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The relativistic corrections of order v2 to the fragmentation functions for the heavy quark to S-wave

heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics

factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in

both the Feynman gauge and the axial gauge. We also extract them through the process Z0 ! Hq �q in the

limitMZ=m ! 1. We find that all results obtained by these two different methods and in different gauges

are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
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I. INTRODUCTION

In the high energy limit, the dominant production
mechanism for heavy flavored mesons with large trans-
verse momentum is the fragmentation [1–9]. The mecha-
nism is characterized by a universal fragmentation function
which describes production probabilities of a hadron from
a parton. In the limit, the differential cross section of
hadron production can be factored into that of the parton
production and the fragmentation function. Introduction of
fragmentation functions is the consequence of the QCD
factorization.

In the case of heavy-quarkonium production, a fragmen-
tation function can further be factored into a short-distance
part which describes heavy quark pair production that
happened at distance 1=m, where m is the heavy quark
mass, and a long-distance part which describes the forma-
tion of the heavy quarkonium from the heavy quark pair
that happened at distance 1=mv, where v is the typical
velocity of the heavy quark inside the bound state. In the
nonrelativistic limit, v � 1, the nonrelativistic quantum
chromodynamics (NRQCD) [10,11] factorization formula
provides a systematic way to separate the short-distance
effects, which happened at distance 1=m, and long-
distance effects, which happened at distance 1=mv.
Applied to the heavy-quarkonium fragmentation, the frag-
mentation function can be expressed as a sum of products
of short-distance coefficients and NRQCD long-distance
matrix elements. The short-distance coefficients can be
expanded as a power series of �s at energy scale m. The
NRQCD long-distance matrix elements can be expanded in
terms of v. Relativistic corrections are included automati-
cally as contributions of the v2 suppressed NRQCD matrix
elements compared to that of the leading order one. The
relativistic effects are sometimes large for the heavy me-
sons containing a c quark for v2 � 0:3 [12,13].

In this paper, the relativistic corrections of order v2 to
the fragmentation functions for the heavy quark to the
S-wave heavy meson are calculated in the framework of
the NRQCD factorization formula. To have a consistent

check, we carry out the calculations using two different
methods. One is based on the Collins-Soper definition for
the fragmentation function [14]. The other one is to extract
the fragmentation functions through the decay width of the
process Z0 ! Hq �q in the limit Mz=m ! 1. In the former
method, we also perform the calculations in both the
Feynman gauge and the axial gauge. All these results,
obtained by various methods and by different gauges, are
exactly the same.
We have noticed that these relativistic corrections were

calculated in Refs. [15,16]. The authors isolate contribu-
tions of the binding energy part from the total relativistic
corrections. It did not follow the NRQCD factorization
formula. In the NRQCD factorization language, all those
relativistic correction terms correspond to the contributions
of a single NRQCD long-distance matrix element.
Actually, they can be related to each other by the
Gremm-Kapustin relation [17]. Combining both terms to-
gether, one then expects that the short-distance coefficient
of the relativistic matrix element is the identity. However,
we find that our results are in disagreement with those
given in Refs. [15,16] when they are expressed in the
standard NRQCD factorization formula. We will compare
in detail the differences between our work and theirs in
Sec. IV.
This paper is organized as follows. In Sec. II, we review

the Collins-Soper definition for the fragmentation function
in the light-cone coordinate system and the NRQCD facto-
rization formalism. In Sec. III, we calculate the first order
relativistic corrections to the fragmentation function for a
heavy quark into 1S0,

3S1 heavy-quarkonium states in the

Feynman gauge and the axial gauge, respectively. We
calculate the same fragmentation function through the
process Z0 ! Hq �q in the limit MZ=m ! 1 in Sec. IV. In
Sec. V, we perform the numerical analysis and present
some discussions. The analytic expressions of the fragmen-
tation functions in the leading order (LO) and the next-to-
leading order (NLO) with respect to v, for a heavy quark
into a heavy meson composed of two different heavy
quarks, like a �bc or b �c bound state, are in the Appendix.
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II. DEFINITION OF THE FRAGMENTATION
FUNCTION AND NRQCD FACTORIZATION

In this section, we give a brief review on the definition of
the fragmentation function that was presented by Collins
and Soper [14] and the NRQCD factorization formula
proposed by Bodwin, Braaten, and Lepage [11]. They are
necessary tools for a direct calculation of the fragmentation
functions that we will carry out.

