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I. INTRODUCTION

The longitudinal nucleon structure function FL, mea-
sured in the deep inelastic lepton-nucleon scattering, is
proportional to the cross section for the interaction of the
longitudinally polarized virtual photon with a nucleon.
This observable is of particular interest since it is directly
sensitive to the nucleon gluon distribution. In the naive
quark-parton model FL vanishes (the Callan-Gross rela-
tion). This is due to the quark spin 1=2 and the fact that the
struck quark has limited transverse momentum in the naive
parton model. In the QCD improved parton model, how-
ever, the gluon interactions cause the average quark trans-
verse momentum h�2

Ti to grow with increasing value of the
(minus) photon virtuality Q2. As a result, FL acquires a
nonzero leading twist contribution proportional to �sðQ2Þ.
At small values of the Bjorken variable x, FL is driven
mainly by gluons through the transition g ! q �q. There-
fore, it can be used for the extraction of the gluon distri-
bution in a nucleon providing a crucial test of the validity
of perturbative QCD in this kinematical range.

The experimental determination of FL is in general
difficult and requires a measurement of the inelastic cross
section at the same values of x and Q2 but for different
center-of-mass energy of the incoming beams. This was
achieved at the DESY electron-proton collider HERA by
changing the proton beam energy with the lepton beam
energy fixed. The structure function FL was measured both
by the H1 [1] and ZEUS [2] Collaborations in theQ2 range
of 12–90 and 24–110 GeV2, respectively.

At small x, the nucleon structure functions receive large
logarithmic corrections coming from resummation of large
powers of �s ln1=x. This procedure goes beyond the stan-
dard collinear factorization and is achieved by the use of
the kT factorization formalism [3,4] with the unintegrated

gluon density found as a solution to the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) [5–7] or Ciafaloni-Catani-
Fiorani-Marchesini (CCFM) evolution equations [8–11].
Since the small x expansion receives large corrections at
higher orders, resummation at small x is in general neces-
sary in order to obtain predictions which are in agreement
with data.
The objective of this paper is the calculation of FL

within the kT factorization formalism using the uninte-
grated gluon density obtained from the Kwieciński-
Martin-Staśto (KMS) approach [12], which provides a
convenient framework for the unification of the
conventional Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) [13–15] and small x BFKL evolution equations.
From the point of view of the small x hierarchy, the KMS
approach includes important effects of higher order resum-
mation. In addition, we systematically analyze the relation
between this approach and the collinear and dipole ap-
proaches, investigating the role of different contributions
to FL in various kinematical regions. We especially em-
phasize the role of the exact gluon kinematics in the kT
factorization formulas and demonstrate numerically that
this kinematics has a sizable effect on the predictions for
FL, and thus, on the extracted gluon density. We compare
our computations with the experimental data at small x
from the H1 [1] and ZEUS [2] Collaborations.
The paper is organized as follows. In Sec. II we recall the

kT factorization formalism for the longitudinal structure
function. In Sec. III we review the unified BFKL/DGLAP
approach for the unintegrated gluon density which includes
important resummation effects at small x. In Sec. IV we
discuss the relation of the kT factorization with the col-
linear and dipole approaches. In Sec. V we present a
systematic numerical analysis of the various approaches
and compare them with the HERA data, as well as provide
the extrapolations to the LHeC (large hadron-electron
collider [16]) energies. In the last section we summarize
our conclusions.
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II. FL FROM THE kT FACTORIZATION
APPROACH

In the limit of the high center-of-mass energy, or equiv-
alently at small values of Bjorken x, the nucleon structure
functions can be computed from the kT factorization ap-
proach [3,4]. Basic diagrams for the boson-gluon fusion
which are taken into account in the high energy limit are
depicted in Fig. 1. The gluon is off shell with its virtuality
dominated by the transverse momentum kT � k (see
Fig. 1). Since we are interested in FL, the photon is
longitudinally polarized. Thus, in the kT factorization ap-
proach the longitudinal structure function is then given by

