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We study composite systems of light (� and !) and heavy (D�) vector mesons by using the interaction

within the hidden gauge formalism. We find a strong attraction in the isospin, spin channels ðI; SÞ ¼
ð1=2; 0Þ, ð1=2; 1Þ, and ð1=2; 2Þ with positive parity. The attraction is large enough to strongly bind these

mesons in states with these quantum numbers, leading to states which can be identified withD�
2ð2460Þ and

probably with D�ð2640Þ, the last one without experimental spin and parity assignment. In the case of

I ¼ 3=2, one obtains repulsion and thus, no exotic mesons in this sector are generated in the approach.
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I. INTRODUCTION

Recently a study of the �� interaction with the hidden
gauge formalism [1–3] was carried out in [3]. The hidden
gauge symmetry (HGS) was introduced by Bando, Kugo,
and Yamawaki where the � meson was regarded as a
dynamical gauge boson of the HGS of the nonlinear sigma
model. One interesting fact which is relevant in this dis-
cussion is that there is a strong attraction in the isospin and
spin channels ðI; SÞ ¼ ð0; 0Þ and (0,2), which is enough to
bind the �� system leading to a tensor and a scalar meson
which could be identified with the f0ð1370Þ and f2ð1270Þ
meson states [4]. In a later work the radiative decay of
these states in ��, a channel with rates very sensitive to the
nature of the resonances, was studied [5] obtaining results
in agreement with the PDG [6] for the case of the tensor
state and in qualitative agreement with preliminary results
at Belle for the scalar state [7]. The work of [3] has been
recently extended to SU(3) for the interaction of the vec-
tors of the nonet, where several states, which can be
identified with existing resonances, are also dynamically
generated [8]. The success of the approach encourages us
to study the charm sector in the lightest case, the one for the
interaction of the �, !, and D� mesons. Another possible
approach to this work could be done following the lines of
[9] for a meson-baryon interaction involving SU(8) sym-
metry. Work in this direction is in progress [10], but we can
advance that, while for pseudoscalar-baryon interaction the
approaches are equivalent. When vector mesons are in-
volved the results are very different [11].

The starting point in our approach is the interaction of
vector mesons among themselves provided by the hidden
gauge formalism, which now has to be generalized to
SU(4) to accommodate the charm vectors D� into the
framework. Admitting that SU(4) is more strongly broken
than SU(3), the SU(4) symmetry is invoked in the basic
hidden gauge Lagrangians, but is already broken in the

vector exchange diagrams that provide the amplitudes for
the vector-vector interaction. What we find is a strong
attraction in the isospin, spin channels ðI; SÞ ¼ ð1=2; 0Þ,
ð1=2; 1Þ, and ð1=2; 2Þ, which leads to bound �ð!ÞD� states
in all these channels. In the case of I ¼ 3=2, we find
repulsion and hence we do not generate states that would
qualify as exotic from the q �q picture. The states that we
find qualify as mostly �D� molecules and fit nicely with
the experimental states D�

2ð2460Þ and D�ð2640Þ. The
present study would, thus, suggest for these states a differ-
ent nature than the one usually assumed in terms of q �q
states [6,12,13].

II. FORMALISM FOR VV INTERACTION

A. Lagrangian

We follow the formalism of the HGS for vector mesons
of [1,2] (see also [14] for a practical set of Feynman rules).
The Lagrangian involving the interaction of vector mesons
among themselves is given by

L III ¼ �1
4hV��V

��i; (1)

where the symbol h i stands for the trace in the SU(4) space
and V�� is given by

V�� ¼ @�V� � @�V� � ig½V�; V��; (2)

with g given by

g ¼ MV

2f
; (3)

and f ¼ 93 MeV as the pion decay constant. The value of
g of Eq. (3) is one of the ways to account for the
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin (KSFR)
relation [15] which is tied to vector meson dominance
[16]. The vector field V� is represented by the SU(4)

matrix which is parametrized by 16 vector mesons includ-
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ing 15-plet and a singlet of SU(4),

V� ¼

�0ffiffi
2

p þ !ffiffi
2

p �þ K�þ �D�0

�� � �0ffiffi
2

p þ !ffiffi
2

p K�0 D��

K�� �K�0 � D��
s

D�0 D�þ D�þ
s J=c

0
BBBBB@

1
CCCCCA

�

; (4)

where the ideal mixing has been taken for !, �, and J=c .
The interaction of LIII gives rise to a contact term coming
for ½V�; V��½V�; V��

L ðcÞ
III ¼

g2

2
hV�V�V

�V� � V�V�V
�V�i; (5)

depicted in Fig. 1(a), and, on the other hand, it gives rise to
a three-vector vertex

L ð3VÞ
III ¼ ighð@�V� � @�V�ÞV�V�i; (6)

depicted in Fig. 1(b). This latter Lagrangian gives rise to a
VV ! VV interaction by means of the exchange of one of
the vectors, as shown in Fig. 1(c).

The SU(4) structure of the Lagrangian allows us to take
into account all the channels within SU(4) which couple to
certain quantum numbers. In this work we shall present
results for the case of the �D� interaction. The formalism
is the same as that used in [4]. Some approximations were
made there which make the formalism handy and reliable,
by neglecting the three-momentum of the vector mesons
with respect to their masses. It is interesting to see that with
this approximation one obtains [14] from the hidden gauge
approach, the chiral local Lagrangians which are used to
study the interaction of pseudoscalar mesons among them-
selves and the pseudoscalar mesons with vector mesons
and with baryons [17,18].

B. Four-vector contact interaction

Starting with the Lagrangian of Eq. (5) we can imme-
diately obtain the amplitude of, for instance, �þD�0 !
�þD�0 corresponding to Fig. 2, in the particle base,

� itðcÞ
�þD�0!�þD�0 ¼ ig2ð2�ð1Þ� �ð2Þ� �ð3Þ��ð4Þ�

� �ð1Þ� �ð2Þ� �ð3Þ��ð4Þ�

� �ð1Þ� �ð2Þ� �ð3Þ��ð4Þ�Þ; (7)

where the indices 1, 2, 3, and 4 correspond to the particles

with momenta k1, k2, k3, and k4 in Fig. 2. It is straightfor-
ward to write down all amplitudes for other channels.
In the approximation of neglecting the three-momenta of

the vector mesons, only the spatial components of the
polarization vectors are nonvanishing and then one can
easily obtain spin projection operators [4] into spin 0, 1,
2 states, which are given here:

P ð0Þ ¼ 1
3���

����
�;

