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We study the fermion pair production from a strong electric field in boost-invariant coordinates in

(3þ 1) dimensions and exploit the cylindrical symmetry of the problem. This problem has been used

previously as a toy model for populating the central-rapidity region of a heavy-ion collision (when we can

replace the electric by a chromoelectric field). We derive and solve the renormalized equations for the

dynamics of the mean electric field and current of the produced particles, when the field is taken to be a

function only of the fluid proper time � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
. We determine the proper-time evolution of the

comoving energy density and pressure of the ensuing plasma and the time evolution of suitable

interpolating number operators. We find that unlike in 1þ 1 dimensions, the energy density " closely

follows the longitudinal pressure. The transverse-momentum distribution of fermion pairs at large

momentum is quite different and larger than that expected from the constant field result.

DOI: 10.1103/PhysRevD.80.014010 PACS numbers: 25.75.�q, 12.38.Mh

I. INTRODUCTION

The ‘‘Schwinger mechanism’’ for pair production has
been used in various phenomenological models for particle
production following a high-energy heavy-ion collision.
One theoretical picture of high-energy heavy-ion collisions
begins with the creation of a flux tube containing a strong
color electric field [1]. The field energy is converted into
particles such as q �q pairs and gluons by the Schwinger
mechanism [2–4]. This mechanism has been implemented
in a phenomenological fashion in event generators for
particle production such as the Lund string model of ha-
dronization [5] or the Hijing model [6]. More recently
another picture of heavy-ion collisions, based on the color
glass condensate model of high density for quantum chro-
modynamics (QCD) [7,8] has been put forward. This
model leads to the picture that a heavy-ion collision pro-
duces an initial semiclassical chromoelectric field in the
longitudinal direction. Kharzeev et al. [9] have shown that
if one looks at a perturbative parton cascade model and
studies inclusive production of gluons in a gluon cascade,
that this is equivalent to the production of a gluon from a
background classical chromoelectric field in the longitudi-
nal direction. This recent work gives credence to the idea
that as far as gluon production is concerned, one can
replace the dynamics of heavy-ion collisions by an initial
condition on a semiclassical chromoelectric field. In these
recent papers however, no attempt has been made to ac-
tually study the time evolution of the resulting plasma and
the backreaction of the production on the initial chromo-

electric field. Some early studies had been done phenom-
enologically on this type of problem using a kinetic theory
model in which a relativistic Boltzmann equation is
coupled to a simple Schwinger source term [10–13], and
a Wigner function transport approach for an SU(2) version
of QCD was recently done by Skokov and Levai [14]. A
first principle (quantum field theoretical) calculation for
pair production and backreaction from strong fields was
done by one of us and collaborators in the appropriate
kinematics for heavy-ion collisions in (1þ 1) dimensions
in an Abelian approximation where one ignored the color
degrees of freedom. The reason for revisiting this problem
now is twofold. First, analytic results for the transverse-
momentum distribution functions for particles produced by
constant electric and chromoelectric fields have recently
been obtained [15,16]. For the constant chromoelectric
field, the results for pair production are different than for
an electric field in that the transverse distribution of jets
depends not only on the energy density of the field but also
on the direction the field is pointing in color space, i.e., the
color hypercharge. Thus it is important to know first, how
the backreaction affects the transverse-momentum distri-
bution function both for quantum electrodynamics (QED)
and QCD and second whether adding interactions in a 2-PI
1=N expansion will modify the one-loop result. Here we
will address the problem of finding the transverse distribu-
tion function for the Abelian case in (3þ 1) dimensions in
a realistic kinematic scenario. The QCD problem will be
addressed in a separate paper.
First let us review the history of both analytic ap-

proaches to the constant electric field and chromoelectric
field problem as well as numerical studies of the back-
reaction problem. In his 1951 classic paper, Schwinger
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derived the following one-loop nonperturbative formula:

dW

d4x
¼ e2E2

4�3

X1
n¼1

1

n2
e�n�m2=jeEj (1.1)

for the probability of fermion pair production per unit time
per unit volume from a constant electric field E via vacuum
polarization [4] by using a proper-time method. The result
of Schwinger was extended to QCD by Claudson, Yildiz,
and Cox [17]. However the pT distribution of the eþ (or
e�) production, dW=d4xd2pT , could not be obtained using
the proper-time method of Schwinger. A WKB approxi-
mate method was used for this purpose by Casher et al.
[18], but an exact method to do this problem (of determin-
ing the transverse distribution of pairs) was not found until
recently [15,16]. For QED the WKB analysis gave the
correct answer which depended only on the energy density
of the electric field. However, for QCD, the WKB answer
was incorrect for QCD in that it did not contain the second
Casimir invariant of SU(3), C2 ¼ ½dabcEaEbEc�2, as
shown in Refs. [15,16]. In the case of fermions in QED
one finds for the transverse distribution of fermion pairs:

dW

d4xd2pT

¼ �jeEj
4�3

ln½1� e��ðp2
Tþm2Þ=jeEj�: (1.2)

The purpose of this paper is to consider the backreaction
problem in (3þ 1) dimensions in a situation which is
related to the kinematics of particle production by strong
chromoelectric fields, namely, initial conditions where the
center-of-mass energy is so high that all distribution func-
tions are boost invariant in the longitudinal direction so
that physical quantities only depend on the longitudinal
proper time which is the same in the boost-invariant limit
to the (1þ 1)-dimensional fluid proper time. Our goal is to
see how the original result of Casher et al. [18], which has
been recently rigorously derived by Nayak for the trans-
verse distribution of fermion pairs [19], is modified by the
expansion of the ensuing plasma and the backreaction on
the electric field.

The backreaction problem was first studied numerically
in real time for both scalar QED and QED by Cooper,
Mottola, and collaborators in (1þ 1) dimensions [20–22]
and then also in boost-invariant coordinates relevant to
heavy-ion collisions in Ref. [23]. In Ref. [23], a strong
Abelian field was used as a model for particle production in
the central-rapidity distribution. In that work, the boost
invariance of the problem was used to show that many
features of the hydrodynamical model were appearing even
though there were no interactions kept that would lead to
equilibration. Also, in that paper, although the theory was
formulated in (3þ 1) dimensions, numerical results were
only presented for (1þ 1) dimensions, so that the trans-
verse distribution of secondaries was not studied. To rem-
edy this particular deficiency of our previous work, here we
investigate the dynamics of the particle production as a

function of time in cylindrically-symmetric boost-invariant
coordinates in (3þ 1)-dimensional QED.
The present paper builds on our previous papers on

fermion pair production in (1þ 1) dimensions by strong
electric fields with a backreaction of the current on the field
[23,24]. As in our previous work, we employ quantum field
theory methods in the large-N approximation to find the
particle production rate. The next logical steps are to
extend this result to QCD in this one-loop approximation
and then to do a self-consistent resummed 1=N expansion
to study the competition between the thermalization of the
plasma and the expansion. In this way we will build up
gradually the machinery to ask important questions about
the thermalization and expansion of the quark-gluon
plasma in a model based on the Schwinger mechanism.
The paper is organized as follows: In Sec. II we derive

the equations needed for this calculation. In Sec. III we
derive the components of the energy-momentum tensor in
this coordinate system and show that it is conserved. In
Sec. IV we introduce the concept of the quasiparticle
phase-space distribution function. This quantity can be
extracted from the field theory energy density and then
used to determine the distributions of pairs produced in the
center-of-mass frame. In Sec. V we discuss our numerical
approach and present results of our calculations. We con-
clude in Sec. VI. In Appendix Awe explain the notation we
use throughout this paper. In Appendix B we derive the
transverse helicity eigenvectors we use in the main text of
the paper to expand the Fermi field, whereas in Appendix C
we derive an adiabatic expansion of the Dirac equation
which are used throughout the paper to study the large
momentum behavior of integrands.

II. THEORYAND NOTATION

In Cartesian coordinates �a ¼ ðt; x; y; zÞ, and using the
metric �ab ¼ diagð1;�1;�1;�1Þ, the Lagrangian density
for this problem is given by

L ¼ �̂c ð�Þf�a½i@a � eAað�Þ� �Mgĉ ð�Þ
� 1

4F
abð�ÞFabð�Þ; (2.1)

where Fabð�Þ ¼ @aAbð�Þ � @bAað�Þ. Equations of motion
are given by

f�a½i@a � gAað�Þ� �Mgĉ ð�Þ ¼ 0; (2.2)

@aF
abð�Þ ¼ hĵbð�Þi ¼ gh½ �̂c ð�Þ; �b ĉ ð�Þ�i=2: (2.3)

In this semiclassical approximation, we quantize the Dirac
field while the electromagnetic field is treated classically.
This approximation can be made precise by considering N
flavors of quarks interacting with the electromagnetic field
and considering the limit where N ! 1 after appropriate
rescalings. Systematic corrections are given by the 1=N
expansion as discussed in Ref. [25] and references therein.
We use the standard representation of the � matrices
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�0 ¼ 1 0
0 �1

� �
; �i ¼ 0 �i

��i 0

� �
; (2.4)

where�i are the usual Pauli matrices, and 1 is the unit (2�
2) matrix.

