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Thermodynamics of two flavor QCD from imaginary chemical potentials
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We study QCD thermodynamics in the presence of two independent imaginary chemical potentials
coupled to two degenerate flavors of staggered quarks. Analytic continuation is used to determine
nonlinear susceptibilities, to test the hadron resonance gas (HRG) model below the zero density critical
temperature, 7, and to determine the average phase factor of the fermion determinant. Deviations from
HRG predictions, of the order of a few percent, are clearly visible for temperatures 7 > 0.957 .. The
determination of nonlinear susceptibilities, using different interpolating functions for analytic continu-
ation, gives consistent results and in agreement with Taylor expansion computations, apart from some
systematic effects at or right above T.. Results for the average phase factor are compared with the
predictions of chiral perturbation theory; below 7. we are able to distinguish the contribution of different

hadron states, which is positive (i.e. tends to mitigate the sign problem) in the case of baryons.
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L. INTRODUCTION

The study of QCD at finite temperature and baryon
density has increasing phenomenological interest related
to the physics of heavy ion experiments and compact
astrophysical objects. The main open questions regard
the location and nature of phase transitions in the QCD
phase diagram, as well as the properties of strongly inter-
acting matter around the transitions. A reliable answer to
these questions requires a treatment of QCD at a non-
perturbative level: unfortunately lattice QCD simulations,
which are the only available tool for a nonperturbative
study of the theory based on first principles, are not pos-
sible at finite baryon chemical potential, because of the
well-known sign problem: the QCD fermion determinant
becomes complex and the probability interpretation of the
QCD Euclidean action, necessary for standard importance
sampling Monte Carlo, is lost.

A number of strategies have been developed to partially
circumvent that problem, like reweighting techniques [1-
3], the use of an imaginary chemical potential either for
analytic continuation [4—12] or for reconstructing the ca-
nonical partition function [13-15], Taylor expansion tech-
niques [16-20], and nonrelativistic expansions [21-23].

The aim of the present work is that of exploiting the
method of analytic continuation from an imaginary chemi-
cal potential to study the properties of hadronic matter
around the deconfinement transition in QCD with two light
flavors (Ny = 2). As an improvement with respect to pre-
vious studies based on analytic continuation, we introduce
to independent chemical potentials, w; and w,, coupled to
the two different quark flavors. That is equivalent to the
introduction of two independent chemical potentials, up
and u;, coupled respectively to the baryon and to the
isospin charges B and I5.
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Our strategy will be to determine the dependence of the
free energy on the two chemical potentials, apart from
constant terms, by measuring its first derivatives with
respect to p; and w, (quark number densities) for imagi-
nary values of the two variables, and by then fitting them
by suitable functions, to be continued within proper ana-
lyticity domains.

One of our aims is the study of generalized susceptibil-
ities with respect to different conserved charges of the
model (baryonic, isospin). These quantities are of signifi-
cant phenomenological interest and have been determined
until now mostly by the Taylor expansion method. We shall
compare our results with those obtained by previous stud-
ies and comment on the efficiency and systematic effects of
analytic continuation. In the confined region, i.e. below the
critical temperature 7., we shall be able to perform a high
precision test of the hadron resonance gas (HRG) model,
leading to the uncover of violations close to 7. Finally, the
knowledge of the dependence of the free energy on the two
independent chemical potentials will allow us a study of
the average phase factor, which gives a direct measurement
of the severeness of the sign problem.

Our study is made for QCD with two flavors of unim-
proved staggered quarks and is based on a standard rational
hybrid Monte Carlo (RHMC) algorithm. The choice of
parameters is taken from Ref. [19]. The paper is organized
as follows: In Sec. II we describe the model that we have
investigated as well as the relevant physical observables;
we also discuss the symmetries of the model, which are
important for the choice of the free energy interpolating
functions to be used for analytic continuation. In Sec. III
we report the technical details of our numerical simula-
tions. In Sec. IV we present results obtained below 7. and
compare them to the predictions of the HRG model. In
Sec. V we report results obtained above 7. In Secs. VI and
VII we discuss results obtained, respectively, for general-
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ized susceptibilities and for the analytic continuation of the
average phase factor. Finally, in Sec. VII, we draw our
conclusions.

IL. Ny = 2 QCD WITH TWO INDEPENDENT
CHEMICAL POTENTIALS AND ANALYTIC
CONTINUATION

QCD with two continuum degenerate flavors is de-
scribed, in the (rooted) staggered fermion discretization
of the theory, by the following partition function:

Z(T) = f DUe SVl detM[U])'/?, (D

where S; is the discretized pure gauge action (standard
Wilson plaquette action in our case) and M is the staggered
fermion matrix describing four continuum flavors. Periodic
(antiperiodic) boundary conditions are assumed for gauge
(fermion) fields along the Euclidean time direction.

The introduction of two independent chemical poten-
tials, w1 and w,, coupled to the number operators of each
quark family leads to the following expression for the
grand canonical partition function:

2T, o, i) = j DUe 56 detM"*[ ] detM [ 5],
?)

where the fermion matrix in the standard staggered for-
mulation at finite chemical potential reads

123
M[ul];; = amé;; + 3 Z iy (Ui 05 — U?—ﬁ,u5i,/‘+ﬁ)
v=1

T Mia(e®U;46; ;-5 — E_WU,»J[_@A‘SL,'M)- 3)

Here i and j refer to lattice sites, # is a unit vector on the
lattice, 7; ,, are staggered phases; au and am are, respec-
tively, the chemical potential and the quark mass in lattice
units.

The two chemical potentials can be rewritten in terms of
a quark number chemical potential u, = (u; + u,)/2 (or
equivalently a baryon chemical potential up = 3u,) and
of an isospin chemical potential w; = (u; — w,)/2.

While the original theory is invariant under both charge
conjugation and isospin rotations, the theory in the pres-
ence of finite chemical potentials obviously is not.
However, the original invariance is reflected in the fact
that the free energy F = —T InZ must be an even function
of u, and u; separately, or equivalently it must be invari-
ant under the two following transformations (u;, u,) —
(2, ) and (wy, o) = (— o, — ), which are easily
verified to be symmetries of the partition function in
Eq. (2). That places strong constraints on its possible func-
tional dependence.

In the presence of a finite chemical potential detM
becomes complex and detM[—pu] = (detM[w])*. There-
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fore, apart from the case u, = —u; (u, = 0), the inte-
grand in Eq. (2) is complex and cannot be interpreted as a
probability distribution over gauge fields, so that standard
importance sampling techniques cannot be applied (sign
problem).

Positivity is recovered if the chemical potentials x| and
Mo are taken as purely imaginary: in this case numerical
simulations are feasible and results can be used to fit the
functional dependence of relevant observables.

Because of the above-mentioned symmetries of the free
energy, analytic continuation is actually a continuation
from negative to positive values of ,u,é and u?. Of course
it is expected to be applicable as long as no phase tran-
sitions are met along the continuation path.

It is convenient for the following discussion to introduce
the variables:

0, =Im(u,)/T = N,aTm(u,)
0; = Im(u;)/T = N,aTIm(u;)

and

0, = Im(w,)/T =60, + 6,
0, = Im(u,)/T =6, — 0,

where N, is the number of lattice sites in the temporal
direction.

