
Coupled-channel and screening effects in charmonium spectrum

Bai-Qing Li,1,2 Ce Meng,1 and Kuang-Ta Chao1

1Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2Department of Physics, Huzhou Teachers College, Huzhou 313000, China

(Received 24 April 2009; published 17 July 2009)

Using the same quenched limit as input, we compare the charmonium spectra predicted by two different

models, i.e., the coupled-channel model and the screened potential model in the mass region below 4 GeV,

in which the contributions from decay channels involving P-wave (as well as even higher excited) D

mesons can be neglected. We find that the two models have similar global features in describing the

charmonium spectrum since they approximately embody the same effect of the vacuum polarization of

dynamical light quark pairs. Adopting these models will be helpful to clarify the nature of the newly

discovered charmonium or charmoniumlike states; and the coupled-channel model is more adept in

investigating the influences of open-charm thresholds on the charmonium spectrum. In particular, we

show the S-wave decay coupling effect on lowering the �c1ð2PÞ mass toward the D �D� threshold, in

support of the assignment of the Xð3872Þ as a �c1ð2PÞ-dominated charmonium state.
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I. INTRODUCTION

Studies on heavy quarkonium spectroscopy have been
stimulated greatly in recent years by the discovery of many
hidden charm states, the so-called ‘‘X, Y, Z’’ mesons [1] in
B-factories and other experiments. The QCD-inspired in-
terquark potential models, such as the Cornell model [2],
are successful in predictions of charmonium and bottomo-
nium spectra below the open flavor thresholds. However,
the existence of open charm thresholds can change the
charmonium spectrum significantly through the virtual
charm meson loops. These coupled-channel effects were
considered also in the Cornell model [2], and techniques
were further developed by the unitaritized quark model [3]
based on the 3P0 quark pair creation model [4]. Along this

line and with the updated parameters, the coupled-channel
effects in the charmonium spectrum have been further
studied during these years [5–7]. These studies provide
important information on the identifications of the X, Y,
Z mesons.

The quark potential model is subject to modification due
to quantum fluctuation, i.e., the creation of light quark
pairs, which may be compensated by the virtual hadron
loops in the coupled-channel model. For this reason, the
quark potential model [2], which incorporates a Coulomb
term at short distances and a linear confining term at large
distances, may be called as the quenched potential model.
On the other hand, the vacuum polarization effect of the
dynamical fermions may soften the linear potential at long
distances [8], and cause the screening effect, which may be
discussed phenomenologically as the screened potential
model [9–11]. Such screening or string breaking effects
have been demonstrated, although indirectly, by the simu-
lations of unquenched lattice QCD [12]. This effect is also
implied by calculations within some holographic QCD
models [13]. The screened potential model has been used
to reexamine the charmonium spectrum [14] recently, and

it is found that the masses of higher charmonium states are
lowered, compared to the quenched potential model [15],
and the mass suppression tends to be strengthened from
lower levels to higher ones. Such tendency can also be
found in the calculations of the coupled-channel model,
such as those in Ref. [6]. It is not very surprising since, in
the parton-hadron duality picture, the two models embody
the same effects of light quark pairs.
Compared with the screened potential model, the

coupled-channel model is more difficult to handle in prac-
tice, especially in the case when the P-wave (and higher
excited) D and Ds mesons as the intermediate states are
involved. However, the latter can describe the near-
threshold effect [6,7,16], which has been ignored in the
former. It is then interesting to compare the two models
using the same quenched limit as input in the domain of the
charmonium spectrum. The comparison has twofold mean-
ing: the coupled-channel model can be helpful to establish
the form of the screened potential and to determine the
screening parameter � in the mass region below 4 GeV,
where the P-waveDmesons are expected to be decoupled;
whereas the screened potential model can be helpful to
simply describe the global features of the color-screening
effects, or the light quark pair creation effects, which lead
to the coupled-channel model.
In this paper, we will compare these two models in the

mass region below 4 GeV for charmonium spectrum with
the same quenched limit. Wewill introduce the two models
in turn. And we will compare results of these two models
numerically, and finally a summary will be given.

