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The nucleon distribution amplitudes and the nucleon-to-pion transition distribution amplitudes are

investigated at leading twist within the frame of a light-cone quark model. The distribution amplitudes

probe the three-quark component of the nucleon light-cone wave function, while higher order components

in the Fock-space expansion of the nucleon state are essential to describe the nucleon-to-pion transition

distribution amplitudes. Adopting a meson-cloud model of the nucleon the nucleon-to-pion transition

distribution amplitudes are calculated for the first time.
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I. INTRODUCTION

The hadron structure is believed to be described in terms
of the fundamental theory of strong interactions, quantum
chromodynamics (QCD), whose equations are notoriously
difficult to solve. A successful approach in high-energy
scattering is based on light-front quantization where had-
rons are described by light-cone wave functions (LCWFs)
[1]. The latter are expressed as an expansion of various
quark (q), antiquark ( �q), and gluon (g) Fock components.
Schematically, a nucleon state is conceived as the follow-
ing superposition:

jNi ¼ c ð3qÞjqqqi þ c ð3qþ1gÞjqqqgi þ c ð3qþq �qÞjqqqq �qi
þ . . . ; (1)

where in the light-cone gauge Aþ ¼ 0 the valence three-
quark LCWF c ð3qÞ involves six independent amplitudes

corresponding to different combinations of quark orbital
angular momentum and helicity [2], and the Fock compo-
nent c ð3qþ1gÞ with three quarks plus one gluon involves

126 independent amplitudes [3]. Adding a pair of sea
quarks into the valence component to build the amplitude
c ð3qþq �qÞ leads to an even more complicated LCWF.

To probe the parton content of the nucleon suitable
models have to be invented to give explicit expressions
for the LCWF amplitudes and exclusive processes have to
be explored, where a large spacelike momentum is trans-
ferred to an intact hadron. The framework for analyzing
such processes was developed more than 30 years ago
investigating elastic and inelastic form factors [4–6] and
relies on perturbative QCD. According to the factorization
theorem, the scattering amplitudes can be expressed as
convolutions of the (process-dependent but perturbatively
calculable) hard kernel of the process and the nonpertur-
bative (process independent) contribution describing the
hadrons that take part in the reaction. In the case of form
factors this contribution is represented by distribution am-
plitudes (DAs) [7,8] that describe the hadron structure in

parton configurations at small transverse separation. In the
nucleon case, DAs probe that part of the nucleon state with
orbital angular momentum Lz ¼ 0 and at leading twist
they involve only two of the six amplitudes entering the
valence three-quark Fock component c ð3qÞ.
The properties of DAs were first studied using the

method of QCD sum rules developed in Ref. [9]. This
method gives the possibility to calculate the values of
DA moments in terms of suitable sum rules. Therefore,
knowing the behavior of the first few moments one can
reconstruct the main properties of DAs as originally shown
in Refs. [10–14]. Although some work is available for
other baryons (see, e.g., [14–19]), the existing investiga-
tions were mainly focused on the nucleon DAs (see [11] for
an early review and [20] for a more recent one). Estimates
of the nucleon DAs based on QCD sum rules can be found
in Refs. [21–32]. The nucleon DAs were systematically
studied in Ref. [33] up to twist six and related to the
nucleon form factors [34–36] and the N ! � transition
at intermediate values of the momentum transfer [31] using
light-cone sum rules. A variety of model calculations [37–
40] have also been derived from dynamical or phenome-
nological Ansätze for the nucleon wave function in order to
describe the intermediate/low Q2 region where the non-
perturbative features of QCD are significant. Valuable
additional information is also provided by lattice QCD
[41–45].
In other processes like deeply virtual Compton scatter-

ing or hard exclusive meson production the concept of
generalized parton distributions (GPDs) [46] has proven
to be useful (for reviews, see [47]). GPDs have been
introduced as universal nonpertubative objects describing
the hadron structure in terms of nondiagonal hadronic
matrix elements of bilocal products of the light-front quark
and gluon field operators. Their crossed version defines the
generalized distribution amplitudes (GDAs) that describe
the hadronization of a quark-antiquark or gluon pair in a
pair of hadrons, e.g. a pair of � mesons, ��� ! �� [48].
Other matrix elements can be defined generalizing the
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concept of GPDs for nondiagonal transitions [49,50] and
describing the transition amplitude between two hadrons or
between a hadron and a real photon, thus called transition
distribution amplitudes (TDAs).

Recently, attention has been drawn to TDAs under the
assumption that the factorization theorems for exclusive
processes [51] also apply to reaction mechanisms like
proton-antiproton annihilation into two photons, p �p !
���, in the near forward region and large virtual photon
invariant mass Q [52] or into a pion and a high-Q2 lepton
pair in the forward region, p �p ! ��� ! lþl�� [53], ex-
clusive meson pair production in ��� scattering at small
momentum transfer [54], deeply virtual Compton scatter-
ing on a proton target in the backward region [55], or hard
exclusive electroproduction of a pion in the backward
region, ��N ! N0� [56]. Within the factorization scheme,
the hard and soft subprocesses decouple in the amplitude
for these reactions, the soft part being a universal non-
perturbative object describing the transition from a hadron
to a real photon, or a proton to a pion.

Depending on the values of the Mandelstam variables s
and t in ��� scattering, a dual factorization mechanism has
been identified in Ref. [57] describing the fusion of a real
photon and a highly virtual and longitudinally polarized
photon. One mechanism takes place when s � Q2, while t
is of the order of Q2, and involves twist-three GDAs,
whereas the other one occurs for t � Q2 and s�Q2 and
employs leading-twist � ! � TDAs. Such TDAs have
recently been studied in the Nambu-Jona-Lasinio model
[58]. The � ! �� TDAs are connected to the �þ ! �
TDAs through CPT symmetry [59]. The vector and axial-
vector � ! � TDAs have been analyzed in a quark model
[60], in the spectral quark model [61], and in the Nambu-
Jona-Lasinio model [62].

When studying the nucleon structure the N ! � TDAs
are particularly interesting because they directly probe
the three-quark plus sea q �q pair component c ð3qþq �qÞ in
Eq. (1). The possibility to extract experimental information
on the N ! � TDAs has been studied in Refs. [53,63] for
the �pN ! ��� reaction in the kinematical regime acces-
sible by GSI-FAIR [64] and in Ref. [56] for the ��N !
N0� reaction in the kinematical conditions of JLab. In such
pioneering works the TDAs were predicted on the basis of
the soft-pion theorems [65] which allow us to calculate
three out of the eight independent leading-twist TDAs in
terms of the proton DAs. Predictions for the TDAs in the
soft-pion limit were also obtained in Ref. [66]. However, it
is desirable to extend these analyses to a more general
framework, using as input different model calculations
and also going beyond the kinematical soft-pion limit
just because the N ! � TDAs represent a new tool to
access information on the Fock-space components of the
nucleon wave function beyond the valence-quark contri-
bution. Furthermore, in the impact parameter representa-
tion the N ! � TDAs map out the transverse location of

the small-size core and the meson cloud inside the proton
[67].
Being nonperturbative quantities, DAs, GPDs, GDAs,

and TDAs cannot be calculated from first principles, but
have to be described by models or derived within lattice
QCD. In this paper we are concerned with nucleon DAs
and N ! � TDAs within a phenomenological model for
the LCWFs of the nucleon based on the light-cone con-
stituent quark model (CQM) that has successfully been
applied to the calculation of generalized parton distribu-
tions [68–71], and transverse-momentum dependent parton
distributions [72,73] taking into account the full decom-
position of the three-quark Fock component of the nucleon
state. In order to derive expressions for the N ! � TDAs
we have to implement the model in order to include Fock
components with a sea q �q pair. This will be done assuming
the nucleon to consist of a bare three-quark object sur-
rounded by a meson cloud along the lines that were already
followed in the calculation of the nucleon GPDs [74] and
electroweak form factors [75]. This will allow us to give a
first estimate of the N ! � TDAs for future applications.
The paper is organized as follows. The nucleon DAs,

whose definition and properties are recalled in Sec. II, are
explicitly derived in the light-cone CQM in Sec. III and
numerically computed in Sec. IV. The N ! � TDAs are
derived within the meson-cloud model in Sec. V, and some
results are presented in Sec. VI. Concluding remarks are
given in the final section. The spin components required by
the model for the baryon LCWFs are listed in the appendix.