A. Collins-Soper definition of fragmentation

We first recapitulate the Collins-Soper definition of the
fragmentation function which has been used in calculating
the quarkonium fragmentation function by Ma [18] and by
Bodwin and Lee [12].

It is convenient to work in the light-cone coordinate
system. In this system, a four-vector p is expressed as

p� ¼ ðpþ; p�;pTÞ with pþ ¼ ðp0 þ p3Þ= ffiffiffi
2

p
and p� ¼

ðp0 � p3Þ= ffiffiffi
2

p
. The scalar product of two four-vectors p

and q is then

p � q ¼ pþq� þ p�qþ � pT � qT: (1)

We also introduce a subsidiary vector n with n� ¼
ð0; 1; 0TÞ. Then the gauge-invariant quark fragmentation
function for a hadron H is defined as

DH=QðzÞ ¼ zd�3

4�

Z
dx�e�iPþx�=z 1

3
Trcolor

1

2
TrDirac

�
�
n ��h0jQð0Þ �Pexp

�
�igs

Z 1

0
d�n �ATð�n�Þ

�

�ayHðPþ;0TÞaHðPþ;0TÞPexp
�
�
igs

Z 1

x�
d�n �ATð�n�Þ

�
�Qð0; x�;0TÞj0i; (2)

where Qy and ayH are the creating operators of the heavy
quark and the produced hadron, respectively, A� is the

gluon field, P is the momentum of the hadron H,
P expf� � �g means the path-order gauge link, and d is the
dimension of the space-time, which is taken to be 4 in the
following calculations. Equation (2) is taken as an average
over the colors and the spins of the initial heavy quark Q.
The function DH=Q is interpreted as the probability of a

quark with momentum k to decay into the hadron H with
momentum component Pþ ¼ zkþ.

The gauge independence of the definition of Eq. (2)
implies that the calculation can be carried out in any gauge.
In practice, we calculate the fragmentation function in both
the Feynman gauge and the axial gauge to have a gauge-
independent check.

B. NRQCD factorization formalism

The physics of heavy quarkonium involves several mo-
mentum scales: the mass m, the typical 3-momentum mv,
and the typical kinetic energy of the heavy quark mv2. In

the nonrelativistic limit, v � 1, these scales satisfy a
relation: mv2 � mv � m. NRQCD factorization sepa-
rates the short-distance effects of the annihilation or the
production of the heavy quark and antiquark pair from the
long-distance effects of the quarkonium formation by an
almost on-shell heavy quark pair. The former one can be
calculated using perturbation theory in �s, while the latter
one is described by the long-distance NRQCD matrix
elements.
According to the NRQCD factorization formula, the

fragmentation function of the heavy quark into the
heavy-quarkonium H can be written in the form [11]

DH=QðzÞ ¼
X
n

ðFnðzÞh0jOHðnÞj0i þGnðzÞh0jPHðnÞj0iÞ

þOðv4Þ; (3)

whereOHðnÞ and PHðnÞ are NRQCD operators, and FnðzÞ
and GnðzÞ are the short-distance coefficients. The index n
represents the overall quantum number of the operator. We
take the leading Fork state approximation in which the
quantum numbers of the hadron are the same as that of
the operators. We are interested only in the fragmentation
of two S-wave heavy-quarkonium states. For our purpose,
we need only two operators for each hadron state,

OHð1S0Þ ¼
1

Nc

�yc
X
X

jH þ XihH þ Xjc y�;

PHð1S0Þ ¼
1

2Nc

�
�y

�
iD
$

2

�
2
c
X
X

jH þ Xi

� hH þ Xjc y�þ H:c:

�
; (4)

for a hadron H with quantum number 1S0, and

OHð3S1Þ ¼
1

Nc

�y�ic
X
X

jH þ XihH þ Xjc y�i�;

PHð3S1Þ ¼
1

2Nc

�
�y�i

�
iD
$

2

�
2
c
X
X

jH þ Xi

� hH þ Xjc y�i�þ H:c:

�
; (5)

for a hadron H with quantum number 3S1.
The factorization formula (3) holds not only for hadron

states H, but also for on-shell free quark-antiquark states
with the same quantum numbers. When it is applied to the
free quark-antiquark states, the matrix elements are differ-
ent but the short-distance coefficients are the same. The
short-distance coefficients FnðzÞ and GnðzÞ can then be
determined by matching the free quark-antiquark state
fragmentation.
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III. FRAGMENTATION FUNCTIONS BY THE
COLLINS-SOPER DEFINITION

We now calculate the fragmentation functions via the
Collins-Soper definition (2) in the framework of the
NRQCD factorization formula. As mentioned in the last
section, we determine the short-distance coefficients by
matching the production of the on-shell free quark-
antiquark spin-singlet and spin-triplet states. We do calcu-
lations in both the Feynman gauge in the first subsection
and the axial gauge in the second one.