P ð1Þ ¼ 1
2ð�������� � �����

���Þ;
P ð2Þ ¼ f12ð�������� þ �����

���Þ � 1
3���

����
�g;

(8)

where the order 1, 2, 3, 4 in the polarization vectors is
understood. We can then write the combination of polar-
ization vectors appearing in Eq. (7) in terms of the spin
combinations and thus we obtain the kernel of the interac-
tion which will be used later to solve the Bethe-Salpeter
equation. However, it is practical to construct the isospin
combinations before the spin projection is done.
Recalling that we have an isospin doublet with

ð�D�0; D�þÞ and one isospin triplet, ð��; �0;��þÞ, the
I ¼ 1=2 and 3=2 combinations are written as

j�D�; I ¼ 1=2; I3 ¼ 1=2i ¼
ffiffiffi
2

3

s
j�þD�0i � 1ffiffiffi

3
p j�0D�þi;

j�D�; I ¼ 1=2; I3 ¼ 3=2i ¼ 1ffiffiffi
3

p j�þD�0i þ
ffiffiffi
2

3

s
j�0D�þi:

(9)

We then find the amplitudes in the isospin base by forming
linear combinations of the amplitudes in the particle base
weighted by the Clebsh-Gordan coefficients as given in
Eq. (9),

tðI¼1=2Þ ¼ g2ð�7
2�����

��� þ 5
2���

����
� þ �����

���Þ;
tðI¼3=2Þ ¼ g2ð�������� þ �����

��� � 2���
����

�Þ:
(10)

These amplitudes, after projection into the spin channels,
give rise to the following kernels (potential) for I ¼ 1=2:

tðI¼1=2;S¼0Þ ¼ þ5g2; tðI¼1=2;S¼1Þ ¼ þ9
2g

2;

tðI¼1=2;S¼2Þ ¼ �5
2g

2;
(11)

and also for the case of I ¼ 3=2,

tðI¼3=2;S¼0Þ ¼ �4g2; tðI¼3=2;S¼1Þ ¼ 0;

tðI¼3=2;S¼2Þ ¼ þ2g2:
(12)

When one or two � meson(s) are replaced by the !
meson(s), where there is only one isospin state I ¼ 1=2, we

a) b) c) d)

FIG. 1. Terms of the LIII Lagrangian: (a) four-vector contact
term, Eq. (5); (b) three-vector interaction, Eq. (6); (c) t and u
channels from vector exchange; and (d) s channel for vector
exchange.

FIG. 2. Contact term of the �� interaction.
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find the following interaction terms:

tðI¼1=2Þ
�D�!!D� ¼

ffiffiffi
3

p
2

g2ð2�������� � �����
���

� ���
����

�Þ;

tðI¼1=2Þ
!D�!!D� ¼ � 1

2
g2ð�������� þ ���

����
�

� 2�����
���Þ:

(13)

After projection in spin they become for �D� ! !D�,

tðI¼1=2;S¼0Þ
�D�!!D� ¼ � ffiffiffi

3
p

g2; tðI¼1=2;S¼1Þ
�D�!!D� ¼ þ 3

ffiffiffi
3

p
2

g2;

tðI¼1=2;S¼2Þ
�D�!!D� ¼ þ

ffiffiffi
3

p
2

g2; (14)

and in the same way, we have for !D� ! !D�,

tðI¼1=2;S¼0Þ
!D�!!D� ¼ �g2; tðI¼1=2;S¼1Þ

!D�!!D� ¼ þ3
2g

2;

tðI¼1=2;S¼2Þ
!D�!!D� ¼ þ1

2g
2: (15)

C. � meson exchange terms

From the Lagrangian of Eq. (6) we get the three-vector
vertex as depicted in Fig. 3. For practical purposes it is
convenient to rewrite the three-vector Lagrangian of
Eq. (6) as

L ð3VÞ
III ¼ ighV�@�V�V

� � @�V�V
�V�i

¼ ighðV�@�V� � @�V�V
�ÞV�i: (16)

In Eq. (16) we have a three-vector vertex, where any of the
three-vector fields can correspond in principle to the ex-
changed vector in the diagram of Fig. 1(c). Nevertheless,

by assuming that the three-momenta of the external vectors
can be neglected as compared with the vector mass, the
polarization vectors of the external vector mesons have
only spatial components. Then by looking at the
Lagrangian of Eq. (16) we see that the field V� cannot
correspond to an external vector meson. Indeed, if this
were the case, the � index must be spatial and then the
partial derivative @� is replaced by a three-momentum of
the vector mesons which is neglected in the approach. Then
V� corresponds to the exchanged vector and this simplifies
the calculation. The approximation of neglecting the three-
momenta of the external vectors corresponds to the con-
sideration of only the s wave.
The vertex function corresponding to the diagram of

Fig. 3 is given by

�itð3Þ ¼ � gffiffiffi
2

p fðiq��ð0Þ� � iq��
ð0Þ
� Þ�0��� þ ðiðk� qÞ��0�

� iðk� qÞ��0�Þ���ð0Þ�
þ ð�ik��� þ ik���Þ�ð0Þ��0�g: (17)

With this basic structure we can readily evaluate the am-
plitude of the first diagram of Fig. 4 to obtain

�itðexÞ
�þD�0!�þD�0 ¼ � ffiffiffi

2
p

gfð�iðk3 � k1Þ��ð0Þ� þ iðk3 � k1Þ��ð0Þ� Þ�ð1Þ��ð3Þ� þ ð�ik1��
ð1Þ
� þ ik1��

ð1Þ
� Þ�ð3Þ��ð0Þ�

þ ðik3��ð3Þ� � ik3��
ð3Þ
� Þ�ð0Þ��ð1Þ�g i

ðk3 � k1Þ2 �M2
� þ i�

� gffiffiffi
2

p fðiðk2 � k4Þ��ð0Þ�

� iðk2 � k4Þ��ð0Þ� Þ�ð4Þ��ð2Þ� þ ðik4��ð4Þ� � ik4��
ð4Þ
� Þ�ð2Þ��ð0Þ� þ ð�ik2��

ð2Þ
� þ ik2��

ð2Þ
� Þ�ð0Þ��ð4Þ�g: (18)

Recalling that the three-momenta of the external particles
is small and neglected, we arrive at the following expres-
sion:

tðexÞ
�þD�0!�þD�0 ¼ � g2

M2
�

ðk1 þ k3Þ � ðk2 þ k4Þ��������:
(19)

By looking at the structure of the second diagram in Fig. 4
we find the following result for the amplitude:

tðexÞ
�þD�0!�0D�þ ¼ ffiffiffi

2
p g2

M2
�

ðk1 þ k3Þ � ðk2 þ k4Þ��������:
(20)

We note that the amplitude �0D� ! �0D� with �0 ex-

FIG. 3. Three-vector vertex diagram.

