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We extend the Rome-Southampton regularization independent momentum-subtraction renormalization

scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-

point Green’s functions with the insertion of quark bilinear operators are computed with scalar,

pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call

this new scheme RI/SMOM, where the S stands for ‘‘symmetric.’’ Conversion factors are derived, which

connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice

calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta

implying a lattice calculation with substantially suppressed contamination from infrared effects. Further,

we find that the size of the one-loop corrections for these infrared improved kinematics is substantially

decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved

perturbative series. Therefore it should allow us to reduce the error in the determination of the quark

mass appreciably.

DOI: 10.1103/PhysRevD.80.014501 PACS numbers: 11.15.Ha, 11.10.Gh, 12.38.Bx

I. INTRODUCTION

Lattice simulations in quantum chromodynamics (QCD)
allow for ab initio nonperturbative determinations of op-
erator matrix elements and physical quantities such as
quark masses and the strong coupling constant. One starts
with a direct computation of the bare quantities with the
lattice spacing acting as the ultraviolet cutoff in some
particular discretization of QCD. Providing that the lattice
spacing is sufficiently small, it is in principle possible to
obtain the corresponding renormalized quantities using
perturbation theory. However, the coefficients in lattice
perturbation theory frequently prove to be large and for
this reason techniques using nonperturbative renormaliza-
tion (NPR) have been developed and are being successfully
implemented. With these techniques lattice perturbation
theory is avoided entirely, and one obtains renormalized
quantities in some appropriate renormalization scheme
such as the regularization independent momentum-
subtraction (RI/MOM) scheme [1].

On the other hand perturbative calculations in contin-
uum QCD are conventionally and conveniently performed

using dimensional regularization [2] and theMS renormal-
ization scheme [3,4] which is not directly amenable to the
NPR procedure. The continuum perturbation theory is
therefore used to match the quantities computed in the

RI/MOM and MS schemes. For example, the computation

of the mass conversion factor CRI=MOM
m , which converts a

quark mass renormalized in the RI/MOM scheme into the

MS scheme or the conversion factor CRI=MOM
q , which per-

forms the corresponding conversion of the quark fields, are
both known up to three-loop order in perturbative QCD
[1,5,6]. Another scheme, which is useful in lattice simula-
tions is the RI0=MOM scheme in which these conversion
factors are also known up to three-loop order [6,7]. A
more detailed definition of these schemes will be discussed
in Sec. II. The conversion factors Cm and Cq in both

schemes can be obtained through the evaluation of self-
energy diagrams. Not only quark masses, but also the
strong coupling constant �s has been studied in MOM
schemes [8–13].
With regard to the vertex diagrams one has many

choices of defining the subtraction point at which the
renormalization constants are fixed through different mo-
mentum configurations. In this paper we determine the
one-loop matching coefficients for a generalization of the
RI/MOM scheme in which there are no channels with
exceptional momenta and which we propose to use in our
numerical simulations. Because the kinematic configura-
tion in this scheme is symmetrical in the three channels, we
call it the RI/SMOM scheme. In the following we define
the symmetric and asymmetric Minkowski momentum
configurations by
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(i) symmetric or nonexceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ q2 ¼ ��2; �2 > 0;

q ¼ p1 � p2;

(ii) asymmetric or exceptional momentum configura-
tion:

p2
1 ¼ p2

2 ¼ ��2; �2 > 0;

p1 ¼ p2; q ¼ 0;

where the momentum flow is shown diagrammatically in
Fig. 1.

In Ref. [14] quark masses were determined through
lattice simulations using nonperturbative renormalization
[1] in the RI/MOM scheme and subsequently converted to

the MS scheme. In order to renormalize the bare quark
masses in the lattice simulation, the renormalization con-
stants need to be computed on the lattice. In regularization
and renormalization schemes which preserve flavor and
chiral symmetries in the limit of vanishing quark masses,
the perturbative renormalization constants of the axial-
vector and vector operators as well as the ones for the
pseudoscalar and scalar operators need to be equal. In the
standard RI/MOM and RI0=MOM schemes the normaliza-
tion conditions for quark bilinear operators are imposed on
Green’s functions with the operator inserted between equal
incoming and outgoing momenta, say, p, and�p2 � �2 is
the renormalization scale. The momentum q inserted at the
operator is therefore 0 so that there is an exceptional
channel, i.e. one in which the square of the momentum is
much smaller than the typical large scale (�2). For the
asymmetric subtraction point effects of chiral symmetry
breaking vanish only slowly like 1=p2 for large external
momenta p2. In Ref. [15] it was proposed instead to use a
similar renormalization procedure but with the incoming
and outgoing quarks having different momenta, p1 and p2,
respectively, with p2

1 ¼ p2
2 ¼ ðp1 � p2Þ2 � p2. There are

now no exceptional channels and we explain below that
this decreases chiral symmetry breaking and other un-
wanted infrared effects. The choice of such a symmetric
subtraction point is very convenient; the renormalized
quantities depend also only on a single scale p2. When
the renormalization constants of quark bilinear operators
are fixed at a symmetric subtraction point (chosen to have
nonexceptional kinematics) chiral symmetry breaking and
other unwanted infrared effects are better behaved and
vanish with larger asymptotic powers of the order 1=p6.
This behavior has been derived in Ref. [15] as a conse-
quence of Weinberg’s theorem [16] and demonstrated by
explicitly computing the renormalization constants on the
lattice. Hence these RI/SMOM kinematics suppress infra-
red effects much more strongly than the usual exceptional
configuration for large external momenta. The symmetric
momentum configuration is thus much more favorable.
However, in order to be able to use it to evaluate the matrix
elements of quark bilinear operators and the quark mass,
the matching factors need to be determined perturbatively
for this new, symmetric choice of momenta. A nonpertur-
bative test of the RI/SMOM scheme for the quark mass
renormalization can be found in Ref. [17].
Another drawback in the case of the exceptional mo-