A. Dirac’s equation in boost-invariant coordinates

Boost-invariant coordinates x� ¼ ð�; �; 	; �Þ are de-
fined by

t ¼ � cosh�; z ¼ � sinh�;

x ¼ � cos	; y ¼ � sin	:
(2.5)

We use Roman indices to indicate the Cartesian frame and
Greek indices for the cylindrical-hyperbolic frame. The
connection between the Cartesian frame (d�a), and the
boost-invariant frame (dx�) is described by a vierbein
matrix Va

�ðxÞ, which for our case is

d�a ¼ Va
�ðxÞdx�; @� ¼ Va

�ðxÞ@a; (2.6)

with

Va
�ðxÞ � @�a

@x�
¼

cosh� 0 0 � sinh�
0 cos	 �� sin	 0
0 sin	 � cos	 0

sinh� 0 0 � cosh�

0
BBB@

1
CCCA:

The inverse vierbein matrix, which we write as V�
aðxÞ, is

given by

dx� ¼ V�
aðxÞd�a; @a ¼ V�

aðxÞ@�; (2.7)

with

V�
aðxÞ � @x�

@�a

¼
cosh� 0 0 � sinh�

0 cos	 sin	 0
0 � sin	=� cos	=� 0

� sinh�=� 0 0 cosh�=�

0
BBB@

1
CCCA:

(2.8)

The metric g�
ðxÞ in boost-invariant coordinates is

g�
ðxÞ ¼ �abV
a
�ðxÞVb


ðxÞ ¼ diagð1;�1;��2;��2Þ:
(2.9)

We raise and lower Latin indices by the�metric and Greek
indices by the g metric. So Dirac’s equation in boost-
invariant coordinates can be written as

f~��ðxÞ½i@� � eA�ðxÞ� �Mgĉ ðxÞ ¼ 0; (2.10)

where we have defined ~��ðxÞ ¼ �aV�
aðxÞ. In this coordi-

nate system, the � matrices are given by

~� �ðxÞ ¼ cosh��0 � sinh��3;

~��ðxÞ ¼ cos	�1 þ sin	�2;

~�	ðxÞ ¼ ð� sin	�1 þ cos	�2Þ=�;
~��ðxÞ ¼ ð� sinh��0 þ cosh��3Þ=�:

(2.11)

The Fermi field ĉ ðxÞ in boost-invariant coordinates obeys
the anticommutation relation

fĉ �ð�; �; 	; �Þ; �̂c y
�0 ð�; �0; 	0; �0Þg

¼ ~��
�;�0 ð�Þ�ð�� �0Þffiffiffiffiffiffiffiffi

��0p �ð	� 	0Þ�ð�� �0Þ
�

: (2.12)

It is simpler, however, to solve Dirac’s equation in a
Lorentz-transformed frame which diagonalizes the vier-
bein. The Lorentz transformation that does this is

�a
bð	; �Þ ¼ Va

�ð�; �; 	; �Þ �V�
bð�; �Þ

¼
cosh� 0 0 sinh�

0 cos	 � sin	 0
0 sin	 cos	 0

sinh� 0 0 cosh�

0
BBB@

1
CCCA;
(2.13)

where �V�
bð�; �Þ are the diagonal vierbeins given by

�V a
�ð�; �Þ � Va

�ð�; �; 0; 0Þ ¼ diagð1; 1; �; �Þ
�V�

að�; �Þ � V�
að�; �; 0; 0Þ ¼ diagð1; 1; 1=�; 1=�Þ:

(2.14)

We define � matrices in this frame with a bar

���ð�; �Þ ¼ �V�
að�; �Þ�a ¼ ~��ð�; �; 0; 0Þ: (2.15)

They are given explicitly by

�� � ¼ �0; ���ð�Þ ¼ �3=�;

��� ¼ �1; ��	ð�Þ ¼ �2=�:
(2.16)

Now let Sð	;�Þ be an operator which induces this Lorentz
transformation on the �a matrices in the orthogonal frame,

S�1ð	; �Þ�aSð	; �Þ ¼ �a
bð	;�Þ�b: (2.17)

Then it is easy to show that Sð	;�Þ ¼ S�ð	ÞS�ð�Þ is given
by a product of operators, where

S�ð	Þ ¼ exp½	�1�2=2� ¼ cosð	=2Þ þ �1�2 sinð	=2Þ;
(2.18a)

S�ð�Þ ¼ exp½��0�3=2� ¼ coshð�=2Þ þ �0�3 sinhð�=2Þ:
(2.18b)

Furthermore, from Eq. (2.13), we see that Sð	;�Þ trans-
forms the ~��ð�; �; 	; �Þ matrices into the ���ð�; �Þ,

S�1ð	; �Þ~��ðxÞSð	;�Þ ¼ ���ð�; �Þ: (2.19)

Now let us note that
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S�1ð	;�Þ~��ðxÞ@�Sð	; �Þ ¼ ���ð�; �Þ½@� þ��ð	; �Þ�;
(2.20)

where we have defined a connection ��ð	;�Þ by
��ð	;�Þ ¼ S�1ð	;�Þð@�Sð	; �ÞÞ: (2.21)

The only nonzero connections are when � ¼ 	 and � ¼
�. So using Eq. (2.18), we find

�	 ¼ �1�2=2; and �� ¼ �0�3=2; (2.22)

which are independent of 	 or �. The covariant derivative
r� is given by

r� � D� þ��ðxÞ � @� þ��ðxÞ þ ieA�ðxÞ: (2.23)

Christoffel symbols for boost-invariant coordinates, which
we will need later, are given by

�
�
ðxÞ ¼ V

aðxÞ@�Va

ðxÞ; (2.24)

from which we find the only nonvanishing elements to be

��
�� ¼ �; �

�
�� ¼ �

�
�� ¼ 1=�;

��
		 ¼ ��; �	

�	 ¼ �	
	� ¼ 1=�:

(2.25)

So Dirac’s equation (2.10) can be transformed to the
boost-invariant frame by defining

ĉ ðxÞ ¼ Sð	;�Þ�̂ðxÞ= ffiffiffi
�

p
; (2.26)

and multiplying the equation through by S�1ð	;�Þ, which
gives the equation

½i ���ð�; �Þr� �M��̂ðxÞ= ffiffiffi
�

p ¼ 0: (2.27)

For our case, we assume that the vector potential is in the �
direction and depends only on �, so we choose A�ðxÞ ¼
ð0; 0; 0;�Að�ÞÞ, which defines Að�Þ as the negative of the
covariant component. Then (2.27) simplifies to

fi�0@� þ i�1½@� þ 1=ð2�Þ� þ i�2@	=�

þ �3½i@� þ eAð�Þ�=��Mg�̂ðxÞ ¼ 0; (2.28)

which is the equation we want to solve. Here the �̂ðxÞ field
obeys the simpler anticommutation relation

f�̂�ð�;xÞ; �̂y
�0 ð�;x0Þg ¼ ��;�0�x;x0 ; (2.29)

where x ¼ ð�; 	; �Þ. Our notation is explained in
Appendix A.

B. Mode expansion

An expansion of the �̂ðxÞ field in terms of transverse
helicity eigenstates can be carried out using the separation
of variables methods explained in Ref. [26] and further
discussed in Appendix B. The expansion is given by

�̂ðxÞ ¼ X
k;

ÂðÞ
k �ðÞ

k ðxÞ; (2.30)

where k � ðk�; k?; m; hÞ with
X
k

�
Z þ1

�1
dk�
2�

Z þ1

0

k?dk?
2�

Xþ1

m¼�1

X
h¼�1

(2.31)

(see Appendix A for our notation). Here  ¼ �1 labels
initial positive and negative energy states, h ¼ �1 labels
the transverse helicity of the state, and m the value of the z
component of the angular momentum operator. The time-

dependent spinor mode functions �ðÞ
k ðxÞ are given by

�ðÞ
k ðxÞ � eik��

�ðÞ
ðþÞ;kð�Þ�km;þhð�; 	Þ

�ðÞ
ð�Þ;kð�Þ�km;�hð�; 	Þ

0
@

1
A; (2.32)

where k � ðk�; k?; hÞ and km ¼ ðk?; mÞ, and where the

transverse helicity eigenvectors �km;hð�; 	Þ are given by

�km;hð�; 	Þ ¼
eiðmþ1=2Þ	ffiffiffi

2
p Jmðk?�Þ

�hJmþ1ðk?�Þ
� �

: (2.33)

In Appendix B in Eqs. (B23) and (B24), we show that they
are orthogonal and complete.

The �ðÞ
�;kð�Þ mode functions form a two-dimensional

spinor,

�ðÞ
k ð�Þ ¼ �ðÞ

ðþÞ;kð�Þ
�ðÞ

ð�Þ;kð�Þ

0
@

1
A (2.34)

which satisfies the equations of motion

i@��
ðÞ
k ð�Þ ¼ Hkð�Þ�ðÞ

k ð�Þ; (2.35)

where the Hermitian matrix Hkð�Þ satisfies

Hkð�Þ ¼ þM ��ð�Þ � ihk?
��ð�Þ þ ihk? �M

� �
¼ kkð�Þ � �;

(2.36)

with ��ð�Þ ¼ ½k� � eAð�Þ�=� the kinetic momentum, and

where

k kð�Þ ¼ ��ð�Þê1 þ hk?ê2 þMê3: (2.37)

We define a density matrix �ðÞ
k ð�Þ and ‘‘polarization’’

vector PðÞ
k ð�Þ by

�ðÞ
k ð�Þ ¼ �ðÞ

k ð�Þ�ðÞy
k ð�Þ ¼ 1

2½1þ PðÞ
k ð�Þ � ��; (2.38)

so that from Eq. (2.35), the polarization vector satisfies

@�P
ðÞ
k ð�Þ ¼ 2kkð�Þ � PðÞ

k ð�Þ: (2.39)

We find an adiabatic expansion to second order of the
polarization vector in Appendix C. Since Hkð�Þ in (2.36)

is Hermitian, the length of the spinors �ðÞ
k ð�Þ is conserved

@�½�ðÞy
k ð�Þ�ð0Þ

k ð�Þ� ¼ 0: (2.40)

So if we choose the two spinors labeled by  to be
orthogonal at � ¼ �0, then they remain orthogonal for all