A. Calculating the fragmentation functions in the
Feynman gauge

Following [19], we introduce projection operators [19]
for the spin and color states of a quark-antiquark pair as
follows:

�0 ¼ ðP6 =2� q6 �mÞ�5ðP6 þ 2EÞðP6 =2þ q6 þmÞ
8

ffiffiffiffiffiffiffiffiffi
2Nc

p
E2ðEþmÞ ;

�1 ¼
ðP6 =2� q6 �mÞ��ðP6 þ 2EÞðP6 =2þ q6 þmÞ

8
ffiffiffiffiffiffiffiffiffi
2Nc

p
E2ðEþmÞ ;

(6)

where the subscript indices 0 and 1 refer to spin singlet and

spin triplet, respectively, Nc ¼ 3, and E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
. The total momentum P and the half-relative

momentum q are related to the four-momentum of the
quark p1 and that of antiquark p2 as

p1 ¼ 1
2Pþ q; p2 ¼ 1

2P� q: (7)

We also define v2 � q2=m2 for later use.
In the Feynman gauge, there are four diagrams respon-

sible for the fragmentation process at the LO in �s, as
shown in Fig. 1. Denote their contributions to the fragmen-
tation function DH=QðzÞ as D11, D12, D21, and D22, respec-

tively. Dij can then be expressed as

Dij ¼ 4E
z

24�

Z dqþ1 d
2q1T

ð2�Þ32qþ1
2��ðkþ � Pþ � qþ1 ÞFc

� Tr½n6 Riðq6 1 þmÞLj�; (8)

where Fc represents the color factor

Fc ¼ Tr½TaTaTbTb� ¼ 16

3
; (9)

and Li and Ri read

R1 ¼ 1

ðP=2� q1 þ qÞ2
P6 þ q6 1 þm

ðPþ q1Þ2 �m2
�����;

L1 ¼ 1

ðP=2� q1 þ qÞ2 �
	�y�	 P6 þ q6 1 þm

ðPþ q1Þ2 �m2
;

R2 ¼ �n6 ; L2 ¼ n6 �y

(10)

where k and q1 are the momenta of the initial and the final
free quark, respectively. Li and Ri represent the amplitude

arising from the left and right sides of the cut line in Fig. 1,
respectively. A factor of 4E has been included in the phase
space of Eq. (8) in order to cancel the relativistic normal-
ization of H in Eq. (2)
Now, we pick out the S-wave part of Dij. For a generic

amplitude M, the S-wave part of M is [19]

M S-wave ¼ M0 þ q2

m2
M2 þO

�
q4

m4

�
; (11)

where the first two terms on the right-hand side of Eq. (11)
are LO and NLO contributions in the v2 expansion. Here,

M 0 ¼ Mjq ! 0; M2 ¼ m2I�


6

@2M
@q�@q


��������q!0
;

(12)

where

I�
 ¼ �g�
 þ P�P


4E2
: (13)

The LO fragmentation function in v can easily be obtained
by setting q ¼ 0 and E ¼ m in Eqs. (8) and (10). For the
1S0 state, it reads

FIG. 1. Feynman diagrams for fragmentation of a heavy quark
into an S-wave heavy-quarkonium at LO in �s. The double line
denotes the eikonal line and the shaded blob denotes the S-wave
quarkonium.
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Dð0Þ
1S0=Q

ðzÞ ¼ X
ij

Dð0Þ
ij ðzÞ

¼ 32�2
szð1� zÞ2ð48þ 8z2 � 8z3 þ 3z4Þ

81m3ð2� zÞ6 ;

(14)

where the superscript (0) denotes the contribution from the
LO in v.
To gain the NLO result, we first expand the amplitudes

R1, R2, L1, and L2 in terms of Eq. (11). Substituting them
into (10) and keeping only q2 terms, we get the NLO
relativistic correction terms to the fragmentation function
of the 1S0 quark-antiquark final state. The result reads

Dð2Þ
1S

0
=Q
ðzÞ ¼ X

ij

Dð2Þ
ij ðzÞ ¼

16�2
szð1� zÞ2ð�2112þ 2496z� 80z2 þ 128z3 � 268z4 þ 148z5 � 15z6Þv2

243m3ð2� zÞ8 : (15)