FLðx;Q2Þ ¼ 2
Q4

�2

X
q

e2q
Z dk2

k4

Z 1

0
d�

Z
d2�0�sð�2Þ

� �2ð1� �Þ2 1
2

�
1

D1q

� 1

D2q

�
2
f

�
x

z
; k2

�
; (1)

where the denominators D1q and D2q read

D1q ¼ �2 þ �ð1� �ÞQ2 þm2
q; (2)

D2q ¼ ð�� kÞ2 þ �ð1� �ÞQ2 þm2
q; (3)

the quark transverse momentum �T � �, the shifted trans-
verse momentum is given by �0 ¼ �� ð1� �Þk, and the
argument of the unintegrated gluon density fðx=z; k2Þ is
defined to be

x

z
� xg � x

�
1þ �02 þm2

q

�ð1� �ÞQ2
þ k2

Q2

�
: (4)

The variable � is the corresponding Sudakov parameter
appearing in the quark momentum decomposition,

� ¼ xqp
0 � �q0 þ � (5)

xq ¼ x

�
1þ m2

q þ �0

ð1� �ÞQ2

�
; (6)

with the following lightlike base vectors:

p0 ¼ p�M2x

Q2
q; q0 ¼ qþ xp; (7)

where M denotes the nucleon mass, mq is the quark mass

which we keep nonzero only for charm quark, p is the
target-proton four-momentum, and q is the virtual photon
four-momentum. The argument in the strong coupling
constant is taken to be

�2 ¼ �02 þ k2 þm2
q: (8)

The integration over the gluon virtuality k2 in Eq. (1) needs
special care in the low momenta region, k2 < k20 ’
1 GeV2. We will discuss this important element of our
presentation in the forthcoming sections.
The function fðy; k2Þ is the unintegrated gluon distribu-

tion, which in the small x limit is related to the conven-
tional (integrated) gluon distribution gðy;�2Þ by

ygðy;�2Þ ¼
Z �2 dk2

k2
fðy; k2Þ: (9)

The integration limits in (1) are constrained by the condi-
tion xg < 1 while the condition xg > x is automatically

satisfied from Eq. (4). We note that in the strict high energy
limit the argument of the unintegrated gluon distribution
would be set to the Bjorken x. This is also the usual
procedure in the dipole picture approach which we discuss
in Sec. IV. Here, we take into account the effects of exact
kinematics which results in the shift of the gluon xg to

larger values than x. This is related to the fact that the
energy needed to produce the q �q pair is non-negligible
even when the total center-of-mass energy is very large.
Although this effect is nonleading in the leading logarith-
mic small x approximation, it is nevertheless numerically
quite important, as we will illustrate in Sec. V.
It also has been shown in the dipole picture that by

including the exact kinematics in the argument of the gluon
distribution, the transverse size of the quark-antiquark
dipole is no longer conserved [17,18] (see Sec. IVB).

III. UNIFIED DGLAP AND BFKL EQUATIONS

The main input to the kT factorization formula is the
unintegrated gluon distribution fðy; k2Þ. At small x, this
distribution can be found from the solution to the BFKL
[5–7] or the CCFM equations [8–11]. These equations give
predictions for the unintegrated gluon density as a function
of the transverse momentum squared k2 and x (and also an
external scale Q in the case of the CCFM equation) pro-
vided x � 1. A more rigorous approach which includes the
operator definitions of unintegrated gluon densities is pre-
sented in [19]. Here, we will use the unintegrated density
obtained from the solution to the set of unified BFKL and
DGLAP equations, which includes the small x resumma-
tion effects. The full formalism, called the KMS approach,
was constructed in [12] and here we only review main
elements of this approach.

FIG. 1. Quark box diagrams in the photon-gluon fusion pro-
cess used in the kT factorization formula.
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A. Equation for the unintegrated gluon density

In the KMS approach [12] one constructs the evolution
equation for the unintegrated gluon distribution function
which includes the leading order BFKL kernel with the
kinematical constraint and the DGLAP part of the splitting
function. The solution to the leading order BFKL equation
is well known [20], giving very fast growth of the gluon
density with the decreasing value of x. It can be recast into
the symbolic form:

fðx; k2Þ � x��; (10)

where � ’ 0:5 is the so-called hard Pomeron intercept.
This fast growth was shown to be incompatible with the
experimental data which exhibit an effective intercept
� ’ 0:3.