II. NUCLEON DISTRIBUTION AMPLITUDES

In this section we recall some important definitions and
properties of the nucleon DAs.
In coordinate space, the proton DAs are derived from the

following proton-to-vacuum matrix elements of trilocal
operators built of quarks and gluon fields [12,14,23]:

h0j�ijkui0�ðz1nÞ½z1; z0�i0iuj
0
�ðz2nÞ½z2; z0�j0jdk0� ðz3nÞ

� ½z3; z0�k0kjpðpp; �Þi; (2)

where jpðpp; �Þi denotes the proton state with momentum

pp (p2
p ¼ M2) and helicity �; u, d are the field operators

for up and down quarks, respectively; the Greek letters �,
�, and � stand for Dirac indices, while the Latin letters i, j,
and k refer to color; n is an arbitrary lightlike vector (n2 ¼
0) and zi are real numbers that specify quark separation,
with

P
izi ¼ 1. In Eq. (2) the gauge factors ½zi; z0� render

the matrix element gauge-invariant and are defined as

½zi; z0� � P exp

�
igðzi � z0Þ

�
Z 1

0
dtn�A

�ðn½tzi þ ð1� tÞz0�Þ
�
; (3)

where P indicates the path-ordering prescription. In the
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following we will work in the light-cone gauge Aþ ¼ 0
where the gauge factors reduce to the identity.

Taking into account Lorentz covariance, spin, and parity
conservation of the nucleon, the most general decomposi-
tion of the matrix element in Eq. (2) involves 24 invariant
functions [33]. To the leading-twist three accuracy only
three of them are relevant, and are given by the Lorentz
invariant (scalar) functions of positive parity Vð¼ vectorÞ,
Að¼ axial-vectorÞ, and Tð¼ tensorÞ:

h0j�ijkui�ðz1nÞuj�ðz2nÞdk�ðz3nÞjpðpp; �Þi
¼ 1

4fN½ðp6 CÞ��ð�5N
þÞ�Vðzin � pÞ

þ ðp6 �5CÞ��ðNþÞ�Aðzin � pÞ
þ ð�p�CÞ��ð���5N

þÞ�Tðzin � pÞ�; (4)

where ��	 ¼ 1
2 ½��; �	�, �p� is a shorthand notation for

p	�
	�, C is the charge conjugation matrix, and Nþ is the

light-cone ‘‘good’’ or ‘‘large’’ component of the nucleon
spinor N. In Eq. (4) the proton decay constant fN is a
dimensional quantity representing the value of the nucleon
distribution amplitude at the origin of the configuration
space [10–12]. Furthermore, we introduced a second light-
like vector p� such that 2p � n ¼ 1. In particular, we make
the following choice for the vectors p� and n�:

p� ¼ pþ
pffiffiffi
2

p ð1; 0; 0; 1Þ; n� ¼ 1

2
ffiffiffi
2

p
pþ
p

ð1; 0; 0;�1Þ: (5)

It is convenient to define the functions V, A, and T in
momentum space

Vðx1; x2; x3Þ

¼ ðn � pÞ3
Z Y3

j¼1

dzj

ð2�Þ3 Vðz1n � p; z2n � p; z3n � pÞ

� exp

�
i
X3
k¼1

xkzkðn � pÞ
�
; (6)

and similarly for A and T. The variables xi conjugate to the
light-cone positions of the quark operators in (4) are col-
linear momentum fractions of the proton longitudinal mo-
mentum carried by each quark in the infinite momentum
frame, with 0 	 xi 	 1 and

P
3
i¼1 xi ¼ 1 by momentum

conservation. Accordingly, the scalar functions VðxiÞ,
AðxiÞ, and TðxiÞ are DAs describing the longitudinal mo-
mentum distributions in the nucleon at a fixed scale�2 that
is not explicitly indicated if not necessary.

Because of permutation symmetry between the two up
quarks, the functions V and T are symmetric and A anti-
symmetric in their first two arguments. In addition, the
requirement that the three quarks have to be coupled to
give an isospin 1

2 state (the nucleon), yields the relations

2Tð1; 2; 3Þ ¼ �ð1; 3; 2Þ þ�ð2; 3; 1Þ; (7)

�ð1; 2; 3Þ ¼ Vð1; 2; 3Þ � Að1; 2; 3Þ; (8)

which allow us to express the proton DAs in terms of a
single independent scalar function � with mixed
symmetry.
Introducing quark fields with definite chirality and de-

noting the Fourier transform of the matrix element on the
left-hand side of Eq. (4) by D�

��;�, the three DAs can be

obtained as

V ¼ 1

ð2Þ1=4ðpþ
p Þ3=2fN

ðD"
12;1 þD"

21;1Þ; (9)

A ¼ � 1

21=4ðpþ
p Þ3=2fN

ðD"
12;1 �D"

21;1Þ; (10)

T ¼ � 1

21=4ðpþ
p Þ3=2fN

D"
11;2; (11)

where the " , # arrows denote the up and down helicity of
the proton, respectively. Thus,

� ¼ 2

ð2Þ1=4ðpþ
p Þ3=2fN

D"
12;1: (12)

Equation (4) is equivalent to writing the three-quark uud
component of the proton state with positive helicity in the
infinite momentum frame as [12–14]1

jpðpp; "Þiuud ¼ 1ffiffiffi
3

p fN
4

Z 1

0

�
dxffiffiffi
x

p
�
3

�
�
V � A

2
ju"ð~k1Þu#ð~k2Þd"ð~k3Þi

þ V þ A

2
ju#ð~k1Þu"ð~k2Þd"ð~k3Þi

� Tju"ð~k1Þu"ð~k2Þd#ð~k3Þi
�
; (13)

or in a more compact way as

jpðpp; "Þiuud ¼ 1ffiffiffi
3

p fN
4

Z 1

0

�
dxffiffiffi
x

p
�
3
�½ju"ð~k1Þu#ð~k2Þd"ð~k3Þi

� ju"ð~k1Þd#ð~k2Þu"ð~k3Þi�; (14)

where the integration measure is defined as

�
dxffiffiffi
x

p
�
N
¼

�YN
i¼1

dxiffiffiffiffi
xi

p
�



�
1�XN

i¼1

xi

�
: (15)

In Eqs. (13) and (14)

1Note that here the uud component is normalized as

uudhp; �jp0; �0iuud ¼ 1
32ð2�Þ3pþ
ðp0þ � pþÞ
ð2Þðp0

? � p?Þ
�0�:
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ju"ð~k1Þu#ð~k2Þd"ð~k3Þi ¼ �ijkffiffiffi
6

p byiu ð~k1; "Þbyju ð~k2; #Þbykd ð~k3; "Þj0i;
(16)

where bycu;dð~k; �Þ are the creation operators of free u and d

quarks with momentum ~k ¼ ðkþ;k?Þ [kþ ¼ ðk0 þ k3Þ= ffiffiffi
2

p
and k? being the plus and transverse-momentum compo-
nents, respectively], helicity �, and color c [see also
Eq. (30) below].

The corresponding neutron state is obtained from (14)
by interchanging u and d, with an overall change of sign.

The matrix elements D�
��;�, and ultimately the DAs, are

directly linked to the Lz ¼ 0 component of the valence-
quark wave function of the nucleon, by integrating out
the transverse momenta of the constituent quarks
[13,14,37,39] [see Eqs. (32) and (43) below].

The DAs for the nucleon are well known in two limits
[12]. The first is the static SU(6) symmetric quark model,
where the variables xi take on only discrete values and the
distribution amplitude is totally symmetric:

�NR ¼ 


�
x1 � 1

3

�



�
x2 � 1

3

�



�
x3 � 1

3

�
: (17)

The second is the asymptotic regime of sufficiently high
Q2 where � takes the form

�AS ¼ 120x1x2x3; (18)

which is totally symmetric under quark exchange and has
the flavor-spin structure assumed in the SU(6)-symmetric
quark model. In the asymptotic limit (Q2 ! 1), A be-
comes negligible because of the Pauli principle, and V
and T become totally symmetric under particle exchange,
i.e. V, T ! �AS [27].