FIG. 4. Vector exchange diagrams for �D� ! �D�.
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change vanishes because the three-�0 vertex does not exist
due to isospin invariance. We can see that in all the cases
the combination of vector polarizations is the same. The
isospin projections give us

tðex;I¼1=2Þ
�D�!�D� ¼ �2

g2

M2
�

ðk1 þ k3Þ � ðk2 þ k4Þ��������;

tðex;I¼3=2Þ
�D�!�D� ¼ g2

M2
�

ðk1 þ k3Þ � ðk2 þ k4Þ��������:
(21)

Now using the equations for the spin projections we can
split the terms into their spin parts and we obtain

tðex;I¼1=2;S¼0;1;2Þ
�D�!�D� ¼ �2

g2

M2
�

ðk1 þ k3Þ � ðk2 þ k4Þ;

tðex;I¼3=2;S¼0;1;2Þ
�D�!�D� ¼ g2

M2
�

ðk1 þ k3Þ � ðk2 þ k4Þ;
(22)

that is, we find spin degeneration in the amplitudes which
involve the exchange of one �meson. These structures can
be simplified using momentum conservation and one finds

tðex;I¼1=2;S¼0;1;2Þ
�D�!�D� ¼ �2

g2

M2
�

�
3

2
s�m2

� �m2
D�

� ðm2
� �m2

D� Þ2
2s

�
;

tðex;I¼3=2;S¼0;1;2Þ
�D�!�D� ¼ þ g2

M2
�

�
3

2
s�m2

� �m2
D�

� ðm2
� �m2

D� Þ2
2s

�
:

(23)

The expressions of Eq. (23) correspond to on-shell
vectors in the sense that their four-momenta are required
to fulfill q2 ¼ M2

V , which allows one to write the expres-
sions of Eq. (22) in terms of the variable s, upon projection
on s wave and neglecting the three-momenta of the parti-
cles. In the above equations (19)–(23), we have also ne-
glected the exchanged momentum and replaced the
�-meson propagator by 1=M2

�. This is obvious if in the

two momenta k1 and k3 of Fig. 4, the spatial part is
considered small.

Note that for the exchange of a vector we do not have a
contribution from the !D� channel. Indeed, the vertex
!!! and ��! violate G parity, and the �!! violates
isospin. In the next section we consider the amplitudes
which include also the exchange of one heavy vector
meson, but we anticipate that the amplitudes calculated
so far are more relevant than the other ones.

D. D�-exchange terms

In this section we are going to take into account the
exchange of one heavy vector meson, D� or �D�, in the
channels �D� and !D�, by means of the diagrams in
Fig. 5. Note that in Fig. 5 the vertex!!D� does not appear

because it violates isospin. By means of the Lagrangian of
Eq. (6) we arrive at the following amplitudes for the first
and second diagrams depicted in that figure:

tðD
��exÞ

�þD�0!�0D�þ ¼ 1ffiffiffi
2

p g2

M2
D�

ðk1 þ k4Þ � ðk2 þ k3Þ��������;

tðD
��exÞ

�0D�þ!�0D�þ ¼ 1

2

g2

M2
D�

ðk1 þ k4Þ � ðk2 þ k3Þ��������:
(24)

The isospin decomposition can be done as before by mak-
ing weighted sums of Eq. (24). We find

tðD
��ex;I¼1=2Þ

�D�!�D� ¼ � 1

2

�g2

M2
�

ðk1 þ k4Þ � ðk2 þ k3Þ��������;

tðD
��ex;I¼3=2Þ

�D�!�D� ¼ �g2

M2
�

ðk1 þ k4Þ � ðk2 þ k3Þ��������;

(25)

where � ¼ M2
�=M

2
D� . Upon spin projection we find

tðD
��ex;I¼1=2;S¼0;2Þ

�D�!�D� ¼ � 1

2

�g2

M2
�

ðk1 þ k4Þ � ðk2 þ k3Þ;

tðD
��ex;I¼1=2;S¼1Þ

�D�!�D� ¼ 1

2

�g2

M2
�

ðk1 þ k4Þ � ðk2 þ k3Þ;
(26)

and similarly for I ¼ 3=2,

tðD
��ex;I¼3=2;S¼0;2Þ

�D�!�D� ¼ �g2

M2
�

ðk1 þ k4Þ � ðk2 þ k3Þ;

tðD
��ex;I¼3=2;S¼1Þ

�D�!�D� ¼ ��g2

M2
�

ðk1 þ k4Þ � ðk2 þ k3Þ:
(27)

Again by neglecting the three-momenta of the external

FIG. 5. Diagrams including the exchange of one heavy vector
meson.
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particles and by taking the center-of-mass reference sys-
tem, one can express the factors which involve momenta as

ðk1 þ k3Þ � ðk2 þ k4Þ ¼ 3

2
s�m2

� �m2
D� � ðm2

� �m2
D� Þ2

2s
;

ðk1 þ k4Þ � ðk2 þ k3Þ ¼ 3

2
s�m2

� �m2
D� þ ðm2

� �m2
D� Þ2

2s
:

(28)

As we can observe, the spin degeneracy seen in the
�-meson exchange amplitudes is lost in the D�-exchange
amplitudes. However, it is broken only a little due to the
suppressing factor � ¼ m2

�=m
2
D� � 0:15.

The results are summarized in the columns titled
D� exchange in Tables I, II, and III. These new terms
represent corrections of the order of 10% of the
�-exchange ones. As can be observed in the total ampli-
tudes, we find an attraction in the sector I ¼ 1=2, whereas
the sector I ¼ 3=2 turns out repulsive. It is interesting to
see that the exotic I ¼ 3=2 channel has a repulsive inter-
action. This seems to be rather universal in these kinds of
studies [8,19,20].