The next-to-leading corrections to the BFKL equation
turned out to be very large [21–23] and it became imme-

diately apparent that additional resummations are neces-
sary. In the KMS approach one uses the leading
logarithmic approximation for the BFKL kernel but with
substantial modifications. One of them is the kinematical
constraint [24,25] which accounts for a large portion of the
next-to-leading order corrections. It is important to stress
that this constraint goes beyond the next-to-leading order
in logarithms of x, and is responsible for partial resumma-
tion of the small x series [26]. Another modification in the
KMS approach is a nonsingular part in 1=z of the splitting
function Pgg in the BFKL kernel in addition to the already

included singular part. In a series of papers [27–29] (see
also [30–35]) it was shown in detail how these modifica-
tions generate higher order terms in the small x expansion.
The final equation in the KMS approach, which takes

into account all the modifications mentioned above, has the
following form:

fðx; k2Þ ¼ ~fð0Þðx; k2Þ þ ��Sðk2Þk2
Z 1

x

dz

z

Z
k2
0

dk02

k02

�fðxz ; k02Þ�ðk2z � k02Þ � fðxz ; k2Þ
jk02 � k2j þ fðxz ; k2Þ

½4k04 þ k4�1=2
�

þ ��Sðk2Þ
Z 1

x

dz

z

�
z

6
PggðzÞ � 1

�Z k2

k2
0

dk02

k02
f

�
x

z
; k02

�
þ �Sðk2Þ

2�

Z 1

x
dzPgqðzÞ�

�
x

z
; k2

�
; (11)

where the strong coupling constant ��s � �sNc=�. The
first term on the right-hand side is the nonperturbative
input to be specified below, while the second term contains
the leading logarithmic BFKL kernel with the kinematical
constraint given by the theta function. The third term
contains the DGLAP splitting function PggðzÞ without the
singular term in z, and the last term is the contribution from
the quark to gluon transition with� being the singlet quark
distribution. The input function for this integral equation is
chosen to be

~f ð0Þðx; k2Þ ¼ �Sðk2Þ
2�

Z 1

x
dzPggðzÞ xz g

�
x

z
; k20

�
: (12)

Note that the special form of the input is dictated by the
fact that Eq. (11) only involves fðx; k2Þ in the perturbative
domain, k2 > k20, where k

2
0 is a nonperturbative cutoff taken

to be equal k20 ¼ 1 GeV2. The gluon input (12) is provided
by the conventional gluon distribution xgðx; k20Þ. This guar-
antees consistency with the DGLAP evolution equations
since the input in both approaches is exactly of the same. In
this way, the necessity of parametrizing the unintegrated

gluon distribution in the nonperturbative regime, k2 < k20,
is avoided.

B. Equation for the singlet quark density

In the KMS approach the equation for the unintegrated
gluon density was supplemented by the second equation
for the quark density. These two equations formed the
coupled system of equations (similarly to the DGLAP
equations) for the functions fðx; k2Þ and �ðx; k2Þ. The sea
quark contribution was evaluated from the kT factorization
theorem at small x,

SðkÞq ðx;Q2Þ ¼
Z 1

x

dz

z

Z dk2

k2
SðboxÞq ðz; k2; Q2Þfðxg; k2Þ;

(13)

where SðboxÞq describes the quark box contributions, shown
in Fig. 1, which implicitly includes the integration over the
quark transverse momentum �. The explicit expression for
(13) reads

SðkÞq ðx;Q2Þ ¼ Q2

4�2

Z dk2

k4

Z 1

0
d�

Z
d2�0�S

�
½�2 þ ð1� �Þ2�

�
�

D1q

� �� k

D2q

�
2 þ ½m2

q þ 4Q2�2ð1� �Þ2�
�

1

D1q

� 1

D2q

�
2
�

� f

�
x

z
; k2

�
�

�
1� x

z

�
; (14)
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where the quantities �0, D1q, D2q, and xg were defined in
Sec. II.