Both limits (17) and (18) are conflicting with the experi-
ment. In the first case one obtains wrong results for the
neutron and proton magnetic form factors (Gn

M > 0, Gp
M <

0), in the second case Gn
M > 0 and Gp

M=G
n
M ! 0 at large

Q2 [12].
At intermediate values ofQ2 the nucleon DAs turn out to

be quite different from their nonrelativistic and asymptotic
limits. The analysis takes advantage of moments of the DA
� defined as

�ðl;m;nÞ ¼ 1

�N

Z
½dx�xl1xm2 xn3�ðx1; x2; x3Þ; (19)

where ½dx� ¼ dx1dx2dx3
ð1� x1 � x2 � x3Þ, and�N is a
normalization constant, which is chosen such that

�ð0;0;0Þ ¼ 1. Longitudinal momentum conservation (x1 þ
x2 þ x3 ¼ 1) imposes the following condition:

�ðn1;n2;n3Þ ¼ �ðn1þ1;n2;n3Þ þ�ðn1;n2þ1;n3Þ þ�ðn1;n2;n3þ1Þ:
(20)

Thus, not all the moments at a given orderM ¼ n1 þ n2 þ
n3 are linearly independent.

The DA moments can be expressed in terms of matrix
elements of suitable local operators entering appropriate
sum rules [12,14,76] following the lines of the method of
QCD sum rules developed in Ref. [9].
The nucleon DA obeys a renormalization-group equa-

tion which requires that �ðxi; Q2Þ is only logarithmically
dependent on the momentum transfer scale Q2 [5].
Following Refs. [30,77], the scale dependence of the nu-
cleon DA can be cast in the form

�ðxi; Q2Þ ¼ �ASðxiÞ
X1
n¼0

Bnð�2Þ ~�nðxiÞ

�
�logðQ2=�2

QCDÞ
logð�2=�2

QCDÞ
���n

; (21)

where ~�nðxiÞ are orthogonal eigenfunctions of the nucleon
evolution equations, orthonormalized within a basis of
Appell polynomials, and �n are the anomalous dimensions
listed in Ref. [5]. In Eq. (21) the projection coefficients
Bnð�2Þ encode the nonperturbative input of the bound state
dynamics at the factorization (renormalization) scale �2.

Using the explicit expression for the eigenfunctions ~�n in
terms of Appel polynomials they can be expressed as linear
combinations of DA moments, i.e.

Bnð�2Þ ¼ Nn

120

Xn
i;j¼0

anij�
ði;0;jÞð�2Þ; (22)

where the coefficients anij and the normalization constant

Nn have been calculated up to order M ¼ iþ j ¼ 9 in
Refs. [30,78].
An alternative expansion of DAs is possible in terms of

contributions of operators with a given conformal spin
[15,18,33,36]. This is convenient since operators with
different spin do not mix under renormalization in one
loop, and only operators with the same spin can be related
by equations of motion so that the truncation of the con-
formal spin expansion at a certain order produces a self-
consistent approximation. For example, at leading twist
with the minimum possible conformal spin, � reduces to
�AS, whereas its conformal expansion to the next-to-
leading conformal spin accuracy reads [33,36]

�ðxi; �2Þ ¼ �ASðxiÞ�0
3ð�2Þ½1þ ~��

3 ð�2Þðx1 � x2Þ
þ ~�þ

3 ð�2Þð1� 3x3Þ�; (23)

where

�0
3 ¼ fN; ~��

3 ¼ 21
2 ½�ð1;0;0Þ ��ð0;1;0Þ�;

~�þ
3 ¼ 7

2�
ð0;0;1Þ:

(24)

Numerical estimates of the coefficients at �2 ¼ 1 GeV2

available from QCD sum rules [12,13,23,34] give
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fN ¼ ð5:3
 0:5Þ � 10�3 GeV2; ~��
3 ¼ 4:0
 1:5;

~�þ
3 ¼ 1:1
 0:3: (25)

An approximately 40% lower value of fN has been deter-
mined recently in lattice calculations [44]: fN ¼
3:234ð63Þð86Þ � 10�3 GeV2 at �2 ¼ 1 GeV2. In our nu-
merical estimates the value in Eq. (25) will be used.

The resulting DA exhibits a broad and rich structure that
is reflected in an asymmetric distribution of the proton
momentum between the three valence quarks (in the limit
of infinite momentum). According to the QCD sum-rule
approach about 60% of the proton longitudinal momentum
is carried by the up quark with its helicity in the same
direction as that of the proton. The remaining up and down
quarks, with combined helicity zero, are confined into the
small-x region, each carrying about 20% of the total lon-
gitudinal momentum. This asymmetry is a common feature
of all octet baryons [14]. A somewhat smaller asymmetry
of the helicity amplitude "#" for the uud configuration was
found in Ref. [23] reevaluating the momentum sum rules.
This suggests the possibility of spin-zero diquark cluster-
ing in the nucleon wave function as a manifestation of the
attractive QCD force produced by gluon exchange that is
just strongest in the spin-zero quark-quark state [39].
However, lattice QCD calculations of the first two mo-
ments were unable to confirm this asymmetric behavior of
the nucleon DAs [42].

The problem with QCD sum rules is that the moment
sum rules are not stringent enough to fix the shape of the
nucleon DAs uniquely [22,32]. With increasing order of

expansion the oscillations become stronger, and small
variations of the moments may lead to a completely arti-
ficial behavior [25]. Such an extreme sensitivity of the
expansion coefficients indicates that the moments do not
give a convergent expansion. Actually, there is an infinite
number of possible solutions which satisfy the moment
sum rules, but differ dramatically in their shape. Thus, the
predicted observables, like form factors, may result quite
different. To determine the possible variation of DAs al-
lowed by moment sum rules and to reconcile the con-
straints from moment sum rules with data, the heterotic
solution was proposed in Refs. [27,28] combining Q2

evolution equations in perturbative QCD, QCD sum rules,
and phenomenology. Allowing some flexibility to the ex-
pansion coefficients (22), while keeping them as close as
possible to the sum-rule requirements, a good agreement
with high-Q2 data on the proton magnetic form factor was
achieved.
Alternative phenomenological approaches take advan-

tage of constraints on the three-quark component of the
nucleon wave function imposed by data. For example,
requiring that with the same nucleon wave function one
reproduces the proton form factors, the phenomenological
valence-quark distribution as well as the Jc ! p �p decay
width, the authors of Ref. [40] assumed a wave function
with a small hard factorizing part depending on the longi-
tudinal momenta and described by a nucleon DA and a
large soft nonfactorizing contribution depending on xi and
ki? solely in the combination k2i?=xi with a Gaussian fall-

off with ki?. All requirements are met with a model wave
function depending on only two parameters, namely, the

TABLE I. Results for the moments �ðl;m;nÞ with lþmþ n 	 3 of the proton DA in different
model calculations: COZ from Ref. [34]; KS from Ref. [23], SB from Ref. [28], DF from
Ref. [39], BK from Ref. [40], and PPB from the present model.

ðl; m; nÞ COZ KS SB DF BK PPB

(0 0 0) 1 1 1 1 1 1

(1 0 0) 0.54–0.62 0.46–0.59 0.572 0.582 0.381 0.346

(0 1 0) 0.18–0.20 0.18–0.21 0.184 0.213 0.309 0.331

(0 0 1) 0.20–0.25 0.22–0.26 0.244 0.207 0.309 0.323

(2 0 0) 0.32–0.42 0.27-0.37 0.338 0.367 0.179 0.151

(0 2 0) 0.065–0.088 0.08–0.09 0.066 0.085 0.125 0.141

(0 0 2) 0.09–0.12 0.10–0.12 0.170 0.083 0.125 0.136

(1 1 0) 0.08–0.10 0.08–0.10 0.139 0.108 0.101 0.099

(1 0 1) 0.09–0.11 0.09–0.11 0.096 0.106 0.101 0.096

(0 1 1) �0:03–0:03 unreliable �0:021 0.018 0.083 0.091

(3 0 0) 0.21–0.25 0.21 0.249 0.095 0.076

(0 3 0) 0.028–0.04 0.039 0.041 0.059 0.070

(0 0 3) 0.048–0.056 0.139 0.040 0.059 0.067

(2 1 0) 0.041–0.049 0.079 0.060 0.042 0.038

(2 0 1) 0.044–0.055 0.049 0.059 0.042 0.037

(1 2 0) 0.027–0.037 0.050 0.040 0.036 0.037

(1 0 2) 0.037–0.0434 0.037 0.039 0.036 0.035

(0 2 1) �0:004–0:007 �0:023 0.004 0.030 0.034

(0 1 2) �0:005–0:008 �0:007 0.005 0.030 0.033
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proton decay constant fN and the size parameter of the
transverse-momentum dependence. This gives a DA that is
much less asymmetric than that derived from QCD sum
rules, rather resembling the asymptotic DA, but with the
position of the only maximum somewhat shifted. Actually,
the asymmetry of the leading-twist amplitude constraint by
phenomenology [33,36,40] or calculated on the lattice [43–
45] is much smaller than in QCD sum-rule calculations
(see Table I discussed in Sec. IV).