E. T matrix

The results obtained in Tables I, II, and III provide the
kernel or potential V to be used in the Bethe-Salpeter
equation in its on-shell factorized form,

T ¼ V

1� VG
; (29)

for each spin-isospin channel independently. Here G is the
two meson loop function

G ¼ i
Z d4q

ð2�Þ4
1

q2 �m2
1 þ i�

1

ðP� qÞ2 �m2
2 þ i�

; (30)

which upon using dimensional regularization can be recast
as

G ¼ 1

16�2

�
	þ log

m2
1

�2
þm2

2 �m2
1 þ s

2s
log

m2
2

m2
1

þ pffiffiffi
s

p
�
log

s�m2
2 þm2

1 þ 2p
ffiffiffi
s

p
�sþm2

2 �m2
1 þ 2p

ffiffiffi
s

p

þ log
sþm2

2 �m2
1 þ 2p

ffiffiffi
s

p
�s�m2

2 þm2
1 þ 2p

ffiffiffi
s

p
��
; (31)

where P is the total four-momentum of the two mesons,
and p is the three-momentum of the mesons in the center-
of-mass frame. Analogously, using a cutoff one obtains

G ¼
Z qmax

0

q2dq

ð2�Þ2
!1 þ!2

!1!2½ðP0Þ2 � ð!1 þ!2Þ2 þ i�� ;
(32)

where qmax stands for the cutoff, !i ¼ ð ~q2i þm2
i Þ1=2, and

the center-of-mass energy ðP0Þ2 ¼ s.
It should be noted that the on-shell factorization, in

which V of Eq. (29) is taken on shell, which means taking
q2 ¼ M2

V for the external vector lines in VV ! VV, is
based on the N=D method of unitarization with chiral
Lagrangians of [21,22]. This means that in the terms
VGV of the loop expansion of Eq. (29), the kernel V
accounting for the diagrams for � exchange must be eval-
uated as a function of s as if all the four vector lines
different from the exchanged vector meson were like ex-

TABLE I. Vð�D� ! �D�Þ for the different spin-isospin channels including the exchange of one heavy vector meson. The
approximate total is obtained at the threshold of �D�.

I S Contact � exchange D� exchange �Total ½IðJPÞ�
1=2 0 þ5g2 �2 g2

M2
�
ðk1 þ k3Þ � ðk2 þ k4Þ � 1

2
�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ �16g2½1=2ð0þÞ�

1=2 1 þ 9
2 g

2 �2 g2

M2
�
ðk1 þ k3Þ � ðk2 þ k4Þ þ 1

2
�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ �14:5g2½1=2ð1þÞ�

1=2 2 � 5
2 g

2 �2 g2

M2
�
ðk1 þ k3Þ � ðk2 þ k4Þ � 1

2
�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ �23:5g2½1=2ð2þÞ�

3=2 0 �4g2 þ g2

M2
�
ðk1 þ k3Þ � ðk2 þ k4Þ þ �g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ þ8g2½3=2ð0þÞ�

3=2 1 0 þ g2

M2
�
ðk1 þ k3Þ � ðk2 þ k4Þ � �g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ þ8g2½3=2ð1þÞ�

3=2 2 þ2g2 þ g2

M2
�
ðk1 þ k3Þ � ðk2 þ k4Þ þ �g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ þ14g2½3=2ð2þÞ�

TABLE II. Vð�D� ! !D�Þ for the different spin-isospin channels including the exchange of one heavy vector meson. The
approximate total is obtained at the threshold of �D�.

I S Contact � exchange D� exchange �Total ½IðJPÞ�
1=2 0 � ffiffiffi

3
p

g2 � � � þ
ffiffi
3

p
2

�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ 0½1=2ð0þÞ�

1=2 1 þ 3
ffiffi
3

p
2 g2 � � � �

ffiffi
3

p
2

�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ

ffiffi
3

p
2 g2½1=2ð1þÞ�

1=2 2 þ
ffiffi
3

p
2 g2 � � � þ

ffiffi
3

p
2

�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ 3

ffiffi
3

p
2 g2½1=2ð2þÞ�
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ternal lines. In such a case one can see that neglecting
q2=M2

V in the propagators, as done in our approach, is a
good approximation. However, in the loop functions,
Eq. (30), the propagators must be taken with their full
off-shell structure to perform the integrals [21,22].

The on-shell factorization appears when the contribution
of the left-hand cut is neglected in a dispersion relation of
the N=D method. However, this contribution is small and
smoothly energy dependent such that it can be incorpo-
rated in terms of the substraction constant in the region of
interest to us.

Equation (29) in I ¼ 1=2 is a 2� 2matrix equation with
the amplitudes �D ! �D, �D ! !D, and !D ! !D in
the elements (1,1), (1,2), and (2,2).

The formalism that we are using is also allowed for
s-channel � or D exchange and we can have the diagram
of Fig. 6. But we found in [4] that this leads to a p-wave
interaction for equal masses of the vectors, and only to a
minor component of s wave in the case of different masses
[8].

III. CONVOLUTION DUE TO THE � MASS
DISTRIBUTION

The strong attraction in the I ¼ 1=2 and S ¼ 0, 1, 2
channels will produce �D� bound states with no width
within the present treatment so far. However, this is not
strictly true because the � meson has a large width or
equivalently a mass distribution that allows the states
obtained to decay in �D� for the low mass components
of the � mass distribution. To take this into account we
follow the traditional method which is to convolute the G
function for the mass distribution of the � meson [14]

replacing the G function by ~G as follows:

~GðsÞ ¼ 1

N

Z ðm�þ2��Þ2

ðm��2��Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �m2

� þ i� ~m1

�Gðs; ~m2
1; m

2
D� Þ; (33)

with

N ¼
Z ðm�þ2��Þ2

ðm��2��Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �m2

� þ i� ~m1

; (34)

where �� ¼ 146:2 MeV, and for � � �ð ~mÞ we take the �
width for the decay into the pions in p wave

�ð ~mÞ ¼ ��

�
~m2 � 4m2

�

m2
� � 4m2

�

�
3=2


ð ~m� 2m�Þ: (35)

The use of ~G in Eq. (29) provides a width to the states
obtained as we will see in the next section.

IV. RESULTS

When one introduces the amplitudes obtained in
Tables I, II, and III as a kernel V in Eq. (29), one finds
bound states with zero width in the three different cases
I ¼ 1=2 and S ¼ 0, 1, and 2. The pole positions are given
in Table IV. In Eq. (31) we have fixed the value of � as
1500MeVand we have fine-tuned the subtraction constant,
	, around its natural value of �2 [22] in order to get the
position of the S ¼ 2 resonance at its value of the PDG. To
quantify the freedom one has in this fine-tuning we quote
that the value of the mass that we obtain using 	 ¼ �2 is
2346 MeV. The value of 	 for the pole positions given in
Table IV is �1:74.
As was explained in the previous section, the loop

function G must be convoluted to take into account the
width of the �meson. When we do it, we find bound states
with a small width as can be seen in Figs. 7 and 8. In fact,
the widths found are�5, 4, and 0 MeV for S ¼ 0, 1, and 2,
respectively.
In Eq. (29), the amplitude close to a pole looks like

Tij �
gigj
z� zR

; (36)

where RezR gives the mass of the resonance and ImzR the
half-width. The constants gi (i ¼ �D�, !D�), which pro-
vide the coupling of the resonance to one particular chan-

FIG. 6. S-channel D� exchange diagram.