In a similar way, the fragmentation function of a heavy quark into the 3S1 quark-antiquark final state can be calculated.
We list the obtained results as follows:

Dð0Þ
3S

1
=Q
ðzÞ ¼ X

ij

Dð0Þ
ij ðzÞ ¼

32�2
szð1� zÞ2ð16� 32zþ 72z2 � 32z3 þ 5z4Þ

27m3ð2� zÞ6 ; (16)

for the LO, and

Dð2Þ
3S

1
=Q
ðzÞ ¼ X

ij

Dð2Þ
ij ðzÞ ¼

16�2
szð1� zÞ2ð�1344þ 5184z� 14416z2 þ 18176z3 � 8924z4 þ 2092z5 � 183z6Þv2

243m3ð2� zÞ8 ; (17)

for the NLO, in v2. In Eqs. (16) and (17), we have summed
over the polarizations of the final 3S1 state.

B. Calculating the fragmentation functions in the axial
gauge

In the axial gauge, the Wilson line operators in the
definition of Eq. (8) disappear for n � A ¼ 0; consequently,
only Fig. 1(a) contributes to the fragmentation function.
With n ¼ ð0; n�; 0TÞ, the gluon propagator in this gauge is

D�	ðkÞ ¼ i

k2

�
�g�	 þ k�n	 þ k	n�

k � n
�
: (18)

Similar to the last subsection, the fragmentation function
for a heavy quark Q into a quark-antiquark, the 1S0ð3S1Þ
state reads

D1S
0
ð3S

1
Þ=Q ¼ 2E

Z dqþ1 d2q1T

ð2�Þ32qþ1
2��ðkþ � Pþ

� qþ1 ÞFc Tr½n6 Rðq6 1 þmÞL�; (19)

where

R ¼ 1

ðP=2� q1 þ qÞ2
P6 þ q6 1 þm

ðPþ q1Þ2 �m2

� ���0ð1Þ�	

�
�g�	 þ k�n	 þ k	n�

k � n
�
;

L ¼ 1

ðP=2� q1 þ qÞ2 �
��y

0ð1Þ�

 P6 þ q6 1 þm

ðPþ q1Þ2 �m2

�
�
�g�
 þ k�n
 þ k
n�

k � n
�
: (20)

Again, we take L and R to denote the contributions from

the left and the right side of the cut line in Fig. 1,
respectively.
Repeating the procedure of the last subsection, the LO

and the NLO results can be obtained easily. We find that
they are exactly the same as Eqs. (14) and (15) for the
quark-antiquark 1S0 state and Eqs. (16) and (17) for the

3S1
state. We, therefore, have verified the gauge independence
of our results.

C. Matching the short-distance coefficients

In order to match the short-distance coefficients, we
need to calculate the same fragmentation functions by
using the NRQCD factorization formula. It is straightfor-
ward to calculate the NRQCD matrix elements. With the
standard normalization, they read

hOQ �Qð1S0Þi ¼ 2Nc; hOQ �Qð3S1Þi ¼ 2ðd� 1ÞNc;

hPQ �QðnÞi ¼ q2

m2
hOQ �QðnÞi; (21)

where n ¼ 1S0,
3S1. Factors 2 and Nc on the right-hand

side of the first two equations within Eq. (21) arise from the
spin and the color factors for normalized heavy-quark
states, and factor d� 1 with d ¼ 4 arises from the sum-
mation over the polarizations in the spin-triplet final state.
Consequently, the fragmentation functions in the NRQCD
factorization formula read

DQ �Qð1S
0
Þ=Q ¼ 2NcðF1S

0 þ q2G
1S

0Þ;
DQ �Qð3S

1
Þ=Q ¼ 2Ncðd� 1ÞðF3S1 þ q2G

3S1Þ:
(22)

The short-distance coefficients can then be determined
by matching Eqs. (14)–(17) with Eq. (22):
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F
1S

0 ¼ 16�2
szð1� zÞ2ð48þ 8z2 � 8z3 þ 3z4Þ

243m3ð2� zÞ6 ;

G
1S

0 ¼ 8�2
szð1� zÞ2ð�2112þ 2496z� 80z2 þ 128z3 � 268z4 þ 148z5 � 15z6Þ

729m5ð2� zÞ8 ;

F
3S

1 ¼ 16�2
szð1� zÞ2ð16� 32zþ 72z2 � 32z3 þ 5z4Þ

243m3ð2� zÞ6 ;

G
3S

1 ¼ 8�2
szð1� zÞ2

2187m5ð2� zÞ8 ð�1344þ 5184z� 14 416z2 þ 18 176z3 � 8924z4 þ 2092z5 � 183z6Þ:

(23)

The expressions in Eq. (23) constitute the key formulas of
this work. Our results for Fð1S

0
Þ and F

3S
1 are in agreement

with those in Refs. [5,8].