The singlet quark momentum distribution contains both
the sea and valence quarks. The contribution to the singlet
quark distribution was calculated differently depending on
the region of the transverse momenta. There are three
regions of interest for k2 and �02:

(1) nonperturbative: k2, �02 < k20,
(2) strongly ordered with low gluon transverse mo-

menta: k2 < k20 < �02,
(3) perturbative: k2 > k20.
In the nonperturbative region, the sea contribution is

assumed to be dominated by the soft-Pomeron exchange.
This part is parametrized phenomenologically in the fol-
lowing form:

SðsoftÞðxÞ ¼ SPu þ SPd þ SPs ; (15)

with the soft-Pomeron contribution

SPu ¼ SPd ¼ 2SPs ¼ CPx
�0:08ð1� xÞ8: (16)

The second contribution comes from the region of small
transverse momenta of the gluon, k2 < k20 < �02. In this

region the strongly ordered approximation for the quark-
gluon transition is applied and the relevant contribution is
given by the following formula:

SðcollÞðx;Q2Þ ¼
Z 1

x

dz

z
SðboxÞq ðz; k2 ¼ 0; Q2Þ x

z
g

�
x

z
; k20

�
;

(17)

where the on-shell approximation, k2 ¼ 0, is applied to

evaluate SðboxÞq .
In the perturbative domain, k2 > k20, the quark contribu-

tion is evaluated from the kT factorization formula. The
final expression for the singlet quark distribution is taken to
be the sum of the contributions from the three discussed
regions

� ¼ ðSðsoftÞuds þ SðcollÞuds þ SðkÞudsÞ þ ðSðcollÞc þ SðkÞc Þ þ V: (18)

Note that for the charm evaluation we did not use the soft
contribution since we assume that charm is generated
dynamically from gluons and that there is no soft or non-
perturbative charm contribution.
Using the kT factorization and all the terms discussed

above, one finds the final equation for the singlet distribu-
tion � in the KMS approach:

�ðx; k2Þ ¼ SðsoftÞðxÞ þX
q

Z a

x

dz

z
SðboxÞq ðz; k02 ¼ 0; k2;m2

qÞ xz g
�
x

z
; k20

�
þ Vðx; k2Þ

þX
q

Z 1

k2
0

dk02

k02
Z 1

x

dz

z
SðboxÞq ðz; k02; k2;m2

qÞf
�
x

z
; k02

�
þ

Z k2

k2
0

dk02

k02
�Sðk02Þ
2�

Z 1

x
dzPqqðzÞSuds

�
x

z
; k02

�
; (19)

where SðsoftÞðxÞ is given by Eq. (15) and the uds subscript indicates that the additional S ! S term is only included for the
light quarks. Equations (19) and (11) form a set of equations to be solved in the KMS approach.

The final formula used for the calculation of the longitudinal structure function FL from the kT factorization formalism
with the KMS approach reads

FLðx;Q2Þ ¼ Q4

�2

X
q

e2q
Z dk2

k4
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q

e2q
Z 1
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y

�
x

y

�
2
�
1� x

y

�
ygðy; k20Þ

�
; (20)

where the cutoff for the gluon momentum k20 ¼ 1 GeV2

and the nonperturbative input was taken to be

ygðy; k20Þ ¼ Nð1� yÞ� (21)

with the parameters N ¼ 1:57 and � ¼ 2:5, which were
found from a fit to the HERA data on the structure function
F2, using the same approach. In the forthcoming, we will
discuss in detail the relation of the kT factorization formula
(20) to those from other approaches.

It is interesting to see what is the magnitude of the
separate contributions to FL in Eq. (20). In Fig. 2 we

show the breakdown of FL into the contributions
from gluons from the boson-gluon box (first term),
quarks (second term) and the nonperturbative gluon
input (third term). The nonperturbative input stays
nearly constant as a function of x and Q2. At low x the
dominant contribution is from the gluon density in the
kT factorization framework. However, this contribution
is small at x > 0:01 and at small values of Q2. This is
due to the kinematic effects since phase space for the
gluon emissions shrinks in this regime. On the other
hand, the quark contribution is non-negligible in the
same regime.

