM frame:

h�ðk�ÞjHWð0ÞOK�ðt;PÞj0i ¼ ð2�Þ3
Z

dE
Z dq4K

ð2�Þ4
dq4�
ð2�Þ4 �

þðq2K �m2
KÞ�þðq2� �m2

�Þ�ðE� � E�
K � E�

�Þ�3ðqK þ q�Þ
� e�Eth�ðk�

�ÞjHWð0ÞjKðqKÞ�ðq�ÞihKðqKÞ�ðq�ÞjOK�ð0Þj0i: (B6)

Note that the amplitudes are treated as scalars. Using the � function, one can do some integrations,

h�ðk�ÞjHWð0ÞOK�ðt;PÞj0i ¼ ð2�Þ�3
Z

dEe�Et
Z dq3

2EKðqÞ2E�ðqÞ�ðE
� � EKðqÞ � E�ðqÞÞh�ðk�

�ÞjHWð0ÞjKðqÞ�ð�qÞi

� hKðqÞ�ð�qÞjOK�ð0Þj0i;

where E�
K and E�

� of Eq. (B6) are fixed, respectively, by

EKðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ q2
q

; E�ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ q2
q

: (B7)

In order to proceed, we have to assume that the creation
operator OK� is chosen so that hKðqÞ�ð�qÞjOK�ð0Þj0i
does not have angular dependence. In fact, the contribution
originating from the particular form of OK� will be can-
celed in the end. The role of OK� is restricted to keeping
the initial states in S-wave. With this assumption, a further
simplification is possible:

h�ðk�ÞjHWð0ÞOK�ðt;PÞj0i

¼ ð2�Þ�3
Z

dEe�Et 1

q�
EKðq�ÞE�ðq�Þ

EKðq�Þ þ E�ðq�Þ
� hKðq�Þ�ð�q�ÞjOK�ð0Þj0i
�

Z
d�h�ðk�

�ÞjHWð0ÞjKðqÞ�ð�qÞi; (B8)

where q� is defined as

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ q�2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ q�2
q

: (B9)
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Since hKðq�Þ�ð�q�ÞjOK�ð0Þj0i does not have any angular
dependence, we write this as hK�;E�jOK�ð0Þj0i.
Moreover,

R
d�h�ðk�

�ÞjHWð0ÞjKðqÞ�ð�qÞi is also a func-
tion of E� because of angular averaging so we use a
notation d�E� .

By comparing Eqs. (B2) and (B8), one can deduce


VðEÞh�ðk�ÞjHWð0ÞjK�; ðE;PÞihK�; ðE;PÞjOK�j0i
¼ 1

4ð2�Þ3
�
q

E�

�
hK�;E�jOK�ð0Þj0i

�
Z

d�E� h�ðk��ÞjHWð0ÞjKðqÞ�ð�qÞi: (B10)

However, Eq. (B10) is not satisfactory because of the
appearance of an unknown factor hK�;E�jOK�ð0Þj0i. In
order to eliminate this factor, we consider a correlation
function,

hOK�ðt;PÞOy
K�ð0;PÞi: (B11)

One can easily imagine that by similar argument, the
following equation can be obtained:


VðEÞjhK�; ðE;PÞjOK�j0ij2

¼ �

ð2�Þ3
�
q�

E�

�
jhK�;E�jOK�ð0Þj0ij2: (B12)

By dividing Eq. (B10) by the square root of Eq. (B12), the
relation between matrix elements can be deduced,

jh�ðk�ÞjHWð0ÞjK�; ðE;PÞij

¼ 1

4�

1ffiffiffiffiffiffi

V

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ð2�Þ3
�
q�

E�

�s

�
��������
Z

d�E� h�ðk�
�ÞjHWð0ÞjKðqÞ�ð�qÞi

��������:

APPENDIX C: LECS FOR O�I¼1=2
ð27;1Þ AND O�I¼1=2

ð8;8Þ
It has been argued that LECs for operators with (8, 8)

�I ¼ 1=2 can determined without K ! ��I¼0 in Ref. [7].
In this section, we will show that LECs for operators with
(27, 1) �I ¼ 1=2 as well can be determined without cal-
culating �I ¼ 1=2, K ! ��I¼0 matrix elements. Its ana-
lytic term at physical kinematics is given by