IV. EXTRACTING FRAGMENTATION FUNCTION
FROM Z0 ! Q �QH

In this section, we extract the heavy quark fragmentation
functions from the decay width of the process Z0 ! Q �QH

in the limit of MZ

m ! 1, whereMZ and m are the masses of

the gauge boson Z0 and the heavy quark Q, respectively.
This approach has been used to derive the LO order frag-
mentation functions in Refs. [5,8]. We now use the method
to extend the calculations to the NLO fragmentation func-
tions in v2. There are four Feynman diagrams responsible
for this process. However, if the calculation is carried out in
the axial gauge, there is only one diagram, shown in Fig. 2,
contributing to the fragmentation function.

Following [8], we isolate the heavy quark fragmentation
probability

R
1
0 dzDH=QðzÞ by dividing the decay rate �1 of

Z0 ! HQ �Q by the decay rate �0 of Z
0 ! Q �Q in the limit

M2
Z

m2 ! 1,

�0 ¼ 1

2Mz

Z d3q2
ð2�Þ32q02

d3k

ð2�Þ32k0 ð2�Þ
4

� �4ðZ� q2 � kÞ 1
3

X jA0j2;

�1 ¼ 4E

2Mz

Z d3q2
ð2�Þ32q02

d3P

ð2�Þ32P0

d3q1
ð2�Þ32q01

ð2�Þ4

� �4ðZ� q2 � P� q1Þ 13
X jA1j2; (24)

where Z is the momentum of the initial Z0 boson and A0,
A1 are the amplitudes of the two processes, which will be
given below. We use the same notations for other particles
as in the last section. Similar to Eq. (8), a factor 4E has
been included in Eq. (24) to compensate for the relativistic
normalization of the final-state hadron. To facilitate the
extraction of the fragmentation probability, one can rewrite
the three-body phase space integral for the outgoing parti-
cles in an iterated form by introducing integrals over k and
s,

Z d3q2
ð2�Þ32q02

d3P

ð2�Þ32P0

d3q1
ð2�Þ32q01

ð2�Þ4�4ðZ�q2 �P�q1Þ

¼
Z ds

2�

Z d3q2
ð2�Þ32q02

d3k

ð2�Þ32k0 ð2�Þ
4�4ðZ� q2 � kÞ

�
Z d3q1

ð2�Þ32q01
d3P

ð2�Þ32P0
ð2�Þ4�4ðk�P�q1Þ

¼
Z ds

2�

Z d3q2
ð2�Þ32q02

d3k

ð2�Þ32k0 ð2�Þ
4�4ðZ� q2 � kÞ 1

8�

�
Z 1

0
dz�

�
s� 4E2

z
� m2

1� z

�
; (25)

where s � k2, z ¼ Pþ=kþ, as given before.
With the standard model Feynman rule, the amplitudes

A0 and A1 read

A0 ¼ �i�	ðZÞ �uðkÞ�	vð �q2Þ;

A1 ¼ i�	ðZÞ g2CF

ðs�m2ÞD�
ðq1 þ P=2Þ �uðq1Þ
� ���0ð1Þ�
ðk6 þmÞ�	vðq2Þ; (26)

where CF equals 4
3 , �

	 is the interaction vertex between Z0

and Q �Q, and�0ð1Þ is the spin projection operator given by
Eq. (6).
We use Eqs. (11) and (12) to pick out the S-wave part of

the amplitude. The LO and the NLO contributions can then
be separated by using the same approach as used in Sec. III.