III. NUCLEON DISTRIBUTION AMPLITUDES AND
LIGHT-CONE WAVE FUNCTIONS

In this section we derive an explicit expression for the
matrix elementsD�

��;� in terms of LCWFs. To this aim, we

first introduce the Fourier expansion in the momentum
space of the quark field operator of flavor q and color c
[1,5]

qcðzn�; zn?Þ ¼
Z dkþd2k?

16�3kþ
�ðkþÞX

�

fbcqð~k; �Þuþð~k; �Þ

� expð�ikþzn� þ ik? � zn?Þ
þ dycq ð~k; �Þvþð~k; �Þ
� expðþikþzn� � ik? � zn?Þg; (26)

where the b and dy operators, respectively, annihilate the
‘‘good’’ component of the quarks fields and create the good
component of the antifields fulfilling the anticommutations
relations

fbc0q0 ð~k0; �0Þ; bycq ð~k; �Þg
¼ fdc0q0 ð~k0; �0Þ; dycq ð~k; �Þg
¼ 16�3kþ
ðk0þ � kþÞ
ð2Þðk0

? � k?Þ
q0q
�0�
c0c: (27)

In Eq. (26), uþð~k; �Þ and vþð~k; �Þ are the light-cone spin-
ors of the quark and antiquark, respectively.

The three-quark Fock component of the light-front pro-
ton state is given by

jpðpp; �Þi ¼
X

�i;�i;ci

Z �
dffiffiffi


p
�
3
½d2k?�3

��p;½f�
� ðfi;ki?;�i; �igi¼1;2;3Þ

�Y3
i¼1

jq�i ;ip
þ
p ;pi?i; (28)

where �p;½f�
� ðfi;ki?;�i; �igi¼1;2;3Þ is the momentum

LCWF which gives the probability amplitude for finding
in the nucleon three quarks with momenta (ip

þ
p , pi? ¼

ki? þ ip
þ
p ), and spin and isospin variables �i and �i,

respectively. The proton state is normalized as

hp; �jp0; �i ¼ 2ð2�Þ3pþ
ðp0þ � pþÞ
ð2Þðp0
? � p?Þ;

(29)

and the three-quark state is defined as

Y3
i¼1

jq�i ; ~kii ¼ �ijkffiffiffi
6

p byiq ð~k1; �1Þbyjq ð~k2; �2Þbykq ð~k3; �3Þj0i:

(30)

In Eq. (28) and in the following formulas, the integration
measures are defined by (15) and

½d2k?�N ¼
�YN
i¼1

d2ki?
2ð2�Þ3

�
2ð2�Þ3


�XN
i¼1

ki?
�
: (31)

Inserting the momentum-space expansion (26) of the
quark fields and the proton Fock-state (28) in Eq. (4),
and using the anticommutation relations for the quark
creation and annihilation operators, one obtains for the
matrix elements D�

��;�

D�
��;� ¼ �24

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p uþ�ðx1pþ
p ; �1Þuþ�ðx2pþ

p ; �2Þuþ�ðx3pþ
p ; �3Þ

�
Z
½d2k?�3�p;½f�

� ðfx1;k1?;�1; 1=2g; fx2;k2?;�2; 1=2g; fx3;k3?;�3;�1=2gÞ: (32)

The light-cone spinors in Eq. (32) are explicitly given by

uþðxipþ
p ; "Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
xip

þ
pffiffiffi
2

p
s 1

0
1
0

0
BBB@

1
CCCA and uþðxipþ

p ; #Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
xip

þ
pffiffiffi
2

p
s 0

1
0
�1

0
BBB@

1
CCCA; i ¼ 1; 2; 3: (33)

As a consequence, the Dirac component of the quark spinor
selects the quark-spin configuration, with� ¼ 1, 3 (� ¼ 2,
4) corresponding to helicity � ¼" (� ¼# ) of the quark. In
particular, from Eqs. (9)–(11) we see that for a proton with

helicity " the DAs are obtained from the wave-function
component with total quark helicity 1

2 , corresponding to the
projection onto the partial wave with orbital angular mo-
mentum Lz ¼ 0, and to the three spin configurations ð""#Þ,
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ð"#"Þ, and ð#""Þ. Furthermore, the quantum numbers for the
quark isospin in the LCWF in (32) correspond to the
isospin projection in the uud configuration.

IV. NUCLEON DISTRIBUTION AMPLITUDES IN A
LIGHT-CONE QUARK MODEL

In this section we estimate the DAs using a phenome-
nological model [68–73] with LCWFs built in such a way
as to satisfy the Poincaré covariance and to be eigenstates

of the total angular momentum operator in the light-front
dynamics. These properties can be fulfilled by constructing
the wave function as the product of a momentum-

dependent wave function ~c ðfxi;ki?gÞ which is spherically
symmetric and invariant under permutations, and a spin
and isospin wave function which is uniquely determined by
symmetry requirements and invariant under permutations,
i.e.

�p;½f�
� ðfxi;ki?;�i; �igÞ ¼ ~c ðfxi;ki?gÞ

X
�1�2�3

D1=2�
�1�1

ðRcfð~k1ÞÞD1=2�
�2�2

ðRcfð~k2ÞÞD1=2�
�3�3

ðRcfð~k3ÞÞ�p
�ð1=2Þð�1; �2; �3; �1; �2; �3Þ;

(34)

where D1=2
�� ðRcfð~kÞÞ are matrix elements of the Melosh rotation Rcf [79], which converts the rest-frame spin of the quarks

into light-cone spins. They are explicitly given by

D1=2
�� ðRcfð~kÞ ¼ h�jRcfð~kÞj�i ¼ h�jmþ xM0 � i� � ðẑ� k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ xM0Þ2 þ k2
?

q j�i; (35)

where m is the quark mass and M0 is the mass of the noninteracting three-quark system. In Eq. (34) the spin and isospin
quantum number of the quarks are coupled by the SU(6) symmetric function �p

�� defined as

�p
��ð�1; �2; �3; �1; �2; �3Þ ¼ 1ffiffiffi

2
p ½ ~�0

ð1=2Þ�ð�1; �2; �3Þ ~�0
ð1=2Þ�ð�1; �2; �3Þ þ ~�1

ð1=2Þ�ð�1; �2; �3Þ ~�1
ð1=2Þ�ð�1; �2; �3Þ�; (36)

where

~�
J12
J� ¼ X

MJ12

h1=2; �1; 1=2; �2jJ12;MJ12ihJ12;MJ12 ; 1=2; �3jJ; �i: (37)

In the case of the proton DAs, we need the uud isospin projection of the nucleon wave function, which corresponds to

�p;½f�
� ðfxi;ki?;�ig; fuudgÞ ¼ 1ffiffiffi

2
p ~c ðfxi;ki?gÞ�p

�ð�1; �2; �3Þ ~�1
ð1=2Þð1=2Þ

�
1

2
;
1

2
;� 1

2

�
; (38)

with the isospin coefficient ~�1
ð1=2Þð1=2Þð12 ; 12 ;� 1

2Þ ¼
ffiffi
2
3

q
and the spin-dependent part given by

�p
�ð�1; �2; �3Þ ¼

X
�1�2�3

D1=2�
�1�1

ðRcfð~k1ÞÞD1=2�
�2�2

ðRcfð~k2ÞÞD1=2�
�3�3

ðRcfð~k3ÞÞ ~�1
ð1=2Þ�ð�1; �2; �3Þ: (39)

Inserting the wave function (38) in Eq. (32), we find for
the nucleon DAs the final results

V ¼�4
ffiffiffi
3

p
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞ½�p

" ð"; #; "Þþ�p
" ð#; "; "Þ�;

(40)

A¼�4
ffiffiffi
3

p
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞ½�p

" ð#; "; "Þ��p
" ð"; #; "Þ�;

(41)

T ¼ 4
ffiffiffi
3

p
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞ�p

" ð"; "; #Þ; (42)

� ¼ � 8
ffiffiffi
3

p
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞ�p

" ð"; #; "Þ; (43)

where the explicit expressions for the �p
� function are

given in the appendix. These results confirm that by inte-
grating out the transverse-momentum dependence of the
nucleon wave function, DAs are determined by its Lz ¼ 0
component. In particular, in the present SU(6) symmetric
model they involve only one of the two independent light-
cone amplitudes parametrizing the S-wave component of
the LCWF. In order to probe also the other light-cone
amplitude one should consider a more general framework
with mixed-symmetry terms [80].
In the following, the results of Eqs. (40)–(43) are applied

to a specific CQM taking the form of the momentum wave
function from Ref. [81], i.e.
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~c ðfxi;ki?gÞ ¼ 2ð2�Þ3
�
1

M0

!1!2!3

x1x2x3

�
1=2 N0

ðM2
0 þ �2Þ� ;

(44)

where!i is the free-quark energy andN
0 is a normalization

factor such that
R
d½x�3j ~c ðfxig; fki?gÞj2 ¼ 1. In Eq. (44),

the scale �, the parameter � for the power-law behavior,
and the quark mass m are taken from Ref. [81], i.e. � ¼
0:607 GeV, � ¼ 3:4, and m ¼ 0:267 GeV. According to
the analysis of Ref. [82] these values lead to a very good
description of many baryonic properties.