It can be easily shown that the introduction of an imagi-
nary chemical potential is equivalent to a twist in the
temporal boundary conditions for fermions by an angle
Im(w)/T. Hence, both determinants appearing in Eq. (2)
are periodic functions, respectively, of #; and 6,, with
period 27, so that the free energy itself is a periodic
function of these variables.

In terms of 6, and ¢, that means again periodicity with
period 27 in both variables, plus invariance under
(04, 0;) — (8, + m 0, + 7). However, following the ar-
gument given by Roberge and Weiss in Ref. [13], it is
possible to prove that a transformation 6, — 6, +
27rk/N,., where N, is the number of colors and k is an
integer, can be canceled by a change of variables in the
functional integration in which all temporal links at a given
time slice get multiplied by a center element
exp(—i2kar/N,) (center transformation). Hence, the free
energy is expected to be a periodic function of 6, with
period 277/N, instead of 277 (N, = 3 in our case). An
analogous change of variables does not work for trans-
lations in 6;, which rotate the link variables appearing in
each determinant in a different way, therefore the period in
0; is really 2.

For temperatures below the zero density critical tem-
perature, 7, no phase transitions are expected, as in the
pp = 0 case, in the whole 6,, 6; plane. Therefore, due to
the discussed periodicity and required symmetries, the
most natural parametrization of the free energy is in terms
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of a trigonometric series as follows:

F(HqJ 0])

= Wy, cos(3h6,) cos(16)) 4)
T i

with & and [ both integers; moreover 4 and / must have the
same parity because of the invariance under (6, 6,) —
(ﬁq + a1, 6; + 7). Further constraints on the number of
terms appearing in Eq. (4) may be predicted by particular
effective models of strong interactions below T, like for
instance the HRG model to be discussed in Sec. IV. In such
a regime, information valid for analytic continuation can
be gathered in the whole 6,, 6; plane.

For T > T, we expect instead phase transitions in the 6,
0; plane, corresponding either to the continuation of the
physical deconfinement transition or to the generalization
of Roberge-Weiss (RW) transitions. Therefore a limited
region around 6, = 6; = 0 is available for the purpose of
analytic continuation to real chemical potentials, and we
shall write an expression for the free energy valid in that
region which respects the predicted symmetries under
0,— —6, and 6; — —0; separately. In particular, the
free energy will be expressed as a polynomial like

2i 2j
Gq o,

F@,, 60
Gl =5, i) 2))!

T

(&)

ij

with i, j non-negative integers, or as a ratio of polynomials
of the same kind,

2i 2j
zn. 5 9] |
."4,j @il @)1 =0

F@,0;,) ij
qTI = % g2l : (6)
%d"vl(TZ)! @ |d00:‘

The latter is an example of Chisholm approximant, i.e. the
generalization to the case of two independent variables of
usual Padé approximants, which have revealed to be better
suited for analytic continuation in some cases [9,24,25].
Some of the quantities we are interested in are general-
ized susceptibilities with respect to the different chemical
potentials, which for N F= 2 are defined as follows:

ai+j F ai+j
Xi,jz'ij<__)='7jpr (7
dpious N V) opious
where P is the pressure. Analogous susceptibilities are
defined in terms of u, and u;:
ai+j

®)

Xq,l =
[ I

O afd g
The free energy symmetries discussed above imply precise
constraints on the susceptibilities computed at zero chemi-
cal potentials. In particular, we have )(Z’jl # O only if i and
J are both even, while y;; # 0if i + jis even and y;; =
Xji-
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Such quantities encode all relevant information about
fluctuations of conserved charges, which are generally
considered to be sensitive probes for the properties of the
thermal medium produced in heavy ion collisions. They
have been computed mostly in the Taylor expansion ap-
proach [16-20], where they are expressed as average val-
ues at u = 0 of operators which are more and more
complex and computationally demanding as the order
grows, since they require more and more matrix inversions.
It is therefore sensible to explore the consistency and the
efficiency of different strategies. In the analytic continu-
ation approach we determine numerically the functional
dependence, for imaginary values of the chemical poten-
tials, of the first derivatives of the free energy. In terms of
adimensional quantities, which are most conveniently de-
termined on the lattice, they are given by

. _(Np 9 S
Ay =—2=—(P/T) =n +n,

VT a,uq 9)
. _(Np) 9 A
”IEV—YQZG—#I(P/T%:VH_”}

where N, and N; are, respectively, the quark number and
isospin charge operators, with

. (N 1 dInZ 1 oF
ni = = = — [—
VT3 VT? du, VT3 du;

P 0

Ni
= Te( MU, p;
4N§’< r( LU ]aa,ul-

MU, ,u,-])) (10)

for i =1, 2. In terms of the susceptibilities defined in
Eq. (7) Ay = x10/T? and A, = x(,1/T°. Such first deriva-
tives, which are purely imaginary for imaginary chemical
potentials, can be measured quite efficiently (only one
matrix inversion is needed for the noisy estimation of the
trace) and, apart from constant terms, encode all informa-
tion about the dependence of the free energy on u,, ;.
Information gathered at imaginary values of u,/; can then
be analytically continued to real values of u,/,, in particu-
lar, higher order derivatives at u, = u; =0 can be
extracted.

In comparison to the Taylor expansion approach, the
great advantage related to the much simpler observables
can be compensated by the need for multiple simulations at
different values of the chemical potentials. Moreover, this
procedure involves some systematic dependence on the
function chosen to interpolate data at imaginary w’s, which
should be eventually checked by comparing results
obtained with different functions. We shall compare trigo-
nometric expansions with polynomials below 7., polyno-
mials with ratio of polynomials above T.,.
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TABLE I. List of simulated temperatures and corresponding
B, m, values (taken from Ref. [19]), number of (u,, u;) pairs
explored at each temperature (np,) and average number of
trajectories (of 1 MD time length each) generated at each
temperature and for each (u,, ;) pair (ny,)). Np instead in-
dicates the total number of Dirac matrix multiplications per-
formed at each T, which is reported as an estimate of the overall
computing effort performed: that is more or less equally distrib-
uted between Monte Carlo and measurements.

T/Tc my :8 npairs ntraj ND

0.9 0.02778 5.26 95 2300 12.6 X 10°
0.951 0.02631 5.275 95 2460 14.0 X 10°
1 0.025 5.2875 95 3500 20.7 X 10°
1.048 0.0238 5.30 24 3120 4.7 x10°
1.25 0.02 5.35 77 2270 8.7 X 10°

III. PARAMETER DETAILS AND NUMERICAL
SETUP

Since we want to compare our results for the generalized
susceptibilities with those obtained by the Taylor expan-
sion approach, we have chosen for this study a subset of the
parameters used in Ref. [19], which is reported in Table 1.
That corresponds to five different temperatures with a
standard staggered lattice discretization on N, = 4 lattices
and a fixed value (on the corresponding 7 = 0 lattices) for
the pion mass, m, =280 MeV [actually mw/mp =
0.31(1) and m,/T. = 0.54(2)]. The critical temperature
reported in Ref. [19] is T, = 170 MeV.

In particular, we have made simulations on a 16% X 4
lattice using a RHMC algorithm. Our spatial size L, = 16
corresponds to about 6.6 inverse pion masses, hence finite
size effects are not expected to be important.