TABLE III. Vð!D� ! !D�Þ for the different spin-isospin channels including the exchange of one heavy vector meson. The
approximate total is obtained at the threshold of �D�.

I S Contact � exchange D� exchange �Total ½IðJPÞ�
1=2 0 �g2 � � � þ 1

2
�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ 0½1=2ð0þÞ�

1=2 1 þ 3
2g

2 � � � � 1
2
�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ 1

2g
2½1=2ð1þÞ�

1=2 2 þ 1
2g

2 � � � þ 1
2
�g2

M2
�
ðk1 þ k4Þ � ðk2 þ k3Þ 3

2g
2½1=2ð2þÞ�

TABLE IV. Pole positions for the three different cases.

I S
ffiffiffi
s

p
(MeV)

1=2 0 2592

1=2 1 2611

1=2 2 2450

R. MOLINA et al. PHYSICAL REVIEW D 80, 014025 (2009)

014025-6



nel, can be calculated by means of the residues of the
amplitudes as given in Table V. In the PDG [6], two states
are listed, D�ð2640Þ and D�

2ð2460Þ in the sectors IðJPÞ ¼
1=2ð??Þ and IðJPÞ ¼ 1=2ð2þÞ, respectively. Comparing
with the present model predictions as listed in Table IV,
we attempt to identify them with those states of S ¼ 1 and
S ¼ 2, respectively. The reason to identify the D�ð2640Þ
with our pole for the case of S ¼ 1 and not S ¼ 0 is going
to be clear in the next section when the D� channel is
considered. In the case of theD�ð2640Þ the width quoted in
the PDG is very small, �< 15 MeV. According to our
result after taking into account the �mass distribution, one
obtains 3–4 MeV; see Fig. 7. In the case of D�

2ð2460Þ, the
width quoted in the PDG is 43	 4 MeV for the D�0

2 and

37	 6 MeV for D�	
2 . Then, it is clearly not compatible

with the width found here, which is zero, see Fig. 8, and we
need to allow for the fact that the resonance decays to
another channel. For this reason we are going to consider

the D� channel in the next section, which is below the
threshold of �D�. A novelty in this work is that we have
obtained a new resonance in the sector I ¼ 1=2 and S ¼ 0
which does not appear in the PDG; see Table IV. One
should note that if one takes Eq. (32) instead of Eq. (31)
with a cutoff of the order of the natural size qmax ¼
1–1:2 GeV, the results are very similar to those of
Table IV (difference around 1%), which is an indication
of the stability of the results.

V. UNCERTAINTIES RELATED TO SU(4)
BREAKING

All the results in this section have been obtained using
Eq. (3) for a g, where forMV we have taken the mass of the
� and for f the pion decay constant f�. Since we have the
�D� system one could also think of taking

gD ¼ MD�

2fD
; (37)

where fD ¼ 160 MeV. The justification to take g of
Eq. (3) is that it is always the � meson that is exchanged
in the most important terms. However, it is instructive to
see what happens when we use gD instead of g of Eq. (3).
In order to estimate uncertainties from this source we will
evaluate the results using g2 ! g2, ggD, and g2D.
In the first step we take ggD and look at the poles for

different states. We make a small readjustment of the
substraction constant, 	, such as to get the D�

2 state at the
same mass as before. The new value is 	 ¼ �1:53, but the
masses of the other two states change as one can see in
Table VI. In this table we also show the results that we
obtain for the option of using g2D readjusting 	 to get the

2450 2455 2460 2465 2470 2475 2480
0

2. 1015

4. 1015

6. 1015

s MeV

T
2

Squared amplitude for I 1 2 and S 2

FIG. 8. Squared amplitude for I ¼ 1=2 and S ¼ 2 including
the convolution of the �-mass distribution.

TABLE V. Modules of the couplings gi in units of GeV for the
poles in the S ¼ 0, 1, 2; I ¼ 1=2 sector with the channel �D�
and !D�.

Channel D�
0ð2600Þ D�

1ð2640Þ D�
2ð2460Þ

�D� 14.32 14.04 17.89

!D� 0.53 1.40 2.35

TABLE VI. Pole positions and subtraction constant obtained
for the three different cases, g2, ggD, and g

2
D, when one fixes the

mass of the pole with S ¼ 2.

Constant & 	 S ¼ 0 S ¼ 1 S ¼ 2

g2 & �1:74 2592 2611 2450

ggD & �1:53 2571 2587 2450

g2D & �1:39 2551 2565 2450

2560 2580 2600 2620 2640
0

2. 108

4. 108

6. 108

8. 108

1. 109

1.2 109

s MeV

T
2

Squared amplitude for I 1 2 and S 0

2580 2600 2620 2640 2660
0

1. 108

2. 108

3. 108

4. 108

5. 108

s MeV

T
2

Squared amplitude for I 1 2 and S 1

FIG. 7. Squared amplitude for I ¼ 1=2 and S ¼ 0, 1 including the convolution of the �-mass distribution.
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right mass for the D�
2 state. As we can see, the mass of the

spin zero and one resonance moves by about 20 MeV, a
moderate change. This is a realistic way of looking at the
uncertainties, since the fine-tuning of the parameter 	 to
get the precise position of one resonance is always done.

We can however look at the problem from a more
extreme point of view, taking a fixed 	 for the different
options. The results can be seen in Table VII where 	 ¼
�1:53 such that the D�

2 state has the same mass as before
for the option of ggD. We can observe changes in the mass
of the resonances of the order of 70–90 MeV. These
changes are typical of any hadron model upon reasonable
changes of the parameters. Yet, it is interesting to observe
what happens to the couplings of the resonances to the
different channels, which are shown in Tables VIII and IX.
Table VIII corresponds to the case where the couplings are
readjusted to get the D�

2 mass right, while Table IX corre-
sponds to the case of fixed	 for all the options. We observe
in both cases changes of the order of 8% for the couplings
to �D�, which is the important one, with respect to the
middle option of using ggD. The couplings to the channel
to!D� experience a larger variation, but this channel plays

essentially no role in the problem. Even then, in the pre-
ferred case of readjustment of the 	 parameter to get the
D�

2 mass, the changes of these couplings are below 25%, as
one can see in Table VIII. Since the couplings of the
resonance to the channels are the basic characteristic of
the resonance concerning its nature as a VV state, the
stability of the magnitude upon breaking of SU(4) symme-
try is certainly a most welcome feature. In view of this
discussion and the results found, we proceed further to
study other issues concerning those states. In what follows
we take the g2 option, but the results of this section have
given us an idea of intrinsic uncertainties of the model that
one must keep in mind.