In Fig. 1 the model results for the proton distribution
amplitude � are shown. The resulting shape is quite simi-
lar to that of the symmetric asymptotic DA in Eq. (18).

In Table I we list the �ðl;m;nÞ moments up to the order
M ¼ lþmþ n 	 3 in comparison with different model
calculations. At this order there are 20 moments out of
which only 10 are independent. Despite the fact that � is
normalized, one has to keep in mind that it is a distribution
amplitude, not a probability density. Thus its moments
cannot strictly be interpreted as mean values [27].
However, the first moments of � provide an indication
on how the longitudinal momentum of the proton is parti-

tioned among the valence quarks. Since �ð1;0;0Þ � 0:6 in
the model of Ref. [34], this is the reason why it is claimed
that with QCD sum rules about 60% of the proton longi-
tudinal momentum is carried by the up quark with helicity
parallel to that of the proton. From Table I we see that a
quite different result is obtained in the light-cone quark
model, a roughly symmetric result similar to the one
considered in Ref. [40]. In fact, while starting from quite
different assumptions, the LCWF used here and the model
wave function of Ref. [40] have some common features.
Besides the longitudinal momentum dependence of Lz ¼ 0
part of the present LCWF giving rise to an almost sym-
metric DA, our model resembles the Gaussian fall-off as
function of the quark transverse momentum at large x of
the wave function of Ref. [40] and both models are able, for
example, to reproduce the nucleon form factors. As a

matter of fact, the transverse-momentum dependence of
the present-model LCWF has been studied in Ref. [73],
showing that the ratio of the squared mean transverse
momentum and the mean square transverse momentum
of transverse-momentum dependent parton distributions
agrees within 10% accuracy with the results obtained
assuming a factorized gaussian form for the nucleon
wave function.
Using these results, we can study the behavior of proton

DA calculated in our model after evolution from the initial
low-scale of the model to higher scales. The initial scale,
corresponding to the results shown in Table I, has been
fixed evolving back unpolarized data, until the valence
distributions matches the condition that the second mo-
ment, i.e. the momentum fraction carried by the valence
quarks, is equal to one. Using LO evolution equations, we
find Q2

0 ¼ 0:079 GeV2, with �QCD ¼ 0:232 GeV [69].

Although there is no rigorous relation between the QCD
quarks and the constituent quarks, and a more fundamental
description of the transition from soft to hard regimes
would be very helpful, this strategy reflects the present
state of the art for quark model calculations [83–85], and
has been validated with a fair comparison to experiments
(see, for example, Ref. [73]). The results for the first mo-

ments �ðl;m;nÞ with lþmþ n 	 2 after evolution to Q2 ¼
1 GeV2 are shown in Table II. Comparison with the analo-
gous results from lattice estimates [45] is quite nice.
Evolution has only a very small effect: a further evolution
toQ2 ¼ 4 GeV2 would only hardly modify the last digit of
our result. This is in agreement with the logarithmic scale
dependence predicted by Eq. (21) and the fact that already
at the input scale the behavior of our DA approaches that of
the asymptotic DA.

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8
1 0

2

4

0

0.2

0.4

0.6

0.8
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FIG. 1 (color online). The proton distribution amplitude.

TABLE II. The moments �ðl;m;nÞ of the proton DA at different
scales. The asymptotic values (AS) of Eq. (18) (second column)
are compared with the lattice results (LAT) [31] at the scale
Q2 ¼ 1 GeV2 (third column) and with the corresponding results
from the present-model calculation (PPB), after evolution from
the initial scale Q2

0 ¼ 0:079 GeV2 to Q2 ¼ 1 GeV2 (last col-

umn).

ðl; m; nÞ AS LAT PPB

(0 0 0) 1 1 1

(1 0 0) 1
3 ’ 0:333 0.3999(37)(139) 0.340

(0 1 0) 1
3 ’ 0:333 0.2986(11)(52) 0.335

(0 0 1) 1
3 ’ 0:333 0.3015(32)(106) 0.326

(2 0 0) 1
7 ’ 0:143 0.1816(64)(212) 0.147

(0 2 0) 1
7 ’ 0:143 0.1281(32)(106) 0.144

(0 0 2) 1
7 ’ 0:143 0.1311(113)(382) 0.137

(1 1 0) 2
21 ’ 0:095 0.1092(67)(219) 0.098

(1 0 1) 2
21 ’ 0:095 0.1091(41)(152) 0.095

(0 1 1) 2
21 ’ 0:095 0.0613(89)(319) 0.093
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V. TRANSITION DISTRIBUTION AMPLITUDES IN A MESON-CLOUD MODEL

The general matrix element describing the transition from a nucleon to a meson state reads [53]

h�j�ijkqi0�ðz1nÞ½z1; z0�i0iqj
0
�ðz2nÞ½z2; z0�j0jqk0� ðz3nÞ½z3; z0�k0kjNi; (45)

where the Wilson lines ½zi; z0� are defined as in Eq. (3). In the following they will be neglected by assuming to work in the
light-cone gauge Aþ ¼ 0. The spinorial and Lorentz decomposition of the matrix element (45) follows the same line as in
the case of the baryon DAs. In particular, for the p ! �0 transition the leading-twist TDAs can be defined as

4F ðh�0ðp�Þj�ijkui�ðz1nÞuj�ðz2nÞdk�ðz3nÞjpðpp; �ÞiÞ

¼ i
fN
f�

½Vp�0

1 ðp6 CÞ��ðNþÞ� þ Ap�0

1 ðp6 �5CÞ��ð�5NþÞ� þ Tp�0

1 ð�p�CÞ��ð��NþÞ� þM�1Vp�0

2 ðp6 CÞ��ð�6 ?NþÞ�
þM�1Ap�0

2 ðp6 �5CÞ��ð�5�6 ?NþÞ� þM�1Tp�0

2 ð�p�?CÞ��ðNþÞ� þM�1Tp�0

3 ð�p�CÞ��ð���?NþÞ�
þM�2Tp�0

4 ð�p�?CÞ��ð�6 ?NþÞ��; (46)

where the symbol F represents the Fourier transform [like
Eq. (6)] and f� is the pion decay constant (f� ¼ ffiffiffi

2
p

F� ¼
131 MeV). In a reference frame with the z axis along the
direction of the proton momentum, the pion momentum p�

and the proton momentum pp have the following Sudakov
decomposition:

pp ¼ ð1þ Þpþ M2

1þ 
n; (47)

p� ¼ ð1� Þpþm2
� þ�2

?
1� 

nþ�?; (48)

where � is the four-momentum transfer,

� ¼ p� � pp ¼ �2pþ
�
m2

� þ �2
?

1� 
� M2

1þ 

�
nþ�?;

(49)

and  is the skewness variable describing the loss of plus
momentum of the initial hadron in the proton-to-meson
transition, i.e.

 ¼ � � � n
2P � n ¼ � �þ

2Pþ ; with P ¼ 1

2
ðpp þ p�Þ:

(50)

The TDAs are dimensionless functions and depend on
ðxi; ;�2Þ, where the fraction of quark plus momentum
xi has support in ½�1þ ; 1þ � and

�2 ¼ �2

�
m2

� þ�2
?