BOGDAN MIHAILA, FRED COOPER, AND JOHN F. DAWSON PHYSICAL REVIEW D 80, 014010 (2009)

014010-4



�. In Sec. II C below we do this, so we can assume that
these spinors are orthogonal and complete for all values of
�

�ðÞy
k ð�Þ�ð0Þ

k ð�Þ ¼ �;0 ; (2.41a)X
¼�

�ðÞ
k ð�Þ�ðÞy

k ð�Þ ¼ 1: (2.41b)

Probability conservation also requires that the polarization

vector PðÞ
k ð�Þ for both of these solutions to remain on the

unit sphere for all time �.
Using the orthogonal relations (B23) and (2.41a), we can

invert expansion (2.30) to obtain for any time �,

Â
ðÞ
k ¼ X

x

�ðÞy
k ðxÞ�̂ðxÞ; (2.42)

where our notation is explained in Appendix A. Using
(2.29), the mode operators obey the anticommutation rela-
tion

fÂðÞ
k ; Âð0Þy

k0 g ¼ �;0�k;k0 : (2.43)

It is traditional to define separate positive and negative
energy mode operators by setting

Â
ðþÞ
k ¼ âk; and Âð�Þ

k ¼ b̂y�k: (2.44)

We choose our initial state to be the vacuum with no
particles or antiparticles present. Then

â kj0i ¼ 0; and b̂kj0i ¼ 0: (2.45)

This means that

h½ÂðÞy
k ; Âð0Þ

k0 �i ¼ ��;0�k;k0 ; (2.46)

a result we will use in Sec. II D below.

C. Initial conditions

There have been several methods used to set initial
conditions for the fermion field. We investigated two of
these methods in Ref. [24] and came to the conclusion that
both methods produce essentially the same results, so we
choose the simpler ‘‘one-field’’ method here.

Near � ¼ �0 � 1=M where we take Að�0Þ ¼ 0, the
Hamiltonian (2.36) is approximately independent of �,
Hkð�Þ � H0;k, where

H0;k ¼ M
þ1 k� � ih �k?

k� þ ih �k? �1

 !
¼ Mk0;k � �;

(2.47)

where

k 0;k ¼ k�ê1 þ h �k?ê2 þ ê3; (2.48)

with �k? ¼ k?=M. Wewrite the eigenvalue equation for the
Hamiltonian H0;k as

H0;k�
ðÞ
0;k ¼ !ðÞ

0;k�
ðÞ
0;k; with !ðÞ

0;k ¼ M!0;k;

!0;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ �k2? þ 1

q
; (2.49)

and where

�ðþÞ
0;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!0;k þ 1

2!0;k

s
1

�k

 !
; (2.50a)

�ð�Þ
0;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!0;k þ 1

2!0;k

s ���k
1

 !
; (2.50b)

with �k ¼ ðk� þ ih �k?Þ=ð!0;k þ 1Þ. We use these eigenval-

ues for initial values of the spinors �ðÞ
k ð�Þ at � ¼ �0,

�ðÞ
k ð�0Þ ¼ �ðÞ

0;k; (2.51)

which defines what we call positive and negative energy
solutions of the full Dirac equation. Since the initial spin-
ors are orthogonal and complete, the full solutions of the
Dirac are also orthogonal and complete. The density matrix

�ðÞ
0;k at �0 is given by

�ðÞ
0;k ¼ �ðÞ

0;k�
ðÞy
0;k ¼ 1

2½1þ PðÞ
0;k � ��; (2.52)

where the initial polarization vector PðÞ
0;k is given by

P ðÞ
0;k ¼ k0;k=!0;k: (2.53)

D. Maxwell’s equation

In boost-invariant coordinates, Maxwell’s equation
reads

1ffiffiffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
F�
ðxÞ� ¼ J
ðxÞ; (2.54)

where
ffiffiffiffiffiffiffi�g

p ¼ ��. Now A�ðxÞ ¼ ð0; 0; 0;�Að�ÞÞ, so the

only nonvanishing elements of the field tensor are

F�;�ðxÞ ¼ �F�;�ðxÞ ¼ �@�Að�Þ � �Eð�Þ: (2.55)

This last equation defines what we call the electric field
Eð�Þ � �@�Að�Þ=�. Then using the metric g�
ðxÞ ¼
diagð1;�1;�1=�;�1=�2Þ, we get

F�;�ð�Þ ¼ �F�;�ð�Þ ¼ �Eð�Þ=�; (2.56)

and Maxwell’s equation becomes

@�Eð�Þ ¼ �Jð�Þ: (2.57)

Here we have defined a ‘‘reduced’’ current Jð�Þ by
Jð�Þ ¼ e�

2
h½ �̂c ðxÞ; ~��ð�Þĉ ðxÞ�i ¼ e

2�
h½�̂yðxÞ; �0�3�̂ðxÞ�i:

(2.58)

Using the field expansion (2.30) and the expectation value
(2.46) of the mode operators, we find for the reduced
current
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Jð�Þ ¼ e

2�

X
k;k0

X
;0

½�ðÞy
k ðxÞ�0�3�ð0Þ

k0 ðxÞ�h½ÂðÞy
k ; Âð0Þ

k0 �i

¼ � e

2�

X
k;

½�ðÞy
k ðxÞ�0�3�ðÞ

k ðxÞ�: (2.59)

Now since

�0�3 ¼ 0 �3

�3 0

� �
; (2.60)

and using the fact that �3�km;hð�; 	Þ ¼ �km;�hð�; 	Þ, and
the relation

Xþ1

m¼�1
�y
km;h

ð�; 	Þ�km;hð�; 	Þ ¼
1

2

Xþ1

m¼�1
½J2mðk?�Þ

þ J2mþ1ðk?�Þ� ¼ 1; (2.61)

we find from (2.32) that the reduced current can be written
as

Jð�Þ ¼ � e

2�

X
k;

 Tr½�ðÞ
k ð�Þ�1� ¼ � e

�

P
k

PðþÞ
1;k?;hð��; �Þ

¼ �e
X
p

PðþÞ
1;k?;hð��; �Þ: (2.62)

Here we have used the completeness statement (2.41b) to
write the current in terms of positive energy solutions only.
In the last line, we changed integration variables from k� to

��, using d�� ¼ dk�=�, and defined Pk?;hð��; �Þ �
Pkð�Þ. Maxwell’s equation (2.57) becomes

@�Eð�Þ ¼ e
X
p

PðþÞ
1;k?;hð��; �Þ: (2.63)

Recall that PðþÞ
1;k?;hð��; �Þ is the first component of the

positive energy polarization vector. Equation (2.39) with
initial condition (2.53) and (2.63) needs to be solved si-
multaneously for the system dynamics.

As it stands, the integral for the current in Eq. (2.63)
diverges. We renormalize it using the adiabatic-expansion
of solutions of the Dirac equation we found in Appendix C.
Setting � ¼ 1 and substituting (C21a) into Eq. (2.63) gives

_Eð�Þ¼e
X
p

�
��

!
�ðk2?þM2Þ

�
1

4

€��

!5
�5

8

�� _�2
�

!7

�
þ���

�
;

(2.64)

where here ! ¼ ½�2
� þ k2? þM2�1=2. The dot refers to a

derivative with respect to �. So the first term vanishes by
symmetric integration over ��. For the other terms, we

note that

��ð�Þ ¼ ½k� � eAð�Þ�=�; (2.65a)

_��ð�Þ ¼ ���ð�Þ=�þ eEð�Þ; (2.65b)

€��ð�Þ ¼ 2��ð�Þ=�2 � eEð�Þ=�þ e _Eð�Þ: (2.65c)

So the only terms which survive in (2.64) are

_Eð�Þ ¼ 2e
Z �

0

k?ðk2? þM2Þdk?
2�

Z þ1

�1
d��

2�

�
eEð�Þ
�

�
�
� 1

4!5
þ 5�2

�

4!7

�
� e _Eð�Þ

4!5
þ � � �

�
: (2.66)

Here we have introduced a cutoff � in the k? integral.
Carrying out the integrals in (2.66) and moving terms
proportional to _Eð�Þ to the left-hand side, we find the
adiabatic expansion of Maxwell’s equation to be

½1þ e2ð�e2Þ� _Eð�Þ ¼ eR½eAð�Þ�; (2.67)

where �e2 is given by

�e2 ¼ 1

6�2
ln½�=M�; (2.68)

and R½eAð�Þ� is a finite functional of the product eAð�Þ, or
derivatives of this quantity. We define the renormalized
charge er by

e2r ¼ e2

1þ e2ð�e2Þ : (2.69)

Then since eAð�Þ ¼ erArð�Þ, the adiabatic expansion of
Maxwell’s equation (2.67) reduces to

_E rð�Þ ¼ erR½erArð�Þ�; (2.70)

which is now finite. We conclude that we can regularize
Maxwell’s equation by subtracting from the integrand the

adiabatic expansion of PðþÞ
1;k?;hð��; �Þ and in addition re-

normalizing the charge. This gives the equation

@�Eð�Þ ¼ e

1þ e2ð�e2Þ
X�
p

�
PðþÞ
1;k?;hð��; �Þ �

��

!