menta is that the perturbative expansion of the usual con-

version factor CRI=MOM
m shows poor convergence and

makes a significant contribution to the systematic uncer-
tainty in the quark masses obtained from the lattice studies.
In fact, in Ref. [14] the error ( � 11%) in the quark masses
arising from the truncation of the perturbative series in the
matching factor amounts to around 60% of the total error.
Therefore determining the conversion factor for a symmet-
ric momentum configuration will also allow us to see if the
convergence will be better behaved. If it is better behaved,
then the symmetric configuration would be preferred for
both of these reasons. Motivated by these considerations
we study in this work the renormalization of quark bilinear

nonsinglet operators of the form Ô ¼ �u�d for a symmetric
subtraction point, where � represents a Dirac matrix and �u
and d are fermion quark fields.
Even with the use of the symmetric, nonexceptional

kinematics, the renormalization prescription is not unique
and the chiral Ward-Takahashi identities can be satisfied
using a variety of procedures. In the following sections we
study a specific scheme which we consider to be conve-
nient and practicable for the nonperturbative renormaliza-
tion of lattice quark bilinear operators. In order to preserve
the Ward-Takahashi identity, the definitions of the vertex
and wave function renormalizations are related as we ex-
plain in the following section.
The outline of this paper is as follows: In Sec. II we

define our notation and conventions and introduce the
framework required for performing renormalization of
the quark bilinear operators with a symmetric subtraction
point. Subsequently we present in Sec. III two methods for

q = p1−p2

p1 p2

FIG. 1. Momentum flow of a generic diagram required for the
renormalization procedure with nonexceptional momenta. The
gray bubble stands for an operator insertion and higher order
corrections.
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the extraction of the conversion factor Cm in the RI/SMOM
scheme, apply the concepts of Sec. II to calculate the
vector, axial-vector, pseudoscalar, scalar and tensor opera-
tors between two off-shell quark states at one-loop order in
perturbative QCD for the nonexceptional momentum con-
figuration and determine the matching factors. Finally we
close with a brief summary and our conclusions in Sec. IV.
Even with the symmetric nonexceptional kinematics the
choice of renormalization conditions is not unique. In
Appendix Awe therefore present the one-loop perturbative
results in a form which can be used to calculate the
conversion factors from a general scheme with a symmet-

ric subtraction point to the MS scheme. For illustration we
study one alternative scheme called the RI=SMOM��

scheme, in which the vertex renormalization condition is
the same as in the RI/MOM scheme, but with nonexcep-
tional kinematics and with a different wave function re-
normalization. We also provide the results for the
conversion factors and, in Appendix B, the corresponding
two-loop anomalous dimensions.

II. CONCEPTS AND FRAMEWORK OF THE
RI/SMOM SCHEME

We will begin with a bare, continuum theory of QCD
which has been regulated using a scheme which guarantees
that Green’s functions involving the quark field and quark
field bilinears obey the usual chiral and flavor symmetries
of QCD. Dimensional regularization is an example of such
a scheme.

Let us consider the nonamputated Green’s function GÔ

of an operator Ô computed between two external off-shell
quark lines in a fixed gauge. The corresponding diagrams
up to one-loop order in perturbative QCD are shown in
Fig. 2.

The amputated Green’s function is defined by

�Ô ¼ S�1ðp2ÞGÔS
�1ðp1Þ; (1)

where SðpÞ is given by the quark propagator

� iSðpÞ ¼
Z

dxeipxhT½�ðxÞ ��ð0Þ�i

¼ i

p6 �mþ i�� �ðpÞ ; (2)

where �ðpÞ contains the higher order corrections and can,
in perturbation theory, be decomposed into its Lorentz
structure: �ðpÞ ¼ p6 �Vðp2Þ þm�Sðp2Þ. The lowest order
and one-loop diagrams contributing to �ðpÞ are shown in
Fig. 3.
In the following we will consider quark bilinear opera-

tors Ô ¼ �u�d with scalar (� ¼ 1), pseudoscalar (� ¼
i�5), vector (� ¼ ��), axial-vector (� ¼ ���5) and tensor
(� ¼ ��� ¼ i

2 ½��; ���) kernels. We will distinguish be-

tween bare and renormalized quantities by assigning the
index B to a bare quantity and the index R to a renormal-
ized one. In the case of renormalized quantities an addi-
tional quantifier specifying the scheme is attached.
Renormalized and bare quantities are related through the
renormalization constants Z:

�R ¼ Z1=2
q �B; mR ¼ ZmmB; ÔR ¼ ZÔÔB: (3)

The renormalization constants of the scalar (Ô ¼ S), pseu-

doscalar (Ô ¼ P), vector (Ô ¼ V), axial-vector (Ô ¼ A)

and tensor (Ô ¼ T) operator will be denoted as ZS, ZP, ZV ,
ZA and ZT , respectively. In the RI/MOM scheme the
renormalization conditions which fix the renormalization
constants Zm and Zq are given by

lim
mR!0

1

12mR

Tr½S�1
R ðpÞ�jp2¼��2 ¼ 1 and

lim
mR!0

1

48
Tr

�
�� @S�1

R ðpÞ
@p�

�
jp2¼��2 ¼ �1;