K. GOLEC-BIERNAT AND A.M. STAŚTO PHYSICAL REVIEW D 80, 014006 (2009)

014006-4



IV. RELATION OF THE kT FACTORIZATION TO
OTHER APPROACHES

A. Relation to the collinear factorization approach

The standard collinear factorization formula for the
longitudinal structure function reads

FLðx;Q2Þ ¼ �sðQ2Þ
�

�
2
X
q

e2q
Z 1

x

dy

y

�
x

y

�
2
�
1� x

y

�
ygðy;Q2Þ

þ 4

3

Z 1

x

dy

y

�
x

y

�
2
F2ðx;Q2Þ

�
; (22)

where quark masses in this formula are neglected. Thus,
FL has two contributions: originating from quarks and
proportional to F2, and from gluons and proportional to
the integrated gluon distribution gðy;Q2Þ.

It is instructive to illustrate that the on-shell limit of the
kT factorization formula (1) is compatible with formula
(22). By the on-shell limit we mean the approximation in
which the transverse momentum of the gluon k2 is much
smaller than the virtuality of the photon, k2 � Q2. To this
aim, we start by expanding the expression under the inte-
gral in Eq. (1),

1

2

�
1

D1q

� 1

D2q

�
2
; (23)

in powers of k2=Q2. We retain only the leading term,
proportional to k2, and drop all the higher powers of k2.

Explicit expressions for the denominators D1q and D2q

read

D1q ¼ �02 þ 2ð1� �Þ�0 � kþ ð1� �Þ2k2
þ �ð1� �ÞQ2 þm2

q;

D2q ¼ �02 � 2��0 � kþ �2k2 þ �ð1� �ÞQ2 þm2
q:

After expanding the denominators in k2 we obtain

1

D1q

¼ 1

Dq

� 2ð1� �Þ�0 � k
D2

q

þOðk2Þ;

1

D2q

¼ 1

Dq

þ 2��0 � k
D2

q

þOðk2Þ;

where

Dq ¼ �02 þ �ð1� �ÞQ2 þm2
q (24)

is independent of the gluon transverse momentum k. Here,
we need to keep only terms linear in k. Therefore, expres-
sion (23) to the first order in k2 reads�

1

D1q

� 1

D2q

�
2 ¼ 4cos2��02k2

D4
q

: (25)

The integration d2�0 can be written as 1
2d�

02d� and one

can perform the azimuthal integration over the angle �.
The dependence on k2 is now only in the unintegrated
gluon distribution. Since we have assumed the strong
ordering in the transverse momenta, we can easily perform
this integration using the following definition:

ygðy;�2Þ �
Z �2 dk2

k2
fðy; k2Þ; (26)

where the scale �2 �Q2. Note that, formally the integra-
tion over the k in Eq. (1) is over all scales. However, we
expand the kT factorization formula for small values of
k2=Q2 and assume that transverse momenta are small.
Therefore, using relation (26), we can rewrite the approxi-
mate form as

FðonshellÞ
L ðx; Q2Þ ¼ 2

Q4

�

X
q

e2q
Z 1

0
d�

Z
d�02�sðQ2Þ

� �2ð1� �Þ2 �
02

D4
q

ygðy;�2Þ; (27)

where now

y � x

�
1þ �02 þm2

q

�ð1� �ÞQ2

�
; (28)

since we have dropped the ratio k2=Q2 in xg [see Eq. (4)]. It

is convenient to change the integration variables in Eq. (27)
from �02 to y,

�02 ¼ �ð1� �ÞQ2ðyx � 1Þ �m2
q; (29)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
F

L

total
kT
quarks
nonperturb.