For T = T, we have made simulations on a grid of about
100 different pairs (6, 6,), in the range [0, 7] X [0, 7]:
because of the above described periodicity, this surely
contains all possible information available at imaginary
chemical potentials (actually in a redundant way, which
however is a benefit for checking the reliability of our
statistical analysis). Since susceptibilities are calculated
at null values of u, and u;, more points were taken in a
restricted region around the origin, in order to perform fits
of low-degrees polynomials in n, and n; around the origin
easily. Moreover, we have decided to perform a more
accurate study of the HRG model along the axis ; = 0;
therefore we have chosen further points there.

For T > T, we have performed a preliminary study
aimed at finding the position of transition lines, with the
purpose of delimiting the region at imaginary chemical
potentials available for analytic continuation. Further in-
formation about this region is given in Sec. V.

For each (7, 6,, 6;) we have produced about 2-3 K
thermalized trajectories of one molecular dynamics time
length each. More details about the amount of (u,, u;)
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pairs explored and average numbers of generated configu-
rations are given in Table I.

Quark densities have been measured by using noisy
estimators. It is possible to minimize the total error of
these observables (sum of statistical and noise fluctuations)
at fixed simulation time by choosing an appropriate num-
ber of random vectors used for each noisy estimation.
Assuming that noise and statistical fluctuations are inde-
pendent of each other, the optimal number of random
vectors n,.. to be used for each configurations is given by

Onoise | Tconf
Nyee = —fose [ comt | (11)
O meas Y Testim

where o, 1S the variance of the observable (quark den-
sity) over different configurations, o ;. is the variance of
the different estimates of the observable over a fixed con-
figuration, 7., is the time needed to generate a new
configuration, and 7.y, is the time needed to perform
one noisy estimate of the observable. We have measured
those quantities in preliminary runs and we have found
that, with our numerical setup, this number is around 30 for
all explored parameter sets. Notice that Eq. (11) does not
take into account the autocorrelation among configurations
and thus overestimates n,..; we have however directly
checked, by comparing different choices of n,.., that the
efficiency is almost stable for n,., ~ 10-50. We have al-
ways chosen n,.. = 30 in our production runs.
Simulations have been done on two computer farms in
Genoa and in Bari. The complete collection of our data is
not reported here, but is at disposal for interested readers.

IV.RESULTS AT T = T.: PRECISION TEST ON THE
HADRON RESONANCE GAS MODEL

The thermal medium below the critical temperature is
generally believed to be well described as a gas of free
hadron resonances (HRG model). This model provides a
good description of thermal conditions at freeze-out [26—
28] and has received theoretical support from lattice QCD
simulations [29]. Deviations from the model have been
recently detected close to 7, in a lattice study based on
the Taylor expansion method [17].

In the HRG model the free energy is expressed as the
sum of free particle energies. In particular, the free energy
for species i of spin s;, mass m;, baryon number B;, and
isospin I5;, is given by

VT oo [21 12
- Tani = =* g21'—2 f ln(l -x Zie mi+k /T)kde
T 0

_giVTPm? G&[(x)iH! m;l
i IZI[ k()] 0

where g; = 2s; + 1, the upper (lower) sign applies to
mesons (baryons) and
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3Bip, + 213iM1)

7; = etilT = exp( T

(13)
The expression in Eq. (12) is an approximation in the case
of unstable particles, for which an integration over a Breit-
Wigner distribution in the particle mass would be more
appropriate. The Bessel function K, is exponentially sup-
pressed for large values of the argument, K,(x) =
J7/(2x)e™", hence for m; > T we can keep just the first
term [ =1 in the [ expansion, corresponding to the
Boltzmann approximation in which quantum statistics ef-
fects are neglected. Summing up over all known particles
and resonances and grouping together all charge conjuga-
tion and isospin partners, we get

= o
InZ=V13>y W(m, g, T)5(B) cosh(3B —‘f)
B;m § T

< (3 8 cosn(21:51)), (14)

1,=0

where §(n) = 1 — 1/28,,, and

wons 1 =257 ()
m, g, = —— T I

& 1) "\
Such a prediction is easily continued to imaginary chemi-
cal potentials, where hyperbolic functions get transformed
into trigonometric functions, in particular we have

InZ = VT3 Wy (T)5(B) cos(3B6,)
B, 1

X (Z 5(13)005(21391)) (15)

;=0

Im (i) = S 3BW,(T) sin(3Bﬁq)( S 5(1) cos(2I301)>
B,1

1,=0

(16)

Im (i) = S W, (T)(B) cos(3Bl9q)( o1, sin(2139,)),
B, 1

1,=0
(17

where Wy (T) = hI
densities are always purely imaginary for imaginary
chemical potentials, for that reason we shall simply write
i, and 7; in the following, meaning implicitly that their
imaginary part is taken.
Predictions from the HRG model to be tested in lattice
QCD simulations can be classified as follows:
(1) The free energy has a particularly simple form since,
on the basis of known hadron resonances, only W,
Wo1, Wi/, and W 3/, are different from zero in
previous equations. That means a further strong
restriction on the expected form of the free energy
at low temperatures: a necessary condition for the

W(m, g, T). The average quark
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HRG model to be valid is that only the few lowest
terms of the Fourier expansion in Eq. (4) give
contribution;

(2) Also the numerical values of the coefficients can be
predicted from the known experimental resonance
mass spectrum.

The latter prediction is easily affected by lattice artifacts
and by the unphysical quark masses used in simulations,
which change the actual hadron spectrum on the lattice.
The former, instead, is expected to be more robust and less
sensitive to discretization details. The method of analytic
continuation is particularly well suited for lattice QCD
tests of the HRG model, since it gathers information, below
T,., from the whole range of possible imaginary chemical
potentials, so that the number of terms actually contribut-
ing to the Fourier expansion in Eq. (4) can be checked with
great precision: this idea has been followed in earlier
studies limited to the 6, = 0 axis [5,14], in which the
presence, within errors, of a single Fourier contribution,
corresponding to B = 1, has been verified. In this respect
the aim of our work is to extend such studies by increasing
precision and by exploring also the #; # 0 region.

A.T = 09T,

We start by discussing results obtained at 7 = 0.97... Let
us first look at the #; = 0 axis: 7i; is zero in this case, while
in general 7, can be Fourier expanded as

iy, = csin(31,) (18)
=1

and the HRG model predicts contribution only from the
lowest harmonic, / = 1. Indeed a simple sine term, corre-
sponding to B = 1, is perfectly compatible with our data,
as shown in Fig. 1 and reported in Table II. A second term
with [ = 2 is therefore not necessary, at least within the
precision of our data, even if a two-sine fit leads to a

0.15F
0.1F

0.05

-0.05

0.1F

-0.15F

0 o041 02 03 04 05 06
0,/1

FIG. 1 (color online). Normalized quark density at 7 = 0.97T.

and 6; = 0. The solid line corresponds to the single sine fit

reported in Table II.
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TABLE II.  Coefficients of sinusoidal fits for 7, along the §; =
0 axis at various temperatures [see Eq. (18)]. Blank columns
stand for terms not included in the fits.