(4)

where the symbol ‘‘Tr’’ denotes the trace over color and

spins. The second equation determines ZRI=MOM
q and sub-

sequently the first one can be used to extract ZRI=MOM
m . Now

in theRI0=MOM scheme the second condition of Eqs. (4) is
replaced by

p1 p2

q = p1−p2

(a)

p2

q = p1−p2

p1

k

k + p1

p1

(b)

q = p1−p2

p2p1

k

k + p1 k + p2

(c)

p1 p2

q = p1−p2

k

k + p2

p2

(d)

FIG. 2. Diagrams contributing to the nonamputated Green’s function up to one-loop order in perturbative QCD. The black box
indicates the inserted operator. Spiral lines denote gluons and solid lines fermions.
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lim
mR!0

1

12p2
Tr½S�1

R ðpÞp6 �jp2!��2 ¼ �1: (5)

The quark propagator in the RI0=MOM scheme is fixed to
its lowest order value at the point p2 ¼ ��2, where p2 is
the squared, external, Minkowski momentum and � is the
renormalization scale.

The propagator and vertex diagrams (Fig. 2) for the
vector and axial-vector operators are related through the
vector Ward-Takahashi identity for degenerate masses
mu ¼ md ¼ m

q��
�
V;Bðp1; p2Þ ¼ S�1

B ðp2Þ � S�1
B ðp1Þ (6)

and the axial-vector Ward-Takahashi identity

�iq��
�
A;Bðp1; p2Þ ¼ 2mB�P;Bðp1; p2Þ � i�5S

�1
B ðp1Þ

� S�1
B ðp2Þi�5; (7)

with the momentum transfer q ¼ p1 � p2. The renormal-
ized and bare amputated Green’s functions are connected
by

SRðpÞ ¼ ZqSBðpÞ; �Ô;Rðp1; p2Þ ¼ ZÔ

Zq

�Ô;Bðp1; p2Þ:
(8)

In the following we want to renormalize the quark bilinear
operators using a symmetric subtraction point. For
functions f, which are restricted to the symmetric momen-
tum configuration we use the shorthand fðp2

1;
p2
2; q

2Þjp2
1
¼p2

2
¼q2¼��2 � fðp2

1; p
2
2; q

2Þjsym and for the asym-

metric subtraction point we introduce the abbreviation
fðp2

1; p
2
2; q

2Þjq¼0;p2
1
¼��2¼p2

2
� fðp2

1; p
2
2; q

2Þjasym.

We perform the quark mass and wave function renor-
malization by imposing on the two-point function SðpÞ the
condition of Eq. (5) and

lim
mR!0

1

12mR

�
Tr½S�1

R ðpÞ�jp2¼��2

� 1

2
Tr½q���

A;Rðp1; p2Þ�5�jsym
�
¼ 1: (9)

The second term in the curly brackets on the left-hand side
of Eq. (9) starts atOð�sÞ and is absent in the RI/MOM and
RI0=MOM schemes. This term is needed to maintain the
Ward-Takahashi identities for renormalized quantities, as
we will see below. For the vector and axial-vector quark
bilinear operators we impose the conditions

lim
mR!0

1

12q2
Tr½q���

V;Rðp1; p2Þq6 �jsym ¼ 1;

lim
mR!0

1

12q2
Tr½q���

A;Rðp1; p2Þ�5q6 �jsym ¼ 1:

(10)

The projectors for the amputated Green’s functions in
Eqs. (10) are different from those used in the RI/MOM
scheme (see Table I). Using instead these original RI/
MOM projectors leads to a different wave function renor-
malization and will be discussed in Appendix A. For the
pseudoscalar and scalar amputated Green’s functions we
use the renormalization conditions

lim
mR!0

1

12i
Tr½�P;Rðp1; p2Þ�5�jsym ¼ 1;

lim
mR!0

1

12
Tr½�S;Rðp1; p2Þ1�jsym ¼ 1;

(11)

and for the tensor operator the condition

lim
mR!0

1

144
Tr½���

T;R����jsym ¼ 1: (12)

Note that all of the renormalization schemes being con-
sidered in this paper are mass-independent. Thus, each
condition is imposed at fixed external momentum and
vanishing quark mass. The renormalization conditions of
the RI/MOM and RI/SMOM schemes are summarized in
Table I.
In the remainder of this section we will show that if the

normalization conditions in Eqs. (5) and (9)–(11) of this

TABLE I. The renormalization conditions for the RI/MOM and RI/SMOM schemes.

RI/MOM limmR!0
1
48 Tr½�� @S�1

R ðpÞ
@p� �jp2¼��2 ¼ �1, limmR!0

1
12mR

Tr½S�1
R ðpÞ�jp2¼��2 ¼ 1,

limmR!0
1
48 Tr½��

V;Rðp1; p2Þ���jasym ¼ 1, limmR!0
1
48 Tr½��

A;Rðp1; p2Þ�5���jasym ¼ 1,

limmR!0
1
12 Tr½�S;Rðp1; p2Þ1�jasym ¼ 1, limmR!0

1
12i Tr½�P;Rðp1; p2Þ�5�jasym ¼ 1.