VI. THE �D DECAY MODE

A. Evaluation of the �D-box diagram

In the previous section we have obtained the positions of
the poles and obtained a small width for the states taking
into account the finite width of �. Here we consider a
dominant decay mode into the �D channel in order to
give account of a finite width. Our starting point is the
set of diagrams of Fig. 9. One needs the ��� and the
D��D vertices which are provided within the same hidden
gauge formalism [1,2], used in Sec. II, by means of the
Lagrangian

L V�� ¼ �ighV�½�; @���i: (38)

For the first diagram of Fig. 9 we have

�itð�DÞ ¼
Z d4q

ð2�Þ4 ð�iÞ4g4ð ffiffiffi
2

p Þ2
�
1ffiffiffi
2

p
�
2ðk1 � 2qÞ��ð1Þ� ðk3 � 2qÞ��ð3Þ� ðPþ k1 � 2qÞ	�ð2Þ	 ðPþ k3 � 2qÞ��ð4Þ�

i

q2 �m2
� þ i�

� i

ðk1 � qÞ2 �m2
� þ i�

i

ðP� qÞ2 �m2
D þ i�

i

ðk3 � qÞ2 �m2
� þ i�

: (39)

Using the approximation that all the polarization vectors are spatial, it is possible to write the above amplitude as

� itð�DÞ ¼ g4
Z d4q

ð2�Þ4 16qiqjqlqm�
ð1Þ
i �ð2Þj �ð3Þl �ð4Þm

1

q2 �m2
� þ i�

1

ðk1 � qÞ2 �m2
� þ i�

1

ðP� qÞ2 �m2
D þ i�

� 1

ðk3 � qÞ2 �m2
� þ i�

: (40)

This integral is logarithmically divergent and as in [4] we regularize it with a cutoff in the three-momentum of the order of

TABLE VII. Pole positions for the three states using 	 ¼
�1:53 in the different cases g2, ggD, and g2D.

	 ¼ �1:53 D0ð2600Þ D�
1ð2640Þ D�

2ð2460Þ
Cases: g2 ggD g2D g2 ggD g2D g2 ggD g2Dffiffiffi
s

p
(MeV) 2645 2571 2502 2661 2587 2517 2539 2450 2370

TABLE VIII. Modules of the couplings gi in units of GeV for
the poles in the S ¼ 0, 1, 2; I ¼ 1=2 sector and the channels �D�
and !D�, in the cases (1) using g2 and 	 ¼ �1:74, (2) using
ggD and 	 ¼ �1:53, and (3) using g2D and 	 ¼ �1:39.

Channel D0ð2600Þ D�
1ð2640Þ D�

2ð2460Þ
Cases: (1) (2) (3) (1) (2) (3) (1) (2) (3)

�D� 14.32 15.69 17.05 14.04 15.37 16.69 17.89 19.58 21.01

!D� 0.53 0.68 0.84 1.40 1.69 1.99 2.35 2.60 2.78

TABLE IX. Modules of the couplings gi in units of GeV for
the poles in the S ¼ 0, 1, 2; I ¼ 1=2 sector and the channels �D�
and !D�.

Channel D0ð2600Þ D�
1ð2640Þ D�

2ð2460Þ
	 ¼ �1:53 g2 ggD g2D g2 ggD g2D g2 ggD g2D
�D� 14.51 15.69 16.32 14.08 15.37 16.06 18.15 19.58 20.67

!D� 0.37 0.68 1.12 1.19 1.69 2.28 2.20 2.60 3.03
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the natural size, for which we take qmax ¼ 1:2 GeV. The results do not change much if one takes a value around this. After
performing the dq0 integral of Eq. (40), one finds

Vð�DÞ ¼ g4ð�ð1Þi �ð2Þi �ð3Þj �ð4Þj þ �ð1Þi �ð2Þj �ð3Þi �ð4Þj þ �ð1Þi �ð2Þj �ð3Þj �ð4Þi Þ 8

15�2

Z qmax

0
dq ~q6

�
1

2!

�
3
�

1

k01 þ 2!

�
2 1

k02 �!�!D þ i�

� 1

k04 �!�!D þ i�

1

k01 � 2!þ i�

1

k03 � 2!þ i�

1

P0 �!�!D þ i�

1

P0 þ!þ!D

�
�

1

k02 þ!þ!D

�
2 1

2!D

fðP0Þ; (41)

where

fðP0Þ ¼ 4f�32k03P
0!2!DððP0Þ2 � 2!2 � 3!!D �!2

DÞ þ 2ðk03Þ3P0!DððP0Þ2 � 5!2
D � 2!!D �!2

DÞ
þ ðk03Þ4ð2!3 � ðP0Þ2!D þ 3!2!D þ 2!!2

D þ!3
DÞ þ 4!2ð8!5 þ 33!4!D þ 54!3!2

D þ 3!DððP0Þ2 �!2
DÞ2

þ 18!!2
Dð�ðP0Þ2 þ!2

DÞ þ!2ð�12ðP0Þ2!D þ 44!3
DÞÞ � ðk03Þ2ð16!5 þ 63!4!D þ 74!3!2

D þ!DððP0Þ2
�!2

DÞ2 þ 32!2!Dð�ðP0Þ2 þ!2
DÞ þ!ð�6ðP0Þ2!2

D þ 6!4
DÞÞg; (42)

! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

�

p
, !D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

D

q
, and P0 ¼ k01 þ k02. In

Eq. (41) we can see clearly the sources of the imaginary
part in the cuts k02ðk04Þ �!�!D ¼ 0, k01ðk03Þ � 2! ¼ 0,
and P0 �!�!D ¼ 0, which give rise to the decays
D�0 ! �D, � ! ��, and �D�0 ! �D, respectively. As
in [4], to take into account the � mass distribution, we
make a simple approach. First we neglect the three-
momenta of external particles ( ~ki � 0, i ¼ 1, 2, 3, 4) and
approximate k01 � k03 �m� and k02 � k04 �mD� . Then we
find double poles of ð1=ðk01 � 2!þ i�ÞÞ2 and ð1=ðk02 �
!�!D þ i�ÞÞ2. These double poles are then removed
by replacing