þ eEð�Þ
�

ðk2? þM2Þ
�

1

4!5
� 5�2

�

4!7

��
: (2.71)

III. ENERGY-MOMENTUM TENSOR

In the boost-invariant coordinate system, the average
value of the total energy-momentum tensor is given by
Eqs. (4.1) and (4.2) of Ref. [23], and is the sum of two
terms (notice sign convention)

T�
 ¼ Tmatter
�
 þ Tfield

�
 ¼ diagðE;P?; �2P 	; �
2P �Þ;

(3.1)

where the matter and field contributions are given by

Tmat
�
 ¼ 1

4h½ �̂c ðxÞ; ~�ð�ðxÞðiD
Þ ĉ ðxÞÞ� þ H:c:i (3.2a)

Tfield
�
 ¼ g�


1
4F

��F�� þ F��g
��F�
: (3.2b)

Here D� ¼ @� þ ieA�ðxÞ and the subscript notation

ð�; 
Þ means to symmetrize the term. From our results
for the field tensor in Eq. (2.55) in Sec. II D, the field
part of the energy-momentum tensor is given by
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Tfield
�
 ¼ 1

2diagðE2; E2; �2E2;��2E2Þ: (3.3)

We denote the matter part of the energy-momentum tensor
as

Tmatter
�
 ¼ diagð"; p?; �2p	; �

2p�Þ: (3.4)

Because of the conventions adapted in Eq. (3.1), the total
energy and pressures are obtained by adding a factor of
�E2=2 to the matter terms.

For the matter field, we first note that D� ĉ ðxÞ ¼
SðxÞr��̂ðxÞ= ffiffiffi

�
p

, where r� ¼ @� þ��ðxÞ þ ieA�ðxÞ is
the covariant derivative defined in Eq. (2.23). So using the
use the notation in Appendix A, the field expansion (2.30),
and the expectation value (2.46) of the mode operators, the
diagonal components of the matter energy-momentum
tensor (3.2a) are given by (no sum over �)

Tmat
�� ¼ 1

4

���
�̂yðxÞffiffiffi

�
p

�
�0; ���ðxÞ

�
ir�

�
�̂ðxÞffiffiffi

�
p

���
þ
��
i �r�

�
�̂ðxÞffiffiffi

�
p

��y
�0; ���ðxÞ

�
�̂ðxÞffiffiffi

�
p

��	

¼ 1

4

X
k;k0

X
;0

��
�̂ðÞy

k ðxÞffiffiffi
�

p
�
�0 ���ðxÞ

�
ir�

�
�̂ð0Þ

k0 ðxÞffiffiffi
�

p
��

þ
�
i �r�

�
�̂ðÞ

k ðxÞffiffiffi
�

p
��y

�0 ���ðxÞ
�
�̂ð0Þ

k0 ðxÞffiffiffi
�

p
��

h½ÂðÞy
k ; Âð0Þ

k0 �i

¼ �1

4

X
k;



��
�̂ðÞy

k ðxÞffiffiffi
�

p
��
i�0 ���ðxÞr�

�
�̂ðÞ

k ðxÞffiffiffi
�

p
��

þ
�
i�0 ���ðxÞ �r�

�
�̂ðÞ

k ðxÞffiffiffi
�

p
��y��̂ðÞ

k ðxÞffiffiffi
�

p
��

; (3.5)

where we used the fact that ���ðxÞ anticommutes with
��ðxÞ, and the relation �0�y

�ðxÞ�0 ¼ ���ðxÞ. Here we
have defined the covariant derivatives

r� ¼ @� þ��ðxÞ þ ieA�ðxÞ;
�r� ¼ @� ���ðxÞ þ ieA�ðxÞ:

(3.6)

A. Energy density

For the matter energy density term, r0 ¼ @� and ��� ¼
��� ¼ �0, so using (3.5), we find

"ð�Þ ¼ � i

4�

X
k;

½�ðÞy
k ðxÞ@$��

ðÞ
k ðxÞ�

¼ � 1

2�

X
k;

Tr½�ðÞ
k ð�ÞHkð�Þ�

¼ �X
p

kk?;hð��Þ � PðþÞ
k?;hð��; �Þ: (3.7)

So from (3.3), the total energy density is given by

E ¼ �X
p

kk?;hð��Þ � PðþÞ
k?;hð��; �Þ þ E2

2
: (3.8)

As it stands, the integral for the energy density in Eq. (3.8)
diverges. We find the form of theses divergences by sub-
stituting the adiabatic expansion given in Eq. (C20) and
introducing a cutoff �� in the �� integral. This gives an

adiabatic approximation to the energy density of

E a ¼ E2

2
�X�

p

�
!� ðk2? þM2Þ

8

_�2
�

!5
� � �

�
:

Using Eqs. (2.65), due to the symmetric integration over
��, the only terms that survive are

E a ¼ E2

2
�X�

p

�
!� k2? þM2

8

�
1

�2
�2

�

!5
þ e2E2

!5

�
þ � � �

�

¼ ½1þ e2ð�e2Þ�E
2

2
þ 1

12

�
�

2��

�
2 �X�

p

ð!þ � � �Þ:

(3.9)

The first term renormalizes the field

½1þ e2ð�e2Þ�E
2

2
¼ e2E2

2e2r
¼ E2

r

2
: (3.10)

The second term contributes to the cosmological constant,
as we will see later. The third term is related to the zero-
point energy of pairs of fermions. We regularize the energy
density by computing the difference between E and Ea,
Esub ¼ E � Ea, which is now finite.

B. Transverse pressure

For the matter transverse pressure term, we have ��� ¼
� ��� ¼ ��1, and r� ¼ @�, so from (3.5), we find

p?ð�Þ ¼ � i

4�

X
k;

½�ðÞy
k ðxÞ�0�1@

$
��

ðÞ
k ðxÞ�: (3.11)

So here we will need to find

Xþ1

m¼�1
�y
k?;m;hð�Þ�x@

$
��k?;m;�hð�Þ

¼ h
Xþ1

m¼�1
Jmðk?�Þ@$�Jmþ1ðk?�Þ ¼ hk?;

where we have used the relation

2J0mðzÞ ¼ Jm�1ðzÞ � Jmþ1ðzÞ:
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Then (3.11) becomes

p?ð�Þ ¼ 1

�

X
k

hk?
2

½�ðþÞy
k ð�Þ�y�

ðþÞ
k ð�Þ�

¼ X
p

hk?
2

PðþÞ
2;k?;hð��; �Þ; (3.12)

and from (3.3), the total transverse pressure is given by

P ? ¼ X
p

hk?
2

PðþÞ
2;k?;hð��; �Þ þ E2

2
: (3.13)

In order to study the divergences in the transverse pressure,
we substitute the adiabatic expansion (C21b) into (3.13).
This gives

P a;? ¼ E2

2
þX�

p

�
k2?
2!

� hk?M _��

4!3
þ k2?

2

�
� 1

8

_�2
�

!5

þ 1

4

�� €��

!5
� 5

8

�2
� _�2

�

!7

�
þ � � �

�
: (3.14)

The second term in the above sum over p is odd in h and
therefore vanishes. From Eqs. (2.65), the only terms that
survive the �� integration are

P a;? ¼ E2

2
þX�

p

�
k2?
2!

� k2?
2

�
� 1

�2

�
3

8

�2
�

!5
� 5

8

�4
�

!7

�

� e2E2

�
1

8

1

!5
þ 5

8

�2
�

!7

��
þ � � �

�

¼ ½1þ e2ð�e2Þ�E
2

2
þX�

p

�
k2?
2!

þ � � �
�
: (3.15)

From (3.10), the first term renormalizes the electric field.
The term proportional to 1=�2 vanishes. Again, the trans-
verse pressure is regularized by subtracting the adiabatic
expression from the divergent one, P sub

? ¼ P? � P a;?.

C. Shear pressure

For the shear pressure term, we have ��	 ¼ ��2 ��	 ¼
���2 and �	 ¼ �1�2. The covariant derivatives (3.6) are
given by

�0�2r	 ¼ �0�2@	 þ �0�1=2;

�0�2 �r� ¼ �0�2@	 � �0�1=2;

where

�0�1 ¼ 0 �x

�x 0

� �
; �0�2 ¼ 0 �y

�y 0

� �
:

So from (3.5), we find

p	ð�Þ ¼ �i

4��

X
k;

f�ðÞy
k ðxÞ½ð�0�2@	 þ �0�1=2Þ�ðÞ

k ðxÞ�

þ ½ð�0�2@	 � �0�1=2Þ�ðÞ
k ðxÞ�y�ðÞ

k ðxÞg:
(3.16)

So here we need to compute

Xþ1

m¼�1
�y
km;h

ð	; �Þð�y@	 � �x=2Þ�km;�hð	; �Þ

¼ h

2

Xþ1

m¼�1
ð2mþ 1ÞJmðk?�ÞJmþ1ðk?�Þ ¼ hk?�

2
;

where we have used the relation

2mJmðzÞ ¼ z½Jmþ1ðzÞ þ Jm�1ðzÞ�:
Then (3.16) becomes

p	ð�Þ ¼ 1

�

X
k

hk?
2

½�ðþÞy
k ð�Þ�y�

ðþÞ
k ð�Þ�

¼ X
p

�
hk?
2

�
PðþÞ
2;k?;hð��; �Þ; (3.17)

adding this to the shear pressure of the field, we find

P 	 ¼X
p

hk?
2

PðþÞ
2;k?;hð��; �Þ þ E2

2
: (3.18)

Note that P 	 ¼ P?. The shear pressure is renormalized
exactly like the transverse pressure.