RI/SMOM limmR!0
1

12p2 Tr½S�1
R ðpÞp6 �jp2¼��2 ¼ �1,

limmR!0
1

12mR
fTr½S�1

R ðpÞ�jp2¼��2 � 1
2 Tr½q���

A;Rðp1; p2Þ�5�jsymg ¼ 1,

limmR!0
1

12q2
Tr½q���

V;Rðp1; p2Þq6 �jsym ¼ 1, limmR!0
1

12q2
Tr½q���

A;Rðp1; p2Þ�5q6 �jsym ¼ 1,

limmR!0
1
12 Tr½�S;Rðp1; p2Þ1�jsym ¼ 1, limmR!0

1
12i Tr½�P;Rðp1; p2Þ�5�jsym ¼ 1.

p

(a)

p pk + p

k

(b)

FIG. 3. Propagator-type diagrams up to one-loop order in
QCD.
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RI/SMOM scheme are imposed on the quark bilinear
operators, the Ward-Takahashi identities of Eqs. (6) and
(7) are also obeyed for the resulting renormalized quanti-
ties and the properties ZV ¼ 1 ¼ ZA, ZP ¼ 1=Zm and

ZS ¼ ZP are preserved, as they are in the MS, RI0=MOM
and RI/MOM schemes (see e.g. Ref. [18,19]). Some of
these properties hold nonperturbatively while the others
are proven only in the perturbation theory as we will see
below.

Let us start by considering the object
1

12q2
Tr½q���

V;Bq6 �jsym and insert the vector Ward-

Takahashi identity of Eq. (6):

1

12q2
Tr½q���

V;Bq6 �jsym ¼ 1

12q2
fTr½S�1

B ðp2Þq6 �

� Tr½S�1
B ðp1Þq6 �gjsym

¼ � 1

12q2
Tr½S�1

B ðqÞq6 �jsym: (13)

Expressing bare quantities in terms of renormalized ones
using Eq. (8) and imposing the condition in Eq. (5) and the

one on the left in Eq. (10) leads to ZRI=SMOM
V ¼ 1. Similarly

one obtains ZRI=SMOM
V ¼ ZRI=SMOM

A by inserting Eq. (7) into
1

12q2
Tr½q���

A;B�5q6 �jsym, combining it with Eqs. (13) and

imposing the conditions of Eq. (10) for the renormalized
quantities in the massless limit. Note that the above deri-

vation of ZRI=SMOM
A ¼ ZRI=SMOM

V is independent of the
choice of the renormalization point �. This is in contrast
to the RI/MOM scheme for which the Ward-Takahashi
identity for the axial current only holds at large �2. The
renormalized vector current satisfies the Ward-Takahashi
identity in both the RI/MOM and the RI/SMOM schemes
even in the low energy region. However, the relation ZA ¼
ZV ¼ 1 implies that the axial vertex function given in
Eq. (10) remains exactly equal to one in the limit of
vanishing quark mass even when evaluated in the infrared
region of QCD where large vacuum chiral symmetry
breaking might have been expected to introduce large
asymmetries between such vector and axial-vector corre-
lation functions.

From ZRI=SMOM
V ¼ 1 ¼ ZRI=SMOM

A it follows that the re-

normalization constant ZRI=SMOM
q can be extracted from

Eqs. (10). However, since Eq. (5) determines Zq in both

the RI/SMOM and RI0=MOM schemes, ZRI=SMOM
q ¼

ZRI0=MOM
q , whose value is known up to order �3

s in
Refs. [6,7]. Nevertheless, in Sec. III A, we will renormalize
the vector and axial-vector operators for the symmetric
momentum configuration in the RI/SMOM scheme using
the conditions in Eqs. (10) in order to demonstrate that the

value of ZRI=SMOM
q obtained from Eq. (10) is in fact equal to

the value for ZRI0=MOM
q obtained from Eq. (5) by explicit

calculation up to one-loop order.

From the axial Ward-Takahashi identity it follows that
the renormalization constant for the pseudoscalar operator

ZRI=SMOM
P and the mass renormalization constant ZRI=SMOM

m

are related. If one multiplies Eq. (7) by ð�i�5Þ, takes the
trace of both sides over spin and color and restricts it to the
symmetric momentum configuration, one obtains

� 1

12
Tr½q���

A;B�5�jsym ¼ 2mB

1

12i
Tr½�P;B�5�jsym

� 1

6
Tr½SBðpÞ�1�jp2¼��2 :

(14)

Taking the zero-mass limit, expressing again the bare
equation with the help of Eqs. (3) and (8) in terms of
renormalized quantities and imposing the conditions in
Eqs. (9) and (11) for the RI/SMOM scheme leads to

ZRI=SMOM
P ¼ 1=ZRI=SMOM

m .
The conditions in Eq. (11) for the pseudoscalar and

scalar operator can be expressed in terms of the bare
Green’s function and the renormalization constants. The
traces over the two bare Green’s functions become equal in
the massless limit in perturbation theory, which leads to
ZS ¼ ZP.
In the above discussion the renormalization constants

relate the bilinear operators renormalized in the RI/SMOM
scheme to those in the bare theory which we had assumed
to satisfy the Ward-Takahashi identities (6) and (7). Since
many lattice formulations of QCD break the chiral or flavor
symmetries, in general Eqs. (6) and (7) do not hold in these
(bare) theories. Nevertheless, our renormalization scheme
is indeed regularization independent and the Ward-
Takahashi identities hold for the RI/SMOM renormalized
quantities. The renormalization constants relating the re-
normalized and bare lattice operators depend on the regu-
larization of course, so that, for example, ZV and ZA will
typically be different from 1 in such cases.

III. CONVERSION FACTORS: RESULTS OF THE
NEXT-TO-LEADING ORDER CALCULATION

The properties discussed in Sec. II can be used to convert
quark masses determined through lattice simulations in the

RI/SMOM scheme into the MS scheme by computing the

matching factor CRI=SMOM
m ¼ ZMS

m =ZRI=SMOM
m with mMS

R ¼
CRI=SMOM
m mRI=SMOM

R . The explicit calculation to determine
this conversion factor at one-loop order in perturbative
QCD will be performed in the next subsections using two
different methods, which allows us to cross-check our
results.