1� 
� M2

1þ 

�
� �2

?: (51)

Restricting ourselves to the case  > 0, momentum con-
servation requires

P
ixi ¼ 2. The fields with positive

momentum fractions, xi � 0, describe the creation of
quarks, whereas those with negative fractions, xi 	 0, the
absorption of antiquarks. This leads to define three distinct
kinematical regions: the Efremov-Radyushkin-Brodsky-
Lepage region for xi � 0, and two Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi regions when x1 � 0, x2 � 0,
x3 	 0, or x1 � 0, x2 	 0, x3 	 0. The names derive
from the evolution equations which controls the scale
dependence of the TDAs in the different regions.
Denoting the matrix element in left-hand side of Eq. (46)

by T�
��;�, we can derive the eight TDAs in terms of the

following linear combinations of matrix elements

Vp�0

1 ¼ �i
1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

ðT"
12;1 þ T"

21;1Þ; (52)

A
p�0

1 ¼ i
1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

ðT"
12;1 � T"

21;1Þ; (53)

T
p�0

1 ¼ i
1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

�
T"
11;2 þ

ð��
?Þ2

�2
?

T"
22;2

�
;

(54)

Vp�0

2 ¼ �i
M��

?
�2

?

1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

ðT"
12;2 þ T"

21;2Þ;
(55)

Ap�0

2 ¼ �i
M��

?
�2

?

1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

ðT"
12;2 � T"

21;2Þ;
(56)

Tp�0

2 ¼ �i
M

�2
?

1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

� ½�þ
?T

"
11;1 � ��

?T
"
22;1�; (57)

Tp�0

3 ¼ i
M

�2
?

1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

½�þ
?T

"
11;1 þ ��

?T
"
22;1�;

(58)
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Tp�0

4 ¼ i
2M2ð��

?Þ2
ð�2

?Þ2
1

21=4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 

p ðPþÞ3=2
f�
fN

T"
22;2; (59)

where �

? ¼ �x 
 i�y.

In the following we focus on the study of the TDAs in
the Efremov-Radyushkin-Brodsky-Lepage region, corre-
sponding to probe the c 3qþq �q Fock component of the

nucleon wave function. The five-parton component of the
nucleon state can be modeled using the meson-cloud
model developed in Refs. [74,75]. The basic assumption
of the model is that the physical nucleon is made of a bare
nucleon dressed by the surrounding meson cloud so that

the nucleon state is decomposed according to the meson-
baryon Fock-state expansion as a superposition of a bare
nucleon, formed by three valence quarks, and states con-
taining virtual mesons with recoiling baryons. These
baryon-meson subsystems are assumed to include configu-
rations with the baryon being a nucleon or a � and the
accompanying meson being a pion as well as a vector
meson such as the � or the !. Being interested to the p !
�0 TDAs, here we will consider the meson-baryon com-
ponents with a pion and a nucleon or a �, given by the
following representation in the light-cone dynamics

jNðB�Þ;pp; �i ¼
Z

dyd2k?
Z y

0

Y3
i¼1

diffiffiffiffiffi
i

p
Z ð1�yÞ

0

Y5
i¼4

diffiffiffiffiffi
i

p
Z 1

½2ð2�Þ3�4
Y5
i¼1

d2k0
i?


�
y�X3

i¼1

i

�

ð2Þ

�
k? �X3

i¼1

k0
i?

�

� 


�
1�X5

i¼1

i

�

ð2Þ

�X5
i¼1

k0
i?

�X
�0

X
�i;�i;ci

��ðN;B�Þ
�00 ðy;k?Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

q
~�B;½f�
�0 ðy;k?; fi;k

0
i?;�i; �i; cigi¼1;���;3Þ

� ~��;½f�ð1� y;�k?; fi;k
0
i?;�i; �igi¼4;5Þ

Y5
i¼1

jip
þ
p ;k

0
i? þ ipp?; �i; �i; ci;qi; (60)

where the LCWF of the baryon, ~�B;½f�
�0 , and the pion, ~��;½f�, incorporate the Jacobian J of the transformation from the

intrinsic variables with respect to the hadron rest frame (f�i;�i?g) to the intrinsic variables with respect to the nucleon rest
frame (fi;k

0
i?g), i.e.

~�
B;½f�
�0 ðfi;k

0
i?;�i; �igi¼1;2;3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ð1; 2; 3Þ

q
~�B;½f�
�0 ðf�i;�i?;�i; �igi¼1;2;3Þ ¼ 1

y3=2
~�B;½f�
�0 ðf�i;�i?;�i; �igi¼1;2;3Þ; (61)

~� �;½f�ðfi;k
0
i?;�i; �igi¼4;5Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ð4; 5Þ

q
~��;½f�ðf�i;�i?;�i; �igi¼4;5Þ ¼ 1

ð1� yÞ
~��;½f�ðf�i;�i?;�i; �igi¼4;5Þ: (62)

The relations between the variables (fxi;ki?g) and
fi;k

0
i?g, are given by:

For i ¼ 1, 2, 3, corresponding to the indices of the three
quarks in the baryon,

�i ¼ i

y
; �i? ¼ k0

i? � �ik?; (63)

For i ¼ 4, 5, corresponding to the indices of the quark
and antiquark in the pion, respectively:

�i ¼ i

ð1� yÞ ; �i? ¼ k0
i? þ �ik?: (64)

In Eq. (60) the function ��ðN;B�Þ
�00 ðy;k?Þ is the probabil-

ity amplitude to find a physical nucleon with helicity � in a
state consisting of a virtual baryon B ¼ N, � and a virtual
pion, with the baryon having helicity �0, longitudinal mo-
mentum fraction y and transverse momentum k?, and the
pion having longitudinal momentum fraction 1� y and
transverse momentum �k?. This splitting function can
be calculated using time-ordered perturbation theory in the
infinite momentum frame as explained in Ref. [86], and
have also been rederived and tabulated in Ref. [74].

For the pion state in the matrix element of Eq. (46) we
consider the valence q �q component given by

j�ðp�Þi ¼
X

�i;�i;ci

Z �
dffiffiffi


p
�
2

�½d2k?�2��;½f�ðfi;ki?;�i; �igi¼1;2Þ

� Y2
i¼1

jq�i ;ip
þ
� ;pi?i; (65)

where pi? ¼ ki? þ ip�? and the q �q state is defined as

Y2
i¼1

jq�i ; ~kii ¼

ijffiffiffi
3

p byiq ð~k1; �1Þdyjq ð~k2; �2Þj0i: (66)

Using the expressions for the proton and pion state given
in Eqs. (60) and (65), and the momentum-space expansion
(26) of the quark fields, combined with the anticommuta-
tion relations for the quark creation and annihilation op-
erators, the final expression for the matrix elements T�

�;��

is given by
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T�
�;�� ¼ �24

�
1

2

�
3=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2x3
p uþ�ðkþ1 ; �1Þuþ�ðkþ2 ; �2Þuþ�ðkþ3 ; �3Þ

X
B

X
�0

Z
dyd2k?�

�ðN;B�Þ
�00 ðy;k?Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

q

� 


�
1� y� pþ

�

pþ
p

�

ð2Þðk? þ p�?Þ

Z
½d2�?�3 ~�B;½f�

�0

��
x1
2

;�1?;�1; 1=2

��
x2
2

;�2?;�2; 1=2

��
x3
2

;�3?;�3;�1=2

��
:

(67)

The light-cone spinors of the quarks are defined as those in
Eq. (33), and depend on the longitudinal momenta kþi ¼
xiP

þ. The Dirac indices �, �, and � fix the total quark
helicity of the baryon wave function, as explained in
Sec. II, while the isospin quantum numbers in the baryon
wave function correspond to the uud configuration.
Equation (67) has a clear physical interpretation and allows
us to relate the nucleon-to-pion TDAs to the baryon distri-
bution amplitudes in the (B�) component of the nucleon
weighted by the probability amplitude that the nucleon
fluctuates in the corresponding (B�) subsytem with the
pion momentum matching the pion momentum in the final
state. The momentum fraction of the quarks in the baryon
LCWF are defined with respect to the longitudinal mo-
mentum of the baryon, i.e. �þ

i =ðypþ
p Þ ¼ xi=ð2Þ, while the

integration over the transverse quark momenta corresponds

to the projection of the baryon LCWF onto the zero orbital
angular momentum component. In Eq. (67), the sum over
the baryon states is restricted to the nucleon and the �,
while the sum over the helicity �0 of the baryon permits
baryon-pion fluctuations which do not conserve the helic-
ity of the parent nucleon.
In the case of the nucleon contribution, we model the

proton LCWF as in Eq. (38), with parameters � ¼ 3:21,
� ¼ 0:489 GeV, and m ¼ 0:264 GeV from the fit of the
valence and meson-cloud contribution to the electroweak
nucleon form factors [75]. The � is described as a state of
isospin � ¼ 3

2 obtained as a pure spin-flip excitation of the

nucleon, with the same momentum-dependent wave func-
tion of the nucleon, i.e.