¢y I 3 x?/d.o.f
T =0.9T,

0.1536(14) ce 28/21
0.1514(15) 0.0046(14) 17/20
T = 0.951T.

0.2413(25) s 42/21
0.2383(26) 0.0102(22) 21/20
T=T.

0.3865(4) s 248/21
0.395(4) 0.048(3) . 50/20
0.389(4) 0.048(3) 0.018(4) 23/19
TABLE III. Weight of different harmonics at various tempera-

tures for 7, at §; = 0 [see Eq. (18)] obtained by Fourier trans-
form. Blank columns correspond to terms not included in the
previous fits.

T/T, c ) c3
0.9 0.1521(11) 0.0052(11)

0.951 0.2387(19) 0.0101(17) .

1 0.392(3) 0.0503(27) 0.018(3)

smaller y?/d.o.f. with a ¢, # 0 within three standard
deviations (see again Table II). As shown in Table III,
completely equivalent results are obtained if, instead of
fitting our data, we compute the coefficients c; by explicit
Fourier transform,

3 27/3
o= [0 sin(316,)i,(0,)d0,, (19)

where the integration is performed numerically by linear
interpolation of consecutive data points.

Next we consider data for 7, and 71; obtained in the
whole range of 6, and 6; explored, which are shown in
Figs. 2 and 3, and try to fit them according to the expres-
sions in Egs. (16) and (17), considering more and more
parameters W ; until an acceptable value for the y? test is
obtained. Fit results are reported in Table I'V: a reasonable
value of ¥* is obtained if a term with quantum numbers
B = 0and I = 2 is allowed for, besides those correspond-
ing to usual meson (B =0, I = 1) and baryons (B =1,
I =1/2 or 3/2). Such a term does not correspond to any
known or even possible exotic hadron [30], but it is easily
recognized as the first term, [ = 2, neglected in Eq. (12) in
the Boltzmann approximation in the case of pions: this is
actually the first correction taking into account quantum
statistics effects for pions, i.e. the fact that they are bosons,
and corresponds to a two-pion exchange. With a pion mass
as that used in our simulations, m_, ~ 280 MeV, such a
term would mimic a coefficient W, ~ 0.0045, in very
good agreement with the value obtained in our fit. Notice
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FIG. 2. Fit of normalized quark densities at 7 = 0.9T., ob-
tained from all imaginary chemical potentials explored (cross
points), with the prediction from the HRG model (grid surface).

n/T SoA

OO0 000
wWh—mo=ivwh

FIG. 3. Fit of normalized isospin densities at 7 = 0.9T,, ob-
tained from all imaginary chemical potentials explored (cross
points), with the prediction from the HRG model (grid surface).

that terms with / > 2 are negligible in our discretization
setup, but would not be so, already at this temperature, in
the case of physical pion masses. As for the data at 8; = 0,
allowing for a term with B = 2 leads to a lower value of
X2, but is not strictly necessary, at least within the precision
of our data.

Our conclusion is therefore that at 7 = 0.97, numerical
data do not contradict, within errors, the prediction coming
from the HRG model regarding the number of terms ac-
tually contributing to the free energy, apart from marginal
evidence for a B = 2 term which, however, is not strictly
needed to fit data. Other deviations can be ascribed to the
crudeness of the Boltzmann approximation for pions and
are indeed well accounted for by the first neglected term.

Of course if one looks at the numerical value of the
coefficients, checking the agreement with experimental
data is less trivial: taking into account all nonstrange (since
we are considering Ny = 2) hadron resonances reported in
the Particle Data Book [31], we would expect, for instance,
Wy = 0.457," which is roughly twice the value we have

"More precisely we considered all mesons of widely accepted
existence, marked with a dot in the meson summary table.
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TABLE IV. Coefficients of HRG model fits at various temperatures.

Wo, Wo Wi Wi Wisp Wi Wy, Wso Xz/d-o-f-
T = 09T,
0.2284(11) e 0.0110(6)  0.0202(3) . 284/187
02157(18)  0.0050(6)  0.0115(6)  0.0198(3) e 206/186
02156(18)  0.0051(6)  0.0111(6)  0.0197(3) 0.00043(13) 196,185
T =0.951T,
0.2862(13) e 0.0199(7)  0.0305(4) . 640/187
0.258(2) 00114(6)  0.0212(7)  0.0292(4) ca 281/186
0.257(2) 00117(6)  0.02038)  0.0290(4) . 0.000 84(18) 259/185
0.256(2) 00114(6)  0.02108)  0.0264(6)  0.0017(3) 0.000 88(18) 230/184
0.257(2) 0.0106(7)  0.02128)  0.02656)  0.00094)  0.0006(2)  0.00090(18) 222/183*
T=T.
0.3775(15) e 0.0412(7)  0.0456(4) cos 1798/187
03322(21)  0.0219(7)  0.0391(7)  0.0465(4) e 808/186
0.3269(21)  0.0225(7)  0.0363(7)  0.0464(4) . 0.003 72(24) 562/185
03184(22)  0.0246(7)  0.0349(7)  0.0396(6)  0.0053(3) . 0.004 36(24) 330/184
0.3208(22)  0.0218(8)  0.0342(7)  0.0391(6)  0.00384)  0.00193)  0.00445(24) e 288/183
0.3214(22)  0.0220(8)  0.0344(8)  0.0393(6)  0.0042(4)  0.00153)  0.0031(6) 0.0104)  281/182"

obtained [W,; = 0.216(2)]. A more careful comparison is
made using the unphysical pion and p masses realized in
our lattice simulations (m, ~ 280 MeV and m, ~
918 MeV [19]): the coefficient becomes W ~ 0.30(2)
including all resonances, Wy, ~ 0.26(2) taking into ac-
count just pions and p particles, and Wy, ~ 0.225(15)
including just pions (the errors here take roughly into
account the uncertainties given for the lattice estimate of
the masses in Ref. [19]), i.e. much closer to our numerical
result or even perfectly compatible in the last case. We
notice that, since already p masses are beyond the UV
scale of our lattice (a~! ~ 700 MeV), it is perfectly rea-
sonable that the contribution from higher resonances is not
properly taken into account. That also clearly shows that a
comparison of the numerical values of the fitted coeffi-

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4 (color online). Normalized quark density at 7T =
0.9517. and 6; = 0. The solid line corresponds to the two-
sine fit reported in Table II.

cients with the HRG model prediction is unavoidably
affected by the systematics of the lattice discretization.

B.T = 0.951T,

Once again we first look at results obtained for 7, at
6; = 0, which are shown in Fig. 4. In this case two Fourier
terms, corresponding to B = 1 and B = 2, are necessary to
fit our data. The second term is small, giving a contribution
of the order of 5% the total signal, but our data are precise
enough to detect it; indeed a ¥ of order 2 is obtained if a
single sine fit is tried (see Table II).

In this case the presence of the B = 2 term cannot be
simply ascribed to a violation of the Boltzmann approxi-
mation: assuming a mass of order 1 GeV for the lightest
baryon, the first neglected term should lead to a signal a
factor 10? smaller than what we get; moreover it should be
negative, as appropriate for a two-fermion exchange term.
The presence in the thermal medium of baryon-baryon
bound states, like deuterons, is a viable hypothesis: how-
ever assuming a mass difference AM ~ 1 GeV between
those states and the lowest baryon states, one would expect
a suppression factor of the order exp(—AM/T) ~ 1073 at
this temperature, i.e. much smaller than what we have
obtained.” A simpler explanation is that at this temperature
corrections to the HRG model, induced by nontrivial in-
teractions close to the phase transition, start to be
important.