FIG. 2. Feynman diagram for Z0 ! H þQ �Q in LO in �s.
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After doing this, the squared amplitude can be obtained
by multiplying the amplitude by its complex conjugate.
Averaging the spins and colors over the initial state and
summing them over the final state, we obtain

1

3

X jA0j2 ¼ 1

3

�
�g�	þZ�Z	

M2
z

�
Tr½��ðq6 2�mÞ�	ðk6 þmÞ�;

1

3

X jA1j2 ¼ 16g4

9

1

ðs�m2Þ2
1

ðq1þP=2Þ4
�
�g�	þZ�Z	

M2
z

�

� Tr½��ðq6 2�mÞ�	C�; (27)

whereC is a product of Dirac matrices. In the limit of MZ

m !
1, for simplicity, we keep only those terms with the

leading order contributions in m2

M2
Z

. For this process, one

has the following scaling relations:

k6 � 1

z
P6 � 1

1� z
q6 1 �OðMzÞ;

P � P� k � k� k � P� k6 P6 �m2:

(28)

Thus, in the LO of Oðm2

M2
z
Þ, one can expect that C� ck6 ,

where c is the function of scalar products. After dividing
�1 by �0 and integrating over s, we obtain

R
1
0 dzDH=QðzÞ

immediately. The calculation is lengthy but straightfor-
ward. We have omitted the detailed steps. A careful com-
parison shows that the results obtained by this method are
exactly the same with those presented in Sec. III, for both
the spin singlet and spin triplet.

We noticed that the author in Ref. [16] also has com-
puted the heavy quark fragmentation functions of the
S-wave pseudoscalar and the vector heavy quarkonia.
The author derived the fragmentation functions by using
the approach in Ref. [8] as we have done in this section.
Contrary to the NRQCD factorization formula, he divided
the relativistic corrections into a piece caused by the
binding energy w and another piece proportional to hp2i.
With the Gremm-Kapustin relation [17], these two pieces
can be combined into one by setting w ¼ MH � 2m ¼
mv2. A comparison shows that Eq. (13) in Ref. [16], which
is the amplitude of the process Z0 ! Q �QH, agrees with the
amplitude in our paper up to Oðv2Þ, except for the wave
function and some other normalization constant factors,
which do not contribute to the NLO relativistic correction.
Applying the Gremm-Kapustin relation to the NLO frag-
mentation functions, we then expect that the results in
Ref. [16] should be in agreement with ours up to a nor-
malization constant. However, we find that our result in
Eq. (23) of this paper is different from theirs after adding
their Eqs. (44) and (45) together for the pseudoscalar state
and after adding their Eqs. (21) and (28) together for the
vector state, and by setting hp2i with m2v2 in their paper
[16].
To have a detailed comparison, we list our results and

theirs for the contributions to the NLO fragmentation
function arising from the binding energy parts. Our results
for the spin singlet and spin triplet read

Dw
1S0=Q

ðzÞ ¼ 16w�2
szð1� zÞ2ð�576þ 768z� 432z2 þ 352z3 � 204z4 þ 80z5 � 9z6Þ

81ð2� zÞ8m4
;

Dw
3S

1
=Q
ðzÞ ¼ 16w�2

szð1� zÞ2ð�576þ 1920z� 4464z2 þ 4640z3 � 2092z4 þ 520z5 � 53z6Þ
81ð2� zÞ8m4

;

(29)

where their results read [16]

Dw
1S0=Q

ðzÞ ¼ 16w�2
s jc ð0Þj2zð1� zÞ2ð�576þ 768z� 432z2 þ 272z3 � 132z4 þ 52z5 � 3z6Þ

81ð2� zÞ8m4
;

Dw
3S1=Q

ðzÞ ¼ 32w�2
s jc ð0Þj2zð1� zÞ2
81ð2� zÞ8m4

ð�288þ 960z� 2232z2 þ 2356z3 � 1160z4 þ 419z5 � 100z6 þ 9z7Þ:
(30)

We see that some terms are the same while some terms are
different.

For the contributions excluding those from the binding
energy part, we have noticed that instead of using Eq. (12)
in our paper, they used Eq. (26) from their paper to derive
their result. This may cause the difference between our
result and theirs in the remainder part of the NLO frag-
mentation functions. It is certainly incorrect in contracting
their Eq. (26) with g�	, because both sides of that equation
are not equal. We have also noticed that the authors in
another paper [15] also calculated the same relativistic
corrections to the fragmentation functions. Our results
are also in disagreement with theirs when comparing
Eqs. (12) and (19) in their paper with Eq. (23) in our paper.