Q2=2 GeV2 Q2=4 GeV2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10-4 10-3 10-2

Q2=6 GeV2

10-4 10-3 10-2 10-1

Q2=8 GeV2

x

FIG. 2 (color online). FL from the kT factorization approach.
Dashed-dotted (black) line: contribution from the boson-gluon
fusion box with gluon transverse momenta k > k0; dashed
(black) line: nonperturbative input from the gluons via collinear
formula; and dotted (black) line: contribution from the quarks.
Solid (red) line is the sum of all contributions. Gluon kinematics
is exact.
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Dq ¼ �ð1� �ÞQ2y
x; (30)

and carefully set the integration limits. Using relation (29)
we can write the inequality

�ð1� �ÞQ2ðyx � 1Þ �m2
q > 0; (31)

and since 1>�> 0, we have

1

4
>�ð1� �Þ> m2

qx

Q2ðy� xÞ : (32)

From inequality (32) we obtain the lower limit for y

y > x

�
1þ 4m2

q

Q2

�
: (33)

It is now convenient to make another change of variables:

� ¼ 1
2 þ �; (34)

and using inequality (32), we finally obtain

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� m2

qx

Q2ðy� xÞ

s
< �<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� m2

qx

Q2ðy� xÞ

s
: (35)

As a result, we obtain the following expression for the on-
shell limit of the k factorization formula:

FðonshellÞ
L ðx; Q2Þ ¼ 2

X
q

e2q

�
Jð1Þq � 2

m2
q

Q2
Jð2Þq

�
; (36)

where

Jð1Þq ¼ �s

�

Z 1

�xq

dy

y

�
x

y

�
2
�
1� x

y

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

qx

Q2ðy� xÞ

s
ygðy;Q2Þ;

(37)

and

Jð2Þq ¼ �s

�

Z 1

�xq

dy

y

�
x

y

�
3
ln

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

qx

Q2ðy�xÞ

r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

qx

Q2ðy�xÞ

r
3
5ygðy;Q2Þ

(38)

with the lower cutoff on the integration equal to

�x q ¼ x

�
1þ 4m2

q

Q2

�
: (39)

Formula (36) together with Eqs. (37) and (38) is the on-
shell approximation derived from the kT factorization in
the presence of quark masses. In this derivation we also
assumed that the argument of the coupling constant is
equal to the external scale �2 ’ Q2. It is straightforward
to verify that the above expressions coincide with the
gluonic contribution of the standard massless collinear
formula (22) in the case when the quark masses vanish.
Therefore, the collinear formula arises as a leading twist
part of the kT factorization formula, and the second term in
Eq. (36) contains a part of the higher twist contribution
proportional to 1=Q2.
Let us emphasize that in order to obtain the limit of the

kT factorization formula consistent with the collinear fac-
torization, it was crucial to take the exact kinematics for
the argument of the gluon density, xg [see formulas (1), (4),
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and (28)]. The numerical relevance of the above substitu-
tion in the kT factorization formula is shown in Fig. 3. In
this figure we show the Q2 dependence of FL obtained
within the kT factorization approach with and without the
exact kinematics, as well as the computation within the
collinear approach. The differences between the collinear
and kT factorization approaches are not significant
although there is distinctive difference in the slope of the
Q2 dependence. On the other hand, the differences due to
the exact gluon kinematics are quite substantial and persist
even in the small x regime.

B. Relation to the dipole approach

The dipole representation for the inclusive cross section
can be computed from the kT factorization formula. It is
obtained after the Fourier transformation of expression (1)
from the space of quark transverse momenta � into the
space of the transverse coordinates, r. It is important to
note that one also needs to perform the small x approxi-
mation in the argument of the gluon density in formula (1),

xg ! x: (40)

This is obviously justified only in the limit of very small x.
In this way the Fourier integrals over the � variable in (1)
can be easily performed.

In the case of the longitudinal structure function,

FL ¼ Q2

4�2�em

	L; (41)

where the longitudinally polarized photon-proton cross
section 	L reads

	L ¼ �em

�

X
q

e2q
Z

d2r
Z 1

0
d�4Q2�2ð1� �Þ2K2

0ð �QrÞ

�
Z d2k

k4
�sfðx; k2Þð1� e�ir�kÞð1� eir�kÞ: (42)

Here k is the gluon transverse momentum, the variable

�Q 2 ¼ �ð1� �ÞQ2 þm2
q; (43)

K0 is the Bessel function, and r is the transverse size of the
q �q pair. The expression with the integral over k in Eq. (42)
is proportional to the dipole-proton cross section, 	̂, which
characterizes the interaction of the q �q color dipole with the
proton

	̂ðx; rÞ � 2�

3

Z d2k

k4
�sfðx; k2Þð1� e�ir�kÞð1� eir�kÞ:

(44)

Notice that such a Fourier transformation is only possible if
the substitution (40) is done. Otherwise, by including the
exact kinematics in the argument of the gluon distribution,
the transverse size of the quark-antiquark dipole is no
longer conserved [17,18,36].