D. Longitudinal pressure

For the longitudinal pressure (� ¼ �), A�ðxÞ ¼ �Að�Þ,
and ��� ¼ ��2 ��� ¼ ���3. The covariant derivatives (3.6)

are given by

i�0�3r� ¼ �0�3½i@� þ eAð�Þ� þ �5=2;

i�0�3 �r� ¼ �0�3½i@� þ eAð�Þ� � �5=2;

where

�5 ¼ i�0�1�2�3 ¼ 0 1
1 0

� �
; �0�3 ¼ 0 �z

�z 0

� �
:

Here �5 flips the upper and lower components of the
spinor, which leads to the equation

Xþ1

m¼�1
�y
km;h

ð�; 	Þ�km;�hð�; 	Þ

¼ 1

2

Xþ1

m¼�1
½J2mðk?�Þ � J2mþ1ðk?�Þ� ¼ 0: (3.19)

So terms proportional to �5 vanish. Then from (3.5), we are
left with
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p�ð�Þ ¼ 1

4�2
X
k;

f�ðÞy
k ðxÞ½�0�3ði@� þ eAð�ÞÞ�ðÞ

k ðxÞ�

þ ½�0�3ði@� þ eAð�ÞÞ�ðÞ
k ðxÞ�y�ðÞ

k ðxÞg
¼ �1

�2
X
k

½k� � eAð�Þ�P1;kð�Þ

¼ �X
p

��P1;k�;hð��; �Þ: (3.20)

Adding the field pressure, we find for the total longitudinal
pressure

P � ¼ �X
p

��P1;k�;hð��; �Þ � E2

2
: (3.21)

From Eq. (C21a), the adiabatic expansion of the longitu-
dinal pressure is given by

P a;� ¼ �E2

2
�X�

p

�
�2

�

!
� ðk2? þM2Þ

�
1

4

�� €��

!5

� 5

8

�2
� _�2

�

!7

�
þ � � �

�
: (3.22)

From Eqs. (2.65), the only terms that survive the ��

integration are

P a;� ¼ �E2

2
�X�

p

�
�2

�

!
þ 5

8
e2E2ðk2? þM2Þ�

2
�

!7

� ðk2? þM2Þ
2�2

�
�2

�

!5
� 5

4

�4
�

!7

�
þ � � �

�

¼ �½1þ e2ð�e2Þ�E
2

2
þ 1

12

�
�

2��

�
2

�X�
p

�
�2

�

!
þ � � �

�
: (3.23)

Again, the first term renormalizes the electric field and the
second term renormalizes the cosmological constant. The
finite part of the longitudinal pressure is given by P sub

� ¼
P � � P a;�, as before.

E. Conservation equations

The covariant derivative of the energy-momentum ten-
sor in boost-invariant coordinates is conserved

T�

;� ¼ @�T

�
 þ �
�
��T�
 þ �


��T
�� ¼ 0: (3.24)

The only nonzero Christoffel symbols are given in Eq.
(2.25). There are only two conservation equations that
result from Eq. (3.24). For 
 ¼ �, (3.24) reduces to

@�T
�� þ T��=�þ �T�� ¼ 0; or @�ð�EÞ þ P � ¼ 0:

(3.25)

Using the equation of motion (2.39) and Maxwell’s equa-

tion (2.63), one can show that Eq. (3.25) is automatically
satisfied.
The conservation equation for 
 ¼ � amounts to a rela-

tion between the transverse and shear pressures. We find
that P? ¼ P 	, which is satisfied by our expression in
Eqs. (3.13) and (3.18). For the one-dimensional boost-
invariant expansion we had instead for the equation for
the energy density,

@�ð�EÞ þ P ¼ 0: (3.26)

IV. QUASIPARTICLE PHASE-SPACE
DISTRIBUTION FUNCTIONS

For the problem at hand, particle production from clas-
sical electric fields, it is possible to introduce an interpolat-
ing number density via a Bogoliubov transformation that is
an adiabatic invariant. This was done previously [21–24]).
However, when we consider the fully interacting case with
quantum gauge fields then one needs to resort to an ‘‘ef-
fective’’ quasiparticle distribution function that allows one
to reproduce the expectation value of the current and the
energy-momentum tensor. That is, wewant to determine an
effective distribution function fðx; kÞ in analogy with rela-
tivistic kinetic theory (see, for example, Refs. [27,28]) such
that

hJ�i ¼ e
Z

Dkk�fðx; kÞ; (4.1)

and

hT�
i ¼
Z

Dkk�k
fðx; kÞ; (4.2)

where

D k ¼ 2r	ðk0Þ�ðk2 �M2Þ d4k

ð2�Þ3 ffiffiffiffiffiffiffi�g
p : (4.3)

Here, r is a degeneracy factor which counts the number of
species. For our case of quark and antiquark pairs with spin
one-half, we have r ¼ 4. Hence, the renormalized comov-

ing energy density, �E ¼ T00, is given by

�E ¼ 4

�

Z þ1

0

k?dk?
2�

Z þ1

�1
dk�
2�

!k?;k�ð�Þfð�; k?; k�Þ;
(4.4)

and will be identified with the renormalized field theory
result

E ¼ �
�Z

kk?;hð��Þ � PðþÞ
k?;hð��; �Þ þ E2

2

�
ren
; (4.5)

where we have subtracted the divergences coming from the
cosmological term and the charge renormalization. Note
that when the single-particle distribution becomes inde-
pendent of proper time, �, one can easily derive the con-
servation of energy equation in terms of the energy density
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and longitudinal pressure. Consider the identity

4

�

Z þ1

0

k?dk?
2�

Z þ1

�1
dk�
2�

!k?;k�ð�Þ
@fð�; k?; k�Þ

@�
¼ 0;

then integrate by parts to obtain

@ �E
@�

þ
�E þ �P�

�
¼ 0; (4.6)

where the longitudinal pressure is introduced as

�P � ¼ 4

�

Z þ1

0

k?dk?
2�

Z þ1

�1
dk�
2�

ðk�=�Þ2
!k?;k�ð�Þ

fð�; k?; k�Þ:

(4.7)

The quasiparticle phase-space distribution of pairs of
particles and antiparticles in light-cone variables is intro-
duced as

fð�; k?; k�Þ ¼ ð2�Þ3 d6N

d2x?d�d2k?dk�
; (4.8)

such that the pair density is obtained as

d3N

d2x?d�
¼
Z þ1

0

k?dk?
2�

Z þ1

�1
dk�

2�
fð�; k?; k�Þ: (4.9)

Here, we have d2x? ¼ �d�d	 and d2k? ¼ k?dk?d�.
For completeness, we note that in (1þ 1) dimensions the
pair density reads

dN

d�
¼
Z þ1

�1
dk�

2�
fð�; k�Þ: (4.10)

When the pair distribution becomes independent of the
proper time � then we are in the ‘‘out regime’’ and can stop
our calculation as far as determining the particle spectra.
We need to relate this quantity to the center-of-mass dis-
tribution of electrons and positrons produced by the strong
electric field. We introduce the free-particle rapidity, y ¼
1
2 ln½ðEþ kzÞ=ðE� kzÞ�, and ‘‘transverse’’ mass, M? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þm2

q
, by relating them to the Cartesian coordinate

four-momentum in the center-of-mass system, k̂a ¼
ðE;kÞ, by the relation

k̂ a ¼ ðM? coshy;k?;M? sinhyÞ:
The boost that takes one from the center-of-mass coordi-
nates to the comoving frame, where the energy-momentum
tensor is diagonal, is given by tanh� ¼ v ¼ z=t, so that
one can define the ‘‘fluid’’ four-velocity in the center-of-
mass frame as

ua ¼ ðcosh�; 0; 0; sinh�Þ: (4.11)

It is important to relate the momenta canonical to � and �
to the center-of-mass variables. In the out regime we can
identify these canonical momenta from the free particle
(1þ 1)-dimensional Lagrangian in covariant form. We

show now that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
; � ¼ 1

2 ln

�
tþ z

t� z

�
; (4.12)

have as their canonical momenta

k� ¼ Et=�� kzz=�; k� ¼ �Ezþ tkz: (4.13)

Consider the metric ds2 ¼ d�2 � �2d�2 and the free par-
ticle Lagrangian in (1þ 1) dimensions

L ¼ M

2
g�


dx�

ds

dx


ds
: (4.14)

Then we obtain

k� ¼ M
d�

ds
¼ M

��
@�

@t

�
z

dt

ds
þ
�
@�

@z

�
t

dz

ds

�
¼ 1

� ðEt� kzzÞ

¼ k̂aua ¼ M? coshð�� yÞ; (4.15)

and

k� ¼ M
d�

ds
¼ M

��
@�

@t

�
z

dt

ds
þ
�
@�

@z

�
t

dz

ds

�
¼ �Ezþ kzt ¼ ��M? sinhð�� yÞ: (4.16)

It follows that k� ¼ k̂�u� ¼ M? coshð�� yÞ has the

meaning of the energy of the particle in the comoving
frame.
The interpolating phase-space density f of particles

depends on ð�; k?; k�Þ and is found to be � independent.

In order to obtain the center-of-mass particle rapidity and
transverse-momentum distribution, we change variables
from ð�; k�Þ to ðz; yÞ at a fixed proper time �, i.e.,

d6N

d2x?d2k?dzdy
¼ d6N

d2x?d2k?d�dk�









@ð�; k�Þ@ðz; yÞ








�

:

(4.17)

So, from (4.8), we have

ð2�Þ3 d3N

d2k?dy
¼
ZZ

d2x?dz








@ð�; k�Þ@ðz; yÞ









�
fð�; k?; k�Þ;

(4.18)

where the Jacobian is evaluated at a fixed proper time �,







@ð�; k�Þ@ðz; yÞ








�

¼








 @k�=@y @k�=@z

@�=@y @�=@z









�
¼








@k�@y

@�

@z









�

¼ M? coshð�� yÞ
cosh�

: (4.19)

However, since at fixed �, we have







@k�@y









�
¼








@k�@�









�
; (4.20)

we obtain
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@ð�; k�Þ@ðz; yÞ








�

¼ @k�
@z









�
: (4.21)

Calling the integration over the transverse dimensions the
effective transverse size of the colliding ions A? ¼ �R2

eff

we then find from (4.18) that

ð2�Þ3 d3N

d2k?dy
¼ A?