�
1

k01 � 2!þ i�

�
2 ! 1

k01 � 2!þ i��=4

� 1

k01 � 2!� i��=4
; (43)

and so on, considering a finite width for � andD�. Here we
set �� ¼ 146:2 MeV and �D� ¼ 2:1 MeV (the results are
identical if we put �D� ¼ 0 MeV). Once this is done, the
other diagrams of Fig. 9 are calculated easily, which takes
into account the decay into the �D channel. One must
make a projection into a proper isospin and spin. For
isospin, only I ¼ 1=2 is allowed, while for spin, S ¼ 0
and 2 are allowed. Decay into S ¼ 1 is forbidden since the
parity of the �D� system for � in the s wave is positive,
which forces the �D system to be in L ¼ 0, 2. Since the �
andD have no spin, the total angular momentum J is equal
to L in this case. Therefore, only the 0þ, 2þ quantum
numbers have this decay channel. This provides an expla-
nation on why theD�ð2640Þ does not have a practical width
and the D�

2ð2460Þ has a bigger width. Finally, we obtain
tð2�;I¼1=2;S¼0Þ ¼ 20 ~Vð�DÞ; tð2�;I¼1=2;S¼2Þ ¼ 8 ~Vð�DÞ;

(44)

FIG. 9. �D-box diagrams.
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where ~Vð�DÞ is given by Eq. (41) after removing the
polarization vectors. As in [4] we use a form factor for
an off-shell � in each vertex, which is

FðqÞ ¼ �2 �m2
�

�2 þ ~q2
; (45)

with � ¼ 1400, 1500 MeV. The real and imaginary parts
of the potential for the contributions that we have calcu-
lated are plotted in Figs. 10 and 11. As we can see, the real
part of the potential coming from the �D-box diagram is
much smaller than the real part of the potential coming
from the contact plus exchange terms.

The relatively small contribution of the real part of the
box diagram has allowed us to neglect it in the approach to
the vector-vector interaction. A complete formal treatment
of the problem would consider a larger set of coupled
channels where vector-vector (VV) and pseudoscalar-
pseudoscalar (PP) states would be treated on an equal
footing. Adding the PP channel requires the PP ! PP
potential and the VV ! PP transition potential. The for-
mer potential is provided by the exchange of vector mesons
and extra contact terms [1–3]. The latter VV ! PP tran-
sition has appeared in the box diagram calculation in the
present section. An important observation here is that the
transition potential turns out to be small due to the mo-
mentum dependent (p-wave) nature of the Yukawa-type
vertex VPP. Therefore, the full coupled channel calcula-
tion including all orders is not necessary in practice and
only the lowest contribution is sufficient. For the decay

width this corresponds to the calculation of the box dia-
gram. The realization that the VV ! PP transition is
relatively small also indicates that the VV and PP systems
are largely disentangled in this formalism.

B. Results with Vð�DÞ

In Fig. 12 we show the results when one introduces the
amplitudes of Tables I, II, and III and the given ones in
Eqs. (44) and (41) in the Bethe-Salpeter equation (29). As
one can see, now the states for S ¼ 0 and S ¼ 2 have a
larger width since they can decay to �D also. We have
found a width of 20 MeV for the D�

2ð2460Þ, which is about
50% of the total width quoted in the PDG [6]. One could
also have theD�� decay channel, which would be possible
by means of an anomalous coupling but, as it was seen in
[4], this leads to a smaller contribution than the other one.
Also in the PDG the most important contribution comes
from the �D channel. For the case of the new state found
the width obtained is 50 MeV with � ¼ 1500 MeV. In the
next section we introduce new elements of phenomenology
that help obtain a somewhat larger width.

C. Results with Vð�DÞ using a different form factor and
the experimental coupling constant gD�D�

In this section we would like to evaluate again the
�D-box diagram, but, taking into account the strong cou-
pling gD�D� and a different form factor also for an off-shell
pion. After the recent measurements by the CLEO
Collaboration [23], it is known that the D� meson couples
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FIG. 10. Real part of the potential for I ¼ 1=2; S ¼ 0; and I ¼ 1=2; S ¼ 2.
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strongly to D�. The experimental value of this coupling
turns out to be larger, almost by a factor of 2, than the value
obtained from some of the theoretical predictions using
different approaches of the QCD sum rule [24,25]. Within
the hidden gauge formalism, the vertex D�þD0�� ob-
tained from Eq. (38) is

hD�þðpÞ��ðqÞjD0ðpþ qÞi ¼ �2g0D�D�q��
�; (46)

with g0D�D� ¼ mD�=2fD ¼ 6:3, which is also smaller than

the experimental value for this, g
exp
D�D� ¼ 8:95	 0:15	

0:95. In [26], the D�D� form factor is evaluated using
the QCD sum rule for a D or a � off shell. A parametri-
zation for an off-shell pion in terms of a form factor

F0ðq2Þ ¼ gD�D�e
q2=�2

; with � ¼ 1:2 GeV; (47)

is taken, together with another form factor to account for
off-shell D mesons, which we do not need here since we
are concerned about the imaginary part of the box diagram
where theDmeson will be on shell. In Eq. (47) q2 is a four-
momentum square q2 ¼ q02 � ~q2. With these assumptions
on the form factors, a value of gD�D� ¼ 2g0D�D� ¼ 14:9 is

obtained in [26], which would be in better agreement with
experiment (g0D�D� ¼ 7:45).

For the first diagram of Fig. 9, we consider the q0

component of the �þ on shell, hence

q0 ¼ sþm2
� �m2

D

2
ffiffiffi
s

p � 769:4 MeV

and ðk01 � q0Þ � 6 MeV, for �D� at threshold, in the ap-

proximation of momentum zero for external particles. This
leads to ðk0 � q0Þ2=�2 � 10�5, for values of � around
1 GeV. Then it is licit to use the three-momentum version
of the form factor of Eq. (47) for an off-shell pion in each
of the vertices, that is, we replace in Eq. (41) the factor g4

by

g2���ðgexpD�D�Þ2ðe� ~q2=�2Þ4; (48)

with g��� ¼ m�=2f� ¼ 4:2 and g
exp
D�D� ¼ 8:95 MeV (the

experimental value), �� 1–1:2 GeV and ~q running in the
integral.
In Figs. 13 and 14 we show the real and imaginary parts