V. NUMERICAL RESULTS AND DISCUSSIONS

We have computed the contributions of the LO in v2 and
the relativistic corrections of relative order v2 to the
fragmentation functions for a heavy quark fragmentation
into the S-wave spin-singlet and spin-triplet heavy-
quarkonium states. We now use these analytic results to
estimate the relative sizes of the relativistic corrections for
the heavy quark fragmentation into the S-wave hadron.
To this end, we estimate the ratio of the NLO NRQCD
matrix element to the LO one using the Gremm-Kapustin
[17] relation as taken in Ref. [12]. The simple relation
between the NRQCD matrix elements hOHi and hPHi
reads [12]
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v2 ¼ hPHi
m2hOHi ; (31)

where M and mpole are the masses of heavy quarkonium

and heavy quark, respectively. When this relation is ap-
plied to determine the relativistic corrections, the large
ambiguities arise from the uncertainty of the values of
the pole mass mpole [20], while the masses of the heavy

quarkonia are precisely determined by experiments [21]:

Mc
¼ 2:980 GeV; Mb

¼ 9:300 GeV;

MJ=c ¼ 3:097 GeV; M�ð1SÞ ¼ 9:460 GeV:
(32)

Taking mc pole ¼ 1:4 GeV mb pole ¼ 4:6 GeV, as com-

monly quoted by most authors, we immediately obtain
the v2 for different heavy-quarkonium states by Eq. (31) as

v2
c

¼ 0:13; v2
b

¼ 0:02;

v2
J=c ¼ 0:21; v2

�ð1SÞ ¼ 0:06:
(33)

One should regard this as only a rough estimate of the size
of v2. The relativistic corrections to the fragmentation
functions for the charmonium like the c and the J=c
are considerable, while they are negligible for the botto-
monium like the b and the �ð1SÞ, owing to smaller
relative velocity for bottomonium. We plot the distribu-
tions vs the longitudinal momentum fraction z of the LO
and the NLO fragmentation functions of the c and the
J=c productions in Fig. 3. The distribution diagram for the
b quark fragmentation has a similar shape to that of the c
quark fragmentation, so we do not display it repeatedly.
The numerical result of the ratios of the integrated NLO
relativistic corrections to the fragmentation functions to the
leading ones are shown in Table I. Varying the values of v2

within a quite large range, we find that the contributions of
the relativistic corrections are negative. However, they may
become positive in some range of the pole mass of c quark,
which corresponds to a negative v2.
We see that the estimated relativistic corrections are not

negligible in comparison with the LO in v2 for the char-
monium. The cross sections of the fragmentation produc-
tion for a heavy quarkonium will change considerably
when the NLO contributions are taken into account. Our
results are compatible with the natural expectation based
on the velocity scaling rule in the NRQCD factorization
formula.
In summary, we have calculated the relativistic correc-

tions of order v2 to the fragmentation functions for the
heavy quark to the S-wave heavy meson in the framework
of the NRQCD factorization formula. We have carried out
the calculations by two different methods. One is based on
the Collins-Soper definition for the fragmentation function.
The other one is to extract the fragmentation functions
through the decay width of the process Z0 ! Hq �q in the
limit Mz=m ! 1. In the former method, we also have
performed the calculations in both the Feynman gauge
and the axial gauge. All these results, obtained by different
methods and by different gauges, are exactly the same.
They are in disagreement with those obtained in
Refs. [15,16]. We have used our analytic results to estimate

FIG. 3 (color online). The distributions vs z of the fragmentation functions Dðc ! cÞ and Dðc ! J=c Þ. (a) is for c and (b) is for
J=c . The thick solid line shows the leading order contribution, and the dashed line shows the relativistic correction. The factor C in the
diagrams represents 10�2�2

shOi.

TABLE I. The ratios for the integrated NLO relativistic cor-
rections to the leading ones. Dð0ÞðzÞ is the leading order frag-
mentation function, and D2ðzÞ is NLO relativistic correction.

Relative corrections c J=c b �ð1SÞ
R
dzDð2ÞðzÞ=R dzDð0ÞðzÞ �13:2% �13:1% �2:4% �3:7%
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the relative size of the relativistic corrections to the frag-
mentation functions.
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APPENDIX

In this Appendix, we will extend our calculations to the
heavy quark fragmentation into the heavy meson with two
different heavy quark masses, such as the Bc meson.