Z
dk�fð�; k?; k�Þ � ð2�Þ3 d3N

d2k?d�
:

(4.22)

The quantity in Eq. (4.22) is independent of y which is a
consequence of the assumed boost invariance. Therefore,
using the property of the Jacobian, we have proven that the
distribution of particles in particle rapidity is the same as
the distribution of particles in fluid rapidity, verifying that
in the boost-invariant regime Landau’s intuition was cor-
rect [29].

We now want to motivate the Cooper-Frye formula used
to calculate the particle spectrum in hydrodynamical mod-
els of particle production [27]. We have that a constant �
surface, which is the freeze-out surface of Landau, is
parametrized as

d�a ¼ A?ðdz; 0; 0; dtÞ ¼ A?�d�ðcosh�; 0; 0; sinh�Þ:
(4.23)

Therefore, we find

k̂ ad�a ¼ A?M?� coshð�� yÞd� ¼ A?jdk�j: (4.24)

Thus, we can rewrite our expression for the field theory
particle spectra as

ð2�Þ3 d3N

d2k?dy
¼ A?

Z
dk�fð�; k?; k�Þ

¼
Z

k̂ad�afð�; k?; k�Þ; (4.25)

where in the integration we keep y and � fixed. Thus, with
the replacement of the thermal single-particle distribution
by the quasiparticle distribution function, we get via the
coordinate transformation to the center-of-mass frame the
Cooper-Frye formula. For completeness, we note that in
(1þ 1) dimensions the particle spectra, dN=dy, are given
by the integral in Eq. (4.10).

The boost-invariant assumption leads to an energy-
momentum tensor which is diagonal in the ð�; �; 	; �Þ
coordinate system which is thus a comoving one. In that
system one has for the matter energy-momentum tensor

T�
 ¼ diagðE;P �; �
2P 	; �

2P �Þ: (4.26)

Thus we find in this approximation that there are two
separate pressures, one in the longitudinal direction and
one in the transverse direction which is quite different from
the thermal equilibrium case. However only the longitudi-
nal pressure enters into the energy conservation equation

dð�EÞ
d�

þ P � ¼ EJ�: (4.27)

It is useful to rewrite the conservation of energy in the out
regime as

dE
d�

þ E þ P�

�
¼ 0: (4.28)

So to the extent that the ultrarelativistic one-dimensional
equation of state E ¼ P� is true, then one has the simple

result

E / ��2: (4.29)

It turns out, as our numerical results show below, that
although p�=" � 1 for part of the period of the oscillation,

during the minima p� ! 0 and this seems to be governing

the falloff which is more like " / 1=�.

V. NUMERICAL RESULTS

Let us review the equations we intend to solve numeri-
cally. The first of these is the polarization equation (2.39)

@�P
ðÞ
k ð�Þ ¼ 2kkð�Þ � PðÞ

k ð�Þ; (5.1)

and the second is the backreaction equation (2.71)

@�Eð�Þ ¼ e

1þ e2ð�e2Þ
X�
p

�
PðþÞ
1;k?;hð��; �Þ �

��

!

þ eEð�Þ
�

ðk2? þM2Þ
�

1

4!5
� 5�2

�

4!7

��
: (5.2)

Here we have subtracted from the integral the adiabatic

expansion of PðþÞ
1;k?;hð��; �Þ.

In order to solve the coupled Dirac and backreaction
equations, we use scaled variables and express � in units of
1=M and the transverse momentum, k?, in units ofM. The
k� momentum is dimensionless. As such, our results are

‘‘independent’’ of the fermion mass,M. Next, we construct
a grid in k? and k� space as follows: The k�-momentum

variable is discretized on a nonuniform piecewise momen-
tum grid with a cutoff at k� ¼ ��; we find that a value of

�� � 500 is necessary to obtain numerical results insen-

sitive with respect to the cutoff. A similar nonuniform grid
is used to discretize the k? variable, k? 2 ½0;��. A fourth-
order Runge-Kutta method is employed to solve the
coupled Dirac equation and backreaction problem. The
results presented here are converged with respect to the
value of the � step and correspond to �� ¼ 5� 10�4.
For the purpose of calculating the subtracted values of

the current Jð�Þ and the components of the matter energy-
momentum tensor, we compute the momentum integrals
symmetrically with respect to the variable �� rather than

k�. The corresponding momentum cutoff in �� space is

chosen to be 20% greater than �max�� to allow for possible
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very large values of Að�Þ, the latter being unknown at the
beginning of the calculation.

The momentum integrals with respect to �� and k? are

performed using a Chebyshev integration method with
spectral convergence [30]. Using this procedure, we found
that a grid of approximately 8000 points in the k� (or ��)

variable and 128 grid points in the k? variable is necessary
to obtain a converged numerical result. As such, the cal-
culations for the backreaction problem in (3þ 1)-
dimensional QED require at least 100 times larger storage
and computational time then the corresponding (1þ 1)-
dimensional QED problem. We note that the dense mo-
mentum grid in the k� direction is required in order to

capture the highly-oscillatory time evolution of the current
and particle density as a function of k� and ��,

respectively.
For illustrative purposes, we took M ¼ 1, e ¼ 1, �0 ¼

1=M ¼ 1, Að�0Þ ¼ 0, and Eð�0Þ ¼ 4. These strong-field
initial conditions have been shown to produce sufficient
fermion pairs at � ¼ �0 for plasma oscillations to take
place. Just like in the (1þ 1)-dimensional case, the con-
servation of the energy-momentum tensor, see Eq. (3.25),
serves as a numerical test: for the results of simulations
reported here, the renormalized energy-momentum tensor
is conserved within machine precision.

In order to keep the size of the simulation to a minimum,
we chose the initial conditions corresponding to the one-
field scenario introduced first in Ref. [24] and summarized
in Sec. II C. In Figs. 1 we illustrate the convergence of our
results with respect to the choice of the transverse-
momentum cutoff, �. For completeness, we depict the
proper-time evolution of the fields, Að�Þ and Eð�Þ, current,
Jð�Þ, energy, �ð�Þ, and transverse pressure, p�ð�Þ, for cut-
off values between 2 and 6. We conclude that for� ¼ 5 the
results are insensitive to the cutoff �, within numerical
accuracy.

It is important to note that our choice of initial condi-
tions results in a time evolution that is not consistent with
the adiabatic expansion for early values of the proper time.
In Fig. 2 we depict the proper-time evolution of the fields,
Að�Þ and Eð�Þ, and current, Jð�Þ, at early times for several
values of the cutoff �. We note that while the proper-time
dynamics converges for � > 5, for earlier times the proper-
time evolution depends on the choice of the cutoff �.
However, for proper-time values � > 5 the nonadiabatic
components of the current dissipate and the adiabatic-
expansion-based subtraction becomes exact. This behavior
is illustrated numerically in Fig. 3, where we depict the
k?-projected distribution of the current for � values of 2, 3,
and 9. We notice that the nonadiabatic oscillations of the
current present at early proper times dampen out and
disappear at later proper times. Therefore, the early
proper-time evolution will be disregarded as ‘‘unphysical.’’
This is a small price to pay in order to keep the storage and
time requirements of our simulation to a minimum. If the

early-time behavior becomes important, then we would
have to revert to the choice of initial conditions referred
to as the two-field scenario in Ref. [24], which is consistent
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FIG. 1 (color online). Convergence of the proper-time evolu-
tion of the electromagnetic fields, current, energy, and longitu-
dinal pressure with respect to the transverse-momentum (k?)
cutoff �, in (3þ 1)-dimensional QED. Here we choose M ¼ 1,
Að�0Þ ¼ 0, and Eð�0Þ ¼ 4.
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with the adiabatic renormalization procedure employed
here. In our case, we are ultimately interested in calculat-
ing the density distributions of fermion pairs created at late
times and these observables are not affected, within nu-
merical error, by our choice of initial conditions. We note
that a similar approach was taken in Refs. [31,32].

In Fig. 4, we compare the proper-time evolution of the
electromagnetic field, Að�Þ, electric field, Eð�Þ, and cur-
rent, Jð�Þ, for (1þ 1)- and (3þ 1)-dimensional QED,
respectively. Similarly, in Fig. 5 we depict the proper-
time evolution of the matter components of the energy-
momentum tensor. We note that in (1þ 1) dimensions the
fields evolve much faster than in (3þ 1) dimensions. Also,
in (3þ 1)-dimensional QED the energy and longitudinal-
pressure densities are very, very close in magnitude, which
in turn results in a small transverse pressure, p?ð�Þ.
Qualitatively, we also note that the modulation observed
in the proper-time evolution of the current and longitudinal

pressure in (1þ 1)-dimensional QED are not present any
longer in (3þ 1) dimensions. Also by inspecting the two
upper panels in Fig. 5, we notice that in 3þ 1 dimensions
p� � ". However, the ratio p�=" becomes close to zero

near the minimum of the oscillation and this in turn leads to
�" to be almost constant instead of going as 1=� using the
arguments coming from the energy conservation equation,
Eq. (4.28).
Finally, the proper-time evolution of the density of pairs,

dN=dy, are depicted in Fig. 6. Particles are being created
corresponding to the current gradients, with the major
contribution corresponding to the initial current gradient,
and subsequent smaller step increases before the particle
density saturates. At late values of the proper time, the
ratios �"ð�Þ=½dN=dy� are seen to approach a constant
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FIG. 2 (color online). Early proper-time evolution of the elec-
tromagnetic fields and current with respect to the transverse-
momentum (k?) cutoff�, in (3þ 1)-dimensional QED. We note
that for � < 5 the results are dependent on the cutoff, whereas at
later proper times the results become insensitive to the cutoff.
This is an artifact of our choice of initial conditions, which are
not consistent at early times with the adiabatic-expansion-based
substraction scheme.
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FIG. 3 (color online). Proper-time evolution of the transverse
(k?-projected) distribution of the current for � values of 2, 3, and
9 as a function of the transverse-momentum (k?) cutoff �. The
oscillations of the transverse distributions of the current present
at early proper times are consequences of the inconsistency
between the adiabatic-expansion regularization scheme and our
choice of initial conditions which are designed to keep the
storage and time requirements of the simulation to a minimum.
At later proper times, these oscillations dampen out and even-
tually disappear. Therefore, the early proper-time evolution
should be regarded as ‘‘unphysical’’ and will be disregarded.
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consistent with the hydrodynamical picture, which relates
the energy in a bin of rapidity divided by the energy of a
single particle with that rapidity with the number of parti-
cles in a bin of rapidity as explained in Ref. [23]. In the real
problem we expect that interactions between the fermions
will eliminate the oscillations observed here.