of the potential using Eqs. (41) and (48). As we can see, the
real part of the �D-box diagram is very small compared
with those coming from the contact term plus vector ex-
change terms, and therefore we can ignore it, thus focusing
our attention at the imaginary part. The imaginary part is
now larger than that in Fig. 11, but is still comparable with
the values quoted in the PDG [6] for the width. We show
the jTj2 in Fig. 15 for various cutoff parameters. The jTj2 is
similar to Fig. 12, but now the width is slightly larger. In
the case of� ¼ 1 GeV, we obtain 40 MeV for S ¼ 2, very
close to the value quoted by the PDG (43	 4 MeV), and
61 MeV for S ¼ 0. For � ¼ 1:2 GeV we obtain for S ¼ 2
a width around 60 MeV. Therefore, the two form factors,
Eqs. (45) and (48), provide reasonable values of the width,
with a preference for the option using the experimental
gexpD�D� value and � ¼ 1 GeV in Eq. (48).
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FIG. 13. Real part of the potential for I ¼ 1=2; S ¼ 0; and I ¼ 1=2; S ¼ 2.
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VII. CONCLUSIONS

We have made a study of the ð�!ÞD� interaction using
the hidden gauge formalism. The interaction comes from
contact terms plus � meson exchange in the t channel. Of
all spin and isospin allowed channels in the s wave, we
found strong attraction, enough to bind the system, in I ¼
1=2, S ¼ 0, I ¼ 1=2, S ¼ 1, and I ¼ 1=2, S ¼ 2. We also
found that in the case of I ¼ 1=2, S ¼ 2 the interaction was
more attractive than in the other two cases, leading to a
tensor state more bound than the scalar and the axial vector.
The consideration of the � mass distribution gives a width
to the three states, rather small in all cases. Consideration
of the�D decay channel, in an equivalent way to what was
done in the case of the �� interaction going to �� in [4],
makes the widths larger and realistic. Yet, the smaller
phase space available here makes this contribution rela-
tively smaller than in the case of the �� interaction. We
found that the tensor state obtained matches the properties
of the tensor state D�

2ð2460Þ. We predict two more states
with S ¼ 0 and S ¼ 1, which are less bound than the tensor

state. We find in the PDG the state D�ð2640Þ without
experimental spin and parity assigned, but we conjecture
that this state should be the S ¼ 1 state found by us
because we could find a natural explanation for the small
experimental width of this state. The other state nearly
degenerate in energy with this one, but with spin S ¼ 0,
is yet to be found. The results obtained here should stimu-
late the search for moreD states in the region of 2600MeV.

ACKNOWLEDGMENTS

This work is partly supported by DGICYT Contract
No. FIS2006-03438. We acknowledge the support of the
European Community-Research Infrastructure Integrating
Activity Study of Strongly Interacting Matter (acronym
HadronPhysics2, Grant Agreement No. 227431) under
the Seventh Framework Programme of EU. A.H. is sup-
ported in part by the Grant for Scientific Research Contract
No. 19540297 from the Ministry of Education, Culture,
Science and Technology, Japan. H. N. is supported by the
Grant for Scientific Research No. 18-8661 from JSPS.

[1] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T.
Yanagida, Phys. Rev. Lett. 54, 1215 (1985).

[2] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164,

217 (1988).
[3] M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003).
[4] R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78,

2000 2200 2400 2600 2800

80

60

40

20

0

s MeV

Im
t

Imaginary part of the potential for I 1 2 and S 0

D box, 1200 MeV

D box, 1100 MeV

D box, 1000 MeV

2000 2200 2400 2600 2800
35

30

25

20

15

10

5

0

s MeV

Im
t

Imaginary part of the potential for I 1 2 and S 2

D box, 1200 MeV

D box, 1100 MeV

D box, 1000 MeV

FIG. 14. Imaginary part of the potential for I ¼ 1=2; S ¼ 0; and I ¼ 1=2; S ¼ 2.

2500 2550 2600 2650 2700
0

500 000

1. 106

1.5 106

s MeV

T
2

Squared amplitude for I 1 2 and S 0

1200 MeV

1100 MeV

1000 MeV

2400 2420 2440 2460 2480 2500 2520 2540
0

2. 106

4. 106

6. 106

8. 106

1. 107

s MeV

T
2

Squared amplitude for I 1 2 and S 2

1200 MeV

1100 MeV

1000 MeV

FIG. 15. Squared amplitude for S ¼ 0 and S ¼ 2 including the convolution of the �-mass distribution and the �D-boxed diagram.

R. MOLINA et al. PHYSICAL REVIEW D 80, 014025 (2009)

014025-12



114018 (2008).
[5] H. Nagahiro, J. Yamagata-Sekihara, E. Oset, S. Hirenzaki,

and R. Molina, Phys. Rev. D 79, 114023 (2009).
[6] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).
[7] S. Uehara (private communication).
[8] L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009).
[9] C. Garcia-Recio, V.K. Magas, T. Mizutani, J. Nieves, A.

Ramos, L. L. Salcedo, and L. Tolos, Phys. Rev. D 79,
054004 (2009).

[10] L. S. Geng and J. Nieves (unpublished).
[11] J. Nieves (private communication).
[12] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[13] F. E. Close and E. S. Swanson, Phys. Rev. D 72, 094004

(2005).
[14] H. Nagahiro, L. Roca, A. Hosaka, and E. Oset, Phys. Rev.

D 79, 014015 (2009).
[15] Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966).
[16] J. J. Sakurai, Currents and Mesons (University of Chicago

Press, Chicago, IL, 1969).
[17] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[18] U. G. Meissner, Rep. Prog. Phys. 56, 903 (1993).
[19] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. D 75,

034002 (2007).
[20] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. Lett. 97,

192002 (2006).
[21] J. A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999).
[22] J. A. Oller and U.G. Meissner, Phys. Lett. B 500, 263

(2001).
[23] S. Ahmed et al. (CLEO Collaboration), Phys. Rev. Lett.

87, 251801 (2001).
[24] V.M. Belyaev, V.M. Braun, A. Khodjamirian, and R.

Ruckl, Phys. Rev. D 51, 6177 (1995).
[25] P. Colangelo, G. Nardulli, A. Deandrea, N. Di

Bartolomeo, R. Gatto, and F. Feruglio, Phys. Lett. B
339, 151 (1994).

[26] F. S. Navarra, M. Nielsen, and M. E. Bracco, Phys. Rev. D
65, 037502 (2002).

SCALAR, AXIAL-VECTOR, AND TENSOR RESONANCES . . . PHYSICAL REVIEW D 80, 014025 (2009)

014025-13