II. QUENCHED AND SCREENED POTENTIAL
MODELS

We choose the Cornell model [2] as the quenched limit,
in which the potential has the well known form
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VðrÞ ¼ � 4

3

�c

r
þ �rþ C; (1)

where the first term denotes the color Coulomb force in the
one-gluon exchange approximation due to asymptotic free-
dom of QCD at short distances, and the second term
denotes the linear confining potential, which is consistent
with both the rotating string picture [17] and the quenched
lattice calculations (see [18] for a review and references).
The constant C in (1) is the renormalization term.

In principle, one can relate the parameter �c to the
running coupling constant �sðmcvÞ in QCD, where v2 �
0:3 is the charm quark velocity squared in the charmonium
rest frame, and relate � to the string tension T ¼
1=ð2��0Þ � 0:18 GeV2, where �0 denotes the Regge slope
in the rotating string picture [17]. Thus, we choose

�c ¼ 0:55; � ¼ 0:175 GeV2 (2)

in the following analysis.
To restore the hyperfine and fine structures of the char-

monium spectrum, one needs to introduce the spin-
dependent potential Vsd, which is relativistically sup-
pressed compared to V in (1). Assuming the Lorentz
structure of the linear confining force is of scalar type,
the spin-dependent potential can be derived from (1) by the
standard Breit-Fermi expansion to order v2=c2, and has the
form [15]

VsdðrÞ ¼
�
2�c

m2
cr

3
� �

2m2
cr

�
~L � ~Sþ 32��c

9m2
c

~�ðrÞ ~Sc � ~S�c

þ 4�c

m2
cr

3

�
�

~Sc � ~S�c

3
þ ð ~Sc � ~rÞð ~S�c � ~rÞ

r2

�
; (3)

where ~S ¼ ~Sc þ ~S�c is the total spin, mc the charm quark

mass, and the smeared delta function is taken to be ~�ðrÞ ¼
ð�= ffiffiffiffi

�
p Þ3e��2r2 with � ¼ 1:45 GeV [15]. Then, the

Hamiltonian for the quenched potential model is given by

H0 ¼ 2mc þ
~P2

mc

þ VðrÞ þ VsdðrÞ; (4)

where the kinematic energy term has been included
explicitly.

As mentioned above, the linear confining potential will
be softened by the vacuum polarization induced by the
dynamical quark pair creation. Such unquenched effect can
be roughly accounted for by modifying the long distance
behavior of VðrÞ in (1). Following Refs. [10,11], we use the
screened potential

VscrðrÞ ¼ � 4

3

�c

r
þ �r

1� e��r

�r
þ C (5)

to substitute VðrÞ. The first term on the right-hand side of
(5) is taken to be the same as that in (1) due to its short
distance nature. The screening parameter � sets the scale
of distance at which the string breaks. We choose

� ¼ 0:075 GeV; (6)

of which the inverse is about 2 times the radius of the D
meson. Needless to say, the right-hand side of (3) should
also be modified accordingly.
At short distances, the screened potential Vscr in (5) has

the limit consistent with that of VðrÞ in (1). However, the
difference between the potentials increases when r in-
creases, and finally Vscr goes to a constant �=�þ C
when r ! 1, as shown in Fig. 1. As a result, the charmo-
nium spectrum in the screened potential model will be
suppressed compared to that in the quenched potential
model, especially for the higher exited states. Further-
more, in the screened charmonium spectrum, there will
be a saturation energy of about 5–6 GeV, at which the c �c
quark pair cannot be bound together at all.
Let us stress again that the parameters in (2) and (6) may

not be the same as those chosen in [14], since our purpose
here is to compare the spectra in the two models rather than
to get a good fit of the spectrum to the experimental data.