That is confirmed by analyzing the complete set of data
for 71, and 7; as a function of 6, and 6,: fit results are
reported in Table IV. Also in this case a term with (B, I) =
(0, 2) is needed, but its value comes out to be about twice

2Notice however that also for these states lattice artifacts due
to the low UV cutoff, a~! ~ 700 MeV, could be important.
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FIG. 5 (color online). Normalized quark density at 7 = T.. and
6; = 0. The solid line corresponds to the three-sine fit reported
in Table II.

than expected from the first term neglected in the
Boltzmann approximation for pions. In order to get a
reasonable value for ¥? it is necessary to introduce also
terms corresponding to B = 2 (in agreement with results at
0; = 0) and terms with B = 1 and isospin up to I = 7/2.
We interpret this again as a violation of the HRG model.
Regarding the numerical values obtained for the fitted
coefficients, we obtain for instance W ; ~ 0.256(2), to be
compared with W, ; ~ 0.24 if only pions are taken into
account, Wy, ~ 0.28 including pions and p mesons,
W1 ~ 0.35 including all meson resonances. The same

PHYSICAL REVIEW D 80, 014502 (2009)

considerations made for 7 = 0.97. and regarding this
comparison also apply here.

C.T=T,

Finally, let us briefly discuss results obtained at 7 = T.
Since at this temperature we stay in the confined phase as
we switch an imaginary chemical potential, however small,
it is still sensible to test predictions from the HRG model.
However, it is sufficient to look at results obtained for 7, at
6; = 0 (Fig. 5) to realize that violations to the model are
important: in this case inclusion of the first three harmonics
(B =1, 2, 3) is necessary to obtain a reasonable value for
X¥° (see Table II). This fact is confirmed by fits to the
complete set of data for 72, and 72; which are reported in
Table IV: the §? value decreases as more and more terms in
the expansion in Eq. (4) are added.

In conclusion, within the current precision of our data,
corrections to the HRG model are clearly detectable start-
ing from T ~ 0.951T7.,..

Our best fits reported in Table IV, which are marked in
the %2 field by *, provide us with a valid parametrization of
the free energy (apart from a constant term). We shall make
use of these parametrizations in the following sections to
derive generalized susceptibilities at u; = p, = 0 and to
study the analytic continuation of the average phase of the
fermionic determinant. Systematic effects are expected at
T = T,, where the ¥ of our best fit is somewhat bigger
than 1.

In order to check for systematic effects related to the
choice of the interpolating function we have also per-

TABLE V. Coefficients of polynomial fits at various temperatures. Each line contains results of fit performed on all points in the

circumference of radius |6/,

|§|max/77 €20 C11 C40 2 Co4 C60 Ca2 Co4 Co6 Xz/d-o-f
T = 0.9T,

0.34 0.479(3) 0.1892(22) SR s 6014/108

0.34 0.659(5) 0.412(4) —2.66(7) —1.22(4) —2.40(4) s <o <o 237/105

0.34 0.696(9) 0.461(6) —4.1(4) —1.76(14) —4.15(17) 23(6) 8(3) 12(3) 30(3) 113/101*
T = 0.951T,

0.34 0.636(3) 0.301(3) s SR SR 8483/108

0.34 0.897(5) 0.651(5) —3.69(6) —2.00(5) —3.76(5) <o <o <o 388/105

0.34 0.992(10) 0.744(8) —7.5(4) —3.36(15) —6.95(23) 62(7) 28(4) 26(4) 54(4) 125/101*

T=T.

0.34 0.838(5) 0.394(4) s SR s 12955/108

0.34 1.340(9) 1.099(9) —5.75(8) —3.33(8) —6.67(7) s cee 972/105

0.34 1.589(18) 1.348(13) —15.6(8) —6.46(23) —13.9(3) 157(13) 65(6) 47(5) 121(5) 239/101*
T = 1.048T,

0.12 3.029(8) —2.941(9) s s 228/36

0.12 3.178(15) 3.052(16) —128*19 —-554) -75%*19 <o <o 39/33*

0.12 3.178(24) 3.05(3) —10(6) —7.6 1.5 —4(6)  639(1005) 125(148) 224(135) —991(1037) 34/29
T = 1.25T.

0.3 3.2810(11) 3.2438(12) 170616/111

0.3 3.7156(18) 3.6677(2) —4.67(4) —3.555(9) —4.74(4) <o <o 142/111

0.3 3.720(3) 3.668(3) —4.75(12) —3.67(3) —4.59(13) 03) 1.7(5) 1.5(5) 6(3) 123/107*
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formed polynomial fits in a limited range of chemical
potentials: our results are reported in Table V. Fits chosen
for analytic continuation are again marked by * in the }*
field.

V.RESULTS AT T >T,

The range of imaginary chemical potentials available for
analytic continuation is limited, above T, either by the
presence of unphysical phase transitions related to center
group dynamics (RW transitions) or by transitions corre-
sponding to the analytic continuation of the deconfinement
surface present at real chemical potentials. A full account
of the high temperature phase structure in the presence of
two different imaginary chemical potentials will be given
elsewhere [32]; in the present context we are just interested
in the location of such transitions for the two temperatures
explored, i.e. T = 1.0487, and T = 1.257,. To that aim
we have performed preliminary simulations on a small
83 X 4 lattice to get a rough idea of the phase structure at
these temperatures and thus delimit a safe region for ana-
lytic continuation, where to perform simulations on the
larger 16> X 4 lattice.

As for T = 1.048T,, in Fig. 6 we show the behavior of
the modulus of the Polyakov loop and of the chiral con-
densate as a function of 6, at §; = 0 and as a function of ¢,
at 6, = 0. Itis clear that along both axes a transition is met
where the system gets back into a phase with confinement
and chiral symmetry breaking: at those points the system is
crossing the analytic continuation of the pseudocritical
surface, present also at real chemical potentials. On the
same symmetry grounds as for the deduction of general
properties of the free energy in Sec. II, one expects that for
small chemical potentials such a pseudocritical surface
must be of the form

T T T
0.15+ E & o chiral condensate, 9, =0 1
i e o chiral condensate, Oq =0
L % o Polyakov loop, 0,=0 e
i m Polyakov loop, Oq =0
0.1+ N
L] e o o
o s e« % 3 g g
L = % . -
# %
0.5~ [ z -
3 i ® k3 e I = m
x
L * = 2
0 | | | | |
0 0.1 0.2 0.3 0.4

0,/m (8/m)

FIG. 6. Polyakov loop modulus and chiral condensate at T =
1.048T, along 6; = 0 and 6, = 0 axes. Data have been obtained
on a 8 X 4 lattice. The chiral condensate has been divided by a
factor 4 to better fit in the figure.
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0.18— -
0.16 [~ —
| |e—o chiral condensate, 0,=0 i
0.141~ e—a chiral condensate, 6[ =025m ]
0.12 | |v— chiral condensate, 6,=0 i
7| | e—e Polyakov loop, 0,=0 |
0.1 [== Polyakov loop, 0,=025n |
’ | | v—w Polyakov loop, i
0.08 -
0.06 —
0.04 - -
0 0.1 0.2 0.3 0.4 0.5

sqri(®,” + eqz)/n

FIG. 7. Polyakov loop modulus and chiral condensate at T =
1.25T, as a function of |§ | and at different constant values of 6,
or #,. Data have been obtained on a 83 X 4 lattice. The chiral
condensate has been divided by a factor 2 to better fit in the
figure.