In [37] a systematic analysis of the twist expansion (i.e.
the expansion in powers of 1=Q2) in the dipole model
approach was performed. Using the saturation model [38]
for the dipole-proton cross section, a complete hierarchy of
the twist series has been established. The analysis has been
extended in [39] to a saturation model which includes the
DGLAP evolution [36]. The higher twist terms are propor-
tional to the nonlinear terms in the gluon density.
Consequently, the leading twist part is the term which is
linear in the gluon density. The leading twist-2 part in the
dipole picture in the case of the cross section for the
longitudinally polarized photon reads [37]

	ðtwist-2Þ
L ¼ 4��em

3

X
q

e2q
�sxgðx;Q2Þ

Q2
; (45)

or for the longitudinal structure function

Fðtwist-2Þ
L ¼ 1

3�

X
q

e2q�sxgðx;Q2Þ: (46)

As we noted above, the dipole picture can be recovered
from the kT factorization formula (1) by taking the high
energy limit and making the substitution (40). In order to
recover the leading twist-2 expression in the high energy
limit, it is therefore enough to consider the gluon part of the
collinear formula (22) and replace the integrated gluon
density by

ygðy;Q2Þ ! xgðx;Q2Þ; (47)

which allows to pull it outside the integral. The integral
over y can be then performed exactly

Z 1

x

dy

y

�
x

y

�
2
�
1� x

y

�
¼ 1

6
þ 1

6
x2ð2x� 3Þ ’ 1

6
;

where we assume that x � 1. Combining the above result
with Eq. (22), we obtain the twist-2 contribution to FL in
the small x approximation given by Eq. (46). Therefore, the
leading twist term from the dipole approach is actually an
approximation to the leading twist collinear factorization
formula (22). In Fig. 4 we demonstrate numerically that the
values of FL obtained from Eq. (46) are larger than those
from the collinear factorization formula.
Summarizing, we have demonstrated how the collinear

and dipole approaches are related to the kT factorization
formula (1). The collinear formula is obtained upon ex-
panding the kT factorization formula in powers of k2=Q2

and retaining the lowest order in this expansion. The exact
gluon kinematics has to be taken into account in that
procedure. On the other hand, the dipole approach is
obtained from the kT factorization expression in the limit
when x is very small, which amounts to approximating
the gluon longitudinal momentum fraction xg by the

Bjorken x.
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V. COMPARISON WITH THE HERA DATA

We start our numerical analysis by comparing the cal-
culations of the longitudinal structure function FL per-
formed within the collinear formalism and the kT
factorization formalism with and without the exact kine-
matics. To be precise, for the collinear calculation we use
the formulas (36)–(38) with the light quark masses set to

zero and the charm quark mass equal to mc ¼ 1:5 GeV.
There is also quark contribution in the form of the second
term in Eq. (22) which is proportional to F2. We emphasize
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that we have fitted only the F2 data, thus the calculations
for FL are then the absolute predictions.

In Figs. 5 and 6 we show the calculations obtained using
the collinear approach and the results from the kT factori-
zation formalism with the exact kinematics. The FL struc-
ture function is plotted as a function of x in bins ofQ2. The
data shown in Figs. 5 and 6 are from ZEUS [2] and H1 [1]
experiments, respectively. The agreement between the ex-
perimental data and our calculations is good. In the case of
the kT factorization with the exact kinematics the results
are rather close to the ones obtained from the collinear
approach. For the kinematics range of the HERA data we
do not see any significant differences for FL between these
two different factorization schemes. The only regions
where the results differ is the region of very small x and
high Q2, where the kT factorization with exact kinematics
tends to give higher values, and the region of small Q2

(below 10 GeV2) where the kT factorization-based ap-
proach falls below collinear one (compare Fig. 3). This
result is consistent with the previous observations [40]
which show that the significant difference between the
high energy and the collinear factorizations is more pro-
nounced for the transverse structure function [12].