III. THE 3P0-BASED NONRELATIVISTIC
COUPLED-CHANNEL MODEL

The light quark pair creation from vacuum is assumed to
share the same quantum number 0þþ as the vacuum in the
3P0 model [4]. In the nonrelativistic limit, the 3P0 model

can be represented by the Hamiltonian [19]

HQPC ¼ 2mq�
Z

d3 ~x ��q�q; (7)

where mq is the mass of the produced quark and the factor

2mq will be canceled by the normalization factors of the

Dirac fields ��q and �q in the nonrelativistic limit. Hence,

the dimensionless constant � in (7) is the intrinsic quark
pair creation strength. Generally, the quark pair creation is
suppressed for heavy quarks, which is the very origin of the
Okubo-Zweig-Iizuka rule. Therefore, following Ref. [7],

0 1 2 3 4
r fm

-1

0

1

2

3

Po
te

nt
ia

l
G

eV

FIG. 1. Comparison of the Cornell potential VðrÞ (dashed line)
and the screened potential Vscr (solid line) with r ¼ 0:1–4 fm.
The constant terms are neglected and asymptotic limit of Vscr is
shown in the dotted line.
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we use the effective strength �s ¼ mq

ms
� for the strange

quark, where � ¼ 0:322 and
mq

ms
is the ratio of the constitu-

ent mass of up and down quarks (mq ¼ mu ¼ md) to that

of the strange quark (ms).
Light quark pair creation can result in mixing between

the bare charmonium state c 0ðc �cÞ and the open charmed
meson pair Bðc �qÞ and Cðq �cÞ. Thus, neglecting the mixing
among the bare states [5], the physical state � can be
represented by

j �i ¼ a0 j c 0i þ
X
BC

Z
d	cBCð	Þ j BC;	i; (8)

where 	 denotes the variable of three-momenta of the BC
system. The coefficients a0 and cBCð	Þ are understood to
be subject to the normalization of the corresponding wave
functions.

The Hamiltonian of this coupled-channel system can be
formally written as

H ¼ H0 þHBC þHQPC: (9)

Here, H0 has been introduced in (4) but can be different
from the one in the quenched potential model by different
renormalization constant C. The HamiltoniansH0 andHBC

can only act on the states c 0 and BC, respectively, and give
the bare spectra of them:

H0 j c 0i ¼ M0 j c 0i; (10)

HBC j BCi ¼ EBCð	Þ j BC;	i; (11)

where M0 is the so-called bare mass of the bare charmo-
nium state and

EBCð ~PB; ~PCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þ ~P2
B

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

C þ ~P2
C

q
; (12)

provided that the interactions between B and C can be
neglected. On the other hand, the HQPC in (9), which is

defined in (7), can act only between j c 0i and j BC;	i.
The HamiltonianH in (9) defines the physical massM of

the state � as

H j �i ¼ M j �i; (13)

and the mass M can be obtained by solving the multi-
channel Shrödinger equation (13). Substituting (8)–(11)
into (13), one can get the integral equation

Mþ�ðMÞ �M0 ¼ 0; (14)

where the self-energy function �ðMÞ is given by

�ðMÞ ¼ X
BC

Z
d	

jhBC;	 j HQPC j c 0ij2
EBCð	Þ �Mþ i


: (15)

It is not surprising that the self-energy� is a function only
of the physical mass M since the Shrödinger equation (13)
is solved nonperturbatively. On the other hand, it is also
dependent on the bare mass M0 indirectly through the

renormalization equation (14). Moreover, the matrix ele-
ment squared jhBC j HQPC j c 0ij2 is proportional to the

decay probability of � ! BC, which is also proportional

to ðM�MB �MCÞ2Lþ1=2 in the nonrelativistic limit.
Here, L denotes the partial wave of the decay amplitude.
In particular, when L ¼ 0, i.e., in S-wave, the integral in
(15) will be very sensitive to the physical mass M if it is
close to the threshold of BC. This is just the so-called
‘‘S-wave threshold effect’’ [16], which will be discussed
in more detail later.
When Re½M�>MA þMB, it is obvious that the func-

tion�ðMÞ in (15) will not be real, and the imaginary part is
proportional to the decay width of � ! BC. Therefore,
one can solve Eq. (14) in the complex plane and get the
pole mass Re½M� [6]. However, we will define the coupled-
channel mass Mcou as [7]