��;½f�
� ðfxig; fkig; f�ig; fuudgÞ ¼ ~c ðfxi;ki?gÞ��

� ð�1; �2; �3Þ ~�1
ð3=2Þð1=2Þ

�
1

2
;
1

2
;� 1

2

�
; (68)

with the isospin coefficient ~�1
ð3=2Þð1=2Þð12 ; 12 ;� 1

2Þ ¼
ffiffi
1
3

q
and the spin-dependent part given by

��
� ð�1; �2; �3Þ ¼

X
�1�2�3

D1=2�
�1�1

ðRcfð~k1ÞÞD1=2�
�2�2

ðRcfð~k2ÞÞD1=2�
�3�3

ðRcfð~k3ÞÞ ~�1
ð3=2Þ�ð�1; �2; �3Þ: (69)

The explicit expression of the functions��
� for all the possible spin configurations of the three quarks in the� state is given

in the appendix.

Finally, the splitting function �ðN;B�Þ
�0 in Eq. (67) is calculated as in Ref. [75].

Inserting the matrix elements T�
�;�� from Eq. (67) into Eqs. (52)–(59) we finally obtain the expressions of the TDAs in

the meson-cloud model:

Vp�0

1 ¼ i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞf�"ðN;N�Þ

"0 ðy;�p�?Þ½�N
" ð"; #; "Þ þ�N

" ð#; "; "Þ�

þ�"ðN;��Þ
"0 ðy;�p�?Þ½��

" ð"; #; "Þ þ��
" ð#; "; "Þ�g; (70)

Ap�0

1 ¼ �i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞf�"ðN;N�Þ

"0 ðy;�p�?Þ½�N
" ð"; #; "Þ ��N

" ð#; "; "Þ�

þ�"ðN;��Þ
"0 ðy;�p�?Þ½��

" ð"; #; "Þ ���
" ð#; "; "Þ�g; (71)

Tp�0

1 ¼ �i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞf�"ðN;N�Þ

"0 ðy;�p�?Þ�N
" ð"; "; #Þ þ�"ðN;��Þ

"0 ðy;�p�?Þ��
" ð"; "; #Þ

þ ð��
?Þ2

�2
?

�"ðN;��Þ
+0 ðy;�p�?Þ��

+ ð#; #; #Þg; (72)
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Vp�0

2 ¼ i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

M��
?

�2
?

Z
½d2k?�3 ~c ðfxi;ki?gÞf�"ðN;N�Þ

#0 ðy;�p�?Þ½�N
# ð"; #; #Þ þ�N

# ð#; "; #Þ�

þ�"ðN;��Þ
#0 ðy;�p�?Þ½��

# ð"; #; #Þ þ��
# ð#; "; #Þ�g; (73)

A
p�0

2 ¼ i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

M��
?

�2
?

Z
½d2k?�3 ~c ðfxi;ki?gÞf�"ðN;N�Þ

#0 ðy;�p�?Þ½�N
# ð"; #; #Þ ��N

# ð#; "; #Þ�

þ�"ðN;��Þ
#0 ðy;�p�?Þ½��

# ð"; #; #Þ ���
# ð#; "; #Þ�g; (74)

T
p�0

2 ¼ i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞf���

?�
"ðN;N�Þ
#0 ðy;�p�?Þ�N

# ð#; #; "Þ þ �þ
?�

"ðN;��Þ
*0 ðy;�p�?Þ��

* ð"; "; "Þ

���
?�

"ðN;��Þ
#0 ðy;�p�?Þ��

# ð#; #; "Þg; (75)

Tp�0

3 ¼ �i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

Z
½d2k?�3 ~c ðfxi;ki?gÞf��

?�
"ðN;N�Þ
#0 ðy;�p�?Þ�N

# ð#; #; "Þ þ �þ
?�

"ðN;��Þ
*0 ðy;�p�?Þ��

* ð"; "; "Þ

þ��
?�

"ðN;��Þ
#0 ðy;�p�?Þ��

# ð#; #; "Þg; (76)

Tp�0

4 ¼ �i
4

ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Þ
ð1þ Þ3

s
f�
fN

2M2ð��
?Þ2

ð�2
?Þ2

Z
½d2k?�3 ~c ðfxi;ki?gÞ�"ðN;��Þ

+0 ðy;�p�?Þ��
+ ð#; #; #Þ; (77)

where the longitudinal momentum fraction in the argument
of the splitting function is y ¼ 2=ð1þ Þ and the spin 3

2
(� 3

2 ) state of the � is indicated as * ( + ).

VI. SOME RESULTS FOR THE TDAS

As an example results are reported in Figs. 2 and 3 under
kinematic conditions relevant in the case of hard exclusive
electroproduction of a pion in the backward region [56] or
in associated production of a pion and a high-Q2 dilepton
pair in p �p annihilation [63]. Preliminary results for other
kinematics have been presented in Ref. [87].

The vector and axial-vector TDAs in Fig. 2 exhibit the
expected symmetric and antisymmetric behavior under
permutation of the two up quarks, respectively. The �
contribution has the same shape as the proton contribution,
with the same sign for Ap�

1 and Vp�
2 , and the opposite sign

for Vp�
1 and Ap�

2 . The relative contribution of the nucleon

with respect to the� is always smaller in absolute value for
the vector TDAs, being suppressed by a factor of about 10
in the case of Vp�

1 and by a factor of about 1.5 in the case of

Vp�
2 . Vice versa, for the axial-vector TDAs one finds that

the nucleon contribution to Ap�
1 is smaller than the �

contribution by a factor of 3, while for Ap�
2 the weight of

the nucleon contribution is 3 times larger than in the case
of the �. This can be traced back both to the different
spin structure and to the different splitting functions in
Eqs. (70), (71), (73), and (74). In particular, Vp�

1 and Ap�
1

involve splitting functions without the flip of the helicity of
the parent nucleon, while Vp�

2 and Ap�
2 are proportional to

splitting functions with helicity flip. In the explored kine-
matics, the ðN;N�Þ vertex without helicity flip is sup-
pressed by a factor of 5 with respect to the ðN;��Þ
interaction, while for the opposite case with helicity flip
the probability amplitude to have a (N�) fluctuation in the
nucleon is almost twice larger than for the (��)
subsystem.
The tensor TDAs in Fig. 3 are symmetric under permu-

tation of the two up quarks and, at variance with the other
TDAs, involve spin configurations also with parallel hel-
icities of all three quarks. Such spin configurations receive
contributions only from the � with helicity Jz ¼ 
3=2
because of the projection of the baryon wave function in
Eqs. (72) and (75)–(77) onto the zero orbital angular
momentum component. In particular, one finds that in the
explored kinematics the splitting function of the nucleon
into a � with helicity Jz ¼ 3=2 is 10 times bigger than in
the case with helicity Jz ¼ �3=2, and with opposite sign.
Furthermore, these terms are multiplied by kinematical
coefficients which modulate their relative contribution to
the tensor TDAs in a quite different way. For example, the
contribution of the � state with helicity Jz ¼ 3=2 is quite
small in the case of Tp�

1 , while it is enhanced by an addi-

tional factor of 2M2=�2
? ’ 50 in Tp�

4 . This is the only

nonvanishing contribution to Tp�
4 . In Tp�

1 there is also

the contribution from the helicity states Jz ¼ 1=2, with
the same sign for the nucleon and the �, but larger by
about a factor of 10 in the case of�. In the case of Tp�

2 and
Tp�
3 the contribution from the � is large, and it is mainly

given by the configuration with helicity Jz ¼ 3=2.
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FIG. 3 (color online). The p ! �0 transition distribution amplitudes Tp�
1 (up left), Tp�

2 (up right), Tp�
3 (down left), and Tp�

4 (down
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However, this contribution is reduced by that of the proton
with a similar shape in the case of Tp�

2 , whereas 2=3 of Tp�
3

are due to the proton and 1=3 to the �.