We stress, though, the importance of the exact kinemat-
ics in the evaluation of the gluon density. The collinear and
kT factorization approaches give very similar results only
in the case when the gluon density is evaluated at xg in the

kT factorization formula. In Figs. 7 and 8 we show also the

calculation where in the kT factorization the argument of
the gluon density equals the Bjorken x. Clearly, the results
which do not take into account the exact kinematics are
much higher than those with the exact kinematics. This is
understandable as we are taking into account that finite
energy has been used for the production of the q �q pair, and
as a result the argument of the gluon density xg > x . We

see that the differences are quite pronounced, they are
typically larger than the differences between the collinear
and the kT factorization with the exact kinematics. The
differences are also visible in the plots of FL as a function
of Q2. It is interesting that the differences do not seem to
vanish as a function ofQ2. This difference can be of course
accounted for by changing the gluon density. The results
for the FL and F2 structure functions can be made consis-
tent within the two calculations (with and without exact
kinematics) at the expense of having different normaliza-
tions for the gluon density.
We have checked that the contribution from the kT

factorization which is proportional to the gluon density is
about 2–4 times smaller with the exact kinematics than the
approximate calculation. We have found that the approxi-
mate kinematics yields similar results when xg ’ 5:7x with
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the proportionality coefficient being the slowly varying
function of Q2.

In Fig. 9 we present the comparison of the kT and col-
linear factorizations for low values ofQ2 � 2–8 GeV2. We
see that the two computations differ more in this region.
The lowest values are given by the kT factorization ap-
proach with the exact kinematics while the highest values
are given by the calculations with an approximate kine-
matics. At the lowest bin, Q2 ¼ 2 GeV2, the differences
seem to be smaller. This is due to the fact that in this region
the calculation is dominated by the contribution of the
quarks and the nonperturbative input which is the same
in the kT and the collinear factorization formulas in our
approach. The range in x has been extended down to x ¼
10�6 to cover the LHeC kinematic region.

In the lowest Q2 region the quark contribution and the
nonperturbative gluonic component becomes dominant.
This is why the differences between the exact and the

approximate kinematics are starting to become smaller in
this region as the whole FL gets a larger contribution from
the quarks which are treated in the same way in both of
these calculations.
In the larger x region, below 10�3, we observe that the

kinematical effects are more significant. Interestingly, the
gluon contribution originating from kT > k0 at x ’ 0:01 is
very small for the scales Q2 up to about 10 GeV2 and this
region is completely dominated by the quark and the non-
perturbative contribution. Therefore, using the approxi-
mate kinematics leads to large overestimation of the
perturbative gluon contribution in this region.

VI. CONCLUSIONS

In this paper we have computed the longitudinal struc-
ture function FL of the proton within the kT factorization
framework, using the unified BFKL/DGLAP resummation
scheme for the unintegrated gluon density. Since we have
only fitted our parameters to the F2 data, the calculations
for FL are absolute predictions. The calculations are con-
sistent with the experimental data from the HERA collider.
We have analyzed the impact of the exact kinematics in

the kT factorization scheme. The exact gluon kinematics is
very important for the phenomenological description of the
data on FL. In particular, it leads to larger differences than
changing from the kT factorization to the collinear facto-
rization scheme, at least in the available kinematical region
of the HERA data.
We have also shown that the kT factorization scheme

with exact kinematics includes both the collinear and the
dipole limits. The first one is recovered by assuming the
strong ordering in the gluon and quark momenta, together
with the exact gluon kinematics. The latter one is recov-
ered in the limit when the fraction of the gluon’s longitu-
dinal momentum is set to be equal to Bjorken x.
The precision of the available HERA data for FL does

not allow to uniquely discriminate between different ap-
proaches. It is possible, however, that by lowering the value
ofQ2 or extending the kinematic regime to lower values of
x (like in the proposed LHeC collider) one can explore the
differences between the presented frameworks.
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