T.(6,,6,) = T.(0,0) + A62 + B63.

As clear from Fig. 6 the transition happens at approxi-
mately equal points along both axes (6, ~ 6; ~ 0.2m), i.e.
A ~ B. Also the observables (Polyakov loop and chiral
condensate) seem to be, within a good approximation,
universal functions of Iél, where 6 = (6, 0;), at least not
too far from the origin 6, = ¢; = 0. Only imaginary
chemical potentials strictly within the deconfined region
can be considered for analytic continuation: Fig. 6 suggests
to take |6] < |60, With 6], ~ 0.1277.

The phase structure is less trivial at 7 = 1.25T,. In
Fig. 7 we plot the behavior of the modulus of the
Polyakov loop and of the chiral condensate as a function

of |6] in three cases: fixed 6, =0, fixed 6, = 0, and fixed
6; = 0.257. We observe again an approximate universal

dependence on Iél for relatively small values of this vari-
able. Along the 6, = 0 axis a transition is met, at 6; ~
0.427r, which clearly belongs to the pseudocritical confine-
ment/deconfinement surface. Along the #; = 0 axis in-
stead the system always stays in the deconfined phase
and the Roberge-Weiss transition is met at 6, = /3
where the system enters a different Z3 sector, as also
apparent from the behavior of the Polyakov loop phase
shown in Fig. 8. What happens along the #; = 0.257 axis
is less clear and presumably there one meets a pseudocriti-
cal point close to the junction between the Roberge-Weiss
transition and the pseudocritical deconfinement surface:
(6,,0,) = (m/3,w/4) is indeed very close to the point
where the physical pseudocritical line at 7 = 1.25T,, ap-

proximated as ,/0% + 62 =~ 0.427, is expected to cross the
RW line 6, = 7r/3. In this context we are only interested
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FIG. 8. Average phase of the Polyakov loop given in units of
27/3 at T = 1.25T.. Data have been obtained on a 8 X 4
lattice.

in delimiting a region safe for analytic continuation: from
Fig. 7 it is clear that points with 16] < |§|max ~0.37 are
surely contained in that region and this has been our
conservative choice.

In this temperature regime we have tried to fit our results
for A, and 71; as a function of 6,, 6; according to poly-
nomials derived from the general expansion for the free
energy given in Eq. (5) and truncated to a given order, or
according to expressions derived from a parametrization of
the free energy given in terms of ratios of polynomials as in
Eq. (6).

At T = 1.048T, a fourth order polynomial provides a
good fit, while coefficients are largely undetermined if a
sixth order polynomial is used: not enough information can
be extracted from the limited region available for analytic
continuation. A marginally good fit is obtained with the
ratio of two second order polynomials, but a fourth order
polynomial at the numerator seems preferable.

At T = 1.25T, a sixth order polynomial or the ratio
between fourth and second order polynomial are instead
the best interpolating functions.

PHYSICAL REVIEW D 80, 014502 (2009)

Ke)

S o = ™
oo =uINDOWw
>

FIG. 9. Fit of normalized quark densities at T = 1.25T,, ob-
tained from all imaginary chemical potentials in the region 6] =
0.307 (cross points), with a sixth order polynomial function
(grid surface).

S o = N
Qo U=0NUIWw

FIG. 10. Fit of normalized isospin densities at 7 = 1.25T,
obtained from all imaginary chemical potentials in the region
16] = 0.307 (cross points), with a sixth order polynomial func-
tion (grid surface).

TABLE VI. Coefficients of rational fits at various temperatures.
|§ lmax /7 120 L) 140 o 104 dy do dyo dy do x*/d.o.f
T = 1.048T.

0.12 3.176(15) 3.062(16) 0.81(8) 0.60(8) s 55/34
3.185(23) 3.07(3) 0.9(3) 0.7(3) —14(17) 3(4) —18(18) 45/31
3.178(15) 3.048(22) 3(27) —-6(6) —19(24) —0.8*+1.2 —0.7* 1.6 . s 39/31*
322(3) 3.07(3) —60(10) —24(4) —41(10) —1.7(4) -1.7(4) —127(85) —83(35) —34(53) 32/28

T = 1.25T.

0.3 3.7123(17)3.6928(19) 0.3236(12) 0.3217(11) s 25705/114
3.723(3) 3.694(3) cee 0.329(4) 0.353(4) —1.58(4) 0.589(11) —1.66(4) 3941/111
3.7188(24)3.671(3) —0.5(5) —2.29(15) —0.5(6) 0.185(20)  0.192(22) 124/111*
3.721(3) 3.666(3) —7.2(3) —4.03(7) —4.57(11) —0.101(11) —0.004(6) —0.45(21) —0.139(20) 0.20(7) 138/108
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TABLE VII.

PHYSICAL REVIEW D 80, 014502 (2009)

Table of different susceptibilities obtained from various fits. We present the values obtained from “best fits” of each

kind of free energy form, together with values obtained by the authors of Ref. [19] using the Taylor expansion method.

T/T, Fit X2,0 X1 X4,0 X6.0
0.9 HRG 0.2925(20) —0.0535(17) 1.287(24) 9.5(3)
POL 0.289(3) —0.0588(24) 1.17(7) 5.6 1.2
[19] 0.311(19) —0.057(15) 1.495(75) 11.2 7.0
0.951 HRG 0.439(4) —0.058(3) 2.32(8) 22(2)
POL 0.434(4) —0.062(3) 2.16(8) 14(2)
[19] 0.423(21) —0.080(17) 3.16(26) —29 + 11
1 HRG 0.759(7) —0.039(5) 5.09(13) 61(3)
POL 0.734(7) ~0.060(5) 427(13) 31(2)
[19] 0.946(20) —0.0331(72) 6.51(20) —5.3 +10.7
1.048 POL 1.557(6) —0.032(5) 3.4(3) s
RAT 1.557(7) ~0.033(6) 33(4) |+ 24
[19] 1.55(16) —0.0385(98) 4.33(23) —69 £ 16
1.25 POL 1.8470(12) —0.0130(9) 1.960(20) 0.64(23)
RAT 1.8473(11) —0.0121(7) 1.968(16) 2.78(25)
[19] 1.84(12) —0.0138(85) 2.181(31) 55+ 17

A complete collection of our fit results is given in
Table V and in Table VI. Best fits chosen for analytic
continuation are marked again by *. Data obtained for 7 =
1.25T, are shown in Figs. 9 and 10.

VI. GENERALIZED SUSCEPTIBILITIES

Best fits to our data provide us with a parametrization for
the dependence of the free energy on the chemical poten-
tials, from which generalized susceptibilities can be ex-
tracted. If different interpolations provide consistent
results then analytic continuation can be considered reli-
able; of course systematic effects related to the finite UV
cutoff or to the unphysical quark mass spectrum could still
be important.