VII. CONCLUDING REMARKS

In the light-cone description the nucleon state is decom-
posed in terms of N-parton Fock states with coefficients
representing the momentum light-cone wave function of
the N partons. Since the constituent quark models work so
well phenomenologically, in applications it is usually as-
sumed that only the Fock components with a few partons
have to be taken into account. One of such models has been
studied in a series of papers to show that the parametriza-
tion of the LCWF up to five-parton components is already
sufficient to account for the electroweak form factors [75]
and spin densities [70] of the nucleon, as well as the
observed asymmetries due to transverse-momentum de-
pendence of parton distributions [72,73], and to give a
useful insight into the quark generalized parton distribu-
tions [68,69,71,74].

As a further test of the model in this paper the nucleon
distribution amplitudes and the nucleon-to-meson transi-
tion distribution amplitudes have been considered. At lead-
ing twist the nucleon DAs probe the three-quark content of
the nucleon state with orbital angular momentum Lz ¼ 0
and the N ! � TDAs probe the q �q sea pair contribution
responsible for the meson cloud surrounding the bare
three-quark nucleon.

Assuming SU(6) symmetry the shape of the calculated
nucleon DA is similar to the asymptotic DA, with a roughly
symmetric contribution of the three quarks. This contrasts
with the results from QCD sum rules that push towards
highly asymmetric quark contributions, but it is along the
same lines of phenomenological models indicating that a
less asymmetric DA is preferable to describe the nucleon
form factors. Departures from the SU(6) symmetric model
are necessary in the description of the neutron form factors
[75] and the large x behavior of the neutron structure
functions in deep inelastic processes [73]. Such SU(6)
symmetry breaking contributions would lead to an asym-
metric DA. This will be studied in a broader framework in
a forthcoming paper [80]. In any case, after evolution from
the low scale of the model to Q2 ¼ 1 GeV2 the first and
second DA moments, calculated within the present model
and shown in Table II, already compare well with lattice
QCD results [31].

In contrast to the nucleon DAs that have been studied for
a long time, only very recently attention to the nucleon-to-
meson TDAs has been drawn, and the possibility of having
some information from an experiment has been suggested.
Here, for the first time a model calculation has been
presented for the eight leading twist N ! �0 TDAs.
They receive a contribution from the fluctuations of the
nucleon in (p�0) and (�þ�0) subsystems and can be ex-
pressed as the convolution of the baryon DAs with the

probability amplitude to find the corresponding baryon-
meson component in the nucleon. The relative contribution
of these components depends on the momentum trans-
ferred between the initial nucleon and the final pion as
well as on the different spin configurations of the inter-
mediate baryon. In particular, the � plays a special role in
the case of the tensor TDAs which involve configurations
with helicity 
3=2, while the interplay of the nucleon and
� contributions with helicity 
1=2 determines the differ-
ent shape of the vector and axial-vector TDAs.
Results have been shown under kinematic conditions

reachable, e.g., at GSI-FAIR as proposed in Ref. [63], but
the model can easily and will be applied to other kinemat-
ics such as those proposed to study at Jlab [56].
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APPENDIX: SPIN COMPONENTS OF THE
BARYON LIGHT-CONE WAVE FUNCTIONS

In this appendix we give the explicit results for the spin-
dependent component of the LCWFs of the proton and �
state.
In the case of the proton, we have:
For the spin " proton

�p
" ð"; #; "Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�a1a2a3þkL1 k
R
2a3�2a1k

R
2 k

L
3 Þ;

(A1)

�p
" ð#; "; "Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�a1a2a3þkR1 k
L
2a3�2kR1a2k

L
3 Þ;

(A2)

�p
" ð"; "; #Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð2a1a2a3 þ a1k
L
2 k

R
3 þ kL1a2k

R
3 Þ;

(A3)

�p
" ð#; #; #Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�a1k
R
2 k

R
3 �kR1a2k

R
3 þ2kR1 k

R
2a3Þ;

(A4)

�p
" ð"; #; #Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2kR3 � kL1 k
R
2 k

R
3 � 2a1k

R
2a3Þ;

(A5)
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�p
" ð#; "; #Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�kR1 k
L
2 k

R
3 þa1a2k

R
3 �2kR1a2a3Þ;

(A6)

�p
" ð"; "; "Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð2a1a2kL3 � a1k
L
2a3 � kL1a2a3Þ;
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�p
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1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ
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R
2 k

L
3 Þ:

(A8)

For the spin # proton

�p
# ð"; #; "Þ ¼

1ffiffiffi
6

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2kL3 � kL1 k
R
2 k
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NðkiÞ

p ð�2a1a2a3�a1k
R
2 k

L
3 �kR1a2k

L
3 Þ:

(A16)

In the case of � we can have the following spin
configurations:

For the � in the spin 3
2 state, indicated with * :

��
* ð"; #; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�a1k
R
2a3Þ; (A17)

��
* ð#; "; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�kR1a2a3Þ; (A18)

��
* ð"; "; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�a1a2k
R
3 Þ; (A19)

��
* ð#; #; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�kR1 k
R
2 k

R
3 Þ; (A20)

��
* ð"; #; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1kR2 kR3 Þ; (A21)

��
* ð#; "; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkR1a2kR3 Þ; (A22)

��
* ð"; "; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3Þ; (A23)

��
* ð#; #; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkR1 kR2a3Þ: (A24)

For the � in the spin " state:

��
" ð"; #; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3 � kL1 k
R
2a3 � a1k

R
2 k

L
3 Þ;

(A25)

��
" ð#; "; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3 � kR1 k
L
2a3 � kR1a2k

L
3 Þ;

(A26)

��
" ð"; "; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3 � a1k
L
2 k

R
3 � kL1a2k

R
3 Þ;

(A27)

��
" ð#; #; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1kR2 kR3 þ kR1a2k
R
3 þ kR1 k

R
2a3Þ

(A28)

��
" ð"; #; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�a1a2k
R
3 þ kL1 k

R
2 k

R
3 �a1k

R
2a3Þ;

(A29)

��
" ð#; "; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkR1 kL2 kR3 � a1a2k
R
3 � kR1a2a3Þ;

(A30)
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��
" ð"; "; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2kL3 þ a1k
L
2a3 þ kL1a2a3Þ;

(A31)

��
" ð#; #; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�kR1a2a3 �a1k
R
2a3 þ kR1 k

R
2 k

L
3 Þ:

(A32)

For the � in the spin # state:

��
# ð"; #; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2kL3 � kL1 k
R
2 k

L
3 þ kL1a2a3Þ;

(A33)

��
# ð#; "; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2kL3 � kR1 k
L
2 k

L
3 þ a1k

L
2a3Þ;

(A34)

��
# ð"; "; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkL1a2a3 � kL1 k
L
2 k

R
3 þ a1k

L
2a3Þ;

(A35)

��
# ð#; #; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ð�kR1a2a3 �a1a2k
R
3 � a1k

R
2a3Þ;

(A36)

��
# ð"; #; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3 � kL1 k
R
2a3 � kL1a2k

R
3 Þ;

(A37)

��
# ð#; "; #Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3 � kR1 k
L
2a3 � a1k

L
2 k

R
3 Þ;

(A38)

��
# ð"; "; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1kL2 kL3 þ kL1a2k
L
3 þ kL1 k

L
2a3Þ;

(A39)

��
# ð#; #; "Þ ¼

1ffiffiffi
3

p Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3 � a1k
R
2 k

L
3 � kR1a2k

L
3 Þ:

(A40)

For the � in the spin � 3
2 state, indicated with + :

��
+ ð"; #; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkL1a2kL3 Þ; (A41)

��
+ ð#; "; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1kL2 kL3 Þ; (A42)

��
+ ð"; "; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkL1 kL2a3Þ; (A43)

��
+ ð#; #; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2a3Þ; (A44)

��
+ ð"; #; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkL1a2a3Þ; (A45)

��
+ ð#; "; #Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1kL2a3Þ; (A46)

��
+ ð"; "; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ðkL1 kL2 kL3 Þ; (A47)

��
+ ð#; #; "Þ ¼

Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
NðkiÞ

p ða1a2kL3 Þ: (A48)

Throughout Eqs. (A1)–(A48) we used the following
definitions: ai ¼ ðmþ xiM0Þ, NðkiÞ ¼ ½ðmþ xiM0Þ2 þ
k2i?�, kRi ¼ kix þ ikiy, and kLi ¼ kix � ikiy.
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