The proper-time evolution of the momentum-dependent
longitudinal pair-density distribution, n��

, defined as

n��
¼ 2�

A?
d2N

dk�dy
¼
Z þ1

0

k?dk?
2�

fð�; k?; k�Þ; (5.3)

and the transverse pair-density distribution, nk? , defined as

nk? ¼ ð2�Þ2
A?

d3N

d2k?dy
¼
Z þ1

�1
dk�
2�

fð�; k?; k�Þ; (5.4)

in (3þ 1)-dimensional QED are shown in Fig. 7 (see also
Ref. [33]). We note that the centroid of the particle-density
distribution, n��

, oscillates between positive and negative

values of ��, similar to the (1þ 1)-dimensional QED

case.
In Fig. 8 we compare the transverse-momentum distri-

bution given by the constant field exact solution Eq. (1.2)
with the results of our numerical solution for eE ¼ 4. Part
of the results are expected, that is at small transverse
momenta the distribution of particles is similar to the static
case but with a smaller effective field since the field is
decreasing during the first phase of particle production.
What is unexpected is that, in the problem with backreac-
tion, there is a new tail in the transverse-momentum dis-
tribution which falls exponentially with an effective
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jeEj ¼ 50. This is a totally surprising result whose origin
we do not yet have a simple explanation for.

VI. CONCLUSIONS

We have for the first time calculated the transverse
distribution of jets produced by an initial strong electric
field including the effects of backreaction. We have com-
pared the results of our (3þ 1)-dimensional calculations
(for ‘‘hydrodynamic’’ quantities as well as for the proper-
time evolution of the electric field and current) with their
(1þ 1)-dimensional counterparts. We find that the electric
field degrades much quicker in (3þ 1) dimensions than in
(1þ 1) dimensions. Also secondary oscillations in the
current and in the longitudinal pressure, present in (1þ
1) dimensions seem to be absent in (3þ 1) dimensions
suggesting that the extra degrees of freedom perform some
smoothing. We now have the first numerical results for the
transverse-momentum distribution function of fermion
pairs which we can compare the exact results for the
constant field problem. We find that unlike the constant
field case, the distribution is bimodal. At modest k2? 	
5m2 the transverse distribution is similar to the constant
field case with a reduced (75%) effective eE for eE0 ¼ 4.
For larger transverse momentum k2? 
 10m2 the trans-

verse distribution function has a tail described by an effec-
tive eE which is of the order of 50. This is a totally new
feature that is as of yet not understood simply. In a related
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paper [34] we will also consider a transport approach to the
(3þ 1)-dimensional problem and show that such a semi-
classical picture works better in (3þ 1) than in (1þ 1)
dimensions.
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APPENDIX A: NOTATION

In this appendix, we list our notation and conventions
used throughout this paper. We use a boldface k to desig-
nate the complete set of mode variables, k and km subsets
of the full set, and k� the cylindrical coordinate set. In

addition, the set p substitutes the �� kinetic momentum

for k�. These sets are given by

k � ðk?; h; k�;mÞ; (A1a)

k � ðk?; h; k�Þ; (A1b)

p � ðk?; h; ��Þ; (A1c)

km � ðk?; mÞ; (A1d)

k� � ðkx; ky; k�Þ ¼ ðk?; �; k�Þ: (A1e)

Sums over these quantities indicate the following integrals
and sums

X
k

�
Z þ1

0

k?dk?
2�

Z þ1

�1
dk�
2�

Xþ1

m¼�1

X
h¼�1

; (A2a)

X
k

�
Z þ1

0

k?dk?
2�

Z þ1

�1
dk�
2�

X
h¼�1

; (A2b)

X
p

�
Z þ1

0

k?dk?
2�

Z þ1

�1
d��

2�

X
h¼�1

; (A2c)

X
k�

�
Z þ1

�1
dkx
2�

Z þ1

�1
dky
2�

Z þ1

�1
dk�

2�
(A2d)

¼
Z 1

0

k?dk?
2�

Z 2�

0

d�

2�

Z þ1

�1
dk�

2�
: (A2e)

We also use the following notation for �-functions:

�k;k0 � ð2�Þ2�h;h0�m;m0
�ðk? � k0?Þffiffiffiffiffiffiffiffiffiffiffiffi

k?k0?
q �ðk� � k0�Þ: (A3)

In a similar way, we put x � ð�; 	; �Þ. The sum over x
means

X
x

�
Z 1

0

�d�

2�

Z 2�

0

d	

2�

Z þ1

�1
d�

2�
; (A4)

and �x;x0 means

�x;x0 � �ð�� �0Þffiffiffiffiffiffiffiffi
��0p �ð	� 	0Þ�ð�� �0Þ: (A5)

APPENDIX B: TRANSVERSE HELICITY
EIGENVECTORS

In this section we derive transverse helicity eigenvectors
and show how they can be used to expand solutions of the
Dirac equation in boost-invariant coordinates. The
Hermitian two-component transverse helicity operator
H? is defined in momentum space by

H? ¼ 1

k?
ðk� �Þ � êz ¼ 0 �ie�i�

þieþi� 0

� �
; (B1)

where kx ¼ k? cos� and ky ¼ k? sin�. We write the ei-

genvalue equation for this operator as

H?��;h ¼ h��;h; (B2)

with eigenvalues h ¼ �1 and orthogonal eigenvectors

��;h ¼ 1ffiffiffi
2

p 1
ihei�

� �
: (B3)

We note that �z��;h ¼ ��;�h, and that

ð�xkx þ �ykyÞ��;h ¼ ihk?��;�h: (B4)

For the coordinate system x� ¼ ð�; x; y; �Þ, Dirac’s
equation is

f~��ð�; �Þ½i@� � gA�ð�Þ� �Mgc ð�; x; y; �Þ ¼ 0; (B5)

where now

~��ð�Þ ¼ cosh��0 � sinh��3;

~��ð�; �Þ ¼ ð� sinh��0 þ cosh��3Þ=�;
with ~�x ¼ �1 and ~�y ¼ �2. We next boost to a coordinate
system where � ¼ 0 by setting

c ð�; x; y; �Þ ¼ Sð�Þ�0ð�; x; y; �Þ= ffiffiffi
�

p
; (B6)

then (B5) becomes

fi�0@� þ i�1@x þ i�2@y

þ �3½i@� þ gAð�Þ�=��Mg�0ð�; x; y; �Þ ¼ 0;

(B7)

which is what we want to solve. So let us first introduce the
Fourier transform

�0ð�; x; y; �Þ ¼ �0
kð�Þeiðkxxþkyyþk��Þ; (B8)

where k ¼ ðk�; kx; kyÞ. Then (B7) becomes

½i�0@� � �1kx � �2ky � �3��ð�Þ �M��0
kð�Þ ¼ 0;

(B9)

where ��ð�Þ ¼ ½k� � eAð�Þ�=� is the kinetic momentum.

Using Eq. (B4), we see that (B9) is separable if we put
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�0
kð�Þ ¼

�ðþÞ;kð�Þ��;þh

�ð�Þ;kð�Þ��;�h

� �
; (B10)

where �ð�Þ;kð�Þ now satisfy the two-component equation

i@�
�ðþÞ;kð�Þ
�ð�Þ;kð�Þ

� �
¼ þM ��ð�Þ � ihk?

��ð�Þ þ ihk? �M

� �

� �ðþÞ;kð�Þ
�ð�Þ;kð�Þ

� �
;

which agrees with Eq. (2.35). Near � ¼ �0, there are
positive and negative energy solutions to these equations

which we label by  ¼ �1. So the Fermi field �̂ð�; x; y; �Þ
can be expanded as

�̂0ð�; x; y; �Þ ¼ X
k�

X
h¼�1

X
¼�1

ÂðÞ
k�;h

�ðÞ
ðþÞ;kð�Þ��;þh

�ðÞ
ð�Þ;kð�Þ��;�h

0
@

1
A

� eiðk��þkxxþkyyÞ; (B11)

where ÂðÞ
k�;h

are the creation and annihilation operators for

the state described by ðk�; h; Þ. Now let us introduce

cylindrical coordinates, x ¼ � cos	 and y ¼ � sin	, so that

kxxþ kyy ¼ k?� cosð	��Þ: (B12)

Now the generating function for Bessel functions is given
by

exp½zðt� 1=tÞ=2� ¼ Xþ1

m¼�1
tmJmðzÞ: (B13)

If we put t ¼ ieið	��Þ and z ¼ k?�, this becomes

exp½ik?� cosð	��Þ� ¼ Xþ1

m¼�1
imeimð	��ÞJmðk?�Þ:

Using these results in Eq. (B11), we find in cylindrical
coordinates the expansion,