In Table VII we report results obtained for x,0, X1.1,
X4,0- and xg o [defined in Eq. (8)] from free energy best fits

2 T
oo
15k i -
o Gavai & Gupta| |
= e HRG
= I o o polynomial
= v rational
®©
05+ —
™
e
0 . | . | . | . | . | . | . | . | .
0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
T/T
<
FIG. 11. Values obtained for y,,/7> from various fits and

compared with results from Ref. [19].

marked by * in the tables. Results obtained for x,, x1.1
and x4, are reported also in Figs. 11-13 respectively,
where they are compared with analogous results obtained
using the Taylor expansion method in Ref. [19].

The following general features can be observed.
Different extrapolations provide always consistent results
for x, 0 and 1. A good agreement with Taylor expansion
results can be observed as well, apart from the 7 =T,
case.

For x40 we observe a discrepancy between different
interpolations only for 7= T, and T = 1.0487,; the
agreement with Taylor expansion is less good around 7.

For x¢,o different extrapolations disagree or are at most
marginally compatible in the whole range of temperatures:
with the current precision of our data, we cannot get
reliable results for sixth or higher order susceptibilities.

= . . . . . . —T—
-0.02 - % —
0.04 - % o Gavai & Gupta | _|

s e HRG
~ o polynomial R
= 0061 3 % % v rational B
-0.08 — —

olb— 3 oy
0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

/T,

FIG. 12. Values obtained for y,,;/T> from various fits and
compared with results from Ref. [19].
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FIG. 13. Values obtained for y,, from various fits and com-

pared with results from Ref. [19].

In general, the comparison among different interpolation
methods and with Taylor expansion results is good, apart
from the region around 7. This is not unexpected: right
above T the region of imaginary chemical potentials usa-
ble for analytic continuation is small and restricted by the
continuation of the pseudocritical line, so that poor infor-
mation is available. Moreover, right at T = 7. we could
not get best fits to the free energy dependence with a
x?/d.o.f less than 1.5, therefore we do not have a com-
pletely satisfactory parametrization of the free energy for
this temperature and systematic effects related to analytic
continuation may be more important.

We have reported in Table I the total number of Dirac
matrix multiplications needed in our numerical simulations
at each temperature. We infer, from a rough estimate, that
the effort for measurement purposes in our case (which is
more or less half of the total) is approximately 2 orders of
magnitude larger than needed (again for measurement
purposes) in Ref. [19]. The increased effort leads to corre-
sponding smaller errors (about 1 order of magnitude) only
for the lowest susceptibilities (y,o and xp;), while for
higher order susceptibilities the Taylor expansion method

PHYSICAL REVIEW D 80, 014502 (2009)
4 — T T T T T T T T T T T T 1
i ]

Hne
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FIG. 14. Values obtained for x¥;/T? and x§5/T? from poly-
nomial fits.

seems to be more efficient. One has to consider, however,
that our numerical simulations were not designed to be
optimized for the computation of susceptibilities, and that
in our case we obtain a complete parametrization of the
free energy dependence in terms of u; and u,, which is
usable for different purposes.

In Table VIII we report also results obtained for the
susceptibilities with respect to quark and isospin chemical
potentials and defined in Eq. (8). In Fig. 14 we show, in
particular, the values of x4 and y{5 for all temperatures,
as obtained from polynomial fits: notice that Xg,'é is always
larger than )(Zjé below 7., meaning that isospin charge
fluctuations can be excited more easily (mainly in the
form of pions) than baryon charge fluctuations below T,
while in the deconfined region the two susceptibilities
become almost equal, as appropriate for a system made
up mostly of quarklike degrees of freedom.

VII. PHASE OF THE FERMIONIC DETERMINANT

As we have recalled in Sec. II, the complex phase of the
fermion determinant, detM[U, u] = |detM[U, u]le'®,

TABLE VIII. Table of different susceptibilities calculated with respect to the quark and isospin chemical potentials from the same
best fits as for Table VII.
T/, Fit X350 XG5 X Xt X2
0.9 HRG 0.478(6) 0.692(4) 4.92(25) 4.05(7) 1.94(3)
POL 0.461(6) 0.696(9) 4.15(17) 4.14) 1.76(14)
0.951 HRG 0.762(9) 0.993(10) 8.2(3) 8.3(5) 3.45(11)
POL 0.744(8) 0.992(10) 6.95(23) 7.5(4) 3.36(15)
1 HRG 1.440(14) 1.597(16) 19.8(5) 16.8(8) 7.47(21)
POL 1.348(13) 1.589(18) 13.9(3) 15.6(8) 6.46(23)
1.048 POL 3.052(17) 3.178(15) 75*19 128 £ 1.9 5.5(4)
RAT 3.045(21) 3.176(15) 2(5) 11(4) 6.6(9)
1.25 POL 3.668(3) 3.720(3) 4.59(13) 4.75(12) 3.67(3)
RAT 3.671(3) 3.7188(24) 4.72(11) 4.68(9) 3.681(17)
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hinders numerical simulations in the presence of a real
baryon chemical potential wp. The problem is however
milder in the case the fluctuations of the phase ¢ around
zero, over the gauge configurations which are typical of the
statistical ensemble, are small: in that case efficient nu-
merical methods, like reweighting, can be used. A typical
measure of the severeness of the sign problem is therefore
given by the average of the phase factor (or some power of
it), computed for convenience over the ensemble at finite
isospin density. In particular in our case we can define

(e = < detM'/*(u) > _ Zp )
oo NdetM M=) -y Z(p — )

_ ZUpy = p oy =0)

Z(pg =0, up = p)

(20)

As clear from Eq. (20), a way to determine (¢'%/?),, is to
take the average of the ratio of two determinants over the
ensemble at real isospin chemical potential: that is feasible
but computationally demanding, especially at large vol-
umes. Studying the analytic continuation of (¢'#/2), at
imaginary values of w,

(e, = 20 i) @1
B Zlip, —ip)

is an alternative: it has been shown [33,34] that, in the full

QCD case, the average phase factor is analytic around

u? =0, and an efficient numerical method for the evalu-

ation of the ratio of partition functions appearing in

Eq. (21) has been proposed in Ref. [11].

In the present context we adopt a much faster and
cheaper approach: having measured and fitted first deriva-
tives with respect to both chemical potentials, we have a
complete knowledge, apart from constant terms, of the
dependence of the free energy on wu; and u,, so that
computing the ratio in Eq. (21) is straightforward. Let us
consider for instance the low temperature case, where we
have used the HRG parametrization in Eq. (15) that we
rewrite

F = —VT*Y Wy ,(T)5(B) cos(3B6,)
B,1

X (Z 5(13)005(2130,)) (22)
1,=0
then
Z(,=06,0,=0)

= o~ (1/T)(F(,=6.6,=0)—F(6,=0,6,=6))
Z(0,17 =0,0,=0)

(23)

Nonzero coefficients Wy, apart from the constant W
which does not enter in the computation of the average
phase factor, have been obtained by fitting our numerical
data. The expression can then be easily continued to real
chemical potentials obtaining

PHYSICAL REVIEW D 80, 014502 (2009)

| N3 ]
(€72, = exp( s X Wi (1)5(B)
t BI

X <cos(3B¢9q) — Z 5(13)cos(213¢9,))>. (24)

;=0

The same procedure applies to other functional forms
used in our fits: the comparison of different extrapolations
to real chemical potentials based on different fitting func-
tions, when available, gives a measure of the systematic
effects involved in analytic continuation. Notice that in the
case of the HRG parametrization we can distinguish the
different contributions to the average phase factor, hence to
the sign problem, coming from different particle species:
this feature will be useful in our analysis.