First, the matching factor CRI=SMOM
m can be obtained

with the help of Eq. (9) through

RENORMALIZATION OF QUARK BILINEAR OPERATORS . . . PHYSICAL REVIEW D 80, 014501 (2009)

014501-5



ðCRI=SMOM
m Þ�1 ¼ ðCRI0=MOM

m Þ�1 � 1

2
CRI=SMOM
q lim

mR!0

1

12mMS
R

� Tr½q���;MS
A;R �5�jsym; (15)

which will be evaluated in Sec. III A. In analogy to

CRI=SMOM
m we define here the conversion factor

CRI=SMOM
q ¼ ZMS

q =ZRI=SMOM
q for the fermion fields.

Second, the conversion factor can be related to the
renormalization constants of the pseudoscalar operator

CRI=SMOM
m ¼ ZMS

m

ZRI=SMOM
m

¼ ZRI=SMOM
P

ZMS
P

� 1

CRI=SMOM
P

(16)

and hence

mMS
R ¼ 1

CRI=SMOM
P

mRI=SMOM
R

¼ 1

CRI=SMOM
P

1

ZRI=SMOM
P;latt:

mB;latt:: (17)

In particular in Sec. III B we will evaluate the conversion

factor CRI=SMOM
P , which converts the pseudoscalar operator

from the RI/SMOM scheme to theMS scheme. The match-

ing factor CRI=SMOM
P is in general gauge dependent; how-

ever, this gauge dependence will cancel out with the

corresponding gauge dependence in the factor ZRI=SMOM
P;latt:

determined in the lattice calculation. In the following we
will perform the computation in the general covariant
gauge using the tree level gluon propagator

i�ab

q2 þ i�

�
�g�� þ ð1� �Þ q�q�

q2 þ i�

�
(18)

and we will restrict ourselves to the Landau gauge (� ¼ 0)
at the end of the calculation. We choose the renormaliza-

tion scales of both schemes to be equal �MS ¼ �RI=SMOM.

The conversion factors CRI=SMOM
x with x 2 fm; q; S; P;

V; A; Tg denote always the conversion from the RI/

SMOM to the MS scheme.

A. The vector and axial-vector operator

In this section we want to use the vector and axial-vector
operator separately to extract the matching factor

CRI=SMOM
q for the quark field for the symmetric subtraction

point. This result is then used in the next step to compute

CRI=SMOM
m with the help of Eq. (15).
Our perturbative computation is performed in dimen-

sional regularization with the space-time dimension d ¼
4� 2". For the vector operator case CRI=SMOM

q can be
obtained by

ðCRI=SMOM
q Þ�1 ¼ lim

mR!0

1

12q2
Tr½q���;MS

V;R q6 �jsym: (19)

The calculation of the one-loop QCD corrections to the
vector operator, computed between two off-shell quark
lines, is straightforward and leads to

CRI=SMOM
q ¼ 1� �s

4	
CF�þOð�2

sÞ: (20)

The symbol CF denotes the Casimir operator of the SU(3)
group in the fundamental representation; CF ¼ 4=3. As
expected Eq. (20) agrees with the result in Refs. [6,7],

since CRI=SMOM
q ¼ CRI0=MOM

q , as shown in Sec. II.
Similarly one can also derive this result from the axial-

vector operator by using

ðCRI=SMOM
q Þ�1 ¼ lim

mR!0

1

12q2
Tr½q���;MS

A;R �5q6 �jsym: (21)

For the treatment of �5 in dimensional regularization
[2,20] we use a naive anticommuting definition of �5 for
evaluating the loop integrals, which obeys the equations
f�5; �

�g ¼ 0 and �2
5 ¼ 1. This is a self-consistent pre-

scription for the flavor nonsinglet contributions considered
in this work [21,22]. On the other hand one can use Eq. (5)

in order to determine ZRI=SMOM
q and then extract ZRI=SMOM

V

and ZRI=SMOM
A from Eqs. (10). For both we explicitly con-

firm that at one-loop order ZRI=SMOM
V ¼ ZRI=SMOM

A ¼ 1 as

expected.

The conversion factor CRI=SMOM
m can now be computed

from the axial-vector operator with the help of Eq. (15) by
determining

lim
mR!0

1

12mMS
R

Tr½q���;MS
A;R �5�jsym

¼ �s

4	
CFð3þ �ÞC0 þOð�2

sÞ; (22)

with

C0 ¼ 2
3�

0ð13Þ � ð23	Þ2; (23)

where �ðxÞ is the digamma function �ðxÞ ¼ �0ðxÞ=�ðxÞ.1
The matching factor CRI0=MOM

m can be taken from

Refs. [6,7] and CRI=SMOM
q from Eq. (20). This leads to

CRI=SMOM
m ¼ 1� �s

4	
CF

�
4þ �� ð3þ �Þ 1

2
C0

�
þOð�2

sÞ:
(24)

B. The pseudoscalar and scalar operator

In this section we determine the conversion factor

CRI=SMOM
m ¼ ðCRI=SMOM

P Þ�1 ¼ ZRI=SMOM
P =ZMS

P through the
calculation of the pseudoscalar operator. At one-loop order
in perturbative QCD its computation leads to the decom-
position

1The prime denotes here the derivative.
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�P;B ¼ AP;Bi�5 þ BP;Bi�5

mq6
q2

þ CP;Bi�5

½p6 1; p6 2�
q2

; (25)

with

AP;B ¼ 1þ �s

4	
ap;1 þ � � � ; BP;B ¼ �s

4	
bp;1 þ � � � ;

CP;B ¼ �s

4	
cp;1 þ � � � ; (26)

where the dots stand for higher order corrections and where
we have set p2

1 ¼ q2 ¼ p2
2. The quantities bp;1 and cp;1 are

finite, whereas ap;1 contains 1=" poles. In the limit of

massless fermions, considered here, we obtain bp;1 ¼ 0.