Mcou þ Re½�ðMcouÞ� �M0 ¼ 0; (16)

which is also called the Breit-Wigner mass by the authors
of Ref. [6].
It is worth emphasizing here the difference between the

definitions of the bare mass in [6] and of ours. The authors
of Ref. [6] once subtract the dispersion integral in (15) at
Mc , and absorb the term �ðMc Þ into the bare mass

definition

M0
0 ¼ M0 ��ðMc Þ; (17)

where �ðMc Þ is real and positive, which can be seen

directly from the definition of the function �ðMÞ in (15).
If the subtracted constant �nðMc Þ is the same for all

the charmonium states n, the bare mass M0
0 in (17) is just

a rescaling one of M0 and the renormalized mass shift
would not changed. In Ref. [6], the matrix element square
jhBC j HQPC j c 0ij2 in (15) is simply parametrized by

using an exponential form factor, and the node structure
in the wave function of higher excited state is absolutely
neglected. Thus, the subtracted constants �nðMc Þ for

these excited states might be overestimated, and as a result,
the renormalized mass shifts in Ref. [6] are commonly
smaller than those in our model, as one can seen in the
following section.
On the other hand, the wave functions of c 0, B,

and C are needed to determine the matrix element
hBC j HQPC j c 0i in (15). These wave functions are usu-

ally chosen as the harmonic oscillator ones [5,7,19]. How-
ever, we determine them by solving the quenched mass
equation (10) with Eq. (4). But for simplicity, we will
neglect the corrections due to the spin-dependent potential
Vsd to these wave functions.

IV. NUMERICAL RESULTS AND DISCUSSION

As mentioned in Sec. I, our aim is to compare the
charmonium spectra or the renormalized mass shifts
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�Mcou ¼ Mcou �Mque; �Mscr ¼ Mscr �Mque;

(18)

where the subscripts que, cou, and scr denote the results
obtained from the quenched potential model, the coupled-
channel model, and the screened potential model, respec-
tively. The quenched mass Mque can be related to the bare

mass M0 in the coupled-channel model by the relation

Mque � Cque ¼ M0 � Ccou; (19)

where Cque and Ccou denote the renormalization constants

in the quenched potential model and the coupled-channel
model, respectively. Thus from Eq. (16), the mass shift
�Mcou can be given by

�Mcou ¼ �Re½�ðMcouÞ� � Cque þ Ccou: (20)

To improve the reliability of the calculation of the
coupled-channel model, we restrict the mass region of
the charmonium spectrum to be below 4 GeV, in which
the decays to P-wave (and higher excited) D and Ds

mesons are kinematically forbidden, and only the S-wave
D and Ds mesons are involved. So in the following we use
the S-wave DðsÞ mesons, of which the masses are well

determined and the widths can be neglected [20], as the
intermediate states only.

In the mass region below 4 GeV, the charmonium spec-
trum consists of the 1S, 2S, 1P, 2P, and 1D levels. For
convenience, we choose the renormalization condition
such that the predicted �c masses in the three models are
fixed to be the measured value [20], i.e., 2980 MeV.
Together with the inputs of the quark masses

mc ¼ 1:7 GeV; mq ¼ 0:33 GeV;

ms ¼ 0:5 GeV;
(21)

the renormalization condition determines the constant
terms in (1):

Cque ¼ �419 MeV; Ccou ¼ �272 MeV;

Cscr ¼ �403 MeV:
(22)

We list the numerical results of the mass spectra and the
mass shifts in Table I. The subscripts que, cou, and scr
denote the results obtained from the quenched potential
model, the coupled-channel model, and the screened po-
tential model, respectively. And the mass shifts have been
defined in (18). In Table I, both �Mcou and �Mscr have
minus sign, and on the whole, they are consistent with each
other. This can also be seen from Fig. 2.
In addition, for the 1S, 2S, 1P, and 1D levels, which

either couple the D meson pair in P-wave or lie far away
from the threshold of the D meson pair, the mass shifts
�Mcou’s are comparable to each other, which is consistent
with the first hadron loop theorem derived by the authors of
Ref. [5] in the approximation of equal masses for charmed
mesons.
However, if the c �c pair couples to D meson pair in

S-wave and the mass M calculated in the coupled-channel
model (namelyMcou) in (15) is close to the thresholdMB þ
MC, the self-energy �, then the mass shift �Mcou, will
strongly depend on MðMcouÞ as has been mentioned in the
last section. This is well known as the S-wave threshold

TABLE I. Charmonium spectra and mass shifts in different models in units of MeV. Here, the subscripts que, cou, and scr denote the
results obtained from the quenched potential model, the coupled-channel model, and the screened potential model, respectively. The
mass shifts �Mcou and �Mscr are listed in the 5th and 6th columns, respectively. The results of Ref. [6] are also listed. The bare mass in
the 7th column is copied from Ref. [15]. All the quantities listed here should be understood as the renormalized ones.