� 4iðm2
K �m2

�Þ
f3

½��27 þ ðd4 þ d5 � 9d6 þ 4d7Þm2
K

þ 2ð�6d1 � 2d2 þ 2d4 þ 6d6 þ d7 � 2d20

þ 8d24Þm2
��: (C1)

The K ! � transition amplitudes with (27, 1) �I ¼
3=2, are

1

f2
½�4�27ðpK � k�Þ þ 64d24ðpK � k�Þ2

þ 8ðd4 þ d7 � d20Þm2
�ðpK � k�Þ

þm2
Kð8ðd4 þ 2d7 � d20ÞðpK � k�Þ � 16d2m

2
�Þ�: (C2)

From the above, one can determine �27, d2, d7, d20 � d4,
d24 by varying masses and momenta.
The �PT formula for the K ! ��I¼2 transition ampli-

tude with unphysical kinematics corresponding to the ini-
tial kaon and the final pions are at rest, is given by

� 8im�

f3
½��27ðmK þm�Þ=2þðd4 þd5 þ 4d7 � d20Þm3

K

þ 2ðd20 �d2Þm�m
2
K þð3d4 þ d5 þ 2d7 � 3d20Þm2

�mK

þ 2d2m
3
��: (C3)

By inspecting the above formula, we can see that d5 � d4
can be determined. Since the �PT formula for theK ! vac
transition amplitude is

48id1ðm2
K �m2

�Þ2
f

; (C4)

d1 can be fixed from this. Finally, d6 can be determined by
using the �I ¼ 1=2 K ! � transition amplitude whose
�PT formula is

1

f2
½�4�27ðpK � k�Þ þ ð8ðd4 � 3d6 þ 2d7 � d20ÞðpK � k�Þ

� 16ð3d1 þ d2Þm2
�Þm2

K þ 48d1m
4
K þ 64d24ðpK � k�Þ2

þ 8ðd4 þ 3d6 þ d7 � d20ÞðpK � k�Þm2
��: (C5)

Since �27, d1, d2, d5 � d4, d6, d7, d20 � d4, d24 are
determined, one can reconstruct the physical K ! ��
transition amplitude with (27, 1) �I ¼ 1=2 using
Eq. (C1).

APPENDIX D: PROOF

We prove the case where the new measurement is un-
correlated to the other matrix elements and then give com-
ments on the general case.
With the assumption that a new measurement is uncor-

related, we write the new correlation matrix as

�� ¼ �
�

� �
; ���1 ¼ ��1

��1

� �
: (D1)

By writing the new kinematic matrix as

�K ¼ K
N

� �
; (D2)

the correlation of LECs can be written

hXiXji ¼ ½ð �KT ���1 �KÞ�1�ij
¼ ½ðKT��1K þ NT��1NÞ�1�ij: (D3)
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With defining

C ¼ KT��1K; �C ¼ Cþ NT��1N; (D4)

we want to prove that the diagonal elements of C�1 are
larger than those of �C�1.

If we write d � �C�1 � C�1, we have

ðCþ fTfÞ � ðC�1 þ dÞ ¼ I; (D5)

where f � N=
ffiffiffiffi
�

p
. Expanding the above equation, we get

fTfC�1 þ Cdþ fTfd ¼ 0: (D6)

Multiplying C�1 from the left, we obtain

d ¼ �C�1fTfðC�1 þ dÞ: (D7)

We can solve for fd with multiplying f from the left:

fd ¼ �fC�1

�
fC�1fT

fC�1fT þ 1

�
: (D8)

Then,

d ¼ �C�1fTfC�1

�
1

fC�1fT þ 1

�
: (D9)

Since the matrix C�1 is positive definite and symmetric,
fC�1fT and the diagonal elements of C�1fTfC�1 are
positive. Therefore, the diagonal elements of d are
negative.
As for the general case where the new measurement is

correlated, one may be able to remove those correlations
by a similarity transformation under which the covariance
of the LECs is invariant (Eq. (31)).
This proves that increasing the number of kinematic

points reduces the errors of the LECs.
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