In Figs. 15 and 16 we report, as a function of 2u/m,,,
results obtained respectively at 7 =0.97, and T =
0.9517, using HRG inspired and polynomial interpola-
tions. Where visible, the two lines reported for each ex-
trapolation delimit the 90% confidence level region and
give an estimate of our uncertainties: a good agreement
between HRG inspired and polynomial extrapolations can
be appreciated.

It is interesting to make a direct comparison of our
results with predictions coming from chiral perturbation
theory (yPT). The average phase factor has been computed
to one loop order of yPT in Ref. [35]. According to the
results reported in Sec. VI of Ref. [35], our spatial lattice
size is big enough (L,m, ~ 6.6) to justify taking the
thermodynamical limit at fixed 7 of the one loop yPT
result, which coincides with the prediction of a HRG
model including only pions:

i$/2y — ,—AG

(e'¥/?),, = e~AG0 (25)
1 ‘ T 3

— xPT

A, -- HRG

N .-+ Polynomial
Y

—- HRGonly W, and W, | -

0.5 —
0
0 0.2 0.4 0.6 0.8 1
2 Wm_
FIG. 15. The average phase factor continued from different

interpolations and compared to one-loop xPT results for 7 =
0.9T,. In particular, we show the 90% confidence level band
extrapolated from our best fits to the free energy dependence.
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1 ‘ \ \ \ \

---- Polynomial
—- HRGonly W, and W, | 1

0.5
00
2 Wm_
FIG. 16. Same as in Fig. 15 for T = 0.951T,.
with

+o00 nmg;
AG, = vﬁ(?-;)z D %(cosh@un) —1). 6)

n=1

This prediction (assuming in our case m, = 280 MeV and
T. =170 MeV) is reported in Figs. 15 and 16 as a solid
line. It is apparent that the agreement of }PT with the
analytic continuation of our data is not satisfactory. In
particular, analytic continuation provides a higher value
for (e'¢/ ?),.» meaning a milder sign problem. To better
understand the origin of this discrepancy, we have tried
to compute the average phase factor from our HRG model
best fit, but neglecting all contributions to the free energy
with B # 0, which cannot be taken into account by yPT,
i.e. taking only contributions from W;,; and W, in
Eq. (24). Results are shown in Figs. 15 and 16: in this
case the agreement with yPT is almost perfect for T =
0.97 ., and acceptable for T = 0.9517... This is expected
since, as we have discussed in Sec. IVA, the coefficients
Wy,1 and W, obtained by our fits are compatible within
errors, at T = 0.9T .., with those predicted if only pions are
taken into account: of course that may be an accident and
the contribution of higher meson resonances should be
better understood.

Anyway, an outcome of our analysis, which is in agree-
ment with HRG model expectations, is that contributions
to the average phase factor coming from physical states
with B # 0 are significant and tend in general to make the
sign problem less severe.

In Fig. 17 we report the analytic continuation of the
average phase factor obtained at all temperatures from a
polynomial fit: of course results reported in the figure must
be intended to be valid for chemical potentials bounded,
below 7., by the deconfinement critical line present at real
chemical potentials. As expected, at fixed chemical poten-
tial the sign problem is much milder for 7 > T.,. This can
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=

0.8

— T=09T,
—— T=095IT,
o T=T,

= T=1.048T,
—- T=125T,

2w/m,

FIG. 17. The average phase factor continued from polynomial
interpolations at all explored temperatures. For each temperature
we show the 90% confidence level band corresponding to our
best fits.

be put again in connection with the fact that states with
B # 0, which are more easily created above T, tend to
mitigate the sign problem.

VIII. CONCLUSIONS

In this paper we have studied Ny = 2 QCD thermody-
namics, exploiting analytic continuation from two imagi-
nary chemical potentials coupled to baryon and isospin
charges. Simulations have been performed at five tempera-
tures around the critical value 7, =~ 170 MeV, using a
16° X 4 lattice with a standard staggered action and a fixed
pion mass m, = 280 MeV.

We have computed free energy first derivatives with
respect to the chemical potentials (quark number densities)
and interpolated them by suitable functions, in order to
perform analytic continuation. In particular, we have tested
HRG predictions below T, reconstructed generalized sus-
ceptibilities at zero chemical potentials, and determined
the analytic continuation of the average phase factor.

We have checked that HRG model predictions are in
very good agreement with our numerical results for 7 =
0.9T.. Small but clearly detectable deviations start to be
visible at 7= 0.957,, in agreement with similar results
reported in Ref. [17]. They appear, in a HRG inspired
parametrization of the free energy, as contributions from
unphysical states with higher values of baryon or isospin
charges, which are of the order of a few percent at T =
0.95T, and above 10% at T =T.,.

Regarding the computation of generalized susceptibili-
ties, analytic continuation gives consistent results which
are in agreement with those obtained by the Taylor expan-
sion method, apart from temperatures in correspondence or
right above T,, where the range of imaginary chemical
potentials available for analytic continuation is small and
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larger systematic effects are expected. In general, poor
information has been obtained for susceptibilities beyond
sixth order.

Further systematic effects at 7. may be related to the
error in the location of the critical temperature at zero
chemical potential as reported in Ref. [19], where it has
been estimated to be of the order of 1%. From the curvature
of the pseudocritical surface as studied in Sec. V, we
roughly estimate that such uncertainty reflects in the fact
that for the imaginary chemical potentials closest to the

temperature axis (say 4/67 + 07 < 0.05 — 0.1077) one can-

not really be sure of being in the confined or in the
deconfined phase when working at 7 = T.: that could
affect the reliability of extrapolations to zero or real chemi-
cal potentials.

We have obtained consistent determinations, by analytic
continuation with different interpolating functions, of the
average phase factor. In particular below T, in the case of
HRG inspired interpolations, we have been able to distin-
guish the contribution to the average phase factor coming
from the different hadron states: results from analytic
continuation are consistent with yPT results, below T, if
one takes into account only meson contributions. Baryons
give contributions to the average phase factor which in
general tend to make the sign problem less severe. The sign

PHYSICAL REVIEW D 80, 014502 (2009)

problem is much milder for 7 > T, and this can be put
again in connection with the fact that states with B # 0,
which are more easily created above T, tend to mitigate
the sign problem.

Our results should be refined and could be improved in
several respects. Simulation closer to the continuum limit
and possibly closer to the physical quark mass spectrum
would clarify the comparison with HRG predictions, as
well as that with yPT for the average phase factor. An
improvement in the determination of generalized suscep-
tibilities could be obtained by combining analytic continu-
ation with other techniques: for instance, fixing lowest
order terms in a polynomial expansion by the Taylor
expansion method or by reweighting could lead to en-
hanced predictivity for analytic continuation. We shall
continue our investigation along those lines in the future.
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