Our results Results of Ref. [6]

states Mque Mcou Mscr �Mcou �Mscr M0
0 M0

cou �M0
cou

11S0 2980 2980 2980.0 0 0 2982 2982 0

13S1 3112 3100 3105 �12 �7 3090 3090 0

11P1 3583 3531 3539 �52 �44 3516 3514 �2
13P0 3476 3441 3448 �35 �28 3424 3415 �9
13P1 3568 3520 3526 �48 �42 3505 3489 �16
13P2 3628 3565 3577 �63 �51 3556 3550 �6
21S0 3697 3635 3626 �62 �71 3630 3620 �10
23S1 3754 3674 3674 �80 �80 3672 3663 �9
11D2 3895 3818 3805 �77 �90 3799

13D1 3878 3794 3790 �84 �88 3785 3745 �40
13D2 3896 3818 3805 �78 �91 3800

13D3 3903 3823 3812 �80 �91 3806

21P1 4042 3961 3909 �81 �133 3934 3929 �5
23P0 3948 3915 3839 �33 �109 3852 3782 �70
23P1 4030 3875 3900 �155 �130 3925 3859 �66
23P2 4085 3966 3941 �119 �144 3972 3917 �55
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effect [16], and as a result, the loop theorem [5] will be
violated.

This is just the case for the 2P charmonium states, since
for some of them the coupled-channel masses Mcou (see
Table I) are close to the thresholds of the S-wave channels
D �D� þ c:c: and D� �D�1. More in detail, for the 23P0 state

(�0
c0), the coupled-channel mass Mcouð�0

c0Þ ¼ 3915 MeV,
which is fairly far from the threshold of the S-wave chan-
nels D �D and D� �D�. Consequently, the mass shift is as
small as 33 MeV. As a second example, the coupled-
channel masses of the 21P1ðh0cÞ and 23P2 (�0

c2) states are
roughly equal. However, their mass shifts induced by the
D� �D�, of which the threshold is closest to their coupled-
channel masses, are different by a factor of 2 (see Table I in
Ref. [5]). As a result, the mass shift of 21P1 state is smaller
than that of 23P2 state. Finally, the coupled-channel effect
of 23P1 (�0

c1) state should be most significant since the
massMcouð�0

c1Þ ¼ 3875 MeV is very close to the threshold
of D0 �D�0=Dþ �D�� þ c:c:. This result can also give support
to the �0

c1 assignment of Xð3872Þ [21].
It needs emphasizing here that the closeness of

Mcouð�0
c1Þ to the threshold of D0 �D�0 is not very sensitive

to the bare mass of �0
c1. This can be seen from Fig. 3, where

the physical mass Mcou dependence of the unrenormalized
mass shift �Re½�ðMcouÞ� for the 23P1 state is shown. The
relation between the unrenormalized mass shift and the
renormalized one �Mcou is given in (20). From Fig. 3 one
can see the mass shift function is strongly dependent on the
physical mass. As a result, the slope of the mass shift curve

is very large near the threshold and ‘‘attracts’’ the mass
Mcouð�0

c1Þ toward the threshold.
More intuitively, if one changes the physical mass

Mcouð�0
c1Þ slightly, say, from 3870 MeV to 3855 MeV,

then the change of the mass shift Re½�ðMcouÞ� can be
read as about 70 MeV from Fig. 3. That means, the corre-
sponding change of the bare mass M0 ¼ Mcou þ
Re½�ðMcouÞ� is about 85 MeV. Inversely, if one changes
the bare mass, say, by 50–80 MeV, the change of the mass
Mcouð�0

c1Þ is only about 10–15 MeV, provided that the

physical mass is close to the threshold.
This is just a realization of the S-wave threshold effect