�̂0ð�; �; 	; �Þ ¼ X
k�

Xþ1

m¼�1

X
h¼�1

X
¼�1

ÂðÞ
k�;h

� eik��
�ðÞ

ðþÞ;kð�Þ��;þh

�ðÞ
ð�Þ;kð�Þ��;�h

0
@

1
Aim

� eimð	��ÞJmðk?�Þ: (B14)

Now let us define the Fourier transform pair

imÂðÞ
k�;k?;m;h ¼

Z 2�

0

d�

2�
ÂðÞ
k�;k?;�;he

�im�; (B15a)

ÂðÞ
k�;k?;�;h ¼

Xþ1

m¼�1
imÂðÞ

k�;k?;m;he
im�: (B15b)

So using (B15a), and puttingm ! mþ 1 in the second and
fourth components, Eq. (B14) becomes

�̂ 0ð�;�;	;�Þ¼X
k

X
¼�1

ÂðÞ
k eik��

�ðÞ
ðþÞ;kð�Þ�0

km;þhð�;	Þ
�ðÞ

ð�Þ;kð�Þ�0
km;�hð�;	Þ

0
@

1
A;

(B16)

where now

�0
km;h

ð�; 	Þ ¼ 1ffiffiffi
2

p eim	Jmðk?�Þ
�heiðmþ1Þ	Jmþ1ðk?�Þ

� �
: (B17)

Finally, we boost to a coordinate system where 	 ¼ 0 by

multiplying �̂0ð�; �; 	; �Þ by S�1
� ð	Þ, which can be written

as

S�1
� ð	Þ ¼ cosð	=2Þ � �1�2 sinð	=2Þ

¼
eþi	=2 0 0 0
0 e�i	=2 0 0
0 0 eþi	=2 0
0 0 0 e�i	=2

0
BBB@

1
CCCA; (B18)

so that ĉ ðxÞ ¼ Sð	; �Þ�̂ðxÞ and from Eq. (B16), we find

�̂ðxÞ ¼ S�1
� ð	Þ�̂0ðxÞ ¼X

k

X
¼�1

ÂðÞ
k �ðÞ

k ðxÞ; (B19)

where

�ðÞ
k ðxÞ � eik��

�ðÞ
ðþÞ;kð�Þ�km;þhð�; 	Þ

�ðÞ
ð�Þ;kð�Þ�km;�hð�; 	Þ

0
@

1
A; (B20)

and where

�km;hð�; 	Þ ¼
eiðmþ1=2Þ	ffiffiffi

2
p Jmðk?�Þ

�hJmþ1ðk?�Þ
� �

(B21)

in agreement with the field expansion given in Eqs. (2.30),
(2.32), and (2.33) in Sec. II B. We have shown here that the
separation of variables method for the Dirac equation we
used in Sec. II B can easily be understood as an expansion
of transverse helicity eigenvectors in boost-invariant
coordinates.
The transverse helicity eigenvectors given in Eq. (B21)

satisfy the eigenvalue equation,�
i�y

�
@� þ 1

2�

�
þ i�x

@	
�

�
�km;hð�; 	Þ ¼ hk?�km;hð�; 	Þ;

(B22)

are normalized,

Z 1

0
�d�

Z 2�

0
d	�km;hð�; 	Þ�k0m;h0 ð�; 	Þ

¼ �h;h0�m;m0
�ðk? � k0?Þffiffiffiffiffiffiffiffiffiffiffiffi

k?k0?
q ; (B23)

and complete
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Z 1

0

k?dk?
2�

Xþ1

m¼�1

X
h¼�1

�km;hð�; 	Þ�y
km;h

ð�0; 	0Þ

¼ �ð	� 	0Þ�ð�� �0Þffiffiffiffiffiffiffiffi
��0p : (B24)

APPENDIX C: ADIABATIC EXPANSION OF
SOLUTIONS OF THE DIRAC EQUATION

In this section, we find an adiabatic expansion of the
positive energy solutions of the Dirac equation for a slowly
varying field Að�Þ. It is simplest to obtain an adiabatic

expansion of the polarization vector PðÞ
k ð�Þ, which we

introduced in Sec. II B. The equation of motion of the
polarization vector was given in Eq. (2.39) as

_P ðÞ
k ð�Þ ¼ 2kkð�Þ � PðÞ

k ð�Þ; (C1)

where kkð�Þ is given by

k kð�Þ ¼ ��ð�Þê1 þ hk?ê2 þMê3: (C2)

The initial condition at � ¼ �0 is given in Eq. (2.53) as

P ðÞ
k ð�0Þ � PðÞ

0;k ¼ k0;k=!0;k: (C3)

For slowly varying values of ��ð�Þ, PðÞ
k ð�Þ simply pre-

cesses about the slowly varying value of kkð�Þ. In order to
count derivatives with respect to �, let us put

@� � �@�: (C4)

We next expand PðÞ
k ð�Þ in powers of � by writing

P ¼ Pð0Þ þ �Pð1Þ þ �2Pð2Þ þ � � � ;
_P ¼ � _Pð0Þ þ �2 _Pð1Þ þ �3 _Pð2Þ þ � � �

(C5)

Here and in the following, we omit momentum and time
dependencies and the ðÞ label. The superscript now counts
powers of � and the dot refers to derivatives with respect to
�. So substitution of (C5) into Eq. (C1) becomes

� _Pð0Þ þ �2 _Pð1Þ þ �3 _Pð2Þ þ � � �
¼ 2k� ½Pð0Þ þ �Pð1Þ þ �2Pð2Þ þ � � ��: (C6)

Equating equal powers of � gives

2k� Pð0Þ ¼ 0; (C7a)

2k� Pð1Þ ¼ _Pð0Þ; (C7b)

2k� Pð2Þ ¼ _Pð1Þ; (C7c)

2k� Pð3Þ ¼ _Pð2Þ; etc � � � (C7d)

Let us introduce transverse and longitudinal components of

the polarization vector by writing Pð�Þ ¼ Pð�Þ
T þ Pð�Þ

L ,

where k � Pð�Þ
T ¼ 0 and k� Pð�Þ

L ¼ 0. So Eqs. (C7) deter-
mine only the transverse components of the polarization

vector. The longitudinal portion is then fixed by the nor-
malization requirement, as we will see below.

From Eq. (C7a), Pð0Þ is entirely longitudinal and has the
normalized solution

P ð0Þ ¼ k=!; ! ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

� þ k2? þM2
q

: (C8)

So Pð0Þ ¼ P0. So we have

_P ð0Þ ¼
_k

!
� k _!

!2
¼

_k

!
� kð _k � kÞ

!3
¼ k� ð _k� kÞ

!3
: (C9)

Then Eq. (C7b) becomes

2k� Pð1Þ ¼ k� ð _k� kÞ
!3

; (C10)

so the transverse component of Pð1Þ is given by

P ð1Þ
T ¼

_k� k

2!3
: (C11)

We will choose the longitudinal component Pð1Þ
L ¼ 0, so

that

P ð1Þ ¼
_k� k

2!3
¼ � _��

2!3
ðMê2 � hk?ê3Þ: (C12)

Then to first order, P ¼ Pð0Þ þ �Pð1Þ, the polarization vec-
tor is normalized to this order, since

P2 ¼ P2
0 þ 2�Pð0Þ � Pð1Þ ¼ 1: (C13)

From (C12), we find

_Pð1Þ ¼
€k� k

2!3
� 3ð _k� kÞ _!

2!4
¼

€k� k

2!3
� 3ð _k� kÞð _k � kÞ

2!5

¼ k�
�
3ð _k � kÞ _k�!2 €k

2!5

�
: (C14)

Then Eq. (C7c) becomes

2k� Pð2Þ ¼ k�
�
3ð _k � kÞ _k�!2 €k

2!5

�
; (C15)

so adding a longitudinal part to Pð2Þ, we find

P ð2Þ ¼ 3ð _k � kÞ _k�!2 €k

4!5
þN 2k; (C16)

whereN 2 is to be fixed by the normalization requirement.
From the expansion (C6), we find to second order

P2 ¼ 1þ �2½Pð1Þ2 þ 2Pð0Þ � Pð2Þ� þ � � � ¼ 1: (C17)

So we want to choose N 2 such that Pð1Þ2 þ 2Pð0Þ � Pð2Þ ¼
0. This gives the equation

Pð0Þ � Pð2Þ ¼ 3ð _k � kÞ2 �!2 €k � k
4!6

þN 2!

¼ � 1

2
Pð1Þ2 ¼ �j _k� kj2

8!6
; (C18)
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from which we find

N 2 ¼ � 3ð _k � kÞ2 �!2 €k � k
4!7

� j _kj2!2 � ðk � _kÞ2
8!7

¼ � 1

8

_�2
�

!5
þ 1

4

�� €��

!5
� 5

8

�2
� _�2

�

!7
:

(C19)

So to second adiabatic order, the polarization vector is
given by

P ¼ Pð0Þ þ �Pð1Þ þ �2Pð2Þ þ � � �

¼ k

!
þ �

_k� k

2!3
þ �2

�
3ð _k � kÞ _k�!2 €k

4!5
þN 2k

�
þ � � � (C20)

In component form, we find

P1 ¼
��

!
� �2ðk2? þM2Þ

�
1

4

€��

!5
� 5

8

�� _�2
�

!7

�
þ � � � ; (C21a)

P2 ¼ hk?
!

� �M
_��

2!3
þ �2hk?

�
� 1

8

_�2
�

!5
þ 1

4

�� €��

!5

� 5

8

�2
� _�2

�

!7

�
þ � � � ; (C21b)

P3 ¼ M

!
þ �hk?

_��

2!3
þ �2M

�
� 1

8

_�2
�

!5
þ 1

4

�� €��

!5

� 5

8

�2
� _�2

�

!7

�
þ � � � ; (C21c)

which completes the adiabatic analysis used in this paper.
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