For the flavored heavy meson, the spin-singlet and the
spin-triplet projection operators are given by

�0 ¼ ðp6 2 �m2Þ�5ðP6 þ E1 þ E2Þðp6 1 þm1Þ
4

ffiffiffiffiffiffiffiffiffi
2Nc

p ðE1 þ E2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E2ðE1 þm1ÞðE2 þm2Þ

p ;

�1 ¼ ðp6 2 �m2Þ��ðP6 þ E1 þ E2Þðp6 1 þm1Þ
4

ffiffiffiffiffiffiffiffiffi
2Nc

p ðE1 þ E2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E2ðE1 þm1ÞðE2 þm2Þ

p ;

(A1)

where m1 and m2 are the masses of the two quarks in the

meson, P, q, p1, and p2 are the four-momentum of the
meson, the half-relative momentum of the two quarks in
the meson, the momentum of the quark with mass m1, and
the momentum of the quark with massm2, respectively. E1

and E2 are defined as E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1

q
and E2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
2

q
, respectively. In addition, we have p1 ¼ rPþ

q and p2 ¼ ð1� rÞP� q, where r is defined as E1

E1þE2
.

The NRQCD operators for the flavored meson are still
the same as the operators defined in Eqs. (4) and (5), except
that the c and � now describe different heavy quark fields.
Using the same methods as we did in context of the

paper, we obtain the short-distance coefficients for the
heavy quark with mass m1 fragmenting into the S-wave
spin-singlet and the spin-triplet heavy flavored mesons as

Fð1S0Þ ¼
4ð1� zÞ2z�2

s

243M3ðy1 � 1Þ2ðy1z� 1Þ6 ½3y
2
1ð2y21 � 2y1 þ 1Þz4

� 2y1ð18y21 � 17y1 þ 5Þz3
þ ð68y21 � 62y1 þ 15Þz2 þ ð18� 36y1Þzþ 6�;

(A2)

Gð1S0Þ ¼
��2

s

729M5ðy1 � 1Þ4y21ðy1z� 1Þ8 ½ð108y
8
1 � 264y71 þ 372y61 � 240y51 þ 57y41Þz9 þ ð�216y81 � 432y71 þ 1460y61

� 2108y51 þ 1352y41 � 320y31Þz8 þ ð108y81 þ 1656y71 � 1032y61 � 1780y51 þ 4311y41 � 2996y31 þ 690y21Þz7
þ ð�960y71 � 3804y61 þ 7068y51 � 5098y41 � 1048y31 þ 2460y21 � 664y1Þz6 þ ð3004y61 þ 836y51 � 6650y41

þ 9908y31 � 4950y21 þ 612y1 þ 45Þz5 þ ð�3776y51 þ 4248y41 � 3472y31 � 60y21 þ 588y1 � 36Þz4
þ ð1780y41 � 1688y31 þ 1716y21 � 344y1 � 45Þz3 þ ð�384y31 þ 108y21 � 204y1 þ 18Þz2 þ ð36y21 þ 12y1 þ 18Þz�;

(A3)

Fð3S1Þ ¼
4zð1� zÞ2�2

s

243M3ðy1 � 1Þ2ðy1z� 1Þ6 ½y
2
1ð2y21 � 2y1 þ 3Þz4 � 2y1ð2y21 � 3y1 þ 5Þz3

þ 3ð4y21 � 6y1 þ 5Þz2 � 2ð2y1 þ 1Þzþ 2�; (A4)

Gð3S1Þ ¼
��2

s

2187M5ðy1 � 1Þ4y21ðy1z� 1Þ8 ½ð156y
8
1 � 360y71 þ 624y61 � 492y51 þ 171y41Þz9 þ ð�312y81 þ 192y71 þ 284y61

� 2188y51 þ 2324y41 � 960y31Þz8 þ ð156y81 þ 696y71 � 924y61 þ 1376y51 þ 2657y41 � 4084y31 þ 2070y21Þz7
þ ð�528y71 � 1500y61 þ 3636y51 � 7642y41 þ 2984y31 þ 1676y21 � 1992y1Þz6 þ ð1516y61 � 188y51 � 1970y41

þ 10020y31 � 10038y21 þ 4320y1 þ 135Þz5 þ ð�2144y51 þ 3592y41 � 8384y31 þ 7188y21 � 2868y1 � 288Þz4
þ ð868y41 þ 952y31 � 1232y21 þ 708y1 þ 189Þz3 þ ð�528y31 þ 252y21 � 132y1 � 54Þz2 þ ð84y21 � 36y1 þ 18Þz�;

(A5)

where M ¼ m1 þm2 and y1 ¼ m1

m1þm2
.

We have computed the short-distance coefficients using the two ways described in the paper, which give the same
results. One also can easily check that Eqs. (A2)–(A5) reduce to Eq. (23), in the equal mass limit. Our results forFð1S0Þ and
Fð3S1Þ agree with those obtained in Refs. [6,18].
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