[16] in our coupled-channel model. More precisely, the
curve in Fig. 3 shows the cusps in the neutral and charged
D� �D channels numerically (see the second paper in [16]
for more discussions). Thus, the physical mass of �0

c1 is

quite natural to be close to the threshold ofD0 �D�0 and thus
�0
c1 may be a good candidate for the Xð3872Þ [21].
We also list the results of Ref. [6] in Table I for com-

parison. As we have mentioned, the definition of the re-
normalized bare massM0

0 (17) is a little different from that

of M0. Moreover, the node effect in the wave function
overlap integral for a higher excited charmonium decaying
into charmed mesons is not considered in Ref. [6]. As a
result, the renormalized mass shift �M0

cou ¼ �ðMc Þ �
Re�ðMÞ in [6] tends to be smaller than the one in (20)
for excited states as has been analyzed in the last section.
Furthermore, the authors of Ref. [6] use the available
results of the quenched potential model [15], in which
different parameters from ours are chosen, as their bare
mass inputs (the 7th column in Table I). However, compar-
ing the mass shifts in the 5th and 9th columns in Table I,
one can find that they both have similar features as that of
�Mscr. This indicates that the screened potential in (5)
depicts the main feature of the vacuum polarization effect

FIG. 2. Mass shifts �Mcou and �Mscr varying with bare mass
M0.

FIG. 3. The physical mass Mcou dependence of the unrenor-
malized mass shifts �Re½�ðMcouÞ� for the 23P1 state.

1In our calculation the contributions to the mass shifts from the
Dð�Þ

s �Dð�Þ
s channels are small mainly due to the small strange

quark pair creation strength �s.
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of the dynamical quark pair creation, although it fails to
describe some fine structures, such as those induced by the
near S-wave threshold effects.

To compare the global features of spectra for the
coupled-channel model and the screened potential model
more directly, we also illustrate the center of gravity
(COG) shifts �M

cog
cou and �M

cog
scr in Fig. 4. Here, the COG

is defined as

Mcog ¼ Msig þ 3M
cog
tri

4
; (23)

where Msig denotes the mass of the spin-singlet state, and

M
cog
tri the COG of the spin-triplet states. From Fig. 4, one

can see both the mass shift trajectories exhibit good be-
haviors, and they are roughly consistent with each other as
the above analysis. However, the increase of the mass shift
�Mcog

scr tends to be faster than that of �Mcog
cou in the higher

mass region. This seems to indicate that the potential in (5)
somewhat overestimates the screening effect. But it is not
the whole story since the P-wave (and higher excited) DðsÞ
mesons contributions, which have been neglected, also
tend to enhance the mass shift �Mcog

cou in the same higher
mass region.

V. SUMMARY

In this paper, in order to investigate the phenomenologi-
cal effects of color-screening or string breaking due to light
quark pair creation on the charmonium spectrum, we start
from two different models: one is the coupled-channel
model with quenched linear potential; the other is the
unquenched screened potential model. The calculations
of the mass spectra in the two models are very different.
We compare the charmonium spectra calculated by the two
models in the mass region below 4 GeV, in which the
contributions from channels involving the P-wave (and
higher excited) D and Ds mesons can be neglected. We
use the same quenched limit for the two models. And for
the coupled-channel model, we use the wave functions
obtained by the quenched potential model in the nonrela-
tivistic limit to determine the hadronic transition matrix
elements (wave function overlap integrals) in (15). We find
that although the calculations in the two models are very
different, the two models have similar global features in
describing the charmonium spectrum. This is understand-
able since the two models may embody the same effect of
the dynamical quark pair creation.
However, we should emphasize that the near-threshold

effects in the coupled-channel model cannot be simply
described by the screened potential model. Namely, the
screened potential can be a rather good approximation to
the color-screening effect, but the near-threshold effects
must be considered additionally by the coupled-channel
effects. In particular, we find the S-wave coupling to the
decay channels can lower the �c1ð2PÞ mass significantly,
and make the mass of �c1ð2PÞ going down toward theD �D�
threshold. This may be viewed as support to the assignment
of the Xð3872Þ as a �c1ð2PÞ-dominated charmonium state.
In general, we believe that studies of the effects of the

light quark pair creation on the charmonium mass spec-
trum will be helpful to clarify the nature of the newly
discovered charmonium or charmoniumlike states [1].
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