The matching factor CRI=SMOM
P can be obtained from

Eq. (11) by evaluating

CRI=SMOM
P ¼ CRI=SMOM

q lim
mR!0

1

12i
Tr½�MS

P;R�5�jsym: (27)

The fermion field conversion factor CRI=SMOM
q is known

and has been discussed in the previous Sec. III A. Since the
amplitudes BP;B and CP;B in Eq. (25) do not contribute to

the trace in Eq. (11), this condition depends only on the
pseudoscalar amplitude AP;B, which is fixed to its lowest

order value at the symmetric subtraction point. The explicit
calculation yields

CRI=SMOM
P ¼ CRI=SMOM

q

�
1þ �s

4	
CF

�
4þ 2�þ

�
1þ �

3

�

�
�
2

3
	2 ��0

�
1

3

���
þOð�2

sÞ
�
: (28)

Inserting CRI=SMOM
q from Eq. (20) and exploiting

CRI=SMOM
m ¼ ðCRI=SMOM

P Þ�1 leads to the same result as
given in Eq. (24). Numerical evaluation in the Landau
gauge leads to

CRI=SMOM
P ¼ ðCRI=SMOM

m Þ�1

¼ 1þ �s

4	
CF0:484 139 1 . . .þOð�2

sÞ: (29)

Comparing Eq. (29) to the RI0=MOM scheme with

CRI0=MOM
m ¼ 1� �s

4	CF4þ � � � or the RI/MOM scheme

(which is in the Landau gauge at one-loop order equal to
the RI0=MOM scheme), we see that the result in Eq. (29)
has a smaller one-loop coefficient by almost a factor of 10.

In order to study the conversion factor CRI=SMOM
m for

different subtraction points, we introduce the parameter
! and fix our renormalization condition for the subtraction
‘‘point’’ p2

1 ¼ p2
2 ¼ ��2 and q2 ¼ �!�2. This allows us

also to study the limit ! ! 0, which results in an excep-
tional momentum configuration, whereas the limit ! ! 1
gives the symmetric one. The result depending on ! is
given by

CRI=SMOM
m ¼ 1� �s

4	
CF

�
4þ �� ð3þ �Þ!

2
C0ð!Þ

�

þOð�2
sÞ; (30)

where the function C0ð!Þ for ! 2 ½0; 4� is given by

C0ð!Þ ¼ ��2
Z d4k

i	2

1

ðkþ p1Þ2ðkþ p2Þ2k2
��������p2

1
¼p2

2
¼��2;q2¼�!�2

¼ 2iffiffiffiffiffiffiffiffiffiffiffiffiffi
4�!

p ffiffiffiffi
!

p
�
Li2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�!

p þ i
ffiffiffiffi
!

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

4�!
p � i

ffiffiffiffi
!

p
�
� Li2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�!

p � i
ffiffiffiffi
!

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

4�!
p þ i

ffiffiffiffi
!

p
��

; (31)

and Li2ðzÞ is the dilogarithm function. In the case ! ¼ 1
one obtains the result of Eq. (24) with C0ð! ¼ 1Þ ¼ C0. In

order to display the dependence of this result for CRI=SMOM
m

on the gauge parameter �, we introduce the one-loop

coefficient function cð1Þ;RI=SMOM
m ð!; �Þ extracted from

Eq. (30) using the definition CRI=SMOM
m ¼ 1þ

�s

4	CFc
ð1Þ;RI=SMOM
m ð!;�Þ. The coefficient cð1Þ;RI=SMOM

m ð!; �Þ
is plotted as a function of ! in the interval ! 2 ½0; 4� for
different gauges in Fig. 4(a).

Going from the exceptional (! ¼ 0) to the nonexcep-
tional (! ¼ 1) momentum configuration leads to a smaller
one-loop coefficient in the Landau gauge; however even
for almost all other gauges the one-loop coefficient be-
comes smaller as well, except for gauges in the small
interval � 2 ð 4

C0�4 � 3;�3Þ, which is shown in Fig. 4(b).

The smaller coefficient might indicate that the symmetric
configuration is less disposed to infrared effects.
In analogy to the pseudoscalar operator the computation

of the scalar operator leads to the conversion factor

CRI=SMOM
S by employing the renormalization condition in

Eq. (11). As expected the one-loop result for the matching

factor CRI=SMOM
m ¼ ðCRI=SMOM

S Þ�1, extracted from the sca-

lar operator, is equal to the result obtained from the pseu-
doscalar one.

C. The tensor operator

The matching factor converting the Green’s function of

the tensor operator from the RI/SMOM to the MS scheme
can be obtained from Eq. (12) in complete analogy to the
other operators. It is given by
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CRI=SMOM
T ¼ 1þ �s

4	
CF

�
ð1� �Þ

�
C0

2
� 4

3

�
� �

�
; (32)

where we have defined CRI=SMOM
T ¼ ZMS

T =ZRI=SMOM
T . The

numerical evaluation in the Landau gauge leads to

CRI=SMOM
T ¼ 1� �s

4	
CF0:161 379 7 . . . : (33)

For the RI0=MOM scheme the tensor operator has been
evaluated up to three-loop order in Ref. [7]. The conversion
factor at one-loop order is found to be proportional to the
gauge parameters �. This contribution is therefore zero in
the Landau gauge.

All conversion factors discussed in Sec. III are summa-
rized in Table II. The matching factors for the scalar and
pseudoscalar operator are equal to the inverse of the mass

conversion factor 1=CRI=SMOM
m ¼ CRI=SMOM

S ¼ CRI=SMOM
P .

IV. SUMMARYAND CONCLUSION

We provide the framework and concepts for renormaliz-
ing the quark bilinear operators in a MOM scheme (RI/
SMOM) with a symmetric subtraction point which has no
channels with exceptional momenta. This generally sup-

presses the infrared chiral symmetry breaking effects com-
pared to the standard RI/MOM (or RI0=MOM) scheme in
which there is an exceptional channel (with zero momen-
tum). An exception is the vector current for which the RI/
MOM scheme satisfies the Ward-Takahashi identity also at
low values of p2. We demonstrate that the chiral Ward-
Takahashi identities (for degenerate masses) are satisfied
nonperturbatively, and thus ZV ¼ 1 ¼ ZA for all values of
p2, in the RI/SMOM scheme. We calculate the matching
factors relating operators renormalized in this scheme and

the MS schemes at one-loop order in perturbation theory.
The one-loop coefficients are given in Table II and we note
that they are small. In particular, for the quark mass the
coefficient is much smaller than that between the RI/MOM

(RI0=MOM) andMS schemes which, if confirmed at higher
orders, would lead to a significant reduction in the uncer-
tainty on the calculated value of the quark mass.
Nonperturbative renormalization of operators in lattice

QCD using the RI/MOM (or RI0=MOM) scheme has been
successfully implemented for many years. The evaluation
of matrix elements in the RI/SMOM renormalization
scheme in lattice simulations is equally practicable and
in view of the advantages explained above we strongly
advocate its use.
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APPENDIX A: ALTERNATIVE PROJECTORS FOR
THE VECTOR AND AXIAL-VECTOR OPERATOR

GREEN’S FUNCTIONS

In general one can also use other projectors than those of
the RI/SMOM scheme as defined in Sec. II in order to
define a scheme with a symmetric subtraction point. The
general structure before taking the trace with projectors of
the one-loop corrected amputated Green’s functions of the

operators in the MS scheme for massless quarks with the
momenta p2

1 ¼ p2
2 ¼ q2 are given by

�� S ¼
�
�AS1þ �CS

½p6 1; p6 2�
q2

�
�ij; (A1)

�� P ¼
�
�APi�5 þ �CPi�5

½p6 1; p6 2�
q2

�
�ij; (A2)

���
V ¼

�
�AV�

� þ �BV

p6 1�
�p6 1 þ p6 2�

�p6 2

q2

þ �CV

p6 1�
�p6 2

q2
þ �DV

p6 2�
�p6 1

q2

�
�ij; (A3)

��
�
A ¼

�
�AA�

��5 � �BA

p6 1�
��5p6 1 þ p6 2�

��5p6 2

q2

� �CA

p6 1�
��5p6 2

q2
� �DA

p6 2�
��5p6 1

q2

�
�ij; (A4)

��
��
T ¼

�
�AT�

�� þ �BT

���p6 2p6 1 � p6 1p6 2�
��

q2

þ �CT

p6 1p6 2�
��p6 1p6 2

q4

�
�ij; (A5)

where the indices i and j denote color indices and the
coefficient functions read

�AS;P ¼ 1þ �s

4	
CF

�
4þ 3 log

�
�2

�q2

�
� 3

2
C0

þ �

�
2þ log

�
�2

�q2

�
� C0

2

��
; (A6)

�C S;P ¼ �s

4	
CFð1� �ÞC0

6
; (A7)

�AV;A ¼ 1þ �s

4	
CF

�
�C0

3
þ �

�
1þ log

�
�2

�q2

�
� C0

3

��
;

(A8)

�B V;A ¼ � �s

4	

CF

3
½ð1� �ÞðC0 � 2Þ � 2�; (A9)

�CV;A ¼ � �s

4	

CF

3
½C0 þ 2þ �ðC0 � 1Þ�; (A10)

�DV;A ¼ �s

4	

CF

3
½ð1� �ÞðC0 � 1Þ � 1�; (A11)

�A T ¼ 1� �s

4	
CFð1� �Þ

�
5

3
þ log

�
�2

�q2

�
� 2

3
C0

�
;

(A12)

�B T ¼ � �s

4	

CF

3
½2C0 � ð1� �Þ�; (A13)

�CT ¼ �s

4	

CF

3
ð1� �Þ½2� C0�: (A14)

An example of a second possible choice for the projectors
is the use of the projectors of the RI/MOM scheme for the
amputated Green’s function of the vector and axial-vector
operator

lim
mR!0

1
48 Tr½��

V;Rðp1; p2Þ���jsym ¼ 1;

lim
mR!0

1
48 Tr½��

A;Rðp1; p2Þ�5���jsym ¼ 1;
(A15)

in the renormalization conditions with a symmetric sub-
traction point together with the conditions of Eqs. (11).
One also has to modify the conditions of Eqs. (4)

lim
mR!0

1

48

�
Tr

�
�� @S�1

R ðpÞ
@p�

���������p2¼��2

þ Tr

�
q��

� @

@q�
��

V;R

���������sym

�
¼ �1; (A16)

lim
mR!0

1

12mR

�
Tr½S�1

R ðpÞ�jp2¼��2

� 1

2
Tr½q���

A;Rðp1; p2Þ�5�jsym
�
¼ 1; (A17)

to maintain the Ward-Takahashi identities of Eqs. (6) and
(7) for renormalized quantities. This leads to a wave func-
tion renormalization factor Zq which is different from the

one of the RI/MOM or RI0=MOM scheme. For this reason
the projectors used in Eqs. (10) of Sec. II have the advan-
tage to produce the same well-known renormalization
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constant Zq like in the RI0=MOM scheme. With the con-

ditions of Eqs. (11) and (A15)–(A17) one obtains in this
RI=SMOM��

scheme the following conversion factors:

C
RI=SMOM��
q ¼ 1� �s

4	
CF

�
�1þ �

2

�
3� 2

3
�0

�
1

3

�

þ
�
2

3
	

�
2
��

þOð�2
sÞ; (A18)

C
RI=SMOM��

P ¼ 1þ �s

4	
CF

�
5þ 2

3
	2 ��0

�
1

3

�
þ �

2

�

þOð�2
sÞ: (A19)

The numerical evaluation of the resulting mass conversion
factor in the Landau gauge reads

C
RI=SMOM��
m ¼ 1� �s

4	
CF1:484 139 1 . . . : (A20)

APPENDIX B: ANOMALOUS DIMENSIONS

In order to evaluate the mass in the RI/SMOM scheme at

different scales the mass anomalous dimension �RI=SMOM
m

is required. It is defined by

�m ¼ d logmð�Þ
d logð�2Þ ¼ ��ð0Þ

m
�s

	
� �ð1Þ

m

�
�s

	

�
2 þOð�3

sÞ:
(B1)

The result up to order �2
s in the RI/SMOM scheme reads in

the Landau gauge

�ð0Þ;RI=SMOM
m ¼ �ð0Þ;MS

m ;

�ð1Þ;RI=SMOM
m ¼ �ð1Þ;MS

m � 
ð0Þ

4
CFc

ð1Þ;RI=SMOM
m ð1; 0Þ;

(B2)

with cð1Þ;RI=SMOM
m ð1; 0Þ ¼ �0:484 139 1 . . . and the 
 func-

tion defined through


 ¼ d�sð�Þ=	
d logð�2Þ ¼ �
ð0Þ

�
�s

	

�
2 � 
ð1Þ

�
�s

	

�
3 þOð�4

sÞ:
(B3)

The first expansion coefficients for the mass anomalous

dimension in the MS scheme and the MS 
 function are
given by

�ð0Þ;MS
m ¼ 3

4CF;

�ð1Þ;MS
m ¼ 1

16ð32C2
F þ 97

6CFCA � 10
3CFTFnfÞ;


ð0Þ ¼ 1
4ð113CA � 4

3TFnfÞ;
where CA is the Casimir operator in the adjoint represen-
tation of SU(3) and nf is the number of active fermions.

The symbol TF denotes the normalization of the trace of
the SU(3) generators in the fundamental representation,
conventionally chosen as 1=2. For the RI=SMOM��

scheme, defined in Appendix A, the two-loop mass anoma-
lous dimension is given by

�
ð1Þ;RI=SMOM��
m ¼ �ð1Þ;MS

m � 
ð0Þ

4
CFc

ð1Þ;RI=SMOM��
m ; (B4)

with c
ð1Þ;RI=SMOM��
m ¼ �1:484 139 1 . . . as given in

Eq. (A20).

Similarly the anomalous dimension �RI=SMOM
q ¼

2 d log�
d logð�2Þ can be defined, which is equal to the one in the

RI0=MOM scheme, �RI=SMOM
q ¼ �RI0=MOM

q , and can be
found in Refs. [6,7] up to order �3

s . For completeness we
give here the result up toOð�2

sÞwhich in the Landau gauge
is the same as in the MS scheme

�RI=SMOM
q ¼

�
�s

	

�
2
�
3

32
C2
F � 25

64
CFCA þ 1

8
CFTFnf

�

þOð�3
sÞ: (B5)

In the RI=SMOM��
scheme, defined in Appendix A, the

order �2
s coefficient of the anomalous dimension

�
RI=SMOM��
q in the Landau gauge reads

�q ¼
�
�s

	

�
2
�
3

32
C2
F � 31

192
CFCA þ 1

24
CFTFnf

�

þOð�3
sÞ: (B6)

We define the anomalous dimension �T of the tensor
operator by

�RI=SMOM
T ¼ d logZT

d logð�2Þ
¼ ��ð0Þ

T

�
�s

	

�
� �ð1Þ

T

�
�s

	

�
2 þOð�3

sÞ: (B7)

In the RI/SMOM scheme it is given in the Landau gauge by

�ð0Þ;RI=SMOM
T ¼ �ð0Þ;MS

T ;

�ð1Þ;RI=SMOM
T ¼ �ð1Þ;MS

T � 
ð0Þ

4
CFc

ð1Þ;RI=SMOM
T ð0Þ;

(B8)

where we have introduced the one-loop coefficient func-

tion cð1Þ;RI=SMOM
T ð�Þ extracted from Eq. (32) using the

definition CRI=SMOM
T ¼ 1þ �s

4	CFc
ð1Þ;RI=SMOM
T ð�Þ, with

cð1Þ;RI=SMOM
T ð0Þ ¼ �0:161 379 7 . . . . The MS anomalous

dimension �MS
T is known from Refs. [7,23,24] and reads

�ð0Þ;MS
T ¼ 1

4CF;

�ð1Þ;MS
T ¼ 1

16ð�19
2C

2
F þ 257

18CFCA � 26
9CFTFnfÞ:

(B9)

Since the renormalization constants of the pseudoscalar
and scalar operators are related to the mass renormalization
constant, the anomalous dimensions of the pseudoscalar
and scalar operators follow from the mass anomalous
dimension in Eq. (B2).
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